xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 1d227fcc72223cbdd34d0ce13541cbaab5e0d72f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6x_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	writel(0, txq->bd.reg_desc_active);
718 
719 	return 0;
720 }
721 
722 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 			  struct net_device *ndev,
725 			  struct bufdesc *bdp, int index, char *data,
726 			  int size, bool last_tcp, bool is_last)
727 {
728 	struct fec_enet_private *fep = netdev_priv(ndev);
729 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 	unsigned short status;
731 	unsigned int estatus = 0;
732 	dma_addr_t addr;
733 
734 	status = fec16_to_cpu(bdp->cbd_sc);
735 	status &= ~BD_ENET_TX_STATS;
736 
737 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738 
739 	if (((unsigned long) data) & fep->tx_align ||
740 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 		memcpy(txq->tx_bounce[index], data, size);
742 		data = txq->tx_bounce[index];
743 
744 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 			swap_buffer(data, size);
746 	}
747 
748 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 		dev_kfree_skb_any(skb);
751 		if (net_ratelimit())
752 			netdev_err(ndev, "Tx DMA memory map failed\n");
753 		return NETDEV_TX_OK;
754 	}
755 
756 	bdp->cbd_datlen = cpu_to_fec16(size);
757 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
758 
759 	if (fep->bufdesc_ex) {
760 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 		if (skb->ip_summed == CHECKSUM_PARTIAL)
763 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 		ebdp->cbd_bdu = 0;
765 		ebdp->cbd_esc = cpu_to_fec32(estatus);
766 	}
767 
768 	/* Handle the last BD specially */
769 	if (last_tcp)
770 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 	if (is_last) {
772 		status |= BD_ENET_TX_INTR;
773 		if (fep->bufdesc_ex)
774 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 	}
776 
777 	bdp->cbd_sc = cpu_to_fec16(status);
778 
779 	return 0;
780 }
781 
782 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 			 struct sk_buff *skb, struct net_device *ndev,
785 			 struct bufdesc *bdp, int index)
786 {
787 	struct fec_enet_private *fep = netdev_priv(ndev);
788 	int hdr_len = skb_tcp_all_headers(skb);
789 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 	void *bufaddr;
791 	unsigned long dmabuf;
792 	unsigned short status;
793 	unsigned int estatus = 0;
794 
795 	status = fec16_to_cpu(bdp->cbd_sc);
796 	status &= ~BD_ENET_TX_STATS;
797 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798 
799 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 	if (((unsigned long)bufaddr) & fep->tx_align ||
802 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 		bufaddr = txq->tx_bounce[index];
805 
806 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 			swap_buffer(bufaddr, hdr_len);
808 
809 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 					hdr_len, DMA_TO_DEVICE);
811 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 			dev_kfree_skb_any(skb);
813 			if (net_ratelimit())
814 				netdev_err(ndev, "Tx DMA memory map failed\n");
815 			return NETDEV_TX_OK;
816 		}
817 	}
818 
819 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821 
822 	if (fep->bufdesc_ex) {
823 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 		if (skb->ip_summed == CHECKSUM_PARTIAL)
826 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 		ebdp->cbd_bdu = 0;
828 		ebdp->cbd_esc = cpu_to_fec32(estatus);
829 	}
830 
831 	bdp->cbd_sc = cpu_to_fec16(status);
832 
833 	return 0;
834 }
835 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 				   struct sk_buff *skb,
838 				   struct net_device *ndev)
839 {
840 	struct fec_enet_private *fep = netdev_priv(ndev);
841 	int hdr_len, total_len, data_left;
842 	struct bufdesc *bdp = txq->bd.cur;
843 	struct tso_t tso;
844 	unsigned int index = 0;
845 	int ret;
846 
847 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
848 		dev_kfree_skb_any(skb);
849 		if (net_ratelimit())
850 			netdev_err(ndev, "NOT enough BD for TSO!\n");
851 		return NETDEV_TX_OK;
852 	}
853 
854 	/* Protocol checksum off-load for TCP and UDP. */
855 	if (fec_enet_clear_csum(skb, ndev)) {
856 		dev_kfree_skb_any(skb);
857 		return NETDEV_TX_OK;
858 	}
859 
860 	/* Initialize the TSO handler, and prepare the first payload */
861 	hdr_len = tso_start(skb, &tso);
862 
863 	total_len = skb->len - hdr_len;
864 	while (total_len > 0) {
865 		char *hdr;
866 
867 		index = fec_enet_get_bd_index(bdp, &txq->bd);
868 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
869 		total_len -= data_left;
870 
871 		/* prepare packet headers: MAC + IP + TCP */
872 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
873 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
874 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
875 		if (ret)
876 			goto err_release;
877 
878 		while (data_left > 0) {
879 			int size;
880 
881 			size = min_t(int, tso.size, data_left);
882 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
883 			index = fec_enet_get_bd_index(bdp, &txq->bd);
884 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
885 							bdp, index,
886 							tso.data, size,
887 							size == data_left,
888 							total_len == 0);
889 			if (ret)
890 				goto err_release;
891 
892 			data_left -= size;
893 			tso_build_data(skb, &tso, size);
894 		}
895 
896 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
897 	}
898 
899 	/* Save skb pointer */
900 	txq->tx_buf[index].buf_p = skb;
901 
902 	skb_tx_timestamp(skb);
903 	txq->bd.cur = bdp;
904 
905 	/* Trigger transmission start */
906 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
907 	    !readl(txq->bd.reg_desc_active) ||
908 	    !readl(txq->bd.reg_desc_active) ||
909 	    !readl(txq->bd.reg_desc_active) ||
910 	    !readl(txq->bd.reg_desc_active))
911 		writel(0, txq->bd.reg_desc_active);
912 
913 	return 0;
914 
915 err_release:
916 	/* TODO: Release all used data descriptors for TSO */
917 	return ret;
918 }
919 
920 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)921 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
922 {
923 	struct fec_enet_private *fep = netdev_priv(ndev);
924 	int entries_free;
925 	unsigned short queue;
926 	struct fec_enet_priv_tx_q *txq;
927 	struct netdev_queue *nq;
928 	int ret;
929 
930 	queue = skb_get_queue_mapping(skb);
931 	txq = fep->tx_queue[queue];
932 	nq = netdev_get_tx_queue(ndev, queue);
933 
934 	if (skb_is_gso(skb))
935 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
936 	else
937 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
938 	if (ret)
939 		return ret;
940 
941 	entries_free = fec_enet_get_free_txdesc_num(txq);
942 	if (entries_free <= txq->tx_stop_threshold)
943 		netif_tx_stop_queue(nq);
944 
945 	return NETDEV_TX_OK;
946 }
947 
948 /* Init RX & TX buffer descriptors
949  */
fec_enet_bd_init(struct net_device * dev)950 static void fec_enet_bd_init(struct net_device *dev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(dev);
953 	struct fec_enet_priv_tx_q *txq;
954 	struct fec_enet_priv_rx_q *rxq;
955 	struct bufdesc *bdp;
956 	unsigned int i;
957 	unsigned int q;
958 
959 	for (q = 0; q < fep->num_rx_queues; q++) {
960 		/* Initialize the receive buffer descriptors. */
961 		rxq = fep->rx_queue[q];
962 		bdp = rxq->bd.base;
963 
964 		for (i = 0; i < rxq->bd.ring_size; i++) {
965 
966 			/* Initialize the BD for every fragment in the page. */
967 			if (bdp->cbd_bufaddr)
968 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
969 			else
970 				bdp->cbd_sc = cpu_to_fec16(0);
971 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
972 		}
973 
974 		/* Set the last buffer to wrap */
975 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
976 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
977 
978 		rxq->bd.cur = rxq->bd.base;
979 	}
980 
981 	for (q = 0; q < fep->num_tx_queues; q++) {
982 		/* ...and the same for transmit */
983 		txq = fep->tx_queue[q];
984 		bdp = txq->bd.base;
985 		txq->bd.cur = bdp;
986 
987 		for (i = 0; i < txq->bd.ring_size; i++) {
988 			/* Initialize the BD for every fragment in the page. */
989 			bdp->cbd_sc = cpu_to_fec16(0);
990 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
991 				if (bdp->cbd_bufaddr &&
992 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
993 					dma_unmap_single(&fep->pdev->dev,
994 							 fec32_to_cpu(bdp->cbd_bufaddr),
995 							 fec16_to_cpu(bdp->cbd_datlen),
996 							 DMA_TO_DEVICE);
997 				if (txq->tx_buf[i].buf_p)
998 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
999 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000 				if (bdp->cbd_bufaddr)
1001 					dma_unmap_single(&fep->pdev->dev,
1002 							 fec32_to_cpu(bdp->cbd_bufaddr),
1003 							 fec16_to_cpu(bdp->cbd_datlen),
1004 							 DMA_TO_DEVICE);
1005 
1006 				if (txq->tx_buf[i].buf_p)
1007 					xdp_return_frame(txq->tx_buf[i].buf_p);
1008 			} else {
1009 				struct page *page = txq->tx_buf[i].buf_p;
1010 
1011 				if (page)
1012 					page_pool_put_page(page->pp, page, 0, false);
1013 			}
1014 
1015 			txq->tx_buf[i].buf_p = NULL;
1016 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1019 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1020 		}
1021 
1022 		/* Set the last buffer to wrap */
1023 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1024 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025 		txq->dirty_tx = bdp;
1026 	}
1027 }
1028 
fec_enet_active_rxring(struct net_device * ndev)1029 static void fec_enet_active_rxring(struct net_device *ndev)
1030 {
1031 	struct fec_enet_private *fep = netdev_priv(ndev);
1032 	int i;
1033 
1034 	for (i = 0; i < fep->num_rx_queues; i++)
1035 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1036 }
1037 
fec_enet_enable_ring(struct net_device * ndev)1038 static void fec_enet_enable_ring(struct net_device *ndev)
1039 {
1040 	struct fec_enet_private *fep = netdev_priv(ndev);
1041 	struct fec_enet_priv_tx_q *txq;
1042 	struct fec_enet_priv_rx_q *rxq;
1043 	int i;
1044 
1045 	for (i = 0; i < fep->num_rx_queues; i++) {
1046 		rxq = fep->rx_queue[i];
1047 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1048 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1049 
1050 		/* enable DMA1/2 */
1051 		if (i)
1052 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1053 			       fep->hwp + FEC_RCMR(i));
1054 	}
1055 
1056 	for (i = 0; i < fep->num_tx_queues; i++) {
1057 		txq = fep->tx_queue[i];
1058 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1059 
1060 		/* enable DMA1/2 */
1061 		if (i)
1062 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063 			       fep->hwp + FEC_DMA_CFG(i));
1064 	}
1065 }
1066 
1067 /*
1068  * This function is called to start or restart the FEC during a link
1069  * change, transmit timeout, or to reconfigure the FEC.  The network
1070  * packet processing for this device must be stopped before this call.
1071  */
1072 static void
fec_restart(struct net_device * ndev)1073 fec_restart(struct net_device *ndev)
1074 {
1075 	struct fec_enet_private *fep = netdev_priv(ndev);
1076 	u32 temp_mac[2];
1077 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078 	u32 ecntl = FEC_ECR_ETHEREN;
1079 
1080 	if (fep->bufdesc_ex)
1081 		fec_ptp_save_state(fep);
1082 
1083 	/* Whack a reset.  We should wait for this.
1084 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1085 	 * instead of reset MAC itself.
1086 	 */
1087 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1088 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1089 		writel(0, fep->hwp + FEC_ECNTRL);
1090 	} else {
1091 		writel(1, fep->hwp + FEC_ECNTRL);
1092 		udelay(10);
1093 	}
1094 
1095 	/*
1096 	 * enet-mac reset will reset mac address registers too,
1097 	 * so need to reconfigure it.
1098 	 */
1099 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1100 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1101 	       fep->hwp + FEC_ADDR_LOW);
1102 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1103 	       fep->hwp + FEC_ADDR_HIGH);
1104 
1105 	/* Clear any outstanding interrupt, except MDIO. */
1106 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1107 
1108 	fec_enet_bd_init(ndev);
1109 
1110 	fec_enet_enable_ring(ndev);
1111 
1112 	/* Enable MII mode */
1113 	if (fep->full_duplex == DUPLEX_FULL) {
1114 		/* FD enable */
1115 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1116 	} else {
1117 		/* No Rcv on Xmit */
1118 		rcntl |= 0x02;
1119 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1120 	}
1121 
1122 	/* Set MII speed */
1123 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1124 
1125 #if !defined(CONFIG_M5272)
1126 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1127 		u32 val = readl(fep->hwp + FEC_RACC);
1128 
1129 		/* align IP header */
1130 		val |= FEC_RACC_SHIFT16;
1131 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1132 			/* set RX checksum */
1133 			val |= FEC_RACC_OPTIONS;
1134 		else
1135 			val &= ~FEC_RACC_OPTIONS;
1136 		writel(val, fep->hwp + FEC_RACC);
1137 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1138 	}
1139 #endif
1140 
1141 	/*
1142 	 * The phy interface and speed need to get configured
1143 	 * differently on enet-mac.
1144 	 */
1145 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1146 		/* Enable flow control and length check */
1147 		rcntl |= 0x40000000 | 0x00000020;
1148 
1149 		/* RGMII, RMII or MII */
1150 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1151 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1152 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1153 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1154 			rcntl |= (1 << 6);
1155 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1156 			rcntl |= FEC_RCR_RMII;
1157 		else
1158 			rcntl &= ~FEC_RCR_RMII;
1159 
1160 		/* 1G, 100M or 10M */
1161 		if (ndev->phydev) {
1162 			if (ndev->phydev->speed == SPEED_1000)
1163 				ecntl |= (1 << 5);
1164 			else if (ndev->phydev->speed == SPEED_100)
1165 				rcntl &= ~FEC_RCR_10BASET;
1166 			else
1167 				rcntl |= FEC_RCR_10BASET;
1168 		}
1169 	} else {
1170 #ifdef FEC_MIIGSK_ENR
1171 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1172 			u32 cfgr;
1173 			/* disable the gasket and wait */
1174 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1175 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1176 				udelay(1);
1177 
1178 			/*
1179 			 * configure the gasket:
1180 			 *   RMII, 50 MHz, no loopback, no echo
1181 			 *   MII, 25 MHz, no loopback, no echo
1182 			 */
1183 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1184 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1185 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1186 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1187 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1188 
1189 			/* re-enable the gasket */
1190 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1191 		}
1192 #endif
1193 	}
1194 
1195 #if !defined(CONFIG_M5272)
1196 	/* enable pause frame*/
1197 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1198 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1199 	     ndev->phydev && ndev->phydev->pause)) {
1200 		rcntl |= FEC_RCR_FLOWCTL;
1201 
1202 		/* set FIFO threshold parameter to reduce overrun */
1203 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1204 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1205 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1206 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1207 
1208 		/* OPD */
1209 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1210 	} else {
1211 		rcntl &= ~FEC_RCR_FLOWCTL;
1212 	}
1213 #endif /* !defined(CONFIG_M5272) */
1214 
1215 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1216 
1217 	/* Setup multicast filter. */
1218 	set_multicast_list(ndev);
1219 #ifndef CONFIG_M5272
1220 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1221 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1222 #endif
1223 
1224 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1225 		/* enable ENET endian swap */
1226 		ecntl |= FEC_ECR_BYTESWP;
1227 		/* enable ENET store and forward mode */
1228 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1229 	}
1230 
1231 	if (fep->bufdesc_ex)
1232 		ecntl |= FEC_ECR_EN1588;
1233 
1234 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235 	    fep->rgmii_txc_dly)
1236 		ecntl |= FEC_ENET_TXC_DLY;
1237 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1238 	    fep->rgmii_rxc_dly)
1239 		ecntl |= FEC_ENET_RXC_DLY;
1240 
1241 #ifndef CONFIG_M5272
1242 	/* Enable the MIB statistic event counters */
1243 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1244 #endif
1245 
1246 	/* And last, enable the transmit and receive processing */
1247 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1248 	fec_enet_active_rxring(ndev);
1249 
1250 	if (fep->bufdesc_ex) {
1251 		fec_ptp_start_cyclecounter(ndev);
1252 		fec_ptp_restore_state(fep);
1253 	}
1254 
1255 	/* Enable interrupts we wish to service */
1256 	if (fep->link)
1257 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1258 	else
1259 		writel(0, fep->hwp + FEC_IMASK);
1260 
1261 	/* Init the interrupt coalescing */
1262 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1263 		fec_enet_itr_coal_set(ndev);
1264 }
1265 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1266 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1267 {
1268 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1269 	      of_machine_is_compatible("fsl,imx8qxp") ||
1270 	      of_machine_is_compatible("fsl,imx8dxl")))
1271 		return 0;
1272 
1273 	return imx_scu_get_handle(&fep->ipc_handle);
1274 }
1275 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1276 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1277 {
1278 	struct device_node *np = fep->pdev->dev.of_node;
1279 	u32 rsrc_id, val;
1280 	int idx;
1281 
1282 	if (!np || !fep->ipc_handle)
1283 		return;
1284 
1285 	idx = of_alias_get_id(np, "ethernet");
1286 	if (idx < 0)
1287 		idx = 0;
1288 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1289 
1290 	val = enabled ? 1 : 0;
1291 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1292 }
1293 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1294 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1295 {
1296 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1297 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1298 
1299 	if (stop_gpr->gpr) {
1300 		if (enabled)
1301 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1302 					   BIT(stop_gpr->bit),
1303 					   BIT(stop_gpr->bit));
1304 		else
1305 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1306 					   BIT(stop_gpr->bit), 0);
1307 	} else if (pdata && pdata->sleep_mode_enable) {
1308 		pdata->sleep_mode_enable(enabled);
1309 	} else {
1310 		fec_enet_ipg_stop_set(fep, enabled);
1311 	}
1312 }
1313 
fec_irqs_disable(struct net_device * ndev)1314 static void fec_irqs_disable(struct net_device *ndev)
1315 {
1316 	struct fec_enet_private *fep = netdev_priv(ndev);
1317 
1318 	writel(0, fep->hwp + FEC_IMASK);
1319 }
1320 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1321 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1322 {
1323 	struct fec_enet_private *fep = netdev_priv(ndev);
1324 
1325 	writel(0, fep->hwp + FEC_IMASK);
1326 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1327 }
1328 
1329 static void
fec_stop(struct net_device * ndev)1330 fec_stop(struct net_device *ndev)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1334 	u32 val;
1335 
1336 	/* We cannot expect a graceful transmit stop without link !!! */
1337 	if (fep->link) {
1338 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1339 		udelay(10);
1340 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1341 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1342 	}
1343 
1344 	if (fep->bufdesc_ex)
1345 		fec_ptp_save_state(fep);
1346 
1347 	/* Whack a reset.  We should wait for this.
1348 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1349 	 * instead of reset MAC itself.
1350 	 */
1351 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1352 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1353 			writel(0, fep->hwp + FEC_ECNTRL);
1354 		} else {
1355 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1356 			udelay(10);
1357 		}
1358 	} else {
1359 		val = readl(fep->hwp + FEC_ECNTRL);
1360 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1361 		writel(val, fep->hwp + FEC_ECNTRL);
1362 	}
1363 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1364 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1365 
1366 	/* We have to keep ENET enabled to have MII interrupt stay working */
1367 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1368 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1369 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1370 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1371 	}
1372 
1373 	if (fep->bufdesc_ex) {
1374 		val = readl(fep->hwp + FEC_ECNTRL);
1375 		val |= FEC_ECR_EN1588;
1376 		writel(val, fep->hwp + FEC_ECNTRL);
1377 
1378 		fec_ptp_start_cyclecounter(ndev);
1379 		fec_ptp_restore_state(fep);
1380 	}
1381 }
1382 
1383 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1384 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1385 {
1386 	struct fec_enet_private *fep = netdev_priv(ndev);
1387 
1388 	fec_dump(ndev);
1389 
1390 	ndev->stats.tx_errors++;
1391 
1392 	schedule_work(&fep->tx_timeout_work);
1393 }
1394 
fec_enet_timeout_work(struct work_struct * work)1395 static void fec_enet_timeout_work(struct work_struct *work)
1396 {
1397 	struct fec_enet_private *fep =
1398 		container_of(work, struct fec_enet_private, tx_timeout_work);
1399 	struct net_device *ndev = fep->netdev;
1400 
1401 	rtnl_lock();
1402 	if (netif_device_present(ndev) || netif_running(ndev)) {
1403 		napi_disable(&fep->napi);
1404 		netif_tx_lock_bh(ndev);
1405 		fec_restart(ndev);
1406 		netif_tx_wake_all_queues(ndev);
1407 		netif_tx_unlock_bh(ndev);
1408 		napi_enable(&fep->napi);
1409 	}
1410 	rtnl_unlock();
1411 }
1412 
1413 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1414 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1415 	struct skb_shared_hwtstamps *hwtstamps)
1416 {
1417 	unsigned long flags;
1418 	u64 ns;
1419 
1420 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1421 	ns = timecounter_cyc2time(&fep->tc, ts);
1422 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1423 
1424 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1425 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1426 }
1427 
1428 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1429 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1430 {
1431 	struct	fec_enet_private *fep;
1432 	struct xdp_frame *xdpf;
1433 	struct bufdesc *bdp;
1434 	unsigned short status;
1435 	struct	sk_buff	*skb;
1436 	struct fec_enet_priv_tx_q *txq;
1437 	struct netdev_queue *nq;
1438 	int	index = 0;
1439 	int	entries_free;
1440 	struct page *page;
1441 	int frame_len;
1442 
1443 	fep = netdev_priv(ndev);
1444 
1445 	txq = fep->tx_queue[queue_id];
1446 	/* get next bdp of dirty_tx */
1447 	nq = netdev_get_tx_queue(ndev, queue_id);
1448 	bdp = txq->dirty_tx;
1449 
1450 	/* get next bdp of dirty_tx */
1451 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1452 
1453 	while (bdp != READ_ONCE(txq->bd.cur)) {
1454 		/* Order the load of bd.cur and cbd_sc */
1455 		rmb();
1456 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1457 		if (status & BD_ENET_TX_READY)
1458 			break;
1459 
1460 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1461 
1462 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1463 			skb = txq->tx_buf[index].buf_p;
1464 			if (bdp->cbd_bufaddr &&
1465 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1466 				dma_unmap_single(&fep->pdev->dev,
1467 						 fec32_to_cpu(bdp->cbd_bufaddr),
1468 						 fec16_to_cpu(bdp->cbd_datlen),
1469 						 DMA_TO_DEVICE);
1470 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1471 			if (!skb)
1472 				goto tx_buf_done;
1473 		} else {
1474 			/* Tx processing cannot call any XDP (or page pool) APIs if
1475 			 * the "budget" is 0. Because NAPI is called with budget of
1476 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1477 			 * however, we can't use the page pool from IRQ context.
1478 			 */
1479 			if (unlikely(!budget))
1480 				break;
1481 
1482 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1483 				xdpf = txq->tx_buf[index].buf_p;
1484 				if (bdp->cbd_bufaddr)
1485 					dma_unmap_single(&fep->pdev->dev,
1486 							 fec32_to_cpu(bdp->cbd_bufaddr),
1487 							 fec16_to_cpu(bdp->cbd_datlen),
1488 							 DMA_TO_DEVICE);
1489 			} else {
1490 				page = txq->tx_buf[index].buf_p;
1491 			}
1492 
1493 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1494 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1495 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1496 				goto tx_buf_done;
1497 			}
1498 
1499 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1500 		}
1501 
1502 		/* Check for errors. */
1503 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1504 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1505 				   BD_ENET_TX_CSL)) {
1506 			ndev->stats.tx_errors++;
1507 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1508 				ndev->stats.tx_heartbeat_errors++;
1509 			if (status & BD_ENET_TX_LC)  /* Late collision */
1510 				ndev->stats.tx_window_errors++;
1511 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1512 				ndev->stats.tx_aborted_errors++;
1513 			if (status & BD_ENET_TX_UN)  /* Underrun */
1514 				ndev->stats.tx_fifo_errors++;
1515 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1516 				ndev->stats.tx_carrier_errors++;
1517 		} else {
1518 			ndev->stats.tx_packets++;
1519 
1520 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1521 				ndev->stats.tx_bytes += skb->len;
1522 			else
1523 				ndev->stats.tx_bytes += frame_len;
1524 		}
1525 
1526 		/* Deferred means some collisions occurred during transmit,
1527 		 * but we eventually sent the packet OK.
1528 		 */
1529 		if (status & BD_ENET_TX_DEF)
1530 			ndev->stats.collisions++;
1531 
1532 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1533 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1534 			 * are to time stamp the packet, so we still need to check time
1535 			 * stamping enabled flag.
1536 			 */
1537 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1538 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1539 				struct skb_shared_hwtstamps shhwtstamps;
1540 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1541 
1542 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1543 				skb_tstamp_tx(skb, &shhwtstamps);
1544 			}
1545 
1546 			/* Free the sk buffer associated with this last transmit */
1547 			napi_consume_skb(skb, budget);
1548 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1549 			xdp_return_frame_rx_napi(xdpf);
1550 		} else { /* recycle pages of XDP_TX frames */
1551 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1552 			page_pool_put_page(page->pp, page, 0, true);
1553 		}
1554 
1555 		txq->tx_buf[index].buf_p = NULL;
1556 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1557 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1558 
1559 tx_buf_done:
1560 		/* Make sure the update to bdp and tx_buf are performed
1561 		 * before dirty_tx
1562 		 */
1563 		wmb();
1564 		txq->dirty_tx = bdp;
1565 
1566 		/* Update pointer to next buffer descriptor to be transmitted */
1567 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1568 
1569 		/* Since we have freed up a buffer, the ring is no longer full
1570 		 */
1571 		if (netif_tx_queue_stopped(nq)) {
1572 			entries_free = fec_enet_get_free_txdesc_num(txq);
1573 			if (entries_free >= txq->tx_wake_threshold)
1574 				netif_tx_wake_queue(nq);
1575 		}
1576 	}
1577 
1578 	/* ERR006358: Keep the transmitter going */
1579 	if (bdp != txq->bd.cur &&
1580 	    readl(txq->bd.reg_desc_active) == 0)
1581 		writel(0, txq->bd.reg_desc_active);
1582 }
1583 
fec_enet_tx(struct net_device * ndev,int budget)1584 static void fec_enet_tx(struct net_device *ndev, int budget)
1585 {
1586 	struct fec_enet_private *fep = netdev_priv(ndev);
1587 	int i;
1588 
1589 	/* Make sure that AVB queues are processed first. */
1590 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1591 		fec_enet_tx_queue(ndev, i, budget);
1592 }
1593 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1594 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1595 				struct bufdesc *bdp, int index)
1596 {
1597 	struct page *new_page;
1598 	dma_addr_t phys_addr;
1599 
1600 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1601 	WARN_ON(!new_page);
1602 	rxq->rx_skb_info[index].page = new_page;
1603 
1604 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1605 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1606 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1607 }
1608 
1609 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1610 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1611 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1612 {
1613 	unsigned int sync, len = xdp->data_end - xdp->data;
1614 	u32 ret = FEC_ENET_XDP_PASS;
1615 	struct page *page;
1616 	int err;
1617 	u32 act;
1618 
1619 	act = bpf_prog_run_xdp(prog, xdp);
1620 
1621 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1622 	 * max len CPU touch
1623 	 */
1624 	sync = xdp->data_end - xdp->data;
1625 	sync = max(sync, len);
1626 
1627 	switch (act) {
1628 	case XDP_PASS:
1629 		rxq->stats[RX_XDP_PASS]++;
1630 		ret = FEC_ENET_XDP_PASS;
1631 		break;
1632 
1633 	case XDP_REDIRECT:
1634 		rxq->stats[RX_XDP_REDIRECT]++;
1635 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1636 		if (unlikely(err))
1637 			goto xdp_err;
1638 
1639 		ret = FEC_ENET_XDP_REDIR;
1640 		break;
1641 
1642 	case XDP_TX:
1643 		rxq->stats[RX_XDP_TX]++;
1644 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1645 		if (unlikely(err)) {
1646 			rxq->stats[RX_XDP_TX_ERRORS]++;
1647 			goto xdp_err;
1648 		}
1649 
1650 		ret = FEC_ENET_XDP_TX;
1651 		break;
1652 
1653 	default:
1654 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1655 		fallthrough;
1656 
1657 	case XDP_ABORTED:
1658 		fallthrough;    /* handle aborts by dropping packet */
1659 
1660 	case XDP_DROP:
1661 		rxq->stats[RX_XDP_DROP]++;
1662 xdp_err:
1663 		ret = FEC_ENET_XDP_CONSUMED;
1664 		page = virt_to_head_page(xdp->data);
1665 		page_pool_put_page(rxq->page_pool, page, sync, true);
1666 		if (act != XDP_DROP)
1667 			trace_xdp_exception(fep->netdev, prog, act);
1668 		break;
1669 	}
1670 
1671 	return ret;
1672 }
1673 
1674 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1675  * When we update through the ring, if the next incoming buffer has
1676  * not been given to the system, we just set the empty indicator,
1677  * effectively tossing the packet.
1678  */
1679 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1680 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1681 {
1682 	struct fec_enet_private *fep = netdev_priv(ndev);
1683 	struct fec_enet_priv_rx_q *rxq;
1684 	struct bufdesc *bdp;
1685 	unsigned short status;
1686 	struct  sk_buff *skb;
1687 	ushort	pkt_len;
1688 	__u8 *data;
1689 	int	pkt_received = 0;
1690 	struct	bufdesc_ex *ebdp = NULL;
1691 	bool	vlan_packet_rcvd = false;
1692 	u16	vlan_tag;
1693 	int	index = 0;
1694 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1695 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1696 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1697 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1698 	int cpu = smp_processor_id();
1699 	struct xdp_buff xdp;
1700 	struct page *page;
1701 	u32 sub_len = 4;
1702 
1703 #if !defined(CONFIG_M5272)
1704 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1705 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1706 	 */
1707 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1708 		data_start += 2;
1709 		sub_len += 2;
1710 	}
1711 #endif
1712 
1713 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1714 	/*
1715 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1716 	 * headers.
1717 	 */
1718 	flush_cache_all();
1719 #endif
1720 	rxq = fep->rx_queue[queue_id];
1721 
1722 	/* First, grab all of the stats for the incoming packet.
1723 	 * These get messed up if we get called due to a busy condition.
1724 	 */
1725 	bdp = rxq->bd.cur;
1726 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1727 
1728 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1729 
1730 		if (pkt_received >= budget)
1731 			break;
1732 		pkt_received++;
1733 
1734 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1735 
1736 		/* Check for errors. */
1737 		status ^= BD_ENET_RX_LAST;
1738 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1739 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1740 			   BD_ENET_RX_CL)) {
1741 			ndev->stats.rx_errors++;
1742 			if (status & BD_ENET_RX_OV) {
1743 				/* FIFO overrun */
1744 				ndev->stats.rx_fifo_errors++;
1745 				goto rx_processing_done;
1746 			}
1747 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1748 						| BD_ENET_RX_LAST)) {
1749 				/* Frame too long or too short. */
1750 				ndev->stats.rx_length_errors++;
1751 				if (status & BD_ENET_RX_LAST)
1752 					netdev_err(ndev, "rcv is not +last\n");
1753 			}
1754 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1755 				ndev->stats.rx_crc_errors++;
1756 			/* Report late collisions as a frame error. */
1757 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1758 				ndev->stats.rx_frame_errors++;
1759 			goto rx_processing_done;
1760 		}
1761 
1762 		/* Process the incoming frame. */
1763 		ndev->stats.rx_packets++;
1764 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1765 		ndev->stats.rx_bytes += pkt_len;
1766 
1767 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1768 		page = rxq->rx_skb_info[index].page;
1769 		dma_sync_single_for_cpu(&fep->pdev->dev,
1770 					fec32_to_cpu(bdp->cbd_bufaddr),
1771 					pkt_len,
1772 					DMA_FROM_DEVICE);
1773 		prefetch(page_address(page));
1774 		fec_enet_update_cbd(rxq, bdp, index);
1775 
1776 		if (xdp_prog) {
1777 			xdp_buff_clear_frags_flag(&xdp);
1778 			/* subtract 16bit shift and FCS */
1779 			xdp_prepare_buff(&xdp, page_address(page),
1780 					 data_start, pkt_len - sub_len, false);
1781 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1782 			xdp_result |= ret;
1783 			if (ret != FEC_ENET_XDP_PASS)
1784 				goto rx_processing_done;
1785 		}
1786 
1787 		/* The packet length includes FCS, but we don't want to
1788 		 * include that when passing upstream as it messes up
1789 		 * bridging applications.
1790 		 */
1791 		skb = build_skb(page_address(page), PAGE_SIZE);
1792 		if (unlikely(!skb)) {
1793 			page_pool_recycle_direct(rxq->page_pool, page);
1794 			ndev->stats.rx_dropped++;
1795 
1796 			netdev_err_once(ndev, "build_skb failed!\n");
1797 			goto rx_processing_done;
1798 		}
1799 
1800 		skb_reserve(skb, data_start);
1801 		skb_put(skb, pkt_len - sub_len);
1802 		skb_mark_for_recycle(skb);
1803 
1804 		if (unlikely(need_swap)) {
1805 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1806 			swap_buffer(data, pkt_len);
1807 		}
1808 		data = skb->data;
1809 
1810 		/* Extract the enhanced buffer descriptor */
1811 		ebdp = NULL;
1812 		if (fep->bufdesc_ex)
1813 			ebdp = (struct bufdesc_ex *)bdp;
1814 
1815 		/* If this is a VLAN packet remove the VLAN Tag */
1816 		vlan_packet_rcvd = false;
1817 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1818 		    fep->bufdesc_ex &&
1819 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1820 			/* Push and remove the vlan tag */
1821 			struct vlan_hdr *vlan_header =
1822 					(struct vlan_hdr *) (data + ETH_HLEN);
1823 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1824 
1825 			vlan_packet_rcvd = true;
1826 
1827 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1828 			skb_pull(skb, VLAN_HLEN);
1829 		}
1830 
1831 		skb->protocol = eth_type_trans(skb, ndev);
1832 
1833 		/* Get receive timestamp from the skb */
1834 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1835 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1836 					  skb_hwtstamps(skb));
1837 
1838 		if (fep->bufdesc_ex &&
1839 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1840 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1841 				/* don't check it */
1842 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1843 			} else {
1844 				skb_checksum_none_assert(skb);
1845 			}
1846 		}
1847 
1848 		/* Handle received VLAN packets */
1849 		if (vlan_packet_rcvd)
1850 			__vlan_hwaccel_put_tag(skb,
1851 					       htons(ETH_P_8021Q),
1852 					       vlan_tag);
1853 
1854 		skb_record_rx_queue(skb, queue_id);
1855 		napi_gro_receive(&fep->napi, skb);
1856 
1857 rx_processing_done:
1858 		/* Clear the status flags for this buffer */
1859 		status &= ~BD_ENET_RX_STATS;
1860 
1861 		/* Mark the buffer empty */
1862 		status |= BD_ENET_RX_EMPTY;
1863 
1864 		if (fep->bufdesc_ex) {
1865 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1866 
1867 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1868 			ebdp->cbd_prot = 0;
1869 			ebdp->cbd_bdu = 0;
1870 		}
1871 		/* Make sure the updates to rest of the descriptor are
1872 		 * performed before transferring ownership.
1873 		 */
1874 		wmb();
1875 		bdp->cbd_sc = cpu_to_fec16(status);
1876 
1877 		/* Update BD pointer to next entry */
1878 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1879 
1880 		/* Doing this here will keep the FEC running while we process
1881 		 * incoming frames.  On a heavily loaded network, we should be
1882 		 * able to keep up at the expense of system resources.
1883 		 */
1884 		writel(0, rxq->bd.reg_desc_active);
1885 	}
1886 	rxq->bd.cur = bdp;
1887 
1888 	if (xdp_result & FEC_ENET_XDP_REDIR)
1889 		xdp_do_flush();
1890 
1891 	return pkt_received;
1892 }
1893 
fec_enet_rx(struct net_device * ndev,int budget)1894 static int fec_enet_rx(struct net_device *ndev, int budget)
1895 {
1896 	struct fec_enet_private *fep = netdev_priv(ndev);
1897 	int i, done = 0;
1898 
1899 	/* Make sure that AVB queues are processed first. */
1900 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1901 		done += fec_enet_rx_queue(ndev, budget - done, i);
1902 
1903 	return done;
1904 }
1905 
fec_enet_collect_events(struct fec_enet_private * fep)1906 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1907 {
1908 	uint int_events;
1909 
1910 	int_events = readl(fep->hwp + FEC_IEVENT);
1911 
1912 	/* Don't clear MDIO events, we poll for those */
1913 	int_events &= ~FEC_ENET_MII;
1914 
1915 	writel(int_events, fep->hwp + FEC_IEVENT);
1916 
1917 	return int_events != 0;
1918 }
1919 
1920 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1921 fec_enet_interrupt(int irq, void *dev_id)
1922 {
1923 	struct net_device *ndev = dev_id;
1924 	struct fec_enet_private *fep = netdev_priv(ndev);
1925 	irqreturn_t ret = IRQ_NONE;
1926 
1927 	if (fec_enet_collect_events(fep) && fep->link) {
1928 		ret = IRQ_HANDLED;
1929 
1930 		if (napi_schedule_prep(&fep->napi)) {
1931 			/* Disable interrupts */
1932 			writel(0, fep->hwp + FEC_IMASK);
1933 			__napi_schedule(&fep->napi);
1934 		}
1935 	}
1936 
1937 	return ret;
1938 }
1939 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1940 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1941 {
1942 	struct net_device *ndev = napi->dev;
1943 	struct fec_enet_private *fep = netdev_priv(ndev);
1944 	int done = 0;
1945 
1946 	do {
1947 		done += fec_enet_rx(ndev, budget - done);
1948 		fec_enet_tx(ndev, budget);
1949 	} while ((done < budget) && fec_enet_collect_events(fep));
1950 
1951 	if (done < budget) {
1952 		napi_complete_done(napi, done);
1953 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1954 	}
1955 
1956 	return done;
1957 }
1958 
1959 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1960 static int fec_get_mac(struct net_device *ndev)
1961 {
1962 	struct fec_enet_private *fep = netdev_priv(ndev);
1963 	unsigned char *iap, tmpaddr[ETH_ALEN];
1964 	int ret;
1965 
1966 	/*
1967 	 * try to get mac address in following order:
1968 	 *
1969 	 * 1) module parameter via kernel command line in form
1970 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1971 	 */
1972 	iap = macaddr;
1973 
1974 	/*
1975 	 * 2) from device tree data
1976 	 */
1977 	if (!is_valid_ether_addr(iap)) {
1978 		struct device_node *np = fep->pdev->dev.of_node;
1979 		if (np) {
1980 			ret = of_get_mac_address(np, tmpaddr);
1981 			if (!ret)
1982 				iap = tmpaddr;
1983 			else if (ret == -EPROBE_DEFER)
1984 				return ret;
1985 		}
1986 	}
1987 
1988 	/*
1989 	 * 3) from flash or fuse (via platform data)
1990 	 */
1991 	if (!is_valid_ether_addr(iap)) {
1992 #ifdef CONFIG_M5272
1993 		if (FEC_FLASHMAC)
1994 			iap = (unsigned char *)FEC_FLASHMAC;
1995 #else
1996 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1997 
1998 		if (pdata)
1999 			iap = (unsigned char *)&pdata->mac;
2000 #endif
2001 	}
2002 
2003 	/*
2004 	 * 4) FEC mac registers set by bootloader
2005 	 */
2006 	if (!is_valid_ether_addr(iap)) {
2007 		*((__be32 *) &tmpaddr[0]) =
2008 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2009 		*((__be16 *) &tmpaddr[4]) =
2010 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2011 		iap = &tmpaddr[0];
2012 	}
2013 
2014 	/*
2015 	 * 5) random mac address
2016 	 */
2017 	if (!is_valid_ether_addr(iap)) {
2018 		/* Report it and use a random ethernet address instead */
2019 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2020 		eth_hw_addr_random(ndev);
2021 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2022 			 ndev->dev_addr);
2023 		return 0;
2024 	}
2025 
2026 	/* Adjust MAC if using macaddr */
2027 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2028 
2029 	return 0;
2030 }
2031 
2032 /* ------------------------------------------------------------------------- */
2033 
2034 /*
2035  * Phy section
2036  */
2037 
2038 /* LPI Sleep Ts count base on tx clk (clk_ref).
2039  * The lpi sleep cnt value = X us / (cycle_ns).
2040  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2041 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2042 {
2043 	struct fec_enet_private *fep = netdev_priv(ndev);
2044 
2045 	return us * (fep->clk_ref_rate / 1000) / 1000;
2046 }
2047 
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)2048 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2049 {
2050 	struct fec_enet_private *fep = netdev_priv(ndev);
2051 	struct ethtool_keee *p = &fep->eee;
2052 	unsigned int sleep_cycle, wake_cycle;
2053 
2054 	if (enable) {
2055 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2056 		wake_cycle = sleep_cycle;
2057 	} else {
2058 		sleep_cycle = 0;
2059 		wake_cycle = 0;
2060 	}
2061 
2062 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2063 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2064 
2065 	return 0;
2066 }
2067 
fec_enet_adjust_link(struct net_device * ndev)2068 static void fec_enet_adjust_link(struct net_device *ndev)
2069 {
2070 	struct fec_enet_private *fep = netdev_priv(ndev);
2071 	struct phy_device *phy_dev = ndev->phydev;
2072 	int status_change = 0;
2073 
2074 	/*
2075 	 * If the netdev is down, or is going down, we're not interested
2076 	 * in link state events, so just mark our idea of the link as down
2077 	 * and ignore the event.
2078 	 */
2079 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2080 		fep->link = 0;
2081 	} else if (phy_dev->link) {
2082 		if (!fep->link) {
2083 			fep->link = phy_dev->link;
2084 			status_change = 1;
2085 		}
2086 
2087 		if (fep->full_duplex != phy_dev->duplex) {
2088 			fep->full_duplex = phy_dev->duplex;
2089 			status_change = 1;
2090 		}
2091 
2092 		if (phy_dev->speed != fep->speed) {
2093 			fep->speed = phy_dev->speed;
2094 			status_change = 1;
2095 		}
2096 
2097 		/* if any of the above changed restart the FEC */
2098 		if (status_change) {
2099 			netif_stop_queue(ndev);
2100 			napi_disable(&fep->napi);
2101 			netif_tx_lock_bh(ndev);
2102 			fec_restart(ndev);
2103 			netif_tx_wake_all_queues(ndev);
2104 			netif_tx_unlock_bh(ndev);
2105 			napi_enable(&fep->napi);
2106 		}
2107 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2108 			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2109 	} else {
2110 		if (fep->link) {
2111 			netif_stop_queue(ndev);
2112 			napi_disable(&fep->napi);
2113 			netif_tx_lock_bh(ndev);
2114 			fec_stop(ndev);
2115 			netif_tx_unlock_bh(ndev);
2116 			napi_enable(&fep->napi);
2117 			fep->link = phy_dev->link;
2118 			status_change = 1;
2119 		}
2120 	}
2121 
2122 	if (status_change)
2123 		phy_print_status(phy_dev);
2124 }
2125 
fec_enet_mdio_wait(struct fec_enet_private * fep)2126 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2127 {
2128 	uint ievent;
2129 	int ret;
2130 
2131 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2132 					ievent & FEC_ENET_MII, 2, 30000);
2133 
2134 	if (!ret)
2135 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2136 
2137 	return ret;
2138 }
2139 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2140 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2141 {
2142 	struct fec_enet_private *fep = bus->priv;
2143 	struct device *dev = &fep->pdev->dev;
2144 	int ret = 0, frame_start, frame_addr, frame_op;
2145 
2146 	ret = pm_runtime_resume_and_get(dev);
2147 	if (ret < 0)
2148 		return ret;
2149 
2150 	/* C22 read */
2151 	frame_op = FEC_MMFR_OP_READ;
2152 	frame_start = FEC_MMFR_ST;
2153 	frame_addr = regnum;
2154 
2155 	/* start a read op */
2156 	writel(frame_start | frame_op |
2157 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2158 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2159 
2160 	/* wait for end of transfer */
2161 	ret = fec_enet_mdio_wait(fep);
2162 	if (ret) {
2163 		netdev_err(fep->netdev, "MDIO read timeout\n");
2164 		goto out;
2165 	}
2166 
2167 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2168 
2169 out:
2170 	pm_runtime_mark_last_busy(dev);
2171 	pm_runtime_put_autosuspend(dev);
2172 
2173 	return ret;
2174 }
2175 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2176 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2177 				  int devad, int regnum)
2178 {
2179 	struct fec_enet_private *fep = bus->priv;
2180 	struct device *dev = &fep->pdev->dev;
2181 	int ret = 0, frame_start, frame_op;
2182 
2183 	ret = pm_runtime_resume_and_get(dev);
2184 	if (ret < 0)
2185 		return ret;
2186 
2187 	frame_start = FEC_MMFR_ST_C45;
2188 
2189 	/* write address */
2190 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2191 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2192 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2193 	       fep->hwp + FEC_MII_DATA);
2194 
2195 	/* wait for end of transfer */
2196 	ret = fec_enet_mdio_wait(fep);
2197 	if (ret) {
2198 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2199 		goto out;
2200 	}
2201 
2202 	frame_op = FEC_MMFR_OP_READ_C45;
2203 
2204 	/* start a read op */
2205 	writel(frame_start | frame_op |
2206 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2207 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2208 
2209 	/* wait for end of transfer */
2210 	ret = fec_enet_mdio_wait(fep);
2211 	if (ret) {
2212 		netdev_err(fep->netdev, "MDIO read timeout\n");
2213 		goto out;
2214 	}
2215 
2216 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2217 
2218 out:
2219 	pm_runtime_mark_last_busy(dev);
2220 	pm_runtime_put_autosuspend(dev);
2221 
2222 	return ret;
2223 }
2224 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2225 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2226 				   u16 value)
2227 {
2228 	struct fec_enet_private *fep = bus->priv;
2229 	struct device *dev = &fep->pdev->dev;
2230 	int ret, frame_start, frame_addr;
2231 
2232 	ret = pm_runtime_resume_and_get(dev);
2233 	if (ret < 0)
2234 		return ret;
2235 
2236 	/* C22 write */
2237 	frame_start = FEC_MMFR_ST;
2238 	frame_addr = regnum;
2239 
2240 	/* start a write op */
2241 	writel(frame_start | FEC_MMFR_OP_WRITE |
2242 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2243 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2244 	       fep->hwp + FEC_MII_DATA);
2245 
2246 	/* wait for end of transfer */
2247 	ret = fec_enet_mdio_wait(fep);
2248 	if (ret)
2249 		netdev_err(fep->netdev, "MDIO write timeout\n");
2250 
2251 	pm_runtime_mark_last_busy(dev);
2252 	pm_runtime_put_autosuspend(dev);
2253 
2254 	return ret;
2255 }
2256 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2257 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2258 				   int devad, int regnum, u16 value)
2259 {
2260 	struct fec_enet_private *fep = bus->priv;
2261 	struct device *dev = &fep->pdev->dev;
2262 	int ret, frame_start;
2263 
2264 	ret = pm_runtime_resume_and_get(dev);
2265 	if (ret < 0)
2266 		return ret;
2267 
2268 	frame_start = FEC_MMFR_ST_C45;
2269 
2270 	/* write address */
2271 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2272 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2273 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2274 	       fep->hwp + FEC_MII_DATA);
2275 
2276 	/* wait for end of transfer */
2277 	ret = fec_enet_mdio_wait(fep);
2278 	if (ret) {
2279 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2280 		goto out;
2281 	}
2282 
2283 	/* start a write op */
2284 	writel(frame_start | FEC_MMFR_OP_WRITE |
2285 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2286 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2287 	       fep->hwp + FEC_MII_DATA);
2288 
2289 	/* wait for end of transfer */
2290 	ret = fec_enet_mdio_wait(fep);
2291 	if (ret)
2292 		netdev_err(fep->netdev, "MDIO write timeout\n");
2293 
2294 out:
2295 	pm_runtime_mark_last_busy(dev);
2296 	pm_runtime_put_autosuspend(dev);
2297 
2298 	return ret;
2299 }
2300 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2301 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2302 {
2303 	struct fec_enet_private *fep = netdev_priv(ndev);
2304 	struct phy_device *phy_dev = ndev->phydev;
2305 
2306 	if (phy_dev) {
2307 		phy_reset_after_clk_enable(phy_dev);
2308 	} else if (fep->phy_node) {
2309 		/*
2310 		 * If the PHY still is not bound to the MAC, but there is
2311 		 * OF PHY node and a matching PHY device instance already,
2312 		 * use the OF PHY node to obtain the PHY device instance,
2313 		 * and then use that PHY device instance when triggering
2314 		 * the PHY reset.
2315 		 */
2316 		phy_dev = of_phy_find_device(fep->phy_node);
2317 		phy_reset_after_clk_enable(phy_dev);
2318 		put_device(&phy_dev->mdio.dev);
2319 	}
2320 }
2321 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2322 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2323 {
2324 	struct fec_enet_private *fep = netdev_priv(ndev);
2325 	int ret;
2326 
2327 	if (enable) {
2328 		ret = clk_prepare_enable(fep->clk_enet_out);
2329 		if (ret)
2330 			return ret;
2331 
2332 		if (fep->clk_ptp) {
2333 			mutex_lock(&fep->ptp_clk_mutex);
2334 			ret = clk_prepare_enable(fep->clk_ptp);
2335 			if (ret) {
2336 				mutex_unlock(&fep->ptp_clk_mutex);
2337 				goto failed_clk_ptp;
2338 			} else {
2339 				fep->ptp_clk_on = true;
2340 			}
2341 			mutex_unlock(&fep->ptp_clk_mutex);
2342 		}
2343 
2344 		ret = clk_prepare_enable(fep->clk_ref);
2345 		if (ret)
2346 			goto failed_clk_ref;
2347 
2348 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2349 		if (ret)
2350 			goto failed_clk_2x_txclk;
2351 
2352 		fec_enet_phy_reset_after_clk_enable(ndev);
2353 	} else {
2354 		clk_disable_unprepare(fep->clk_enet_out);
2355 		if (fep->clk_ptp) {
2356 			mutex_lock(&fep->ptp_clk_mutex);
2357 			clk_disable_unprepare(fep->clk_ptp);
2358 			fep->ptp_clk_on = false;
2359 			mutex_unlock(&fep->ptp_clk_mutex);
2360 		}
2361 		clk_disable_unprepare(fep->clk_ref);
2362 		clk_disable_unprepare(fep->clk_2x_txclk);
2363 	}
2364 
2365 	return 0;
2366 
2367 failed_clk_2x_txclk:
2368 	if (fep->clk_ref)
2369 		clk_disable_unprepare(fep->clk_ref);
2370 failed_clk_ref:
2371 	if (fep->clk_ptp) {
2372 		mutex_lock(&fep->ptp_clk_mutex);
2373 		clk_disable_unprepare(fep->clk_ptp);
2374 		fep->ptp_clk_on = false;
2375 		mutex_unlock(&fep->ptp_clk_mutex);
2376 	}
2377 failed_clk_ptp:
2378 	clk_disable_unprepare(fep->clk_enet_out);
2379 
2380 	return ret;
2381 }
2382 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2383 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2384 				      struct device_node *np)
2385 {
2386 	u32 rgmii_tx_delay, rgmii_rx_delay;
2387 
2388 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2389 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2390 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2391 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2392 			return -EINVAL;
2393 		} else if (rgmii_tx_delay == 2000) {
2394 			fep->rgmii_txc_dly = true;
2395 		}
2396 	}
2397 
2398 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2399 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2400 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2401 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2402 			return -EINVAL;
2403 		} else if (rgmii_rx_delay == 2000) {
2404 			fep->rgmii_rxc_dly = true;
2405 		}
2406 	}
2407 
2408 	return 0;
2409 }
2410 
fec_enet_mii_probe(struct net_device * ndev)2411 static int fec_enet_mii_probe(struct net_device *ndev)
2412 {
2413 	struct fec_enet_private *fep = netdev_priv(ndev);
2414 	struct phy_device *phy_dev = NULL;
2415 	char mdio_bus_id[MII_BUS_ID_SIZE];
2416 	char phy_name[MII_BUS_ID_SIZE + 3];
2417 	int phy_id;
2418 	int dev_id = fep->dev_id;
2419 
2420 	if (fep->phy_node) {
2421 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2422 					 &fec_enet_adjust_link, 0,
2423 					 fep->phy_interface);
2424 		if (!phy_dev) {
2425 			netdev_err(ndev, "Unable to connect to phy\n");
2426 			return -ENODEV;
2427 		}
2428 	} else {
2429 		/* check for attached phy */
2430 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2431 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2432 				continue;
2433 			if (dev_id--)
2434 				continue;
2435 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2436 			break;
2437 		}
2438 
2439 		if (phy_id >= PHY_MAX_ADDR) {
2440 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2441 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2442 			phy_id = 0;
2443 		}
2444 
2445 		snprintf(phy_name, sizeof(phy_name),
2446 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2447 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2448 				      fep->phy_interface);
2449 	}
2450 
2451 	if (IS_ERR(phy_dev)) {
2452 		netdev_err(ndev, "could not attach to PHY\n");
2453 		return PTR_ERR(phy_dev);
2454 	}
2455 
2456 	/* mask with MAC supported features */
2457 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2458 		phy_set_max_speed(phy_dev, 1000);
2459 		phy_remove_link_mode(phy_dev,
2460 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2461 #if !defined(CONFIG_M5272)
2462 		phy_support_sym_pause(phy_dev);
2463 #endif
2464 	}
2465 	else
2466 		phy_set_max_speed(phy_dev, 100);
2467 
2468 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2469 		phy_support_eee(phy_dev);
2470 
2471 	fep->link = 0;
2472 	fep->full_duplex = 0;
2473 
2474 	phy_attached_info(phy_dev);
2475 
2476 	return 0;
2477 }
2478 
fec_enet_mii_init(struct platform_device * pdev)2479 static int fec_enet_mii_init(struct platform_device *pdev)
2480 {
2481 	static struct mii_bus *fec0_mii_bus;
2482 	struct net_device *ndev = platform_get_drvdata(pdev);
2483 	struct fec_enet_private *fep = netdev_priv(ndev);
2484 	bool suppress_preamble = false;
2485 	struct phy_device *phydev;
2486 	struct device_node *node;
2487 	int err = -ENXIO;
2488 	u32 mii_speed, holdtime;
2489 	u32 bus_freq;
2490 	int addr;
2491 
2492 	/*
2493 	 * The i.MX28 dual fec interfaces are not equal.
2494 	 * Here are the differences:
2495 	 *
2496 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2497 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2498 	 *  - external phys can only be configured by fec0
2499 	 *
2500 	 * That is to say fec1 can not work independently. It only works
2501 	 * when fec0 is working. The reason behind this design is that the
2502 	 * second interface is added primarily for Switch mode.
2503 	 *
2504 	 * Because of the last point above, both phys are attached on fec0
2505 	 * mdio interface in board design, and need to be configured by
2506 	 * fec0 mii_bus.
2507 	 */
2508 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2509 		/* fec1 uses fec0 mii_bus */
2510 		if (mii_cnt && fec0_mii_bus) {
2511 			fep->mii_bus = fec0_mii_bus;
2512 			mii_cnt++;
2513 			return 0;
2514 		}
2515 		return -ENOENT;
2516 	}
2517 
2518 	bus_freq = 2500000; /* 2.5MHz by default */
2519 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2520 	if (node) {
2521 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2522 		suppress_preamble = of_property_read_bool(node,
2523 							  "suppress-preamble");
2524 	}
2525 
2526 	/*
2527 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2528 	 *
2529 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2530 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2531 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2532 	 * document.
2533 	 */
2534 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2535 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2536 		mii_speed--;
2537 	if (mii_speed > 63) {
2538 		dev_err(&pdev->dev,
2539 			"fec clock (%lu) too fast to get right mii speed\n",
2540 			clk_get_rate(fep->clk_ipg));
2541 		err = -EINVAL;
2542 		goto err_out;
2543 	}
2544 
2545 	/*
2546 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2547 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2548 	 * versions are RAZ there, so just ignore the difference and write the
2549 	 * register always.
2550 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2551 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2552 	 * output.
2553 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2554 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2555 	 * holdtime cannot result in a value greater than 3.
2556 	 */
2557 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2558 
2559 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2560 
2561 	if (suppress_preamble)
2562 		fep->phy_speed |= BIT(7);
2563 
2564 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2565 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2566 		 * MII event generation condition:
2567 		 * - writing MSCR:
2568 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2569 		 *	  mscr_reg_data_in[7:0] != 0
2570 		 * - writing MMFR:
2571 		 *	- mscr[7:0]_not_zero
2572 		 */
2573 		writel(0, fep->hwp + FEC_MII_DATA);
2574 	}
2575 
2576 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2577 
2578 	/* Clear any pending transaction complete indication */
2579 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2580 
2581 	fep->mii_bus = mdiobus_alloc();
2582 	if (fep->mii_bus == NULL) {
2583 		err = -ENOMEM;
2584 		goto err_out;
2585 	}
2586 
2587 	fep->mii_bus->name = "fec_enet_mii_bus";
2588 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2589 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2590 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2591 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2592 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2593 	}
2594 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2595 		pdev->name, fep->dev_id + 1);
2596 	fep->mii_bus->priv = fep;
2597 	fep->mii_bus->parent = &pdev->dev;
2598 
2599 	err = of_mdiobus_register(fep->mii_bus, node);
2600 	if (err)
2601 		goto err_out_free_mdiobus;
2602 	of_node_put(node);
2603 
2604 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2605 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2606 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2607 		if (phydev)
2608 			phydev->mac_managed_pm = true;
2609 	}
2610 
2611 	mii_cnt++;
2612 
2613 	/* save fec0 mii_bus */
2614 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2615 		fec0_mii_bus = fep->mii_bus;
2616 
2617 	return 0;
2618 
2619 err_out_free_mdiobus:
2620 	mdiobus_free(fep->mii_bus);
2621 err_out:
2622 	of_node_put(node);
2623 	return err;
2624 }
2625 
fec_enet_mii_remove(struct fec_enet_private * fep)2626 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2627 {
2628 	if (--mii_cnt == 0) {
2629 		mdiobus_unregister(fep->mii_bus);
2630 		mdiobus_free(fep->mii_bus);
2631 	}
2632 }
2633 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2634 static void fec_enet_get_drvinfo(struct net_device *ndev,
2635 				 struct ethtool_drvinfo *info)
2636 {
2637 	struct fec_enet_private *fep = netdev_priv(ndev);
2638 
2639 	strscpy(info->driver, fep->pdev->dev.driver->name,
2640 		sizeof(info->driver));
2641 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2642 }
2643 
fec_enet_get_regs_len(struct net_device * ndev)2644 static int fec_enet_get_regs_len(struct net_device *ndev)
2645 {
2646 	struct fec_enet_private *fep = netdev_priv(ndev);
2647 	struct resource *r;
2648 	int s = 0;
2649 
2650 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2651 	if (r)
2652 		s = resource_size(r);
2653 
2654 	return s;
2655 }
2656 
2657 /* List of registers that can be safety be read to dump them with ethtool */
2658 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2659 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2660 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2661 static __u32 fec_enet_register_version = 2;
2662 static u32 fec_enet_register_offset[] = {
2663 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2664 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2665 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2666 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2667 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2668 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2669 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2670 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2671 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2672 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2673 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2674 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2675 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2676 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2677 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2678 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2679 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2680 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2681 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2682 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2683 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2684 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2685 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2686 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2687 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2688 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2689 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2690 };
2691 /* for i.MX6ul */
2692 static u32 fec_enet_register_offset_6ul[] = {
2693 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2694 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2695 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2696 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2697 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2698 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2699 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2700 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2701 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2702 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2703 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2704 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2705 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2706 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2707 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2708 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2709 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2710 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2711 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2712 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2713 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2714 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2715 };
2716 #else
2717 static __u32 fec_enet_register_version = 1;
2718 static u32 fec_enet_register_offset[] = {
2719 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2720 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2721 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2722 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2723 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2724 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2725 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2726 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2727 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2728 };
2729 #endif
2730 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2731 static void fec_enet_get_regs(struct net_device *ndev,
2732 			      struct ethtool_regs *regs, void *regbuf)
2733 {
2734 	struct fec_enet_private *fep = netdev_priv(ndev);
2735 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2736 	struct device *dev = &fep->pdev->dev;
2737 	u32 *buf = (u32 *)regbuf;
2738 	u32 i, off;
2739 	int ret;
2740 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2741 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2742 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2743 	u32 *reg_list;
2744 	u32 reg_cnt;
2745 
2746 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2747 		reg_list = fec_enet_register_offset;
2748 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2749 	} else {
2750 		reg_list = fec_enet_register_offset_6ul;
2751 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2752 	}
2753 #else
2754 	/* coldfire */
2755 	static u32 *reg_list = fec_enet_register_offset;
2756 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2757 #endif
2758 	ret = pm_runtime_resume_and_get(dev);
2759 	if (ret < 0)
2760 		return;
2761 
2762 	regs->version = fec_enet_register_version;
2763 
2764 	memset(buf, 0, regs->len);
2765 
2766 	for (i = 0; i < reg_cnt; i++) {
2767 		off = reg_list[i];
2768 
2769 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2770 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2771 			continue;
2772 
2773 		off >>= 2;
2774 		buf[off] = readl(&theregs[off]);
2775 	}
2776 
2777 	pm_runtime_mark_last_busy(dev);
2778 	pm_runtime_put_autosuspend(dev);
2779 }
2780 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2781 static int fec_enet_get_ts_info(struct net_device *ndev,
2782 				struct kernel_ethtool_ts_info *info)
2783 {
2784 	struct fec_enet_private *fep = netdev_priv(ndev);
2785 
2786 	if (fep->bufdesc_ex) {
2787 
2788 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2789 					SOF_TIMESTAMPING_TX_HARDWARE |
2790 					SOF_TIMESTAMPING_RX_HARDWARE |
2791 					SOF_TIMESTAMPING_RAW_HARDWARE;
2792 		if (fep->ptp_clock)
2793 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2794 
2795 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2796 				 (1 << HWTSTAMP_TX_ON);
2797 
2798 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2799 				   (1 << HWTSTAMP_FILTER_ALL);
2800 		return 0;
2801 	} else {
2802 		return ethtool_op_get_ts_info(ndev, info);
2803 	}
2804 }
2805 
2806 #if !defined(CONFIG_M5272)
2807 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2808 static void fec_enet_get_pauseparam(struct net_device *ndev,
2809 				    struct ethtool_pauseparam *pause)
2810 {
2811 	struct fec_enet_private *fep = netdev_priv(ndev);
2812 
2813 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2814 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2815 	pause->rx_pause = pause->tx_pause;
2816 }
2817 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2818 static int fec_enet_set_pauseparam(struct net_device *ndev,
2819 				   struct ethtool_pauseparam *pause)
2820 {
2821 	struct fec_enet_private *fep = netdev_priv(ndev);
2822 
2823 	if (!ndev->phydev)
2824 		return -ENODEV;
2825 
2826 	if (pause->tx_pause != pause->rx_pause) {
2827 		netdev_info(ndev,
2828 			"hardware only support enable/disable both tx and rx");
2829 		return -EINVAL;
2830 	}
2831 
2832 	fep->pause_flag = 0;
2833 
2834 	/* tx pause must be same as rx pause */
2835 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2836 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2837 
2838 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2839 			  pause->autoneg);
2840 
2841 	if (pause->autoneg) {
2842 		if (netif_running(ndev))
2843 			fec_stop(ndev);
2844 		phy_start_aneg(ndev->phydev);
2845 	}
2846 	if (netif_running(ndev)) {
2847 		napi_disable(&fep->napi);
2848 		netif_tx_lock_bh(ndev);
2849 		fec_restart(ndev);
2850 		netif_tx_wake_all_queues(ndev);
2851 		netif_tx_unlock_bh(ndev);
2852 		napi_enable(&fep->napi);
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 static const struct fec_stat {
2859 	char name[ETH_GSTRING_LEN];
2860 	u16 offset;
2861 } fec_stats[] = {
2862 	/* RMON TX */
2863 	{ "tx_dropped", RMON_T_DROP },
2864 	{ "tx_packets", RMON_T_PACKETS },
2865 	{ "tx_broadcast", RMON_T_BC_PKT },
2866 	{ "tx_multicast", RMON_T_MC_PKT },
2867 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2868 	{ "tx_undersize", RMON_T_UNDERSIZE },
2869 	{ "tx_oversize", RMON_T_OVERSIZE },
2870 	{ "tx_fragment", RMON_T_FRAG },
2871 	{ "tx_jabber", RMON_T_JAB },
2872 	{ "tx_collision", RMON_T_COL },
2873 	{ "tx_64byte", RMON_T_P64 },
2874 	{ "tx_65to127byte", RMON_T_P65TO127 },
2875 	{ "tx_128to255byte", RMON_T_P128TO255 },
2876 	{ "tx_256to511byte", RMON_T_P256TO511 },
2877 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2878 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2879 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2880 	{ "tx_octets", RMON_T_OCTETS },
2881 
2882 	/* IEEE TX */
2883 	{ "IEEE_tx_drop", IEEE_T_DROP },
2884 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2885 	{ "IEEE_tx_1col", IEEE_T_1COL },
2886 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2887 	{ "IEEE_tx_def", IEEE_T_DEF },
2888 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2889 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2890 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2891 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2892 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2893 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2894 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2895 
2896 	/* RMON RX */
2897 	{ "rx_packets", RMON_R_PACKETS },
2898 	{ "rx_broadcast", RMON_R_BC_PKT },
2899 	{ "rx_multicast", RMON_R_MC_PKT },
2900 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2901 	{ "rx_undersize", RMON_R_UNDERSIZE },
2902 	{ "rx_oversize", RMON_R_OVERSIZE },
2903 	{ "rx_fragment", RMON_R_FRAG },
2904 	{ "rx_jabber", RMON_R_JAB },
2905 	{ "rx_64byte", RMON_R_P64 },
2906 	{ "rx_65to127byte", RMON_R_P65TO127 },
2907 	{ "rx_128to255byte", RMON_R_P128TO255 },
2908 	{ "rx_256to511byte", RMON_R_P256TO511 },
2909 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2910 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2911 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2912 	{ "rx_octets", RMON_R_OCTETS },
2913 
2914 	/* IEEE RX */
2915 	{ "IEEE_rx_drop", IEEE_R_DROP },
2916 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2917 	{ "IEEE_rx_crc", IEEE_R_CRC },
2918 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2919 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2920 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2921 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2922 };
2923 
2924 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2925 
2926 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2927 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2928 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2929 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2930 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2931 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2932 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2933 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2934 };
2935 
fec_enet_update_ethtool_stats(struct net_device * dev)2936 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2937 {
2938 	struct fec_enet_private *fep = netdev_priv(dev);
2939 	int i;
2940 
2941 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2942 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2943 }
2944 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2945 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2946 {
2947 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2948 	struct fec_enet_priv_rx_q *rxq;
2949 	int i, j;
2950 
2951 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2952 		rxq = fep->rx_queue[i];
2953 
2954 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2955 			xdp_stats[j] += rxq->stats[j];
2956 	}
2957 
2958 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2959 }
2960 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2961 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2962 {
2963 #ifdef CONFIG_PAGE_POOL_STATS
2964 	struct page_pool_stats stats = {};
2965 	struct fec_enet_priv_rx_q *rxq;
2966 	int i;
2967 
2968 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2969 		rxq = fep->rx_queue[i];
2970 
2971 		if (!rxq->page_pool)
2972 			continue;
2973 
2974 		page_pool_get_stats(rxq->page_pool, &stats);
2975 	}
2976 
2977 	page_pool_ethtool_stats_get(data, &stats);
2978 #endif
2979 }
2980 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2981 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2982 				       struct ethtool_stats *stats, u64 *data)
2983 {
2984 	struct fec_enet_private *fep = netdev_priv(dev);
2985 
2986 	if (netif_running(dev))
2987 		fec_enet_update_ethtool_stats(dev);
2988 
2989 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2990 	data += FEC_STATS_SIZE / sizeof(u64);
2991 
2992 	fec_enet_get_xdp_stats(fep, data);
2993 	data += XDP_STATS_TOTAL;
2994 
2995 	fec_enet_page_pool_stats(fep, data);
2996 }
2997 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2998 static void fec_enet_get_strings(struct net_device *netdev,
2999 	u32 stringset, u8 *data)
3000 {
3001 	int i;
3002 	switch (stringset) {
3003 	case ETH_SS_STATS:
3004 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3005 			ethtool_puts(&data, fec_stats[i].name);
3006 		}
3007 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3008 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3009 		}
3010 		page_pool_ethtool_stats_get_strings(data);
3011 
3012 		break;
3013 	case ETH_SS_TEST:
3014 		net_selftest_get_strings(data);
3015 		break;
3016 	}
3017 }
3018 
fec_enet_get_sset_count(struct net_device * dev,int sset)3019 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3020 {
3021 	int count;
3022 
3023 	switch (sset) {
3024 	case ETH_SS_STATS:
3025 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3026 		count += page_pool_ethtool_stats_get_count();
3027 		return count;
3028 
3029 	case ETH_SS_TEST:
3030 		return net_selftest_get_count();
3031 	default:
3032 		return -EOPNOTSUPP;
3033 	}
3034 }
3035 
fec_enet_clear_ethtool_stats(struct net_device * dev)3036 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3037 {
3038 	struct fec_enet_private *fep = netdev_priv(dev);
3039 	struct fec_enet_priv_rx_q *rxq;
3040 	int i, j;
3041 
3042 	/* Disable MIB statistics counters */
3043 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3044 
3045 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3046 		writel(0, fep->hwp + fec_stats[i].offset);
3047 
3048 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3049 		rxq = fep->rx_queue[i];
3050 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3051 			rxq->stats[j] = 0;
3052 	}
3053 
3054 	/* Don't disable MIB statistics counters */
3055 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3056 }
3057 
3058 #else	/* !defined(CONFIG_M5272) */
3059 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3060 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3061 {
3062 }
3063 
fec_enet_clear_ethtool_stats(struct net_device * dev)3064 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3065 {
3066 }
3067 #endif /* !defined(CONFIG_M5272) */
3068 
3069 /* ITR clock source is enet system clock (clk_ahb).
3070  * TCTT unit is cycle_ns * 64 cycle
3071  * So, the ICTT value = X us / (cycle_ns * 64)
3072  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3073 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3074 {
3075 	struct fec_enet_private *fep = netdev_priv(ndev);
3076 
3077 	return us * (fep->itr_clk_rate / 64000) / 1000;
3078 }
3079 
3080 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3081 static void fec_enet_itr_coal_set(struct net_device *ndev)
3082 {
3083 	struct fec_enet_private *fep = netdev_priv(ndev);
3084 	int rx_itr, tx_itr;
3085 
3086 	/* Must be greater than zero to avoid unpredictable behavior */
3087 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3088 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3089 		return;
3090 
3091 	/* Select enet system clock as Interrupt Coalescing
3092 	 * timer Clock Source
3093 	 */
3094 	rx_itr = FEC_ITR_CLK_SEL;
3095 	tx_itr = FEC_ITR_CLK_SEL;
3096 
3097 	/* set ICFT and ICTT */
3098 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3099 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3100 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3101 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3102 
3103 	rx_itr |= FEC_ITR_EN;
3104 	tx_itr |= FEC_ITR_EN;
3105 
3106 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3107 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3108 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3109 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3110 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3111 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3112 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3113 	}
3114 }
3115 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3116 static int fec_enet_get_coalesce(struct net_device *ndev,
3117 				 struct ethtool_coalesce *ec,
3118 				 struct kernel_ethtool_coalesce *kernel_coal,
3119 				 struct netlink_ext_ack *extack)
3120 {
3121 	struct fec_enet_private *fep = netdev_priv(ndev);
3122 
3123 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3124 		return -EOPNOTSUPP;
3125 
3126 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3127 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3128 
3129 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3130 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3131 
3132 	return 0;
3133 }
3134 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3135 static int fec_enet_set_coalesce(struct net_device *ndev,
3136 				 struct ethtool_coalesce *ec,
3137 				 struct kernel_ethtool_coalesce *kernel_coal,
3138 				 struct netlink_ext_ack *extack)
3139 {
3140 	struct fec_enet_private *fep = netdev_priv(ndev);
3141 	struct device *dev = &fep->pdev->dev;
3142 	unsigned int cycle;
3143 
3144 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3145 		return -EOPNOTSUPP;
3146 
3147 	if (ec->rx_max_coalesced_frames > 255) {
3148 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3149 		return -EINVAL;
3150 	}
3151 
3152 	if (ec->tx_max_coalesced_frames > 255) {
3153 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3154 		return -EINVAL;
3155 	}
3156 
3157 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3158 	if (cycle > 0xFFFF) {
3159 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3160 		return -EINVAL;
3161 	}
3162 
3163 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3164 	if (cycle > 0xFFFF) {
3165 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3166 		return -EINVAL;
3167 	}
3168 
3169 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3170 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3171 
3172 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3173 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3174 
3175 	fec_enet_itr_coal_set(ndev);
3176 
3177 	return 0;
3178 }
3179 
3180 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3181 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3182 {
3183 	struct fec_enet_private *fep = netdev_priv(ndev);
3184 	struct ethtool_keee *p = &fep->eee;
3185 
3186 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3187 		return -EOPNOTSUPP;
3188 
3189 	if (!netif_running(ndev))
3190 		return -ENETDOWN;
3191 
3192 	edata->tx_lpi_timer = p->tx_lpi_timer;
3193 
3194 	return phy_ethtool_get_eee(ndev->phydev, edata);
3195 }
3196 
3197 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3198 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3199 {
3200 	struct fec_enet_private *fep = netdev_priv(ndev);
3201 	struct ethtool_keee *p = &fep->eee;
3202 
3203 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3204 		return -EOPNOTSUPP;
3205 
3206 	if (!netif_running(ndev))
3207 		return -ENETDOWN;
3208 
3209 	p->tx_lpi_timer = edata->tx_lpi_timer;
3210 
3211 	return phy_ethtool_set_eee(ndev->phydev, edata);
3212 }
3213 
3214 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3215 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3216 {
3217 	struct fec_enet_private *fep = netdev_priv(ndev);
3218 
3219 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3220 		wol->supported = WAKE_MAGIC;
3221 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3222 	} else {
3223 		wol->supported = wol->wolopts = 0;
3224 	}
3225 }
3226 
3227 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3228 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3229 {
3230 	struct fec_enet_private *fep = netdev_priv(ndev);
3231 
3232 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3233 		return -EINVAL;
3234 
3235 	if (wol->wolopts & ~WAKE_MAGIC)
3236 		return -EINVAL;
3237 
3238 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3239 	if (device_may_wakeup(&ndev->dev))
3240 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3241 	else
3242 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3243 
3244 	return 0;
3245 }
3246 
3247 static const struct ethtool_ops fec_enet_ethtool_ops = {
3248 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3249 				     ETHTOOL_COALESCE_MAX_FRAMES,
3250 	.get_drvinfo		= fec_enet_get_drvinfo,
3251 	.get_regs_len		= fec_enet_get_regs_len,
3252 	.get_regs		= fec_enet_get_regs,
3253 	.nway_reset		= phy_ethtool_nway_reset,
3254 	.get_link		= ethtool_op_get_link,
3255 	.get_coalesce		= fec_enet_get_coalesce,
3256 	.set_coalesce		= fec_enet_set_coalesce,
3257 #ifndef CONFIG_M5272
3258 	.get_pauseparam		= fec_enet_get_pauseparam,
3259 	.set_pauseparam		= fec_enet_set_pauseparam,
3260 	.get_strings		= fec_enet_get_strings,
3261 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3262 	.get_sset_count		= fec_enet_get_sset_count,
3263 #endif
3264 	.get_ts_info		= fec_enet_get_ts_info,
3265 	.get_wol		= fec_enet_get_wol,
3266 	.set_wol		= fec_enet_set_wol,
3267 	.get_eee		= fec_enet_get_eee,
3268 	.set_eee		= fec_enet_set_eee,
3269 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3270 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3271 	.self_test		= net_selftest,
3272 };
3273 
fec_enet_free_buffers(struct net_device * ndev)3274 static void fec_enet_free_buffers(struct net_device *ndev)
3275 {
3276 	struct fec_enet_private *fep = netdev_priv(ndev);
3277 	unsigned int i;
3278 	struct fec_enet_priv_tx_q *txq;
3279 	struct fec_enet_priv_rx_q *rxq;
3280 	unsigned int q;
3281 
3282 	for (q = 0; q < fep->num_rx_queues; q++) {
3283 		rxq = fep->rx_queue[q];
3284 		for (i = 0; i < rxq->bd.ring_size; i++)
3285 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3286 
3287 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3288 			rxq->stats[i] = 0;
3289 
3290 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3291 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3292 		page_pool_destroy(rxq->page_pool);
3293 		rxq->page_pool = NULL;
3294 	}
3295 
3296 	for (q = 0; q < fep->num_tx_queues; q++) {
3297 		txq = fep->tx_queue[q];
3298 		for (i = 0; i < txq->bd.ring_size; i++) {
3299 			kfree(txq->tx_bounce[i]);
3300 			txq->tx_bounce[i] = NULL;
3301 
3302 			if (!txq->tx_buf[i].buf_p) {
3303 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3304 				continue;
3305 			}
3306 
3307 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3308 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3309 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3310 				xdp_return_frame(txq->tx_buf[i].buf_p);
3311 			} else {
3312 				struct page *page = txq->tx_buf[i].buf_p;
3313 
3314 				page_pool_put_page(page->pp, page, 0, false);
3315 			}
3316 
3317 			txq->tx_buf[i].buf_p = NULL;
3318 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3319 		}
3320 	}
3321 }
3322 
fec_enet_free_queue(struct net_device * ndev)3323 static void fec_enet_free_queue(struct net_device *ndev)
3324 {
3325 	struct fec_enet_private *fep = netdev_priv(ndev);
3326 	int i;
3327 	struct fec_enet_priv_tx_q *txq;
3328 
3329 	for (i = 0; i < fep->num_tx_queues; i++)
3330 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3331 			txq = fep->tx_queue[i];
3332 			fec_dma_free(&fep->pdev->dev,
3333 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3334 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3335 		}
3336 
3337 	for (i = 0; i < fep->num_rx_queues; i++)
3338 		kfree(fep->rx_queue[i]);
3339 	for (i = 0; i < fep->num_tx_queues; i++)
3340 		kfree(fep->tx_queue[i]);
3341 }
3342 
fec_enet_alloc_queue(struct net_device * ndev)3343 static int fec_enet_alloc_queue(struct net_device *ndev)
3344 {
3345 	struct fec_enet_private *fep = netdev_priv(ndev);
3346 	int i;
3347 	int ret = 0;
3348 	struct fec_enet_priv_tx_q *txq;
3349 
3350 	for (i = 0; i < fep->num_tx_queues; i++) {
3351 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3352 		if (!txq) {
3353 			ret = -ENOMEM;
3354 			goto alloc_failed;
3355 		}
3356 
3357 		fep->tx_queue[i] = txq;
3358 		txq->bd.ring_size = TX_RING_SIZE;
3359 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3360 
3361 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3362 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3363 
3364 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3365 					txq->bd.ring_size * TSO_HEADER_SIZE,
3366 					&txq->tso_hdrs_dma, GFP_KERNEL);
3367 		if (!txq->tso_hdrs) {
3368 			ret = -ENOMEM;
3369 			goto alloc_failed;
3370 		}
3371 	}
3372 
3373 	for (i = 0; i < fep->num_rx_queues; i++) {
3374 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3375 					   GFP_KERNEL);
3376 		if (!fep->rx_queue[i]) {
3377 			ret = -ENOMEM;
3378 			goto alloc_failed;
3379 		}
3380 
3381 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3382 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3383 	}
3384 	return ret;
3385 
3386 alloc_failed:
3387 	fec_enet_free_queue(ndev);
3388 	return ret;
3389 }
3390 
3391 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3392 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3393 {
3394 	struct fec_enet_private *fep = netdev_priv(ndev);
3395 	struct fec_enet_priv_rx_q *rxq;
3396 	dma_addr_t phys_addr;
3397 	struct bufdesc	*bdp;
3398 	struct page *page;
3399 	int i, err;
3400 
3401 	rxq = fep->rx_queue[queue];
3402 	bdp = rxq->bd.base;
3403 
3404 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3405 	if (err < 0) {
3406 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3407 		return err;
3408 	}
3409 
3410 	for (i = 0; i < rxq->bd.ring_size; i++) {
3411 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3412 		if (!page)
3413 			goto err_alloc;
3414 
3415 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3416 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3417 
3418 		rxq->rx_skb_info[i].page = page;
3419 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3420 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3421 
3422 		if (fep->bufdesc_ex) {
3423 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3424 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3425 		}
3426 
3427 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3428 	}
3429 
3430 	/* Set the last buffer to wrap. */
3431 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3432 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3433 	return 0;
3434 
3435  err_alloc:
3436 	fec_enet_free_buffers(ndev);
3437 	return -ENOMEM;
3438 }
3439 
3440 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3441 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3442 {
3443 	struct fec_enet_private *fep = netdev_priv(ndev);
3444 	unsigned int i;
3445 	struct bufdesc  *bdp;
3446 	struct fec_enet_priv_tx_q *txq;
3447 
3448 	txq = fep->tx_queue[queue];
3449 	bdp = txq->bd.base;
3450 	for (i = 0; i < txq->bd.ring_size; i++) {
3451 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3452 		if (!txq->tx_bounce[i])
3453 			goto err_alloc;
3454 
3455 		bdp->cbd_sc = cpu_to_fec16(0);
3456 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3457 
3458 		if (fep->bufdesc_ex) {
3459 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3460 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3461 		}
3462 
3463 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3464 	}
3465 
3466 	/* Set the last buffer to wrap. */
3467 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3468 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3469 
3470 	return 0;
3471 
3472  err_alloc:
3473 	fec_enet_free_buffers(ndev);
3474 	return -ENOMEM;
3475 }
3476 
fec_enet_alloc_buffers(struct net_device * ndev)3477 static int fec_enet_alloc_buffers(struct net_device *ndev)
3478 {
3479 	struct fec_enet_private *fep = netdev_priv(ndev);
3480 	unsigned int i;
3481 
3482 	for (i = 0; i < fep->num_rx_queues; i++)
3483 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3484 			return -ENOMEM;
3485 
3486 	for (i = 0; i < fep->num_tx_queues; i++)
3487 		if (fec_enet_alloc_txq_buffers(ndev, i))
3488 			return -ENOMEM;
3489 	return 0;
3490 }
3491 
3492 static int
fec_enet_open(struct net_device * ndev)3493 fec_enet_open(struct net_device *ndev)
3494 {
3495 	struct fec_enet_private *fep = netdev_priv(ndev);
3496 	int ret;
3497 	bool reset_again;
3498 
3499 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3500 	if (ret < 0)
3501 		return ret;
3502 
3503 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3504 	ret = fec_enet_clk_enable(ndev, true);
3505 	if (ret)
3506 		goto clk_enable;
3507 
3508 	/* During the first fec_enet_open call the PHY isn't probed at this
3509 	 * point. Therefore the phy_reset_after_clk_enable() call within
3510 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3511 	 * sure the PHY is working correctly we check if we need to reset again
3512 	 * later when the PHY is probed
3513 	 */
3514 	if (ndev->phydev && ndev->phydev->drv)
3515 		reset_again = false;
3516 	else
3517 		reset_again = true;
3518 
3519 	/* I should reset the ring buffers here, but I don't yet know
3520 	 * a simple way to do that.
3521 	 */
3522 
3523 	ret = fec_enet_alloc_buffers(ndev);
3524 	if (ret)
3525 		goto err_enet_alloc;
3526 
3527 	/* Init MAC prior to mii bus probe */
3528 	fec_restart(ndev);
3529 
3530 	/* Call phy_reset_after_clk_enable() again if it failed during
3531 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3532 	 */
3533 	if (reset_again)
3534 		fec_enet_phy_reset_after_clk_enable(ndev);
3535 
3536 	/* Probe and connect to PHY when open the interface */
3537 	ret = fec_enet_mii_probe(ndev);
3538 	if (ret)
3539 		goto err_enet_mii_probe;
3540 
3541 	if (fep->quirks & FEC_QUIRK_ERR006687)
3542 		imx6q_cpuidle_fec_irqs_used();
3543 
3544 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3545 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3546 
3547 	napi_enable(&fep->napi);
3548 	phy_start(ndev->phydev);
3549 	netif_tx_start_all_queues(ndev);
3550 
3551 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3552 				 FEC_WOL_FLAG_ENABLE);
3553 
3554 	return 0;
3555 
3556 err_enet_mii_probe:
3557 	fec_enet_free_buffers(ndev);
3558 err_enet_alloc:
3559 	fec_enet_clk_enable(ndev, false);
3560 clk_enable:
3561 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3562 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3563 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3564 	return ret;
3565 }
3566 
3567 static int
fec_enet_close(struct net_device * ndev)3568 fec_enet_close(struct net_device *ndev)
3569 {
3570 	struct fec_enet_private *fep = netdev_priv(ndev);
3571 
3572 	phy_stop(ndev->phydev);
3573 
3574 	if (netif_device_present(ndev)) {
3575 		napi_disable(&fep->napi);
3576 		netif_tx_disable(ndev);
3577 		fec_stop(ndev);
3578 	}
3579 
3580 	phy_disconnect(ndev->phydev);
3581 
3582 	if (fep->quirks & FEC_QUIRK_ERR006687)
3583 		imx6q_cpuidle_fec_irqs_unused();
3584 
3585 	fec_enet_update_ethtool_stats(ndev);
3586 
3587 	fec_enet_clk_enable(ndev, false);
3588 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3589 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3590 
3591 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3592 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3593 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3594 
3595 	fec_enet_free_buffers(ndev);
3596 
3597 	return 0;
3598 }
3599 
3600 /* Set or clear the multicast filter for this adaptor.
3601  * Skeleton taken from sunlance driver.
3602  * The CPM Ethernet implementation allows Multicast as well as individual
3603  * MAC address filtering.  Some of the drivers check to make sure it is
3604  * a group multicast address, and discard those that are not.  I guess I
3605  * will do the same for now, but just remove the test if you want
3606  * individual filtering as well (do the upper net layers want or support
3607  * this kind of feature?).
3608  */
3609 
3610 #define FEC_HASH_BITS	6		/* #bits in hash */
3611 
set_multicast_list(struct net_device * ndev)3612 static void set_multicast_list(struct net_device *ndev)
3613 {
3614 	struct fec_enet_private *fep = netdev_priv(ndev);
3615 	struct netdev_hw_addr *ha;
3616 	unsigned int crc, tmp;
3617 	unsigned char hash;
3618 	unsigned int hash_high = 0, hash_low = 0;
3619 
3620 	if (ndev->flags & IFF_PROMISC) {
3621 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3622 		tmp |= 0x8;
3623 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3624 		return;
3625 	}
3626 
3627 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3628 	tmp &= ~0x8;
3629 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3630 
3631 	if (ndev->flags & IFF_ALLMULTI) {
3632 		/* Catch all multicast addresses, so set the
3633 		 * filter to all 1's
3634 		 */
3635 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3636 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3637 
3638 		return;
3639 	}
3640 
3641 	/* Add the addresses in hash register */
3642 	netdev_for_each_mc_addr(ha, ndev) {
3643 		/* calculate crc32 value of mac address */
3644 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3645 
3646 		/* only upper 6 bits (FEC_HASH_BITS) are used
3647 		 * which point to specific bit in the hash registers
3648 		 */
3649 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3650 
3651 		if (hash > 31)
3652 			hash_high |= 1 << (hash - 32);
3653 		else
3654 			hash_low |= 1 << hash;
3655 	}
3656 
3657 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3658 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3659 }
3660 
3661 /* Set a MAC change in hardware. */
3662 static int
fec_set_mac_address(struct net_device * ndev,void * p)3663 fec_set_mac_address(struct net_device *ndev, void *p)
3664 {
3665 	struct fec_enet_private *fep = netdev_priv(ndev);
3666 	struct sockaddr *addr = p;
3667 
3668 	if (addr) {
3669 		if (!is_valid_ether_addr(addr->sa_data))
3670 			return -EADDRNOTAVAIL;
3671 		eth_hw_addr_set(ndev, addr->sa_data);
3672 	}
3673 
3674 	/* Add netif status check here to avoid system hang in below case:
3675 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3676 	 * After ethx down, fec all clocks are gated off and then register
3677 	 * access causes system hang.
3678 	 */
3679 	if (!netif_running(ndev))
3680 		return 0;
3681 
3682 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3683 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3684 		fep->hwp + FEC_ADDR_LOW);
3685 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3686 		fep->hwp + FEC_ADDR_HIGH);
3687 	return 0;
3688 }
3689 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3690 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3691 	netdev_features_t features)
3692 {
3693 	struct fec_enet_private *fep = netdev_priv(netdev);
3694 	netdev_features_t changed = features ^ netdev->features;
3695 
3696 	netdev->features = features;
3697 
3698 	/* Receive checksum has been changed */
3699 	if (changed & NETIF_F_RXCSUM) {
3700 		if (features & NETIF_F_RXCSUM)
3701 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3702 		else
3703 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3704 	}
3705 }
3706 
fec_set_features(struct net_device * netdev,netdev_features_t features)3707 static int fec_set_features(struct net_device *netdev,
3708 	netdev_features_t features)
3709 {
3710 	struct fec_enet_private *fep = netdev_priv(netdev);
3711 	netdev_features_t changed = features ^ netdev->features;
3712 
3713 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3714 		napi_disable(&fep->napi);
3715 		netif_tx_lock_bh(netdev);
3716 		fec_stop(netdev);
3717 		fec_enet_set_netdev_features(netdev, features);
3718 		fec_restart(netdev);
3719 		netif_tx_wake_all_queues(netdev);
3720 		netif_tx_unlock_bh(netdev);
3721 		napi_enable(&fep->napi);
3722 	} else {
3723 		fec_enet_set_netdev_features(netdev, features);
3724 	}
3725 
3726 	return 0;
3727 }
3728 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3729 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3730 				 struct net_device *sb_dev)
3731 {
3732 	struct fec_enet_private *fep = netdev_priv(ndev);
3733 	u16 vlan_tag = 0;
3734 
3735 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3736 		return netdev_pick_tx(ndev, skb, NULL);
3737 
3738 	/* VLAN is present in the payload.*/
3739 	if (eth_type_vlan(skb->protocol)) {
3740 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3741 
3742 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3743 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3744 	} else if (skb_vlan_tag_present(skb)) {
3745 		vlan_tag = skb->vlan_tci;
3746 	} else {
3747 		return vlan_tag;
3748 	}
3749 
3750 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3751 }
3752 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3753 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3754 {
3755 	struct fec_enet_private *fep = netdev_priv(dev);
3756 	bool is_run = netif_running(dev);
3757 	struct bpf_prog *old_prog;
3758 
3759 	switch (bpf->command) {
3760 	case XDP_SETUP_PROG:
3761 		/* No need to support the SoCs that require to
3762 		 * do the frame swap because the performance wouldn't be
3763 		 * better than the skb mode.
3764 		 */
3765 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3766 			return -EOPNOTSUPP;
3767 
3768 		if (!bpf->prog)
3769 			xdp_features_clear_redirect_target(dev);
3770 
3771 		if (is_run) {
3772 			napi_disable(&fep->napi);
3773 			netif_tx_disable(dev);
3774 		}
3775 
3776 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3777 		if (old_prog)
3778 			bpf_prog_put(old_prog);
3779 
3780 		fec_restart(dev);
3781 
3782 		if (is_run) {
3783 			napi_enable(&fep->napi);
3784 			netif_tx_start_all_queues(dev);
3785 		}
3786 
3787 		if (bpf->prog)
3788 			xdp_features_set_redirect_target(dev, false);
3789 
3790 		return 0;
3791 
3792 	case XDP_SETUP_XSK_POOL:
3793 		return -EOPNOTSUPP;
3794 
3795 	default:
3796 		return -EOPNOTSUPP;
3797 	}
3798 }
3799 
3800 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3801 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3802 {
3803 	if (unlikely(index < 0))
3804 		return 0;
3805 
3806 	return (index % fep->num_tx_queues);
3807 }
3808 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3809 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3810 				   struct fec_enet_priv_tx_q *txq,
3811 				   void *frame, u32 dma_sync_len,
3812 				   bool ndo_xmit)
3813 {
3814 	unsigned int index, status, estatus;
3815 	struct bufdesc *bdp;
3816 	dma_addr_t dma_addr;
3817 	int entries_free;
3818 	u16 frame_len;
3819 
3820 	entries_free = fec_enet_get_free_txdesc_num(txq);
3821 	if (entries_free < MAX_SKB_FRAGS + 1) {
3822 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3823 		return -EBUSY;
3824 	}
3825 
3826 	/* Fill in a Tx ring entry */
3827 	bdp = txq->bd.cur;
3828 	status = fec16_to_cpu(bdp->cbd_sc);
3829 	status &= ~BD_ENET_TX_STATS;
3830 
3831 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3832 
3833 	if (ndo_xmit) {
3834 		struct xdp_frame *xdpf = frame;
3835 
3836 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3837 					  xdpf->len, DMA_TO_DEVICE);
3838 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3839 			return -ENOMEM;
3840 
3841 		frame_len = xdpf->len;
3842 		txq->tx_buf[index].buf_p = xdpf;
3843 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3844 	} else {
3845 		struct xdp_buff *xdpb = frame;
3846 		struct page *page;
3847 
3848 		page = virt_to_page(xdpb->data);
3849 		dma_addr = page_pool_get_dma_addr(page) +
3850 			   (xdpb->data - xdpb->data_hard_start);
3851 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3852 					   dma_sync_len, DMA_BIDIRECTIONAL);
3853 		frame_len = xdpb->data_end - xdpb->data;
3854 		txq->tx_buf[index].buf_p = page;
3855 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3856 	}
3857 
3858 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3859 	if (fep->bufdesc_ex)
3860 		estatus = BD_ENET_TX_INT;
3861 
3862 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3863 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3864 
3865 	if (fep->bufdesc_ex) {
3866 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3867 
3868 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3869 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3870 
3871 		ebdp->cbd_bdu = 0;
3872 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3873 	}
3874 
3875 	/* Make sure the updates to rest of the descriptor are performed before
3876 	 * transferring ownership.
3877 	 */
3878 	dma_wmb();
3879 
3880 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3881 	 * it's the last BD of the frame, and to put the CRC on the end.
3882 	 */
3883 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3884 	bdp->cbd_sc = cpu_to_fec16(status);
3885 
3886 	/* If this was the last BD in the ring, start at the beginning again. */
3887 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3888 
3889 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3890 	dma_wmb();
3891 
3892 	txq->bd.cur = bdp;
3893 
3894 	/* Trigger transmission start */
3895 	writel(0, txq->bd.reg_desc_active);
3896 
3897 	return 0;
3898 }
3899 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3900 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3901 				int cpu, struct xdp_buff *xdp,
3902 				u32 dma_sync_len)
3903 {
3904 	struct fec_enet_priv_tx_q *txq;
3905 	struct netdev_queue *nq;
3906 	int queue, ret;
3907 
3908 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3909 	txq = fep->tx_queue[queue];
3910 	nq = netdev_get_tx_queue(fep->netdev, queue);
3911 
3912 	__netif_tx_lock(nq, cpu);
3913 
3914 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3915 	txq_trans_cond_update(nq);
3916 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3917 
3918 	__netif_tx_unlock(nq);
3919 
3920 	return ret;
3921 }
3922 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3923 static int fec_enet_xdp_xmit(struct net_device *dev,
3924 			     int num_frames,
3925 			     struct xdp_frame **frames,
3926 			     u32 flags)
3927 {
3928 	struct fec_enet_private *fep = netdev_priv(dev);
3929 	struct fec_enet_priv_tx_q *txq;
3930 	int cpu = smp_processor_id();
3931 	unsigned int sent_frames = 0;
3932 	struct netdev_queue *nq;
3933 	unsigned int queue;
3934 	int i;
3935 
3936 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3937 	txq = fep->tx_queue[queue];
3938 	nq = netdev_get_tx_queue(fep->netdev, queue);
3939 
3940 	__netif_tx_lock(nq, cpu);
3941 
3942 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3943 	txq_trans_cond_update(nq);
3944 	for (i = 0; i < num_frames; i++) {
3945 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3946 			break;
3947 		sent_frames++;
3948 	}
3949 
3950 	__netif_tx_unlock(nq);
3951 
3952 	return sent_frames;
3953 }
3954 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3955 static int fec_hwtstamp_get(struct net_device *ndev,
3956 			    struct kernel_hwtstamp_config *config)
3957 {
3958 	struct fec_enet_private *fep = netdev_priv(ndev);
3959 
3960 	if (!netif_running(ndev))
3961 		return -EINVAL;
3962 
3963 	if (!fep->bufdesc_ex)
3964 		return -EOPNOTSUPP;
3965 
3966 	fec_ptp_get(ndev, config);
3967 
3968 	return 0;
3969 }
3970 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3971 static int fec_hwtstamp_set(struct net_device *ndev,
3972 			    struct kernel_hwtstamp_config *config,
3973 			    struct netlink_ext_ack *extack)
3974 {
3975 	struct fec_enet_private *fep = netdev_priv(ndev);
3976 
3977 	if (!netif_running(ndev))
3978 		return -EINVAL;
3979 
3980 	if (!fep->bufdesc_ex)
3981 		return -EOPNOTSUPP;
3982 
3983 	return fec_ptp_set(ndev, config, extack);
3984 }
3985 
3986 static const struct net_device_ops fec_netdev_ops = {
3987 	.ndo_open		= fec_enet_open,
3988 	.ndo_stop		= fec_enet_close,
3989 	.ndo_start_xmit		= fec_enet_start_xmit,
3990 	.ndo_select_queue       = fec_enet_select_queue,
3991 	.ndo_set_rx_mode	= set_multicast_list,
3992 	.ndo_validate_addr	= eth_validate_addr,
3993 	.ndo_tx_timeout		= fec_timeout,
3994 	.ndo_set_mac_address	= fec_set_mac_address,
3995 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3996 	.ndo_set_features	= fec_set_features,
3997 	.ndo_bpf		= fec_enet_bpf,
3998 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3999 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4000 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4001 };
4002 
4003 static const unsigned short offset_des_active_rxq[] = {
4004 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4005 };
4006 
4007 static const unsigned short offset_des_active_txq[] = {
4008 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4009 };
4010 
4011  /*
4012   * XXX:  We need to clean up on failure exits here.
4013   *
4014   */
fec_enet_init(struct net_device * ndev)4015 static int fec_enet_init(struct net_device *ndev)
4016 {
4017 	struct fec_enet_private *fep = netdev_priv(ndev);
4018 	struct bufdesc *cbd_base;
4019 	dma_addr_t bd_dma;
4020 	int bd_size;
4021 	unsigned int i;
4022 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4023 			sizeof(struct bufdesc);
4024 	unsigned dsize_log2 = __fls(dsize);
4025 	int ret;
4026 
4027 	WARN_ON(dsize != (1 << dsize_log2));
4028 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4029 	fep->rx_align = 0xf;
4030 	fep->tx_align = 0xf;
4031 #else
4032 	fep->rx_align = 0x3;
4033 	fep->tx_align = 0x3;
4034 #endif
4035 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4036 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4037 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4038 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4039 
4040 	/* Check mask of the streaming and coherent API */
4041 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4042 	if (ret < 0) {
4043 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4044 		return ret;
4045 	}
4046 
4047 	ret = fec_enet_alloc_queue(ndev);
4048 	if (ret)
4049 		return ret;
4050 
4051 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4052 
4053 	/* Allocate memory for buffer descriptors. */
4054 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4055 				  GFP_KERNEL);
4056 	if (!cbd_base) {
4057 		ret = -ENOMEM;
4058 		goto free_queue_mem;
4059 	}
4060 
4061 	/* Get the Ethernet address */
4062 	ret = fec_get_mac(ndev);
4063 	if (ret)
4064 		goto free_queue_mem;
4065 
4066 	/* Set receive and transmit descriptor base. */
4067 	for (i = 0; i < fep->num_rx_queues; i++) {
4068 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4069 		unsigned size = dsize * rxq->bd.ring_size;
4070 
4071 		rxq->bd.qid = i;
4072 		rxq->bd.base = cbd_base;
4073 		rxq->bd.cur = cbd_base;
4074 		rxq->bd.dma = bd_dma;
4075 		rxq->bd.dsize = dsize;
4076 		rxq->bd.dsize_log2 = dsize_log2;
4077 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4078 		bd_dma += size;
4079 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4080 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4081 	}
4082 
4083 	for (i = 0; i < fep->num_tx_queues; i++) {
4084 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4085 		unsigned size = dsize * txq->bd.ring_size;
4086 
4087 		txq->bd.qid = i;
4088 		txq->bd.base = cbd_base;
4089 		txq->bd.cur = cbd_base;
4090 		txq->bd.dma = bd_dma;
4091 		txq->bd.dsize = dsize;
4092 		txq->bd.dsize_log2 = dsize_log2;
4093 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4094 		bd_dma += size;
4095 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4096 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4097 	}
4098 
4099 
4100 	/* The FEC Ethernet specific entries in the device structure */
4101 	ndev->watchdog_timeo = TX_TIMEOUT;
4102 	ndev->netdev_ops = &fec_netdev_ops;
4103 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4104 
4105 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4106 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4107 
4108 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4109 		/* enable hw VLAN support */
4110 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4111 
4112 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4113 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4114 
4115 		/* enable hw accelerator */
4116 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4117 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4118 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4119 	}
4120 
4121 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4122 		fep->tx_align = 0;
4123 		fep->rx_align = 0x3f;
4124 	}
4125 
4126 	ndev->hw_features = ndev->features;
4127 
4128 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4129 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4130 				     NETDEV_XDP_ACT_REDIRECT;
4131 
4132 	fec_restart(ndev);
4133 
4134 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4135 		fec_enet_clear_ethtool_stats(ndev);
4136 	else
4137 		fec_enet_update_ethtool_stats(ndev);
4138 
4139 	return 0;
4140 
4141 free_queue_mem:
4142 	fec_enet_free_queue(ndev);
4143 	return ret;
4144 }
4145 
fec_enet_deinit(struct net_device * ndev)4146 static void fec_enet_deinit(struct net_device *ndev)
4147 {
4148 	struct fec_enet_private *fep = netdev_priv(ndev);
4149 
4150 	netif_napi_del(&fep->napi);
4151 	fec_enet_free_queue(ndev);
4152 }
4153 
4154 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4155 static int fec_reset_phy(struct platform_device *pdev)
4156 {
4157 	struct gpio_desc *phy_reset;
4158 	int msec = 1, phy_post_delay = 0;
4159 	struct device_node *np = pdev->dev.of_node;
4160 	int err;
4161 
4162 	if (!np)
4163 		return 0;
4164 
4165 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4166 	/* A sane reset duration should not be longer than 1s */
4167 	if (!err && msec > 1000)
4168 		msec = 1;
4169 
4170 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4171 	/* valid reset duration should be less than 1s */
4172 	if (!err && phy_post_delay > 1000)
4173 		return -EINVAL;
4174 
4175 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4176 					    GPIOD_OUT_HIGH);
4177 	if (IS_ERR(phy_reset))
4178 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4179 				     "failed to get phy-reset-gpios\n");
4180 
4181 	if (!phy_reset)
4182 		return 0;
4183 
4184 	if (msec > 20)
4185 		msleep(msec);
4186 	else
4187 		usleep_range(msec * 1000, msec * 1000 + 1000);
4188 
4189 	gpiod_set_value_cansleep(phy_reset, 0);
4190 
4191 	if (!phy_post_delay)
4192 		return 0;
4193 
4194 	if (phy_post_delay > 20)
4195 		msleep(phy_post_delay);
4196 	else
4197 		usleep_range(phy_post_delay * 1000,
4198 			     phy_post_delay * 1000 + 1000);
4199 
4200 	return 0;
4201 }
4202 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4203 static int fec_reset_phy(struct platform_device *pdev)
4204 {
4205 	/*
4206 	 * In case of platform probe, the reset has been done
4207 	 * by machine code.
4208 	 */
4209 	return 0;
4210 }
4211 #endif /* CONFIG_OF */
4212 
4213 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4214 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4215 {
4216 	struct device_node *np = pdev->dev.of_node;
4217 
4218 	*num_tx = *num_rx = 1;
4219 
4220 	if (!np || !of_device_is_available(np))
4221 		return;
4222 
4223 	/* parse the num of tx and rx queues */
4224 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4225 
4226 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4227 
4228 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4229 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4230 			 *num_tx);
4231 		*num_tx = 1;
4232 		return;
4233 	}
4234 
4235 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4236 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4237 			 *num_rx);
4238 		*num_rx = 1;
4239 		return;
4240 	}
4241 
4242 }
4243 
fec_enet_get_irq_cnt(struct platform_device * pdev)4244 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4245 {
4246 	int irq_cnt = platform_irq_count(pdev);
4247 
4248 	if (irq_cnt > FEC_IRQ_NUM)
4249 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4250 	else if (irq_cnt == 2)
4251 		irq_cnt = 1;	/* last for pps */
4252 	else if (irq_cnt <= 0)
4253 		irq_cnt = 1;	/* At least 1 irq is needed */
4254 	return irq_cnt;
4255 }
4256 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4257 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4258 {
4259 	struct net_device *ndev = platform_get_drvdata(pdev);
4260 	struct fec_enet_private *fep = netdev_priv(ndev);
4261 
4262 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4263 		fep->wake_irq = fep->irq[2];
4264 	else
4265 		fep->wake_irq = fep->irq[0];
4266 }
4267 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4268 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4269 				   struct device_node *np)
4270 {
4271 	struct device_node *gpr_np;
4272 	u32 out_val[3];
4273 	int ret = 0;
4274 
4275 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4276 	if (!gpr_np)
4277 		return 0;
4278 
4279 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4280 					 ARRAY_SIZE(out_val));
4281 	if (ret) {
4282 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4283 		goto out;
4284 	}
4285 
4286 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4287 	if (IS_ERR(fep->stop_gpr.gpr)) {
4288 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4289 		ret = PTR_ERR(fep->stop_gpr.gpr);
4290 		fep->stop_gpr.gpr = NULL;
4291 		goto out;
4292 	}
4293 
4294 	fep->stop_gpr.reg = out_val[1];
4295 	fep->stop_gpr.bit = out_val[2];
4296 
4297 out:
4298 	of_node_put(gpr_np);
4299 
4300 	return ret;
4301 }
4302 
4303 static int
fec_probe(struct platform_device * pdev)4304 fec_probe(struct platform_device *pdev)
4305 {
4306 	struct fec_enet_private *fep;
4307 	struct fec_platform_data *pdata;
4308 	phy_interface_t interface;
4309 	struct net_device *ndev;
4310 	int i, irq, ret = 0;
4311 	static int dev_id;
4312 	struct device_node *np = pdev->dev.of_node, *phy_node;
4313 	int num_tx_qs;
4314 	int num_rx_qs;
4315 	char irq_name[8];
4316 	int irq_cnt;
4317 	const struct fec_devinfo *dev_info;
4318 
4319 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4320 
4321 	/* Init network device */
4322 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4323 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4324 	if (!ndev)
4325 		return -ENOMEM;
4326 
4327 	SET_NETDEV_DEV(ndev, &pdev->dev);
4328 
4329 	/* setup board info structure */
4330 	fep = netdev_priv(ndev);
4331 
4332 	dev_info = device_get_match_data(&pdev->dev);
4333 	if (!dev_info)
4334 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4335 	if (dev_info)
4336 		fep->quirks = dev_info->quirks;
4337 
4338 	fep->netdev = ndev;
4339 	fep->num_rx_queues = num_rx_qs;
4340 	fep->num_tx_queues = num_tx_qs;
4341 
4342 #if !defined(CONFIG_M5272)
4343 	/* default enable pause frame auto negotiation */
4344 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4345 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4346 #endif
4347 
4348 	/* Select default pin state */
4349 	pinctrl_pm_select_default_state(&pdev->dev);
4350 
4351 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4352 	if (IS_ERR(fep->hwp)) {
4353 		ret = PTR_ERR(fep->hwp);
4354 		goto failed_ioremap;
4355 	}
4356 
4357 	fep->pdev = pdev;
4358 	fep->dev_id = dev_id++;
4359 
4360 	platform_set_drvdata(pdev, ndev);
4361 
4362 	if ((of_machine_is_compatible("fsl,imx6q") ||
4363 	     of_machine_is_compatible("fsl,imx6dl")) &&
4364 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4365 		fep->quirks |= FEC_QUIRK_ERR006687;
4366 
4367 	ret = fec_enet_ipc_handle_init(fep);
4368 	if (ret)
4369 		goto failed_ipc_init;
4370 
4371 	if (of_property_read_bool(np, "fsl,magic-packet"))
4372 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4373 
4374 	ret = fec_enet_init_stop_mode(fep, np);
4375 	if (ret)
4376 		goto failed_stop_mode;
4377 
4378 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4379 	if (!phy_node && of_phy_is_fixed_link(np)) {
4380 		ret = of_phy_register_fixed_link(np);
4381 		if (ret < 0) {
4382 			dev_err(&pdev->dev,
4383 				"broken fixed-link specification\n");
4384 			goto failed_phy;
4385 		}
4386 		phy_node = of_node_get(np);
4387 	}
4388 	fep->phy_node = phy_node;
4389 
4390 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4391 	if (ret) {
4392 		pdata = dev_get_platdata(&pdev->dev);
4393 		if (pdata)
4394 			fep->phy_interface = pdata->phy;
4395 		else
4396 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4397 	} else {
4398 		fep->phy_interface = interface;
4399 	}
4400 
4401 	ret = fec_enet_parse_rgmii_delay(fep, np);
4402 	if (ret)
4403 		goto failed_rgmii_delay;
4404 
4405 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4406 	if (IS_ERR(fep->clk_ipg)) {
4407 		ret = PTR_ERR(fep->clk_ipg);
4408 		goto failed_clk;
4409 	}
4410 
4411 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4412 	if (IS_ERR(fep->clk_ahb)) {
4413 		ret = PTR_ERR(fep->clk_ahb);
4414 		goto failed_clk;
4415 	}
4416 
4417 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4418 
4419 	/* enet_out is optional, depends on board */
4420 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4421 	if (IS_ERR(fep->clk_enet_out)) {
4422 		ret = PTR_ERR(fep->clk_enet_out);
4423 		goto failed_clk;
4424 	}
4425 
4426 	fep->ptp_clk_on = false;
4427 	mutex_init(&fep->ptp_clk_mutex);
4428 
4429 	/* clk_ref is optional, depends on board */
4430 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4431 	if (IS_ERR(fep->clk_ref)) {
4432 		ret = PTR_ERR(fep->clk_ref);
4433 		goto failed_clk;
4434 	}
4435 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4436 
4437 	/* clk_2x_txclk is optional, depends on board */
4438 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4439 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4440 		if (IS_ERR(fep->clk_2x_txclk))
4441 			fep->clk_2x_txclk = NULL;
4442 	}
4443 
4444 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4445 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4446 	if (IS_ERR(fep->clk_ptp)) {
4447 		fep->clk_ptp = NULL;
4448 		fep->bufdesc_ex = false;
4449 	}
4450 
4451 	ret = fec_enet_clk_enable(ndev, true);
4452 	if (ret)
4453 		goto failed_clk;
4454 
4455 	ret = clk_prepare_enable(fep->clk_ipg);
4456 	if (ret)
4457 		goto failed_clk_ipg;
4458 	ret = clk_prepare_enable(fep->clk_ahb);
4459 	if (ret)
4460 		goto failed_clk_ahb;
4461 
4462 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4463 	if (!IS_ERR(fep->reg_phy)) {
4464 		ret = regulator_enable(fep->reg_phy);
4465 		if (ret) {
4466 			dev_err(&pdev->dev,
4467 				"Failed to enable phy regulator: %d\n", ret);
4468 			goto failed_regulator;
4469 		}
4470 	} else {
4471 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4472 			ret = -EPROBE_DEFER;
4473 			goto failed_regulator;
4474 		}
4475 		fep->reg_phy = NULL;
4476 	}
4477 
4478 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4479 	pm_runtime_use_autosuspend(&pdev->dev);
4480 	pm_runtime_get_noresume(&pdev->dev);
4481 	pm_runtime_set_active(&pdev->dev);
4482 	pm_runtime_enable(&pdev->dev);
4483 
4484 	ret = fec_reset_phy(pdev);
4485 	if (ret)
4486 		goto failed_reset;
4487 
4488 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4489 	if (fep->bufdesc_ex)
4490 		fec_ptp_init(pdev, irq_cnt);
4491 
4492 	ret = fec_enet_init(ndev);
4493 	if (ret)
4494 		goto failed_init;
4495 
4496 	for (i = 0; i < irq_cnt; i++) {
4497 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4498 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4499 		if (irq < 0)
4500 			irq = platform_get_irq(pdev, i);
4501 		if (irq < 0) {
4502 			ret = irq;
4503 			goto failed_irq;
4504 		}
4505 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4506 				       0, pdev->name, ndev);
4507 		if (ret)
4508 			goto failed_irq;
4509 
4510 		fep->irq[i] = irq;
4511 	}
4512 
4513 	/* Decide which interrupt line is wakeup capable */
4514 	fec_enet_get_wakeup_irq(pdev);
4515 
4516 	ret = fec_enet_mii_init(pdev);
4517 	if (ret)
4518 		goto failed_mii_init;
4519 
4520 	/* Carrier starts down, phylib will bring it up */
4521 	netif_carrier_off(ndev);
4522 	fec_enet_clk_enable(ndev, false);
4523 	pinctrl_pm_select_sleep_state(&pdev->dev);
4524 
4525 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4526 
4527 	ret = register_netdev(ndev);
4528 	if (ret)
4529 		goto failed_register;
4530 
4531 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4532 			   FEC_WOL_HAS_MAGIC_PACKET);
4533 
4534 	if (fep->bufdesc_ex && fep->ptp_clock)
4535 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4536 
4537 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4538 
4539 	pm_runtime_mark_last_busy(&pdev->dev);
4540 	pm_runtime_put_autosuspend(&pdev->dev);
4541 
4542 	return 0;
4543 
4544 failed_register:
4545 	fec_enet_mii_remove(fep);
4546 failed_mii_init:
4547 failed_irq:
4548 	fec_enet_deinit(ndev);
4549 failed_init:
4550 	fec_ptp_stop(pdev);
4551 failed_reset:
4552 	pm_runtime_put_noidle(&pdev->dev);
4553 	pm_runtime_disable(&pdev->dev);
4554 	if (fep->reg_phy)
4555 		regulator_disable(fep->reg_phy);
4556 failed_regulator:
4557 	clk_disable_unprepare(fep->clk_ahb);
4558 failed_clk_ahb:
4559 	clk_disable_unprepare(fep->clk_ipg);
4560 failed_clk_ipg:
4561 	fec_enet_clk_enable(ndev, false);
4562 failed_clk:
4563 failed_rgmii_delay:
4564 	if (of_phy_is_fixed_link(np))
4565 		of_phy_deregister_fixed_link(np);
4566 	of_node_put(phy_node);
4567 failed_stop_mode:
4568 failed_ipc_init:
4569 failed_phy:
4570 	dev_id--;
4571 failed_ioremap:
4572 	free_netdev(ndev);
4573 
4574 	return ret;
4575 }
4576 
4577 static void
fec_drv_remove(struct platform_device * pdev)4578 fec_drv_remove(struct platform_device *pdev)
4579 {
4580 	struct net_device *ndev = platform_get_drvdata(pdev);
4581 	struct fec_enet_private *fep = netdev_priv(ndev);
4582 	struct device_node *np = pdev->dev.of_node;
4583 	int ret;
4584 
4585 	ret = pm_runtime_get_sync(&pdev->dev);
4586 	if (ret < 0)
4587 		dev_err(&pdev->dev,
4588 			"Failed to resume device in remove callback (%pe)\n",
4589 			ERR_PTR(ret));
4590 
4591 	cancel_work_sync(&fep->tx_timeout_work);
4592 	fec_ptp_stop(pdev);
4593 	unregister_netdev(ndev);
4594 	fec_enet_mii_remove(fep);
4595 	if (fep->reg_phy)
4596 		regulator_disable(fep->reg_phy);
4597 
4598 	if (of_phy_is_fixed_link(np))
4599 		of_phy_deregister_fixed_link(np);
4600 	of_node_put(fep->phy_node);
4601 
4602 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4603 	 * disabling them again.
4604 	 */
4605 	if (ret >= 0) {
4606 		clk_disable_unprepare(fep->clk_ahb);
4607 		clk_disable_unprepare(fep->clk_ipg);
4608 	}
4609 	pm_runtime_put_noidle(&pdev->dev);
4610 	pm_runtime_disable(&pdev->dev);
4611 
4612 	fec_enet_deinit(ndev);
4613 	free_netdev(ndev);
4614 }
4615 
fec_suspend(struct device * dev)4616 static int fec_suspend(struct device *dev)
4617 {
4618 	struct net_device *ndev = dev_get_drvdata(dev);
4619 	struct fec_enet_private *fep = netdev_priv(ndev);
4620 	int ret;
4621 
4622 	rtnl_lock();
4623 	if (netif_running(ndev)) {
4624 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4625 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4626 		phy_stop(ndev->phydev);
4627 		napi_disable(&fep->napi);
4628 		netif_tx_lock_bh(ndev);
4629 		netif_device_detach(ndev);
4630 		netif_tx_unlock_bh(ndev);
4631 		fec_stop(ndev);
4632 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4633 			fec_irqs_disable(ndev);
4634 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4635 		} else {
4636 			fec_irqs_disable_except_wakeup(ndev);
4637 			if (fep->wake_irq > 0) {
4638 				disable_irq(fep->wake_irq);
4639 				enable_irq_wake(fep->wake_irq);
4640 			}
4641 			fec_enet_stop_mode(fep, true);
4642 		}
4643 		/* It's safe to disable clocks since interrupts are masked */
4644 		fec_enet_clk_enable(ndev, false);
4645 
4646 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4647 		if (fep->rpm_active) {
4648 			ret = pm_runtime_force_suspend(dev);
4649 			if (ret < 0) {
4650 				rtnl_unlock();
4651 				return ret;
4652 			}
4653 		}
4654 	}
4655 	rtnl_unlock();
4656 
4657 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4658 		regulator_disable(fep->reg_phy);
4659 
4660 	/* SOC supply clock to phy, when clock is disabled, phy link down
4661 	 * SOC control phy regulator, when regulator is disabled, phy link down
4662 	 */
4663 	if (fep->clk_enet_out || fep->reg_phy)
4664 		fep->link = 0;
4665 
4666 	return 0;
4667 }
4668 
fec_resume(struct device * dev)4669 static int fec_resume(struct device *dev)
4670 {
4671 	struct net_device *ndev = dev_get_drvdata(dev);
4672 	struct fec_enet_private *fep = netdev_priv(ndev);
4673 	int ret;
4674 	int val;
4675 
4676 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4677 		ret = regulator_enable(fep->reg_phy);
4678 		if (ret)
4679 			return ret;
4680 	}
4681 
4682 	rtnl_lock();
4683 	if (netif_running(ndev)) {
4684 		if (fep->rpm_active)
4685 			pm_runtime_force_resume(dev);
4686 
4687 		ret = fec_enet_clk_enable(ndev, true);
4688 		if (ret) {
4689 			rtnl_unlock();
4690 			goto failed_clk;
4691 		}
4692 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4693 			fec_enet_stop_mode(fep, false);
4694 			if (fep->wake_irq) {
4695 				disable_irq_wake(fep->wake_irq);
4696 				enable_irq(fep->wake_irq);
4697 			}
4698 
4699 			val = readl(fep->hwp + FEC_ECNTRL);
4700 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4701 			writel(val, fep->hwp + FEC_ECNTRL);
4702 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4703 		} else {
4704 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4705 		}
4706 		fec_restart(ndev);
4707 		netif_tx_lock_bh(ndev);
4708 		netif_device_attach(ndev);
4709 		netif_tx_unlock_bh(ndev);
4710 		napi_enable(&fep->napi);
4711 		phy_init_hw(ndev->phydev);
4712 		phy_start(ndev->phydev);
4713 	}
4714 	rtnl_unlock();
4715 
4716 	return 0;
4717 
4718 failed_clk:
4719 	if (fep->reg_phy)
4720 		regulator_disable(fep->reg_phy);
4721 	return ret;
4722 }
4723 
fec_runtime_suspend(struct device * dev)4724 static int fec_runtime_suspend(struct device *dev)
4725 {
4726 	struct net_device *ndev = dev_get_drvdata(dev);
4727 	struct fec_enet_private *fep = netdev_priv(ndev);
4728 
4729 	clk_disable_unprepare(fep->clk_ahb);
4730 	clk_disable_unprepare(fep->clk_ipg);
4731 
4732 	return 0;
4733 }
4734 
fec_runtime_resume(struct device * dev)4735 static int fec_runtime_resume(struct device *dev)
4736 {
4737 	struct net_device *ndev = dev_get_drvdata(dev);
4738 	struct fec_enet_private *fep = netdev_priv(ndev);
4739 	int ret;
4740 
4741 	ret = clk_prepare_enable(fep->clk_ahb);
4742 	if (ret)
4743 		return ret;
4744 	ret = clk_prepare_enable(fep->clk_ipg);
4745 	if (ret)
4746 		goto failed_clk_ipg;
4747 
4748 	return 0;
4749 
4750 failed_clk_ipg:
4751 	clk_disable_unprepare(fep->clk_ahb);
4752 	return ret;
4753 }
4754 
4755 static const struct dev_pm_ops fec_pm_ops = {
4756 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4757 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4758 };
4759 
4760 static struct platform_driver fec_driver = {
4761 	.driver	= {
4762 		.name	= DRIVER_NAME,
4763 		.pm	= pm_ptr(&fec_pm_ops),
4764 		.of_match_table = fec_dt_ids,
4765 		.suppress_bind_attrs = true,
4766 	},
4767 	.id_table = fec_devtype,
4768 	.probe	= fec_probe,
4769 	.remove_new = fec_drv_remove,
4770 };
4771 
4772 module_platform_driver(fec_driver);
4773 
4774 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4775 MODULE_LICENSE("GPL");
4776