1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Cirrus Logic EP93xx DMA Controller
4 *
5 * Copyright (C) 2011 Mika Westerberg
6 *
7 * DMA M2P implementation is based on the original
8 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 *
10 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
11 * Copyright (C) 2006 Applied Data Systems
12 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 *
14 * This driver is based on dw_dmac and amba-pl08x drivers.
15 */
16
17 #include <linux/clk.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmaengine.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/of_dma.h>
25 #include <linux/overflow.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include "dmaengine.h"
30
31 /* M2P registers */
32 #define M2P_CONTROL 0x0000
33 #define M2P_CONTROL_STALLINT BIT(0)
34 #define M2P_CONTROL_NFBINT BIT(1)
35 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
36 #define M2P_CONTROL_ENABLE BIT(4)
37 #define M2P_CONTROL_ICE BIT(6)
38
39 #define M2P_INTERRUPT 0x0004
40 #define M2P_INTERRUPT_STALL BIT(0)
41 #define M2P_INTERRUPT_NFB BIT(1)
42 #define M2P_INTERRUPT_ERROR BIT(3)
43
44 #define M2P_PPALLOC 0x0008
45 #define M2P_STATUS 0x000c
46
47 #define M2P_MAXCNT0 0x0020
48 #define M2P_BASE0 0x0024
49 #define M2P_MAXCNT1 0x0030
50 #define M2P_BASE1 0x0034
51
52 #define M2P_STATE_IDLE 0
53 #define M2P_STATE_STALL 1
54 #define M2P_STATE_ON 2
55 #define M2P_STATE_NEXT 3
56
57 /* M2M registers */
58 #define M2M_CONTROL 0x0000
59 #define M2M_CONTROL_DONEINT BIT(2)
60 #define M2M_CONTROL_ENABLE BIT(3)
61 #define M2M_CONTROL_START BIT(4)
62 #define M2M_CONTROL_DAH BIT(11)
63 #define M2M_CONTROL_SAH BIT(12)
64 #define M2M_CONTROL_PW_SHIFT 9
65 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_TM_SHIFT 13
70 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
72 #define M2M_CONTROL_NFBINT BIT(21)
73 #define M2M_CONTROL_RSS_SHIFT 22
74 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_NO_HDSK BIT(24)
78 #define M2M_CONTROL_PWSC_SHIFT 25
79
80 #define M2M_INTERRUPT 0x0004
81 #define M2M_INTERRUPT_MASK 6
82
83 #define M2M_STATUS 0x000c
84 #define M2M_STATUS_CTL_SHIFT 1
85 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
86 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
87 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_BUF_SHIFT 4
92 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
93 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
94 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_DONE BIT(6)
97
98 #define M2M_BCR0 0x0010
99 #define M2M_BCR1 0x0014
100 #define M2M_SAR_BASE0 0x0018
101 #define M2M_SAR_BASE1 0x001c
102 #define M2M_DAR_BASE0 0x002c
103 #define M2M_DAR_BASE1 0x0030
104
105 #define DMA_MAX_CHAN_BYTES 0xffff
106 #define DMA_MAX_CHAN_DESCRIPTORS 32
107
108 /*
109 * M2P channels.
110 *
111 * Note that these values are also directly used for setting the PPALLOC
112 * register.
113 */
114 #define EP93XX_DMA_I2S1 0
115 #define EP93XX_DMA_I2S2 1
116 #define EP93XX_DMA_AAC1 2
117 #define EP93XX_DMA_AAC2 3
118 #define EP93XX_DMA_AAC3 4
119 #define EP93XX_DMA_I2S3 5
120 #define EP93XX_DMA_UART1 6
121 #define EP93XX_DMA_UART2 7
122 #define EP93XX_DMA_UART3 8
123 #define EP93XX_DMA_IRDA 9
124 /* M2M channels */
125 #define EP93XX_DMA_SSP 10
126 #define EP93XX_DMA_IDE 11
127
128 enum ep93xx_dma_type {
129 M2P_DMA,
130 M2M_DMA,
131 };
132
133 struct ep93xx_dma_engine;
134 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
135 enum dma_transfer_direction dir,
136 struct dma_slave_config *config);
137
138 /**
139 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
140 * @src_addr: source address of the transaction
141 * @dst_addr: destination address of the transaction
142 * @size: size of the transaction (in bytes)
143 * @complete: this descriptor is completed
144 * @txd: dmaengine API descriptor
145 * @tx_list: list of linked descriptors
146 * @node: link used for putting this into a channel queue
147 */
148 struct ep93xx_dma_desc {
149 u32 src_addr;
150 u32 dst_addr;
151 size_t size;
152 bool complete;
153 struct dma_async_tx_descriptor txd;
154 struct list_head tx_list;
155 struct list_head node;
156 };
157
158 struct ep93xx_dma_chan_cfg {
159 u8 port;
160 enum dma_transfer_direction dir;
161 };
162
163 /**
164 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
165 * @chan: dmaengine API channel
166 * @edma: pointer to the engine device
167 * @regs: memory mapped registers
168 * @dma_cfg: channel number, direction
169 * @irq: interrupt number of the channel
170 * @clk: clock used by this channel
171 * @tasklet: channel specific tasklet used for callbacks
172 * @lock: lock protecting the fields following
173 * @flags: flags for the channel
174 * @buffer: which buffer to use next (0/1)
175 * @active: flattened chain of descriptors currently being processed
176 * @queue: pending descriptors which are handled next
177 * @free_list: list of free descriptors which can be used
178 * @runtime_addr: physical address currently used as dest/src (M2M only). This
179 * is set via .device_config before slave operation is
180 * prepared
181 * @runtime_ctrl: M2M runtime values for the control register.
182 * @slave_config: slave configuration
183 *
184 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
185 * will have slightly different scheme here: @active points to a head of
186 * flattened DMA descriptor chain.
187 *
188 * @queue holds pending transactions. These are linked through the first
189 * descriptor in the chain. When a descriptor is moved to the @active queue,
190 * the first and chained descriptors are flattened into a single list.
191 *
192 */
193 struct ep93xx_dma_chan {
194 struct dma_chan chan;
195 const struct ep93xx_dma_engine *edma;
196 void __iomem *regs;
197 struct ep93xx_dma_chan_cfg dma_cfg;
198 int irq;
199 struct clk *clk;
200 struct tasklet_struct tasklet;
201 /* protects the fields following */
202 spinlock_t lock;
203 unsigned long flags;
204 /* Channel is configured for cyclic transfers */
205 #define EP93XX_DMA_IS_CYCLIC 0
206
207 int buffer;
208 struct list_head active;
209 struct list_head queue;
210 struct list_head free_list;
211 u32 runtime_addr;
212 u32 runtime_ctrl;
213 struct dma_slave_config slave_config;
214 };
215
216 /**
217 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
218 * @dma_dev: holds the dmaengine device
219 * @m2m: is this an M2M or M2P device
220 * @hw_setup: method which sets the channel up for operation
221 * @hw_synchronize: synchronizes DMA channel termination to current context
222 * @hw_shutdown: shuts the channel down and flushes whatever is left
223 * @hw_submit: pushes active descriptor(s) to the hardware
224 * @hw_interrupt: handle the interrupt
225 * @num_channels: number of channels for this instance
226 * @channels: array of channels
227 *
228 * There is one instance of this struct for the M2P channels and one for the
229 * M2M channels. hw_xxx() methods are used to perform operations which are
230 * different on M2M and M2P channels. These methods are called with channel
231 * lock held and interrupts disabled so they cannot sleep.
232 */
233 struct ep93xx_dma_engine {
234 struct dma_device dma_dev;
235 bool m2m;
236 int (*hw_setup)(struct ep93xx_dma_chan *);
237 void (*hw_synchronize)(struct ep93xx_dma_chan *);
238 void (*hw_shutdown)(struct ep93xx_dma_chan *);
239 void (*hw_submit)(struct ep93xx_dma_chan *);
240 int (*hw_interrupt)(struct ep93xx_dma_chan *);
241 #define INTERRUPT_UNKNOWN 0
242 #define INTERRUPT_DONE 1
243 #define INTERRUPT_NEXT_BUFFER 2
244
245 size_t num_channels;
246 struct ep93xx_dma_chan channels[] __counted_by(num_channels);
247 };
248
249 struct ep93xx_edma_data {
250 u32 id;
251 size_t num_channels;
252 };
253
chan2dev(struct ep93xx_dma_chan * edmac)254 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
255 {
256 return &edmac->chan.dev->device;
257 }
258
to_ep93xx_dma_chan(struct dma_chan * chan)259 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
260 {
261 return container_of(chan, struct ep93xx_dma_chan, chan);
262 }
263
ep93xx_dma_chan_is_m2p(struct dma_chan * chan)264 static inline bool ep93xx_dma_chan_is_m2p(struct dma_chan *chan)
265 {
266 if (device_is_compatible(chan->device->dev, "cirrus,ep9301-dma-m2p"))
267 return true;
268
269 return !strcmp(dev_name(chan->device->dev), "ep93xx-dma-m2p");
270 }
271
272 /*
273 * ep93xx_dma_chan_direction - returns direction the channel can be used
274 *
275 * This function can be used in filter functions to find out whether the
276 * channel supports given DMA direction. Only M2P channels have such
277 * limitation, for M2M channels the direction is configurable.
278 */
279 static inline enum dma_transfer_direction
ep93xx_dma_chan_direction(struct dma_chan * chan)280 ep93xx_dma_chan_direction(struct dma_chan *chan)
281 {
282 if (!ep93xx_dma_chan_is_m2p(chan))
283 return DMA_TRANS_NONE;
284
285 /* even channels are for TX, odd for RX */
286 return (chan->chan_id % 2 == 0) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
287 }
288
289 /**
290 * ep93xx_dma_set_active - set new active descriptor chain
291 * @edmac: channel
292 * @desc: head of the new active descriptor chain
293 *
294 * Sets @desc to be the head of the new active descriptor chain. This is the
295 * chain which is processed next. The active list must be empty before calling
296 * this function.
297 *
298 * Called with @edmac->lock held and interrupts disabled.
299 */
ep93xx_dma_set_active(struct ep93xx_dma_chan * edmac,struct ep93xx_dma_desc * desc)300 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
301 struct ep93xx_dma_desc *desc)
302 {
303 BUG_ON(!list_empty(&edmac->active));
304
305 list_add_tail(&desc->node, &edmac->active);
306
307 /* Flatten the @desc->tx_list chain into @edmac->active list */
308 while (!list_empty(&desc->tx_list)) {
309 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
310 struct ep93xx_dma_desc, node);
311
312 /*
313 * We copy the callback parameters from the first descriptor
314 * to all the chained descriptors. This way we can call the
315 * callback without having to find out the first descriptor in
316 * the chain. Useful for cyclic transfers.
317 */
318 d->txd.callback = desc->txd.callback;
319 d->txd.callback_param = desc->txd.callback_param;
320
321 list_move_tail(&d->node, &edmac->active);
322 }
323 }
324
325 /* Called with @edmac->lock held and interrupts disabled */
326 static struct ep93xx_dma_desc *
ep93xx_dma_get_active(struct ep93xx_dma_chan * edmac)327 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
328 {
329 return list_first_entry_or_null(&edmac->active,
330 struct ep93xx_dma_desc, node);
331 }
332
333 /**
334 * ep93xx_dma_advance_active - advances to the next active descriptor
335 * @edmac: channel
336 *
337 * Function advances active descriptor to the next in the @edmac->active and
338 * returns %true if we still have descriptors in the chain to process.
339 * Otherwise returns %false.
340 *
341 * When the channel is in cyclic mode always returns %true.
342 *
343 * Called with @edmac->lock held and interrupts disabled.
344 */
ep93xx_dma_advance_active(struct ep93xx_dma_chan * edmac)345 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
346 {
347 struct ep93xx_dma_desc *desc;
348
349 list_rotate_left(&edmac->active);
350
351 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
352 return true;
353
354 desc = ep93xx_dma_get_active(edmac);
355 if (!desc)
356 return false;
357
358 /*
359 * If txd.cookie is set it means that we are back in the first
360 * descriptor in the chain and hence done with it.
361 */
362 return !desc->txd.cookie;
363 }
364
365 /*
366 * M2P DMA implementation
367 */
368
m2p_set_control(struct ep93xx_dma_chan * edmac,u32 control)369 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
370 {
371 writel(control, edmac->regs + M2P_CONTROL);
372 /*
373 * EP93xx User's Guide states that we must perform a dummy read after
374 * write to the control register.
375 */
376 readl(edmac->regs + M2P_CONTROL);
377 }
378
m2p_hw_setup(struct ep93xx_dma_chan * edmac)379 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
380 {
381 u32 control;
382
383 writel(edmac->dma_cfg.port & 0xf, edmac->regs + M2P_PPALLOC);
384
385 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
386 | M2P_CONTROL_ENABLE;
387 m2p_set_control(edmac, control);
388
389 edmac->buffer = 0;
390
391 return 0;
392 }
393
m2p_channel_state(struct ep93xx_dma_chan * edmac)394 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
395 {
396 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
397 }
398
m2p_hw_synchronize(struct ep93xx_dma_chan * edmac)399 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
400 {
401 unsigned long flags;
402 u32 control;
403
404 spin_lock_irqsave(&edmac->lock, flags);
405 control = readl(edmac->regs + M2P_CONTROL);
406 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
407 m2p_set_control(edmac, control);
408 spin_unlock_irqrestore(&edmac->lock, flags);
409
410 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
411 schedule();
412 }
413
m2p_hw_shutdown(struct ep93xx_dma_chan * edmac)414 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
415 {
416 m2p_set_control(edmac, 0);
417
418 while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
419 dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
420 }
421
m2p_fill_desc(struct ep93xx_dma_chan * edmac)422 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
423 {
424 struct ep93xx_dma_desc *desc;
425 u32 bus_addr;
426
427 desc = ep93xx_dma_get_active(edmac);
428 if (!desc) {
429 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
430 return;
431 }
432
433 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
434 bus_addr = desc->src_addr;
435 else
436 bus_addr = desc->dst_addr;
437
438 if (edmac->buffer == 0) {
439 writel(desc->size, edmac->regs + M2P_MAXCNT0);
440 writel(bus_addr, edmac->regs + M2P_BASE0);
441 } else {
442 writel(desc->size, edmac->regs + M2P_MAXCNT1);
443 writel(bus_addr, edmac->regs + M2P_BASE1);
444 }
445
446 edmac->buffer ^= 1;
447 }
448
m2p_hw_submit(struct ep93xx_dma_chan * edmac)449 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
450 {
451 u32 control = readl(edmac->regs + M2P_CONTROL);
452
453 m2p_fill_desc(edmac);
454 control |= M2P_CONTROL_STALLINT;
455
456 if (ep93xx_dma_advance_active(edmac)) {
457 m2p_fill_desc(edmac);
458 control |= M2P_CONTROL_NFBINT;
459 }
460
461 m2p_set_control(edmac, control);
462 }
463
m2p_hw_interrupt(struct ep93xx_dma_chan * edmac)464 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
465 {
466 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
467 u32 control;
468
469 if (irq_status & M2P_INTERRUPT_ERROR) {
470 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
471
472 /* Clear the error interrupt */
473 writel(1, edmac->regs + M2P_INTERRUPT);
474
475 /*
476 * It seems that there is no easy way of reporting errors back
477 * to client so we just report the error here and continue as
478 * usual.
479 *
480 * Revisit this when there is a mechanism to report back the
481 * errors.
482 */
483 dev_err(chan2dev(edmac),
484 "DMA transfer failed! Details:\n"
485 "\tcookie : %d\n"
486 "\tsrc_addr : 0x%08x\n"
487 "\tdst_addr : 0x%08x\n"
488 "\tsize : %zu\n",
489 desc->txd.cookie, desc->src_addr, desc->dst_addr,
490 desc->size);
491 }
492
493 /*
494 * Even latest E2 silicon revision sometimes assert STALL interrupt
495 * instead of NFB. Therefore we treat them equally, basing on the
496 * amount of data we still have to transfer.
497 */
498 if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
499 return INTERRUPT_UNKNOWN;
500
501 if (ep93xx_dma_advance_active(edmac)) {
502 m2p_fill_desc(edmac);
503 return INTERRUPT_NEXT_BUFFER;
504 }
505
506 /* Disable interrupts */
507 control = readl(edmac->regs + M2P_CONTROL);
508 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
509 m2p_set_control(edmac, control);
510
511 return INTERRUPT_DONE;
512 }
513
514 /*
515 * M2M DMA implementation
516 */
517
m2m_hw_setup(struct ep93xx_dma_chan * edmac)518 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
519 {
520 u32 control = 0;
521
522 if (edmac->dma_cfg.dir == DMA_MEM_TO_MEM) {
523 /* This is memcpy channel, nothing to configure */
524 writel(control, edmac->regs + M2M_CONTROL);
525 return 0;
526 }
527
528 switch (edmac->dma_cfg.port) {
529 case EP93XX_DMA_SSP:
530 /*
531 * This was found via experimenting - anything less than 5
532 * causes the channel to perform only a partial transfer which
533 * leads to problems since we don't get DONE interrupt then.
534 */
535 control = (5 << M2M_CONTROL_PWSC_SHIFT);
536 control |= M2M_CONTROL_NO_HDSK;
537
538 if (edmac->dma_cfg.dir == DMA_MEM_TO_DEV) {
539 control |= M2M_CONTROL_DAH;
540 control |= M2M_CONTROL_TM_TX;
541 control |= M2M_CONTROL_RSS_SSPTX;
542 } else {
543 control |= M2M_CONTROL_SAH;
544 control |= M2M_CONTROL_TM_RX;
545 control |= M2M_CONTROL_RSS_SSPRX;
546 }
547 break;
548
549 case EP93XX_DMA_IDE:
550 /*
551 * This IDE part is totally untested. Values below are taken
552 * from the EP93xx Users's Guide and might not be correct.
553 */
554 if (edmac->dma_cfg.dir == DMA_MEM_TO_DEV) {
555 /* Worst case from the UG */
556 control = (3 << M2M_CONTROL_PWSC_SHIFT);
557 control |= M2M_CONTROL_DAH;
558 control |= M2M_CONTROL_TM_TX;
559 } else {
560 control = (2 << M2M_CONTROL_PWSC_SHIFT);
561 control |= M2M_CONTROL_SAH;
562 control |= M2M_CONTROL_TM_RX;
563 }
564
565 control |= M2M_CONTROL_NO_HDSK;
566 control |= M2M_CONTROL_RSS_IDE;
567 control |= M2M_CONTROL_PW_16;
568 break;
569
570 default:
571 return -EINVAL;
572 }
573
574 writel(control, edmac->regs + M2M_CONTROL);
575 return 0;
576 }
577
m2m_hw_shutdown(struct ep93xx_dma_chan * edmac)578 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
579 {
580 /* Just disable the channel */
581 writel(0, edmac->regs + M2M_CONTROL);
582 }
583
m2m_fill_desc(struct ep93xx_dma_chan * edmac)584 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
585 {
586 struct ep93xx_dma_desc *desc;
587
588 desc = ep93xx_dma_get_active(edmac);
589 if (!desc) {
590 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
591 return;
592 }
593
594 if (edmac->buffer == 0) {
595 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
596 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
597 writel(desc->size, edmac->regs + M2M_BCR0);
598 } else {
599 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
600 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
601 writel(desc->size, edmac->regs + M2M_BCR1);
602 }
603
604 edmac->buffer ^= 1;
605 }
606
m2m_hw_submit(struct ep93xx_dma_chan * edmac)607 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
608 {
609 u32 control = readl(edmac->regs + M2M_CONTROL);
610
611 /*
612 * Since we allow clients to configure PW (peripheral width) we always
613 * clear PW bits here and then set them according what is given in
614 * the runtime configuration.
615 */
616 control &= ~M2M_CONTROL_PW_MASK;
617 control |= edmac->runtime_ctrl;
618
619 m2m_fill_desc(edmac);
620 control |= M2M_CONTROL_DONEINT;
621
622 if (ep93xx_dma_advance_active(edmac)) {
623 m2m_fill_desc(edmac);
624 control |= M2M_CONTROL_NFBINT;
625 }
626
627 /*
628 * Now we can finally enable the channel. For M2M channel this must be
629 * done _after_ the BCRx registers are programmed.
630 */
631 control |= M2M_CONTROL_ENABLE;
632 writel(control, edmac->regs + M2M_CONTROL);
633
634 if (edmac->dma_cfg.dir == DMA_MEM_TO_MEM) {
635 /*
636 * For memcpy channels the software trigger must be asserted
637 * in order to start the memcpy operation.
638 */
639 control |= M2M_CONTROL_START;
640 writel(control, edmac->regs + M2M_CONTROL);
641 }
642 }
643
644 /*
645 * According to EP93xx User's Guide, we should receive DONE interrupt when all
646 * M2M DMA controller transactions complete normally. This is not always the
647 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
648 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
649 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
650 * In effect, disabling the channel when only DONE bit is set could stop
651 * currently running DMA transfer. To avoid this, we use Buffer FSM and
652 * Control FSM to check current state of DMA channel.
653 */
m2m_hw_interrupt(struct ep93xx_dma_chan * edmac)654 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
655 {
656 u32 status = readl(edmac->regs + M2M_STATUS);
657 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
658 u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
659 bool done = status & M2M_STATUS_DONE;
660 bool last_done;
661 u32 control;
662 struct ep93xx_dma_desc *desc;
663
664 /* Accept only DONE and NFB interrupts */
665 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
666 return INTERRUPT_UNKNOWN;
667
668 if (done) {
669 /* Clear the DONE bit */
670 writel(0, edmac->regs + M2M_INTERRUPT);
671 }
672
673 /*
674 * Check whether we are done with descriptors or not. This, together
675 * with DMA channel state, determines action to take in interrupt.
676 */
677 desc = ep93xx_dma_get_active(edmac);
678 last_done = !desc || desc->txd.cookie;
679
680 /*
681 * Use M2M DMA Buffer FSM and Control FSM to check current state of
682 * DMA channel. Using DONE and NFB bits from channel status register
683 * or bits from channel interrupt register is not reliable.
684 */
685 if (!last_done &&
686 (buf_fsm == M2M_STATUS_BUF_NO ||
687 buf_fsm == M2M_STATUS_BUF_ON)) {
688 /*
689 * Two buffers are ready for update when Buffer FSM is in
690 * DMA_NO_BUF state. Only one buffer can be prepared without
691 * disabling the channel or polling the DONE bit.
692 * To simplify things, always prepare only one buffer.
693 */
694 if (ep93xx_dma_advance_active(edmac)) {
695 m2m_fill_desc(edmac);
696 if (done && edmac->dma_cfg.dir == DMA_MEM_TO_MEM) {
697 /* Software trigger for memcpy channel */
698 control = readl(edmac->regs + M2M_CONTROL);
699 control |= M2M_CONTROL_START;
700 writel(control, edmac->regs + M2M_CONTROL);
701 }
702 return INTERRUPT_NEXT_BUFFER;
703 } else {
704 last_done = true;
705 }
706 }
707
708 /*
709 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
710 * and Control FSM is in DMA_STALL state.
711 */
712 if (last_done &&
713 buf_fsm == M2M_STATUS_BUF_NO &&
714 ctl_fsm == M2M_STATUS_CTL_STALL) {
715 /* Disable interrupts and the channel */
716 control = readl(edmac->regs + M2M_CONTROL);
717 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
718 | M2M_CONTROL_ENABLE);
719 writel(control, edmac->regs + M2M_CONTROL);
720 return INTERRUPT_DONE;
721 }
722
723 /*
724 * Nothing to do this time.
725 */
726 return INTERRUPT_NEXT_BUFFER;
727 }
728
729 /*
730 * DMA engine API implementation
731 */
732
733 static struct ep93xx_dma_desc *
ep93xx_dma_desc_get(struct ep93xx_dma_chan * edmac)734 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
735 {
736 struct ep93xx_dma_desc *desc, *_desc;
737 struct ep93xx_dma_desc *ret = NULL;
738 unsigned long flags;
739
740 spin_lock_irqsave(&edmac->lock, flags);
741 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
742 if (async_tx_test_ack(&desc->txd)) {
743 list_del_init(&desc->node);
744
745 /* Re-initialize the descriptor */
746 desc->src_addr = 0;
747 desc->dst_addr = 0;
748 desc->size = 0;
749 desc->complete = false;
750 desc->txd.cookie = 0;
751 desc->txd.callback = NULL;
752 desc->txd.callback_param = NULL;
753
754 ret = desc;
755 break;
756 }
757 }
758 spin_unlock_irqrestore(&edmac->lock, flags);
759 return ret;
760 }
761
ep93xx_dma_desc_put(struct ep93xx_dma_chan * edmac,struct ep93xx_dma_desc * desc)762 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
763 struct ep93xx_dma_desc *desc)
764 {
765 if (desc) {
766 unsigned long flags;
767
768 spin_lock_irqsave(&edmac->lock, flags);
769 list_splice_init(&desc->tx_list, &edmac->free_list);
770 list_add(&desc->node, &edmac->free_list);
771 spin_unlock_irqrestore(&edmac->lock, flags);
772 }
773 }
774
775 /**
776 * ep93xx_dma_advance_work - start processing the next pending transaction
777 * @edmac: channel
778 *
779 * If we have pending transactions queued and we are currently idling, this
780 * function takes the next queued transaction from the @edmac->queue and
781 * pushes it to the hardware for execution.
782 */
ep93xx_dma_advance_work(struct ep93xx_dma_chan * edmac)783 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
784 {
785 struct ep93xx_dma_desc *new;
786 unsigned long flags;
787
788 spin_lock_irqsave(&edmac->lock, flags);
789 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
790 spin_unlock_irqrestore(&edmac->lock, flags);
791 return;
792 }
793
794 /* Take the next descriptor from the pending queue */
795 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
796 list_del_init(&new->node);
797
798 ep93xx_dma_set_active(edmac, new);
799
800 /* Push it to the hardware */
801 edmac->edma->hw_submit(edmac);
802 spin_unlock_irqrestore(&edmac->lock, flags);
803 }
804
ep93xx_dma_tasklet(struct tasklet_struct * t)805 static void ep93xx_dma_tasklet(struct tasklet_struct *t)
806 {
807 struct ep93xx_dma_chan *edmac = from_tasklet(edmac, t, tasklet);
808 struct ep93xx_dma_desc *desc, *d;
809 struct dmaengine_desc_callback cb;
810 LIST_HEAD(list);
811
812 memset(&cb, 0, sizeof(cb));
813 spin_lock_irq(&edmac->lock);
814 /*
815 * If dma_terminate_all() was called before we get to run, the active
816 * list has become empty. If that happens we aren't supposed to do
817 * anything more than call ep93xx_dma_advance_work().
818 */
819 desc = ep93xx_dma_get_active(edmac);
820 if (desc) {
821 if (desc->complete) {
822 /* mark descriptor complete for non cyclic case only */
823 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
824 dma_cookie_complete(&desc->txd);
825 list_splice_init(&edmac->active, &list);
826 }
827 dmaengine_desc_get_callback(&desc->txd, &cb);
828 }
829 spin_unlock_irq(&edmac->lock);
830
831 /* Pick up the next descriptor from the queue */
832 ep93xx_dma_advance_work(edmac);
833
834 /* Now we can release all the chained descriptors */
835 list_for_each_entry_safe(desc, d, &list, node) {
836 dma_descriptor_unmap(&desc->txd);
837 ep93xx_dma_desc_put(edmac, desc);
838 }
839
840 dmaengine_desc_callback_invoke(&cb, NULL);
841 }
842
ep93xx_dma_interrupt(int irq,void * dev_id)843 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
844 {
845 struct ep93xx_dma_chan *edmac = dev_id;
846 struct ep93xx_dma_desc *desc;
847 irqreturn_t ret = IRQ_HANDLED;
848
849 spin_lock(&edmac->lock);
850
851 desc = ep93xx_dma_get_active(edmac);
852 if (!desc) {
853 dev_warn(chan2dev(edmac),
854 "got interrupt while active list is empty\n");
855 spin_unlock(&edmac->lock);
856 return IRQ_NONE;
857 }
858
859 switch (edmac->edma->hw_interrupt(edmac)) {
860 case INTERRUPT_DONE:
861 desc->complete = true;
862 tasklet_schedule(&edmac->tasklet);
863 break;
864
865 case INTERRUPT_NEXT_BUFFER:
866 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
867 tasklet_schedule(&edmac->tasklet);
868 break;
869
870 default:
871 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
872 ret = IRQ_NONE;
873 break;
874 }
875
876 spin_unlock(&edmac->lock);
877 return ret;
878 }
879
880 /**
881 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
882 * @tx: descriptor to be executed
883 *
884 * Function will execute given descriptor on the hardware or if the hardware
885 * is busy, queue the descriptor to be executed later on. Returns cookie which
886 * can be used to poll the status of the descriptor.
887 */
ep93xx_dma_tx_submit(struct dma_async_tx_descriptor * tx)888 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
889 {
890 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
891 struct ep93xx_dma_desc *desc;
892 dma_cookie_t cookie;
893 unsigned long flags;
894
895 spin_lock_irqsave(&edmac->lock, flags);
896 cookie = dma_cookie_assign(tx);
897
898 desc = container_of(tx, struct ep93xx_dma_desc, txd);
899
900 /*
901 * If nothing is currently processed, we push this descriptor
902 * directly to the hardware. Otherwise we put the descriptor
903 * to the pending queue.
904 */
905 if (list_empty(&edmac->active)) {
906 ep93xx_dma_set_active(edmac, desc);
907 edmac->edma->hw_submit(edmac);
908 } else {
909 list_add_tail(&desc->node, &edmac->queue);
910 }
911
912 spin_unlock_irqrestore(&edmac->lock, flags);
913 return cookie;
914 }
915
916 /**
917 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
918 * @chan: channel to allocate resources
919 *
920 * Function allocates necessary resources for the given DMA channel and
921 * returns number of allocated descriptors for the channel. Negative errno
922 * is returned in case of failure.
923 */
ep93xx_dma_alloc_chan_resources(struct dma_chan * chan)924 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
925 {
926 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
927 const char *name = dma_chan_name(chan);
928 int ret, i;
929
930 /* Sanity check the channel parameters */
931 if (!edmac->edma->m2m) {
932 if (edmac->dma_cfg.port > EP93XX_DMA_IRDA)
933 return -EINVAL;
934 if (edmac->dma_cfg.dir != ep93xx_dma_chan_direction(chan))
935 return -EINVAL;
936 } else {
937 if (edmac->dma_cfg.dir != DMA_MEM_TO_MEM) {
938 switch (edmac->dma_cfg.port) {
939 case EP93XX_DMA_SSP:
940 case EP93XX_DMA_IDE:
941 if (!is_slave_direction(edmac->dma_cfg.dir))
942 return -EINVAL;
943 break;
944 default:
945 return -EINVAL;
946 }
947 }
948 }
949
950 ret = clk_prepare_enable(edmac->clk);
951 if (ret)
952 return ret;
953
954 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
955 if (ret)
956 goto fail_clk_disable;
957
958 spin_lock_irq(&edmac->lock);
959 dma_cookie_init(&edmac->chan);
960 ret = edmac->edma->hw_setup(edmac);
961 spin_unlock_irq(&edmac->lock);
962
963 if (ret)
964 goto fail_free_irq;
965
966 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
967 struct ep93xx_dma_desc *desc;
968
969 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
970 if (!desc) {
971 dev_warn(chan2dev(edmac), "not enough descriptors\n");
972 break;
973 }
974
975 INIT_LIST_HEAD(&desc->tx_list);
976
977 dma_async_tx_descriptor_init(&desc->txd, chan);
978 desc->txd.flags = DMA_CTRL_ACK;
979 desc->txd.tx_submit = ep93xx_dma_tx_submit;
980
981 ep93xx_dma_desc_put(edmac, desc);
982 }
983
984 return i;
985
986 fail_free_irq:
987 free_irq(edmac->irq, edmac);
988 fail_clk_disable:
989 clk_disable_unprepare(edmac->clk);
990
991 return ret;
992 }
993
994 /**
995 * ep93xx_dma_free_chan_resources - release resources for the channel
996 * @chan: channel
997 *
998 * Function releases all the resources allocated for the given channel.
999 * The channel must be idle when this is called.
1000 */
ep93xx_dma_free_chan_resources(struct dma_chan * chan)1001 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
1002 {
1003 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1004 struct ep93xx_dma_desc *desc, *d;
1005 unsigned long flags;
1006 LIST_HEAD(list);
1007
1008 BUG_ON(!list_empty(&edmac->active));
1009 BUG_ON(!list_empty(&edmac->queue));
1010
1011 spin_lock_irqsave(&edmac->lock, flags);
1012 edmac->edma->hw_shutdown(edmac);
1013 edmac->runtime_addr = 0;
1014 edmac->runtime_ctrl = 0;
1015 edmac->buffer = 0;
1016 list_splice_init(&edmac->free_list, &list);
1017 spin_unlock_irqrestore(&edmac->lock, flags);
1018
1019 list_for_each_entry_safe(desc, d, &list, node)
1020 kfree(desc);
1021
1022 clk_disable_unprepare(edmac->clk);
1023 free_irq(edmac->irq, edmac);
1024 }
1025
1026 /**
1027 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
1028 * @chan: channel
1029 * @dest: destination bus address
1030 * @src: source bus address
1031 * @len: size of the transaction
1032 * @flags: flags for the descriptor
1033 *
1034 * Returns a valid DMA descriptor or %NULL in case of failure.
1035 */
1036 static struct dma_async_tx_descriptor *
ep93xx_dma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1037 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
1038 dma_addr_t src, size_t len, unsigned long flags)
1039 {
1040 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1041 struct ep93xx_dma_desc *desc, *first;
1042 size_t bytes, offset;
1043
1044 first = NULL;
1045 for (offset = 0; offset < len; offset += bytes) {
1046 desc = ep93xx_dma_desc_get(edmac);
1047 if (!desc) {
1048 dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1049 goto fail;
1050 }
1051
1052 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1053
1054 desc->src_addr = src + offset;
1055 desc->dst_addr = dest + offset;
1056 desc->size = bytes;
1057
1058 if (!first)
1059 first = desc;
1060 else
1061 list_add_tail(&desc->node, &first->tx_list);
1062 }
1063
1064 first->txd.cookie = -EBUSY;
1065 first->txd.flags = flags;
1066
1067 return &first->txd;
1068 fail:
1069 ep93xx_dma_desc_put(edmac, first);
1070 return NULL;
1071 }
1072
1073 /**
1074 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1075 * @chan: channel
1076 * @sgl: list of buffers to transfer
1077 * @sg_len: number of entries in @sgl
1078 * @dir: direction of the DMA transfer
1079 * @flags: flags for the descriptor
1080 * @context: operation context (ignored)
1081 *
1082 * Returns a valid DMA descriptor or %NULL in case of failure.
1083 */
1084 static struct dma_async_tx_descriptor *
ep93xx_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)1085 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1086 unsigned int sg_len, enum dma_transfer_direction dir,
1087 unsigned long flags, void *context)
1088 {
1089 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1090 struct ep93xx_dma_desc *desc, *first;
1091 struct scatterlist *sg;
1092 int i;
1093
1094 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1095 dev_warn(chan2dev(edmac),
1096 "channel was configured with different direction\n");
1097 return NULL;
1098 }
1099
1100 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1101 dev_warn(chan2dev(edmac),
1102 "channel is already used for cyclic transfers\n");
1103 return NULL;
1104 }
1105
1106 ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1107
1108 first = NULL;
1109 for_each_sg(sgl, sg, sg_len, i) {
1110 size_t len = sg_dma_len(sg);
1111
1112 if (len > DMA_MAX_CHAN_BYTES) {
1113 dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1114 len);
1115 goto fail;
1116 }
1117
1118 desc = ep93xx_dma_desc_get(edmac);
1119 if (!desc) {
1120 dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1121 goto fail;
1122 }
1123
1124 if (dir == DMA_MEM_TO_DEV) {
1125 desc->src_addr = sg_dma_address(sg);
1126 desc->dst_addr = edmac->runtime_addr;
1127 } else {
1128 desc->src_addr = edmac->runtime_addr;
1129 desc->dst_addr = sg_dma_address(sg);
1130 }
1131 desc->size = len;
1132
1133 if (!first)
1134 first = desc;
1135 else
1136 list_add_tail(&desc->node, &first->tx_list);
1137 }
1138
1139 first->txd.cookie = -EBUSY;
1140 first->txd.flags = flags;
1141
1142 return &first->txd;
1143
1144 fail:
1145 ep93xx_dma_desc_put(edmac, first);
1146 return NULL;
1147 }
1148
1149 /**
1150 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1151 * @chan: channel
1152 * @dma_addr: DMA mapped address of the buffer
1153 * @buf_len: length of the buffer (in bytes)
1154 * @period_len: length of a single period
1155 * @dir: direction of the operation
1156 * @flags: tx descriptor status flags
1157 *
1158 * Prepares a descriptor for cyclic DMA operation. This means that once the
1159 * descriptor is submitted, we will be submitting in a @period_len sized
1160 * buffers and calling callback once the period has been elapsed. Transfer
1161 * terminates only when client calls dmaengine_terminate_all() for this
1162 * channel.
1163 *
1164 * Returns a valid DMA descriptor or %NULL in case of failure.
1165 */
1166 static struct dma_async_tx_descriptor *
ep93xx_dma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1167 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1168 size_t buf_len, size_t period_len,
1169 enum dma_transfer_direction dir, unsigned long flags)
1170 {
1171 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1172 struct ep93xx_dma_desc *desc, *first;
1173 size_t offset = 0;
1174
1175 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1176 dev_warn(chan2dev(edmac),
1177 "channel was configured with different direction\n");
1178 return NULL;
1179 }
1180
1181 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1182 dev_warn(chan2dev(edmac),
1183 "channel is already used for cyclic transfers\n");
1184 return NULL;
1185 }
1186
1187 if (period_len > DMA_MAX_CHAN_BYTES) {
1188 dev_warn(chan2dev(edmac), "too big period length %zu\n",
1189 period_len);
1190 return NULL;
1191 }
1192
1193 ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1194
1195 /* Split the buffer into period size chunks */
1196 first = NULL;
1197 for (offset = 0; offset < buf_len; offset += period_len) {
1198 desc = ep93xx_dma_desc_get(edmac);
1199 if (!desc) {
1200 dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1201 goto fail;
1202 }
1203
1204 if (dir == DMA_MEM_TO_DEV) {
1205 desc->src_addr = dma_addr + offset;
1206 desc->dst_addr = edmac->runtime_addr;
1207 } else {
1208 desc->src_addr = edmac->runtime_addr;
1209 desc->dst_addr = dma_addr + offset;
1210 }
1211
1212 desc->size = period_len;
1213
1214 if (!first)
1215 first = desc;
1216 else
1217 list_add_tail(&desc->node, &first->tx_list);
1218 }
1219
1220 first->txd.cookie = -EBUSY;
1221
1222 return &first->txd;
1223
1224 fail:
1225 ep93xx_dma_desc_put(edmac, first);
1226 return NULL;
1227 }
1228
1229 /**
1230 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1231 * current context.
1232 * @chan: channel
1233 *
1234 * Synchronizes the DMA channel termination to the current context. When this
1235 * function returns it is guaranteed that all transfers for previously issued
1236 * descriptors have stopped and it is safe to free the memory associated
1237 * with them. Furthermore it is guaranteed that all complete callback functions
1238 * for a previously submitted descriptor have finished running and it is safe to
1239 * free resources accessed from within the complete callbacks.
1240 */
ep93xx_dma_synchronize(struct dma_chan * chan)1241 static void ep93xx_dma_synchronize(struct dma_chan *chan)
1242 {
1243 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1244
1245 if (edmac->edma->hw_synchronize)
1246 edmac->edma->hw_synchronize(edmac);
1247 }
1248
1249 /**
1250 * ep93xx_dma_terminate_all - terminate all transactions
1251 * @chan: channel
1252 *
1253 * Stops all DMA transactions. All descriptors are put back to the
1254 * @edmac->free_list and callbacks are _not_ called.
1255 */
ep93xx_dma_terminate_all(struct dma_chan * chan)1256 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1257 {
1258 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1259 struct ep93xx_dma_desc *desc, *_d;
1260 unsigned long flags;
1261 LIST_HEAD(list);
1262
1263 spin_lock_irqsave(&edmac->lock, flags);
1264 /* First we disable and flush the DMA channel */
1265 edmac->edma->hw_shutdown(edmac);
1266 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1267 list_splice_init(&edmac->active, &list);
1268 list_splice_init(&edmac->queue, &list);
1269 /*
1270 * We then re-enable the channel. This way we can continue submitting
1271 * the descriptors by just calling ->hw_submit() again.
1272 */
1273 edmac->edma->hw_setup(edmac);
1274 spin_unlock_irqrestore(&edmac->lock, flags);
1275
1276 list_for_each_entry_safe(desc, _d, &list, node)
1277 ep93xx_dma_desc_put(edmac, desc);
1278
1279 return 0;
1280 }
1281
ep93xx_dma_slave_config(struct dma_chan * chan,struct dma_slave_config * config)1282 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1283 struct dma_slave_config *config)
1284 {
1285 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1286
1287 memcpy(&edmac->slave_config, config, sizeof(*config));
1288
1289 return 0;
1290 }
1291
ep93xx_dma_slave_config_write(struct dma_chan * chan,enum dma_transfer_direction dir,struct dma_slave_config * config)1292 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
1293 enum dma_transfer_direction dir,
1294 struct dma_slave_config *config)
1295 {
1296 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1297 enum dma_slave_buswidth width;
1298 unsigned long flags;
1299 u32 addr, ctrl;
1300
1301 if (!edmac->edma->m2m)
1302 return -EINVAL;
1303
1304 switch (dir) {
1305 case DMA_DEV_TO_MEM:
1306 width = config->src_addr_width;
1307 addr = config->src_addr;
1308 break;
1309
1310 case DMA_MEM_TO_DEV:
1311 width = config->dst_addr_width;
1312 addr = config->dst_addr;
1313 break;
1314
1315 default:
1316 return -EINVAL;
1317 }
1318
1319 switch (width) {
1320 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1321 ctrl = 0;
1322 break;
1323 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1324 ctrl = M2M_CONTROL_PW_16;
1325 break;
1326 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1327 ctrl = M2M_CONTROL_PW_32;
1328 break;
1329 default:
1330 return -EINVAL;
1331 }
1332
1333 spin_lock_irqsave(&edmac->lock, flags);
1334 edmac->runtime_addr = addr;
1335 edmac->runtime_ctrl = ctrl;
1336 spin_unlock_irqrestore(&edmac->lock, flags);
1337
1338 return 0;
1339 }
1340
1341 /**
1342 * ep93xx_dma_tx_status - check if a transaction is completed
1343 * @chan: channel
1344 * @cookie: transaction specific cookie
1345 * @state: state of the transaction is stored here if given
1346 *
1347 * This function can be used to query state of a given transaction.
1348 */
ep93xx_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1349 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1350 dma_cookie_t cookie,
1351 struct dma_tx_state *state)
1352 {
1353 return dma_cookie_status(chan, cookie, state);
1354 }
1355
1356 /**
1357 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1358 * @chan: channel
1359 *
1360 * When this function is called, all pending transactions are pushed to the
1361 * hardware and executed.
1362 */
ep93xx_dma_issue_pending(struct dma_chan * chan)1363 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1364 {
1365 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1366 }
1367
ep93xx_dma_of_probe(struct platform_device * pdev)1368 static struct ep93xx_dma_engine *ep93xx_dma_of_probe(struct platform_device *pdev)
1369 {
1370 const struct ep93xx_edma_data *data;
1371 struct device *dev = &pdev->dev;
1372 struct ep93xx_dma_engine *edma;
1373 struct dma_device *dma_dev;
1374 char dma_clk_name[5];
1375 int i;
1376
1377 data = device_get_match_data(dev);
1378 if (!data)
1379 return ERR_PTR(dev_err_probe(dev, -ENODEV, "No device match found\n"));
1380
1381 edma = devm_kzalloc(dev, struct_size(edma, channels, data->num_channels),
1382 GFP_KERNEL);
1383 if (!edma)
1384 return ERR_PTR(-ENOMEM);
1385
1386 edma->m2m = data->id;
1387 edma->num_channels = data->num_channels;
1388 dma_dev = &edma->dma_dev;
1389
1390 INIT_LIST_HEAD(&dma_dev->channels);
1391 for (i = 0; i < edma->num_channels; i++) {
1392 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1393 int len;
1394
1395 edmac->chan.device = dma_dev;
1396 edmac->regs = devm_platform_ioremap_resource(pdev, i);
1397 if (IS_ERR(edmac->regs))
1398 return ERR_CAST(edmac->regs);
1399
1400 edmac->irq = fwnode_irq_get(dev_fwnode(dev), i);
1401 if (edmac->irq < 0)
1402 return ERR_PTR(edmac->irq);
1403
1404 edmac->edma = edma;
1405
1406 if (edma->m2m)
1407 len = snprintf(dma_clk_name, sizeof(dma_clk_name), "m2m%u", i);
1408 else
1409 len = snprintf(dma_clk_name, sizeof(dma_clk_name), "m2p%u", i);
1410 if (len >= sizeof(dma_clk_name))
1411 return ERR_PTR(-ENOBUFS);
1412
1413 edmac->clk = devm_clk_get(dev, dma_clk_name);
1414 if (IS_ERR(edmac->clk)) {
1415 dev_err_probe(dev, PTR_ERR(edmac->clk),
1416 "no %s clock found\n", dma_clk_name);
1417 return ERR_CAST(edmac->clk);
1418 }
1419
1420 spin_lock_init(&edmac->lock);
1421 INIT_LIST_HEAD(&edmac->active);
1422 INIT_LIST_HEAD(&edmac->queue);
1423 INIT_LIST_HEAD(&edmac->free_list);
1424 tasklet_setup(&edmac->tasklet, ep93xx_dma_tasklet);
1425
1426 list_add_tail(&edmac->chan.device_node,
1427 &dma_dev->channels);
1428 }
1429
1430 return edma;
1431 }
1432
ep93xx_m2p_dma_filter(struct dma_chan * chan,void * filter_param)1433 static bool ep93xx_m2p_dma_filter(struct dma_chan *chan, void *filter_param)
1434 {
1435 struct ep93xx_dma_chan *echan = to_ep93xx_dma_chan(chan);
1436 struct ep93xx_dma_chan_cfg *cfg = filter_param;
1437
1438 if (cfg->dir != ep93xx_dma_chan_direction(chan))
1439 return false;
1440
1441 echan->dma_cfg = *cfg;
1442 return true;
1443 }
1444
ep93xx_m2p_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1445 static struct dma_chan *ep93xx_m2p_dma_of_xlate(struct of_phandle_args *dma_spec,
1446 struct of_dma *ofdma)
1447 {
1448 struct ep93xx_dma_engine *edma = ofdma->of_dma_data;
1449 dma_cap_mask_t mask = edma->dma_dev.cap_mask;
1450 struct ep93xx_dma_chan_cfg dma_cfg;
1451 u8 port = dma_spec->args[0];
1452 u8 direction = dma_spec->args[1];
1453
1454 if (port > EP93XX_DMA_IRDA)
1455 return NULL;
1456
1457 if (!is_slave_direction(direction))
1458 return NULL;
1459
1460 dma_cfg.port = port;
1461 dma_cfg.dir = direction;
1462
1463 return __dma_request_channel(&mask, ep93xx_m2p_dma_filter, &dma_cfg, ofdma->of_node);
1464 }
1465
ep93xx_m2m_dma_filter(struct dma_chan * chan,void * filter_param)1466 static bool ep93xx_m2m_dma_filter(struct dma_chan *chan, void *filter_param)
1467 {
1468 struct ep93xx_dma_chan *echan = to_ep93xx_dma_chan(chan);
1469 struct ep93xx_dma_chan_cfg *cfg = filter_param;
1470
1471 echan->dma_cfg = *cfg;
1472
1473 return true;
1474 }
1475
ep93xx_m2m_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1476 static struct dma_chan *ep93xx_m2m_dma_of_xlate(struct of_phandle_args *dma_spec,
1477 struct of_dma *ofdma)
1478 {
1479 struct ep93xx_dma_engine *edma = ofdma->of_dma_data;
1480 dma_cap_mask_t mask = edma->dma_dev.cap_mask;
1481 struct ep93xx_dma_chan_cfg dma_cfg;
1482 u8 port = dma_spec->args[0];
1483 u8 direction = dma_spec->args[1];
1484
1485 if (!is_slave_direction(direction))
1486 return NULL;
1487
1488 switch (port) {
1489 case EP93XX_DMA_SSP:
1490 case EP93XX_DMA_IDE:
1491 break;
1492 default:
1493 return NULL;
1494 }
1495
1496 dma_cfg.port = port;
1497 dma_cfg.dir = direction;
1498
1499 return __dma_request_channel(&mask, ep93xx_m2m_dma_filter, &dma_cfg, ofdma->of_node);
1500 }
1501
ep93xx_dma_probe(struct platform_device * pdev)1502 static int ep93xx_dma_probe(struct platform_device *pdev)
1503 {
1504 struct ep93xx_dma_engine *edma;
1505 struct dma_device *dma_dev;
1506 int ret;
1507
1508 edma = ep93xx_dma_of_probe(pdev);
1509 if (IS_ERR(edma))
1510 return PTR_ERR(edma);
1511
1512 dma_dev = &edma->dma_dev;
1513
1514 dma_cap_zero(dma_dev->cap_mask);
1515 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1516 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1517
1518 dma_dev->dev = &pdev->dev;
1519 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1520 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1521 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1522 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1523 dma_dev->device_config = ep93xx_dma_slave_config;
1524 dma_dev->device_synchronize = ep93xx_dma_synchronize;
1525 dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1526 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1527 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1528
1529 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1530
1531 if (edma->m2m) {
1532 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1533 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1534
1535 edma->hw_setup = m2m_hw_setup;
1536 edma->hw_shutdown = m2m_hw_shutdown;
1537 edma->hw_submit = m2m_hw_submit;
1538 edma->hw_interrupt = m2m_hw_interrupt;
1539 } else {
1540 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1541
1542 edma->hw_synchronize = m2p_hw_synchronize;
1543 edma->hw_setup = m2p_hw_setup;
1544 edma->hw_shutdown = m2p_hw_shutdown;
1545 edma->hw_submit = m2p_hw_submit;
1546 edma->hw_interrupt = m2p_hw_interrupt;
1547 }
1548
1549 ret = dma_async_device_register(dma_dev);
1550 if (ret)
1551 return ret;
1552
1553 if (edma->m2m) {
1554 ret = of_dma_controller_register(pdev->dev.of_node, ep93xx_m2m_dma_of_xlate,
1555 edma);
1556 } else {
1557 ret = of_dma_controller_register(pdev->dev.of_node, ep93xx_m2p_dma_of_xlate,
1558 edma);
1559 }
1560 if (ret)
1561 goto err_dma_unregister;
1562
1563 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n", edma->m2m ? "M" : "P");
1564
1565 return 0;
1566
1567 err_dma_unregister:
1568 dma_async_device_unregister(dma_dev);
1569
1570 return ret;
1571 }
1572
1573 static const struct ep93xx_edma_data edma_m2p = {
1574 .id = M2P_DMA,
1575 .num_channels = 10,
1576 };
1577
1578 static const struct ep93xx_edma_data edma_m2m = {
1579 .id = M2M_DMA,
1580 .num_channels = 2,
1581 };
1582
1583 static const struct of_device_id ep93xx_dma_of_ids[] = {
1584 { .compatible = "cirrus,ep9301-dma-m2p", .data = &edma_m2p },
1585 { .compatible = "cirrus,ep9301-dma-m2m", .data = &edma_m2m },
1586 { /* sentinel */ }
1587 };
1588 MODULE_DEVICE_TABLE(of, ep93xx_dma_of_ids);
1589
1590 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1591 { "ep93xx-dma-m2p", 0 },
1592 { "ep93xx-dma-m2m", 1 },
1593 { },
1594 };
1595
1596 static struct platform_driver ep93xx_dma_driver = {
1597 .driver = {
1598 .name = "ep93xx-dma",
1599 .of_match_table = ep93xx_dma_of_ids,
1600 },
1601 .id_table = ep93xx_dma_driver_ids,
1602 .probe = ep93xx_dma_probe,
1603 };
1604
1605 module_platform_driver(ep93xx_dma_driver);
1606
1607 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1608 MODULE_DESCRIPTION("EP93xx DMA driver");
1609