1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/io.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/platform_device.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI0_INT_FIFO_ERR BIT(25) 187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188 # define DSI0_INT_CMDC_DONE_SHIFT 23 189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190 # define DSI0_INT_CMDC_DONE_REPEAT 3 191 # define DSI0_INT_PHY_DIR_RTF BIT(22) 192 # define DSI0_INT_PHY_D1_ULPS BIT(21) 193 # define DSI0_INT_PHY_D1_STOP BIT(20) 194 # define DSI0_INT_PHY_RXLPDT BIT(19) 195 # define DSI0_INT_PHY_RXTRIG BIT(18) 196 # define DSI0_INT_PHY_D0_ULPS BIT(17) 197 # define DSI0_INT_PHY_D0_LPDT BIT(16) 198 # define DSI0_INT_PHY_D0_FTR BIT(15) 199 # define DSI0_INT_PHY_D0_STOP BIT(14) 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI0_INT_PHY_CLK_ULPS BIT(13) 202 # define DSI0_INT_PHY_CLK_HS BIT(12) 203 # define DSI0_INT_PHY_CLK_FTR BIT(11) 204 /* Signaled on timeouts */ 205 # define DSI0_INT_PR_TO BIT(10) 206 # define DSI0_INT_TA_TO BIT(9) 207 # define DSI0_INT_LPRX_TO BIT(8) 208 # define DSI0_INT_HSTX_TO BIT(7) 209 /* Contention on a line when trying to drive the line low */ 210 # define DSI0_INT_ERR_CONT_LP1 BIT(6) 211 # define DSI0_INT_ERR_CONT_LP0 BIT(5) 212 /* Control error: incorrect line state sequence on data lane 0. */ 213 # define DSI0_INT_ERR_CONTROL BIT(4) 214 # define DSI0_INT_ERR_SYNC_ESC BIT(3) 215 # define DSI0_INT_RX2_PKT BIT(2) 216 # define DSI0_INT_RX1_PKT BIT(1) 217 # define DSI0_INT_CMD_PKT BIT(0) 218 219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228 # define DSI1_INT_PHY_D3_ULPS BIT(30) 229 # define DSI1_INT_PHY_D3_STOP BIT(29) 230 # define DSI1_INT_PHY_D2_ULPS BIT(28) 231 # define DSI1_INT_PHY_D2_STOP BIT(27) 232 # define DSI1_INT_PHY_D1_ULPS BIT(26) 233 # define DSI1_INT_PHY_D1_STOP BIT(25) 234 # define DSI1_INT_PHY_D0_ULPS BIT(24) 235 # define DSI1_INT_PHY_D0_STOP BIT(23) 236 # define DSI1_INT_FIFO_ERR BIT(22) 237 # define DSI1_INT_PHY_DIR_RTF BIT(21) 238 # define DSI1_INT_PHY_RXLPDT BIT(20) 239 # define DSI1_INT_PHY_RXTRIG BIT(19) 240 # define DSI1_INT_PHY_D0_LPDT BIT(18) 241 # define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243 /* Signaled when the clock lane enters the given state. */ 244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248 /* Signaled on timeouts */ 249 # define DSI1_INT_PR_TO BIT(13) 250 # define DSI1_INT_TA_TO BIT(12) 251 # define DSI1_INT_LPRX_TO BIT(11) 252 # define DSI1_INT_HSTX_TO BIT(10) 253 254 /* Contention on a line when trying to drive the line low */ 255 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 256 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258 /* Control error: incorrect line state sequence on data lane 0. */ 259 # define DSI1_INT_ERR_CONTROL BIT(7) 260 /* LPDT synchronization error (bits received not a multiple of 8. */ 261 262 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 263 /* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266 # define DSI1_INT_RXPKT2 BIT(5) 267 /* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271 # define DSI1_INT_RXPKT1 BIT(4) 272 # define DSI1_INT_TXPKT2_DONE BIT(3) 273 # define DSI1_INT_TXPKT2_END BIT(2) 274 /* Signaled after all repeats of TXPKT1 are transferred. */ 275 # define DSI1_INT_TXPKT1_DONE BIT(1) 276 /* Signaled after each TXPKT1 repeat is scheduled. */ 277 # define DSI1_INT_TXPKT1_END BIT(0) 278 279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288 #define DSI0_STAT 0x2c 289 #define DSI0_HSTX_TO_CNT 0x30 290 #define DSI0_LPRX_TO_CNT 0x34 291 #define DSI0_TA_TO_CNT 0x38 292 #define DSI0_PR_TO_CNT 0x3c 293 #define DSI0_PHYC 0x40 294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299 # define DSI1_PHYC_CLANE_ULPS BIT(17) 300 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 301 # define DSI_PHYC_DLANE3_ULPS BIT(13) 302 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304 # define DSI0_PHYC_CLANE_ULPS BIT(9) 305 # define DSI_PHYC_DLANE2_ULPS BIT(9) 306 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 307 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 308 # define DSI_PHYC_DLANE1_ULPS BIT(5) 309 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311 # define DSI_PHYC_DLANE0_ULPS BIT(1) 312 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314 #define DSI0_HS_CLT0 0x44 315 #define DSI0_HS_CLT1 0x48 316 #define DSI0_HS_CLT2 0x4c 317 #define DSI0_HS_DLT3 0x50 318 #define DSI0_HS_DLT4 0x54 319 #define DSI0_HS_DLT5 0x58 320 #define DSI0_HS_DLT6 0x5c 321 #define DSI0_HS_DLT7 0x60 322 323 #define DSI0_PHY_AFEC0 0x64 324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346 # define DSI1_PHY_AFEC0_RESET BIT(13) 347 # define DSI1_PHY_AFEC0_PD BIT(12) 348 # define DSI0_PHY_AFEC0_RESET BIT(11) 349 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 350 # define DSI0_PHY_AFEC0_PD BIT(10) 351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 352 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361 #define DSI0_PHY_AFEC1 0x68 362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369 #define DSI0_TST_SEL 0x6c 370 #define DSI0_TST_MON 0x70 371 #define DSI0_ID 0x74 372 # define DSI_ID_VALUE 0x00647369 373 374 #define DSI1_CTRL 0x00 375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376 # define DSI_CTRL_HS_CLKC_SHIFT 14 377 # define DSI_CTRL_HS_CLKC_BYTE 0 378 # define DSI_CTRL_HS_CLKC_DDR2 1 379 # define DSI_CTRL_HS_CLKC_DDR 2 380 381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385 # define DSI_CTRL_CAL_BYTE BIT(9) 386 # define DSI_CTRL_INV_BYTE BIT(8) 387 # define DSI_CTRL_CLR_LDF BIT(7) 388 # define DSI0_CTRL_CLR_PBCF BIT(6) 389 # define DSI1_CTRL_CLR_RXF BIT(6) 390 # define DSI0_CTRL_CLR_CPBCF BIT(5) 391 # define DSI1_CTRL_CLR_PDF BIT(5) 392 # define DSI0_CTRL_CLR_PDF BIT(4) 393 # define DSI1_CTRL_CLR_CDF BIT(4) 394 # define DSI0_CTRL_CLR_CDF BIT(3) 395 # define DSI0_CTRL_CTRL2 BIT(2) 396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397 # define DSI0_CTRL_CTRL1 BIT(1) 398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399 # define DSI0_CTRL_CTRL0 BIT(0) 400 # define DSI1_CTRL_EN BIT(0) 401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411 #define DSI1_TXPKT2C 0x0c 412 #define DSI1_TXPKT2H 0x10 413 #define DSI1_TXPKT_PIX_FIFO 0x20 414 #define DSI1_RXPKT_FIFO 0x24 415 #define DSI1_DISP0_CTRL 0x28 416 #define DSI1_INT_STAT 0x30 417 #define DSI1_INT_EN 0x34 418 /* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421 #define DSI1_STAT 0x38 422 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 423 # define DSI1_STAT_PHY_D3_STOP BIT(30) 424 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 425 # define DSI1_STAT_PHY_D2_STOP BIT(28) 426 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 427 # define DSI1_STAT_PHY_D1_STOP BIT(26) 428 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 429 # define DSI1_STAT_PHY_D0_STOP BIT(24) 430 # define DSI1_STAT_FIFO_ERR BIT(23) 431 # define DSI1_STAT_PHY_RXLPDT BIT(22) 432 # define DSI1_STAT_PHY_RXTRIG BIT(21) 433 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 434 /* Set when in forward direction */ 435 # define DSI1_STAT_PHY_DIR BIT(19) 436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439 # define DSI1_STAT_PR_TO BIT(15) 440 # define DSI1_STAT_TA_TO BIT(14) 441 # define DSI1_STAT_LPRX_TO BIT(13) 442 # define DSI1_STAT_HSTX_TO BIT(12) 443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445 # define DSI1_STAT_ERR_CONTROL BIT(9) 446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447 # define DSI1_STAT_RXPKT2 BIT(7) 448 # define DSI1_STAT_RXPKT1 BIT(6) 449 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 450 # define DSI1_STAT_TXPKT2_DONE BIT(4) 451 # define DSI1_STAT_TXPKT2_END BIT(3) 452 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 453 # define DSI1_STAT_TXPKT1_DONE BIT(1) 454 # define DSI1_STAT_TXPKT1_END BIT(0) 455 456 #define DSI1_HSTX_TO_CNT 0x3c 457 #define DSI1_LPRX_TO_CNT 0x40 458 #define DSI1_TA_TO_CNT 0x44 459 #define DSI1_PR_TO_CNT 0x48 460 #define DSI1_PHYC 0x4c 461 462 #define DSI1_HS_CLT0 0x50 463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464 # define DSI_HS_CLT0_CZERO_SHIFT 18 465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466 # define DSI_HS_CLT0_CPRE_SHIFT 9 467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468 # define DSI_HS_CLT0_CPREP_SHIFT 0 469 470 #define DSI1_HS_CLT1 0x54 471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474 # define DSI_HS_CLT1_CPOST_SHIFT 0 475 476 #define DSI1_HS_CLT2 0x58 477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478 # define DSI_HS_CLT2_WUP_SHIFT 0 479 480 #define DSI1_HS_DLT3 0x5c 481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482 # define DSI_HS_DLT3_EXIT_SHIFT 18 483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484 # define DSI_HS_DLT3_ZERO_SHIFT 9 485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486 # define DSI_HS_DLT3_PRE_SHIFT 0 487 488 #define DSI1_HS_DLT4 0x60 489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490 # define DSI_HS_DLT4_ANLAT_SHIFT 18 491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492 # define DSI_HS_DLT4_TRAIL_SHIFT 9 493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494 # define DSI_HS_DLT4_LPX_SHIFT 0 495 496 #define DSI1_HS_DLT5 0x64 497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498 # define DSI_HS_DLT5_INIT_SHIFT 0 499 500 #define DSI1_HS_DLT6 0x68 501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502 # define DSI_HS_DLT6_TA_GET_SHIFT 24 503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506 # define DSI_HS_DLT6_TA_GO_SHIFT 8 507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510 #define DSI1_HS_DLT7 0x6c 511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514 #define DSI1_PHY_AFEC0 0x70 515 516 #define DSI1_PHY_AFEC1 0x74 517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528 #define DSI1_TST_SEL 0x78 529 #define DSI1_TST_MON 0x7c 530 #define DSI1_PHY_TST1 0x80 531 #define DSI1_PHY_TST2 0x84 532 #define DSI1_PHY_FIFO_STAT 0x88 533 /* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536 #define DSI1_ID 0x8c 537 538 struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548 }; 549 550 /* General DSI hardware state. */ 551 struct vc4_dsi { 552 struct vc4_encoder encoder; 553 struct mipi_dsi_host dsi_host; 554 555 struct kref kref; 556 557 struct platform_device *pdev; 558 559 struct drm_bridge *out_bridge; 560 struct drm_bridge bridge; 561 562 void __iomem *regs; 563 564 struct dma_chan *reg_dma_chan; 565 dma_addr_t reg_dma_paddr; 566 u32 *reg_dma_mem; 567 dma_addr_t reg_paddr; 568 569 const struct vc4_dsi_variant *variant; 570 571 /* DSI channel for the panel we're connected to. */ 572 u32 channel; 573 u32 lanes; 574 u32 format; 575 u32 divider; 576 u32 mode_flags; 577 578 /* Input clock from CPRMAN to the digital PHY, for the DSI 579 * escape clock. 580 */ 581 struct clk *escape_clock; 582 583 /* Input clock to the analog PHY, used to generate the DSI bit 584 * clock. 585 */ 586 struct clk *pll_phy_clock; 587 588 /* HS Clocks generated within the DSI analog PHY. */ 589 struct clk_fixed_factor phy_clocks[3]; 590 591 struct clk_hw_onecell_data *clk_onecell; 592 593 /* Pixel clock output to the pixelvalve, generated from the HS 594 * clock. 595 */ 596 struct clk *pixel_clock; 597 598 struct completion xfer_completion; 599 int xfer_result; 600 601 struct debugfs_regset32 regset; 602 }; 603 604 #define host_to_dsi(host) \ 605 container_of_const(host, struct vc4_dsi, dsi_host) 606 607 #define to_vc4_dsi(_encoder) \ 608 container_of_const(_encoder, struct vc4_dsi, encoder.base) 609 610 #define bridge_to_vc4_dsi(_bridge) \ 611 container_of_const(_bridge, struct vc4_dsi, bridge) 612 613 static inline void 614 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 615 { 616 struct drm_device *drm = dsi->bridge.dev; 617 struct dma_chan *chan = dsi->reg_dma_chan; 618 struct dma_async_tx_descriptor *tx; 619 dma_cookie_t cookie; 620 int ret; 621 622 kunit_fail_current_test("Accessing a register in a unit test!\n"); 623 624 /* DSI0 should be able to write normally. */ 625 if (!chan) { 626 writel(val, dsi->regs + offset); 627 return; 628 } 629 630 *dsi->reg_dma_mem = val; 631 632 tx = chan->device->device_prep_dma_memcpy(chan, 633 dsi->reg_paddr + offset, 634 dsi->reg_dma_paddr, 635 4, 0); 636 if (!tx) { 637 drm_err(drm, "Failed to set up DMA register write\n"); 638 return; 639 } 640 641 cookie = tx->tx_submit(tx); 642 ret = dma_submit_error(cookie); 643 if (ret) { 644 drm_err(drm, "Failed to submit DMA: %d\n", ret); 645 return; 646 } 647 ret = dma_sync_wait(chan, cookie); 648 if (ret) 649 drm_err(drm, "Failed to wait for DMA: %d\n", ret); 650 } 651 652 #define DSI_READ(offset) \ 653 ({ \ 654 kunit_fail_current_test("Accessing a register in a unit test!\n"); \ 655 readl(dsi->regs + (offset)); \ 656 }) 657 658 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 659 #define DSI_PORT_READ(offset) \ 660 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 661 #define DSI_PORT_WRITE(offset, val) \ 662 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 663 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 664 665 static const struct debugfs_reg32 dsi0_regs[] = { 666 VC4_REG32(DSI0_CTRL), 667 VC4_REG32(DSI0_STAT), 668 VC4_REG32(DSI0_HSTX_TO_CNT), 669 VC4_REG32(DSI0_LPRX_TO_CNT), 670 VC4_REG32(DSI0_TA_TO_CNT), 671 VC4_REG32(DSI0_PR_TO_CNT), 672 VC4_REG32(DSI0_DISP0_CTRL), 673 VC4_REG32(DSI0_DISP1_CTRL), 674 VC4_REG32(DSI0_INT_STAT), 675 VC4_REG32(DSI0_INT_EN), 676 VC4_REG32(DSI0_PHYC), 677 VC4_REG32(DSI0_HS_CLT0), 678 VC4_REG32(DSI0_HS_CLT1), 679 VC4_REG32(DSI0_HS_CLT2), 680 VC4_REG32(DSI0_HS_DLT3), 681 VC4_REG32(DSI0_HS_DLT4), 682 VC4_REG32(DSI0_HS_DLT5), 683 VC4_REG32(DSI0_HS_DLT6), 684 VC4_REG32(DSI0_HS_DLT7), 685 VC4_REG32(DSI0_PHY_AFEC0), 686 VC4_REG32(DSI0_PHY_AFEC1), 687 VC4_REG32(DSI0_ID), 688 }; 689 690 static const struct debugfs_reg32 dsi1_regs[] = { 691 VC4_REG32(DSI1_CTRL), 692 VC4_REG32(DSI1_STAT), 693 VC4_REG32(DSI1_HSTX_TO_CNT), 694 VC4_REG32(DSI1_LPRX_TO_CNT), 695 VC4_REG32(DSI1_TA_TO_CNT), 696 VC4_REG32(DSI1_PR_TO_CNT), 697 VC4_REG32(DSI1_DISP0_CTRL), 698 VC4_REG32(DSI1_DISP1_CTRL), 699 VC4_REG32(DSI1_INT_STAT), 700 VC4_REG32(DSI1_INT_EN), 701 VC4_REG32(DSI1_PHYC), 702 VC4_REG32(DSI1_HS_CLT0), 703 VC4_REG32(DSI1_HS_CLT1), 704 VC4_REG32(DSI1_HS_CLT2), 705 VC4_REG32(DSI1_HS_DLT3), 706 VC4_REG32(DSI1_HS_DLT4), 707 VC4_REG32(DSI1_HS_DLT5), 708 VC4_REG32(DSI1_HS_DLT6), 709 VC4_REG32(DSI1_HS_DLT7), 710 VC4_REG32(DSI1_PHY_AFEC0), 711 VC4_REG32(DSI1_PHY_AFEC1), 712 VC4_REG32(DSI1_ID), 713 }; 714 715 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 716 { 717 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 718 719 if (latch) 720 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 721 else 722 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 723 724 DSI_PORT_WRITE(PHY_AFEC0, afec0); 725 } 726 727 /* Enters or exits Ultra Low Power State. */ 728 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 729 { 730 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 731 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 732 DSI_PHYC_DLANE0_ULPS | 733 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 734 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 735 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 736 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 737 DSI1_STAT_PHY_D0_ULPS | 738 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 739 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 740 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 741 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 742 DSI1_STAT_PHY_D0_STOP | 743 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 744 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 745 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 746 int ret; 747 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 748 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 749 750 if (ulps == ulps_currently_enabled) 751 return; 752 753 DSI_PORT_WRITE(STAT, stat_ulps); 754 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 755 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 756 if (ret) { 757 dev_warn(&dsi->pdev->dev, 758 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 759 DSI_PORT_READ(STAT)); 760 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 761 vc4_dsi_latch_ulps(dsi, false); 762 return; 763 } 764 765 /* The DSI module can't be disabled while the module is 766 * generating ULPS state. So, to be able to disable the 767 * module, we have the AFE latch the ULPS state and continue 768 * on to having the module enter STOP. 769 */ 770 vc4_dsi_latch_ulps(dsi, ulps); 771 772 DSI_PORT_WRITE(STAT, stat_stop); 773 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 774 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 775 if (ret) { 776 dev_warn(&dsi->pdev->dev, 777 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 778 DSI_PORT_READ(STAT)); 779 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 780 return; 781 } 782 } 783 784 static u32 785 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 786 { 787 /* The HS timings have to be rounded up to a multiple of 8 788 * because we're using the byte clock. 789 */ 790 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 791 } 792 793 /* ESC always runs at 100Mhz. */ 794 #define ESC_TIME_NS 10 795 796 static u32 797 dsi_esc_timing(u32 ns) 798 { 799 return DIV_ROUND_UP(ns, ESC_TIME_NS); 800 } 801 802 static void vc4_dsi_bridge_disable(struct drm_bridge *bridge, 803 struct drm_atomic_state *state) 804 { 805 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 806 u32 disp0_ctrl; 807 808 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 809 disp0_ctrl &= ~DSI_DISP0_ENABLE; 810 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 811 } 812 813 static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge, 814 struct drm_atomic_state *state) 815 { 816 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 817 struct device *dev = &dsi->pdev->dev; 818 819 clk_disable_unprepare(dsi->pll_phy_clock); 820 clk_disable_unprepare(dsi->escape_clock); 821 clk_disable_unprepare(dsi->pixel_clock); 822 823 pm_runtime_put(dev); 824 } 825 826 /* Extends the mode's blank intervals to handle BCM2835's integer-only 827 * DSI PLL divider. 828 * 829 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 830 * driver since most peripherals are hanging off of the PLLD_PER 831 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 832 * the pixel clock), only has an integer divider off of DSI. 833 * 834 * To get our panel mode to refresh at the expected 60Hz, we need to 835 * extend the horizontal blank time. This means we drive a 836 * higher-than-expected clock rate to the panel, but that's what the 837 * firmware does too. 838 */ 839 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge, 840 const struct drm_display_mode *mode, 841 struct drm_display_mode *adjusted_mode) 842 { 843 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 844 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 845 unsigned long parent_rate = clk_get_rate(phy_parent); 846 unsigned long pixel_clock_hz = mode->clock * 1000; 847 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 848 int divider; 849 850 /* Find what divider gets us a faster clock than the requested 851 * pixel clock. 852 */ 853 for (divider = 1; divider < 255; divider++) { 854 if (parent_rate / (divider + 1) < pll_clock) 855 break; 856 } 857 858 /* Now that we've picked a PLL divider, calculate back to its 859 * pixel clock. 860 */ 861 pll_clock = parent_rate / divider; 862 pixel_clock_hz = pll_clock / dsi->divider; 863 864 adjusted_mode->clock = pixel_clock_hz / 1000; 865 866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 867 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 868 mode->clock; 869 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 870 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 871 872 return true; 873 } 874 875 static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge, 876 struct drm_atomic_state *state) 877 { 878 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 879 const struct drm_crtc_state *crtc_state; 880 struct device *dev = &dsi->pdev->dev; 881 const struct drm_display_mode *mode; 882 struct drm_connector *connector; 883 bool debug_dump_regs = false; 884 unsigned long hs_clock; 885 struct drm_crtc *crtc; 886 u32 ui_ns; 887 /* Minimum LP state duration in escape clock cycles. */ 888 u32 lpx = dsi_esc_timing(60); 889 unsigned long pixel_clock_hz; 890 unsigned long dsip_clock; 891 unsigned long phy_clock; 892 int ret; 893 894 ret = pm_runtime_resume_and_get(dev); 895 if (ret) { 896 drm_err(bridge->dev, "Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 897 return; 898 } 899 900 if (debug_dump_regs) { 901 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 902 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 903 drm_print_regset32(&p, &dsi->regset); 904 } 905 906 /* 907 * Retrieve the CRTC adjusted mode. This requires a little dance to go 908 * from the bridge to the encoder, to the connector and to the CRTC. 909 */ 910 connector = drm_atomic_get_new_connector_for_encoder(state, 911 bridge->encoder); 912 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; 913 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 914 mode = &crtc_state->adjusted_mode; 915 916 pixel_clock_hz = mode->clock * 1000; 917 918 /* Round up the clk_set_rate() request slightly, since 919 * PLLD_DSI1 is an integer divider and its rate selection will 920 * never round up. 921 */ 922 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 923 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 924 if (ret) { 925 dev_err(&dsi->pdev->dev, 926 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 927 } 928 929 /* Reset the DSI and all its fifos. */ 930 DSI_PORT_WRITE(CTRL, 931 DSI_CTRL_SOFT_RESET_CFG | 932 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 933 934 DSI_PORT_WRITE(CTRL, 935 DSI_CTRL_HSDT_EOT_DISABLE | 936 DSI_CTRL_RX_LPDT_EOT_DISABLE); 937 938 /* Clear all stat bits so we see what has happened during enable. */ 939 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 940 941 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 942 if (dsi->variant->port == 0) { 943 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 944 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 945 946 if (dsi->lanes < 2) 947 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 948 949 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 950 afec0 |= DSI0_PHY_AFEC0_RESET; 951 952 DSI_PORT_WRITE(PHY_AFEC0, afec0); 953 954 /* AFEC reset hold time */ 955 mdelay(1); 956 957 DSI_PORT_WRITE(PHY_AFEC1, 958 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 959 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 960 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 961 } else { 962 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 963 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 964 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 965 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 966 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 967 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 968 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 969 970 if (dsi->lanes < 4) 971 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 972 if (dsi->lanes < 3) 973 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 974 if (dsi->lanes < 2) 975 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 976 977 afec0 |= DSI1_PHY_AFEC0_RESET; 978 979 DSI_PORT_WRITE(PHY_AFEC0, afec0); 980 981 DSI_PORT_WRITE(PHY_AFEC1, 0); 982 983 /* AFEC reset hold time */ 984 mdelay(1); 985 } 986 987 ret = clk_prepare_enable(dsi->escape_clock); 988 if (ret) { 989 drm_err(bridge->dev, "Failed to turn on DSI escape clock: %d\n", 990 ret); 991 return; 992 } 993 994 ret = clk_prepare_enable(dsi->pll_phy_clock); 995 if (ret) { 996 drm_err(bridge->dev, "Failed to turn on DSI PLL: %d\n", ret); 997 return; 998 } 999 1000 hs_clock = clk_get_rate(dsi->pll_phy_clock); 1001 1002 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 1003 * not the pixel clock rate. DSIxP take from the APHY's byte, 1004 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 1005 * that rate. Separately, a value derived from PIX_CLK_DIV 1006 * and HS_CLKC is fed into the PV to divide down to the actual 1007 * pixel clock for pushing pixels into DSI. 1008 */ 1009 dsip_clock = phy_clock / 8; 1010 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 1011 if (ret) { 1012 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 1013 dsip_clock, ret); 1014 } 1015 1016 ret = clk_prepare_enable(dsi->pixel_clock); 1017 if (ret) { 1018 drm_err(bridge->dev, "Failed to turn on DSI pixel clock: %d\n", ret); 1019 return; 1020 } 1021 1022 /* How many ns one DSI unit interval is. Note that the clock 1023 * is DDR, so there's an extra divide by 2. 1024 */ 1025 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1026 1027 DSI_PORT_WRITE(HS_CLT0, 1028 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1029 DSI_HS_CLT0_CZERO) | 1030 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1031 DSI_HS_CLT0_CPRE) | 1032 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1033 DSI_HS_CLT0_CPREP)); 1034 1035 DSI_PORT_WRITE(HS_CLT1, 1036 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1037 DSI_HS_CLT1_CTRAIL) | 1038 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1039 DSI_HS_CLT1_CPOST)); 1040 1041 DSI_PORT_WRITE(HS_CLT2, 1042 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1043 DSI_HS_CLT2_WUP)); 1044 1045 DSI_PORT_WRITE(HS_DLT3, 1046 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1047 DSI_HS_DLT3_EXIT) | 1048 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1049 DSI_HS_DLT3_ZERO) | 1050 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1051 DSI_HS_DLT3_PRE)); 1052 1053 DSI_PORT_WRITE(HS_DLT4, 1054 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1055 DSI_HS_DLT4_LPX) | 1056 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1057 dsi_hs_timing(ui_ns, 60, 4)), 1058 DSI_HS_DLT4_TRAIL) | 1059 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1060 1061 /* T_INIT is how long STOP is driven after power-up to 1062 * indicate to the slave (also coming out of power-up) that 1063 * master init is complete, and should be greater than the 1064 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1065 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1066 * T_INIT,SLAVE, while allowing protocols on top of it to give 1067 * greater minimums. The vc4 firmware uses an extremely 1068 * conservative 5ms, and we maintain that here. 1069 */ 1070 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1071 5 * 1000 * 1000, 0), 1072 DSI_HS_DLT5_INIT)); 1073 1074 DSI_PORT_WRITE(HS_DLT6, 1075 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1076 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1077 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1078 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1079 1080 DSI_PORT_WRITE(HS_DLT7, 1081 VC4_SET_FIELD(dsi_esc_timing(1000000), 1082 DSI_HS_DLT7_LP_WUP)); 1083 1084 DSI_PORT_WRITE(PHYC, 1085 DSI_PHYC_DLANE0_ENABLE | 1086 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1087 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1088 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1089 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1090 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1091 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1092 (dsi->variant->port == 0 ? 1093 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1094 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1095 1096 DSI_PORT_WRITE(CTRL, 1097 DSI_PORT_READ(CTRL) | 1098 DSI_CTRL_CAL_BYTE); 1099 1100 /* HS timeout in HS clock cycles: disabled. */ 1101 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1102 /* LP receive timeout in HS clocks. */ 1103 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1104 /* Bus turnaround timeout */ 1105 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1106 /* Display reset sequence timeout */ 1107 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1108 1109 /* Set up DISP1 for transferring long command payloads through 1110 * the pixfifo. 1111 */ 1112 DSI_PORT_WRITE(DISP1_CTRL, 1113 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1114 DSI_DISP1_PFORMAT) | 1115 DSI_DISP1_ENABLE); 1116 1117 /* Ungate the block. */ 1118 if (dsi->variant->port == 0) 1119 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1120 else 1121 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1122 1123 /* Bring AFE out of reset. */ 1124 DSI_PORT_WRITE(PHY_AFEC0, 1125 DSI_PORT_READ(PHY_AFEC0) & 1126 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1127 1128 vc4_dsi_ulps(dsi, false); 1129 1130 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1131 DSI_PORT_WRITE(DISP0_CTRL, 1132 VC4_SET_FIELD(dsi->divider, 1133 DSI_DISP0_PIX_CLK_DIV) | 1134 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1135 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1136 DSI_DISP0_LP_STOP_CTRL) | 1137 DSI_DISP0_ST_END); 1138 } else { 1139 DSI_PORT_WRITE(DISP0_CTRL, 1140 DSI_DISP0_COMMAND_MODE); 1141 } 1142 } 1143 1144 static void vc4_dsi_bridge_enable(struct drm_bridge *bridge, 1145 struct drm_atomic_state *state) 1146 { 1147 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1148 bool debug_dump_regs = false; 1149 u32 disp0_ctrl; 1150 1151 disp0_ctrl = DSI_PORT_READ(DISP0_CTRL); 1152 disp0_ctrl |= DSI_DISP0_ENABLE; 1153 DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl); 1154 1155 if (debug_dump_regs) { 1156 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1157 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1158 drm_print_regset32(&p, &dsi->regset); 1159 } 1160 } 1161 1162 static int vc4_dsi_bridge_attach(struct drm_bridge *bridge, 1163 enum drm_bridge_attach_flags flags) 1164 { 1165 struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge); 1166 1167 /* Attach the panel or bridge to the dsi bridge */ 1168 return drm_bridge_attach(bridge->encoder, dsi->out_bridge, 1169 &dsi->bridge, flags); 1170 } 1171 1172 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1173 const struct mipi_dsi_msg *msg) 1174 { 1175 struct vc4_dsi *dsi = host_to_dsi(host); 1176 struct drm_device *drm = dsi->bridge.dev; 1177 struct mipi_dsi_packet packet; 1178 u32 pkth = 0, pktc = 0; 1179 int i, ret; 1180 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1181 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1182 1183 mipi_dsi_create_packet(&packet, msg); 1184 1185 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1186 pkth |= VC4_SET_FIELD(packet.header[1] | 1187 (packet.header[2] << 8), 1188 DSI_TXPKT1H_BC_PARAM); 1189 if (is_long) { 1190 /* Divide data across the various FIFOs we have available. 1191 * The command FIFO takes byte-oriented data, but is of 1192 * limited size. The pixel FIFO (never actually used for 1193 * pixel data in reality) is word oriented, and substantially 1194 * larger. So, we use the pixel FIFO for most of the data, 1195 * sending the residual bytes in the command FIFO at the start. 1196 * 1197 * With this arrangement, the command FIFO will never get full. 1198 */ 1199 if (packet.payload_length <= 16) { 1200 cmd_fifo_len = packet.payload_length; 1201 pix_fifo_len = 0; 1202 } else { 1203 cmd_fifo_len = (packet.payload_length % 1204 DSI_PIX_FIFO_WIDTH); 1205 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1206 DSI_PIX_FIFO_WIDTH); 1207 } 1208 1209 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1210 1211 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1212 } 1213 1214 if (msg->rx_len) { 1215 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1216 DSI_TXPKT1C_CMD_CTRL); 1217 } else { 1218 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1219 DSI_TXPKT1C_CMD_CTRL); 1220 } 1221 1222 for (i = 0; i < cmd_fifo_len; i++) 1223 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1224 for (i = 0; i < pix_fifo_len; i++) { 1225 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1226 1227 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1228 pix[0] | 1229 pix[1] << 8 | 1230 pix[2] << 16 | 1231 pix[3] << 24); 1232 } 1233 1234 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1235 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1236 if (is_long) 1237 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1238 1239 /* Send one copy of the packet. Larger repeats are used for pixel 1240 * data in command mode. 1241 */ 1242 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1243 1244 pktc |= DSI_TXPKT1C_CMD_EN; 1245 if (pix_fifo_len) { 1246 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1247 DSI_TXPKT1C_DISPLAY_NO); 1248 } else { 1249 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1250 DSI_TXPKT1C_DISPLAY_NO); 1251 } 1252 1253 /* Enable the appropriate interrupt for the transfer completion. */ 1254 dsi->xfer_result = 0; 1255 reinit_completion(&dsi->xfer_completion); 1256 if (dsi->variant->port == 0) { 1257 DSI_PORT_WRITE(INT_STAT, 1258 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1259 if (msg->rx_len) { 1260 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1261 DSI0_INT_PHY_DIR_RTF)); 1262 } else { 1263 DSI_PORT_WRITE(INT_EN, 1264 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1265 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1266 DSI0_INT_CMDC_DONE))); 1267 } 1268 } else { 1269 DSI_PORT_WRITE(INT_STAT, 1270 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1271 if (msg->rx_len) { 1272 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1273 DSI1_INT_PHY_DIR_RTF)); 1274 } else { 1275 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1276 DSI1_INT_TXPKT1_DONE)); 1277 } 1278 } 1279 1280 /* Send the packet. */ 1281 DSI_PORT_WRITE(TXPKT1H, pkth); 1282 DSI_PORT_WRITE(TXPKT1C, pktc); 1283 1284 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1285 msecs_to_jiffies(1000))) { 1286 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1287 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1288 DSI_PORT_READ(INT_STAT)); 1289 ret = -ETIMEDOUT; 1290 } else { 1291 ret = dsi->xfer_result; 1292 } 1293 1294 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1295 1296 if (ret) 1297 goto reset_fifo_and_return; 1298 1299 if (ret == 0 && msg->rx_len) { 1300 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1301 u8 *msg_rx = msg->rx_buf; 1302 1303 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1304 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1305 DSI_RXPKT1H_BC_PARAM); 1306 1307 if (rxlen != msg->rx_len) { 1308 drm_err(drm, "DSI returned %db, expecting %db\n", 1309 rxlen, (int)msg->rx_len); 1310 ret = -ENXIO; 1311 goto reset_fifo_and_return; 1312 } 1313 1314 for (i = 0; i < msg->rx_len; i++) 1315 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1316 } else { 1317 /* FINISHME: Handle AWER */ 1318 1319 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1320 DSI_RXPKT1H_SHORT_0); 1321 if (msg->rx_len > 1) { 1322 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1323 DSI_RXPKT1H_SHORT_1); 1324 } 1325 } 1326 } 1327 1328 return ret; 1329 1330 reset_fifo_and_return: 1331 drm_err(drm, "DSI transfer failed, resetting: %d\n", ret); 1332 1333 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1334 udelay(1); 1335 DSI_PORT_WRITE(CTRL, 1336 DSI_PORT_READ(CTRL) | 1337 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1338 1339 DSI_PORT_WRITE(TXPKT1C, 0); 1340 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1341 return ret; 1342 } 1343 1344 static const struct component_ops vc4_dsi_ops; 1345 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1346 struct mipi_dsi_device *device) 1347 { 1348 struct vc4_dsi *dsi = host_to_dsi(host); 1349 int ret; 1350 1351 dsi->lanes = device->lanes; 1352 dsi->channel = device->channel; 1353 dsi->mode_flags = device->mode_flags; 1354 1355 switch (device->format) { 1356 case MIPI_DSI_FMT_RGB888: 1357 dsi->format = DSI_PFORMAT_RGB888; 1358 dsi->divider = 24 / dsi->lanes; 1359 break; 1360 case MIPI_DSI_FMT_RGB666: 1361 dsi->format = DSI_PFORMAT_RGB666; 1362 dsi->divider = 24 / dsi->lanes; 1363 break; 1364 case MIPI_DSI_FMT_RGB666_PACKED: 1365 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1366 dsi->divider = 18 / dsi->lanes; 1367 break; 1368 case MIPI_DSI_FMT_RGB565: 1369 dsi->format = DSI_PFORMAT_RGB565; 1370 dsi->divider = 16 / dsi->lanes; 1371 break; 1372 default: 1373 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1374 dsi->format); 1375 return 0; 1376 } 1377 1378 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1379 dev_err(&dsi->pdev->dev, 1380 "Only VIDEO mode panels supported currently.\n"); 1381 return 0; 1382 } 1383 1384 drm_bridge_add(&dsi->bridge); 1385 1386 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1387 if (ret) { 1388 drm_bridge_remove(&dsi->bridge); 1389 return ret; 1390 } 1391 1392 return 0; 1393 } 1394 1395 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1396 struct mipi_dsi_device *device) 1397 { 1398 struct vc4_dsi *dsi = host_to_dsi(host); 1399 1400 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1401 drm_bridge_remove(&dsi->bridge); 1402 return 0; 1403 } 1404 1405 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1406 .attach = vc4_dsi_host_attach, 1407 .detach = vc4_dsi_host_detach, 1408 .transfer = vc4_dsi_host_transfer, 1409 }; 1410 1411 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = { 1412 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, 1413 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, 1414 .atomic_reset = drm_atomic_helper_bridge_reset, 1415 .atomic_pre_enable = vc4_dsi_bridge_pre_enable, 1416 .atomic_enable = vc4_dsi_bridge_enable, 1417 .atomic_disable = vc4_dsi_bridge_disable, 1418 .atomic_post_disable = vc4_dsi_bridge_post_disable, 1419 .attach = vc4_dsi_bridge_attach, 1420 .mode_fixup = vc4_dsi_bridge_mode_fixup, 1421 }; 1422 1423 static int vc4_dsi_late_register(struct drm_encoder *encoder) 1424 { 1425 struct drm_device *drm = encoder->dev; 1426 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 1427 1428 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1429 1430 return 0; 1431 } 1432 1433 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 1434 .late_register = vc4_dsi_late_register, 1435 }; 1436 1437 static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1438 .port = 1, 1439 .debugfs_name = "dsi1_regs", 1440 .regs = dsi1_regs, 1441 .nregs = ARRAY_SIZE(dsi1_regs), 1442 }; 1443 1444 static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1445 .port = 0, 1446 .debugfs_name = "dsi0_regs", 1447 .regs = dsi0_regs, 1448 .nregs = ARRAY_SIZE(dsi0_regs), 1449 }; 1450 1451 static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1452 .port = 1, 1453 .broken_axi_workaround = true, 1454 .debugfs_name = "dsi1_regs", 1455 .regs = dsi1_regs, 1456 .nregs = ARRAY_SIZE(dsi1_regs), 1457 }; 1458 1459 static const struct of_device_id vc4_dsi_dt_match[] = { 1460 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1461 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1462 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1463 {} 1464 }; 1465 1466 static void dsi_handle_error(struct vc4_dsi *dsi, 1467 irqreturn_t *ret, u32 stat, u32 bit, 1468 const char *type) 1469 { 1470 if (!(stat & bit)) 1471 return; 1472 1473 drm_err(dsi->bridge.dev, "DSI%d: %s error\n", dsi->variant->port, 1474 type); 1475 *ret = IRQ_HANDLED; 1476 } 1477 1478 /* 1479 * Initial handler for port 1 where we need the reg_dma workaround. 1480 * The register DMA writes sleep, so we can't do it in the top half. 1481 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1482 * parent interrupt contrller until our interrupt thread is done. 1483 */ 1484 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1485 { 1486 struct vc4_dsi *dsi = data; 1487 u32 stat = DSI_PORT_READ(INT_STAT); 1488 1489 if (!stat) 1490 return IRQ_NONE; 1491 1492 return IRQ_WAKE_THREAD; 1493 } 1494 1495 /* 1496 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1497 * 1 where we need the reg_dma workaround. 1498 */ 1499 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1500 { 1501 struct vc4_dsi *dsi = data; 1502 u32 stat = DSI_PORT_READ(INT_STAT); 1503 irqreturn_t ret = IRQ_NONE; 1504 1505 DSI_PORT_WRITE(INT_STAT, stat); 1506 1507 dsi_handle_error(dsi, &ret, stat, 1508 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1509 dsi_handle_error(dsi, &ret, stat, 1510 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1511 dsi_handle_error(dsi, &ret, stat, 1512 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1513 dsi_handle_error(dsi, &ret, stat, 1514 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1515 dsi_handle_error(dsi, &ret, stat, 1516 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1517 dsi_handle_error(dsi, &ret, stat, 1518 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1519 dsi_handle_error(dsi, &ret, stat, 1520 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1521 dsi_handle_error(dsi, &ret, stat, 1522 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1523 1524 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1525 DSI0_INT_CMDC_DONE_MASK) | 1526 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1527 complete(&dsi->xfer_completion); 1528 ret = IRQ_HANDLED; 1529 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1530 complete(&dsi->xfer_completion); 1531 dsi->xfer_result = -ETIMEDOUT; 1532 ret = IRQ_HANDLED; 1533 } 1534 1535 return ret; 1536 } 1537 1538 /** 1539 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1540 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1541 * @dsi: DSI encoder 1542 */ 1543 static int 1544 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1545 { 1546 struct device *dev = &dsi->pdev->dev; 1547 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1548 static const struct { 1549 const char *name; 1550 int div; 1551 } phy_clocks[] = { 1552 { "byte", 8 }, 1553 { "ddr2", 4 }, 1554 { "ddr", 2 }, 1555 }; 1556 int i; 1557 1558 dsi->clk_onecell = devm_kzalloc(dev, 1559 sizeof(*dsi->clk_onecell) + 1560 ARRAY_SIZE(phy_clocks) * 1561 sizeof(struct clk_hw *), 1562 GFP_KERNEL); 1563 if (!dsi->clk_onecell) 1564 return -ENOMEM; 1565 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1566 1567 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1568 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1569 struct clk_init_data init; 1570 char clk_name[16]; 1571 int ret; 1572 1573 snprintf(clk_name, sizeof(clk_name), 1574 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1575 1576 /* We just use core fixed factor clock ops for the PHY 1577 * clocks. The clocks are actually gated by the 1578 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1579 * setting if we use the DDR/DDR2 clocks. However, 1580 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1581 * setting both our parent DSI PLL's rate and this 1582 * clock's rate, so it knows if DDR/DDR2 are going to 1583 * be used and could enable the gates itself. 1584 */ 1585 fix->mult = 1; 1586 fix->div = phy_clocks[i].div; 1587 fix->hw.init = &init; 1588 1589 memset(&init, 0, sizeof(init)); 1590 init.parent_names = &parent_name; 1591 init.num_parents = 1; 1592 init.name = clk_name; 1593 init.ops = &clk_fixed_factor_ops; 1594 1595 ret = devm_clk_hw_register(dev, &fix->hw); 1596 if (ret) 1597 return ret; 1598 1599 dsi->clk_onecell->hws[i] = &fix->hw; 1600 } 1601 1602 return of_clk_add_hw_provider(dev->of_node, 1603 of_clk_hw_onecell_get, 1604 dsi->clk_onecell); 1605 } 1606 1607 static void vc4_dsi_dma_mem_release(void *ptr) 1608 { 1609 struct vc4_dsi *dsi = ptr; 1610 struct device *dev = &dsi->pdev->dev; 1611 1612 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); 1613 dsi->reg_dma_mem = NULL; 1614 } 1615 1616 static void vc4_dsi_dma_chan_release(void *ptr) 1617 { 1618 struct vc4_dsi *dsi = ptr; 1619 1620 dma_release_channel(dsi->reg_dma_chan); 1621 dsi->reg_dma_chan = NULL; 1622 } 1623 1624 static void vc4_dsi_release(struct kref *kref) 1625 { 1626 struct vc4_dsi *dsi = 1627 container_of(kref, struct vc4_dsi, kref); 1628 1629 kfree(dsi); 1630 } 1631 1632 static void vc4_dsi_get(struct vc4_dsi *dsi) 1633 { 1634 kref_get(&dsi->kref); 1635 } 1636 1637 static void vc4_dsi_put(struct vc4_dsi *dsi) 1638 { 1639 kref_put(&dsi->kref, &vc4_dsi_release); 1640 } 1641 1642 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr) 1643 { 1644 struct vc4_dsi *dsi = ptr; 1645 1646 vc4_dsi_put(dsi); 1647 } 1648 1649 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1650 { 1651 struct platform_device *pdev = to_platform_device(dev); 1652 struct drm_device *drm = dev_get_drvdata(master); 1653 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1654 struct drm_encoder *encoder = &dsi->encoder.base; 1655 int ret; 1656 1657 vc4_dsi_get(dsi); 1658 1659 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi); 1660 if (ret) 1661 return ret; 1662 1663 dsi->variant = of_device_get_match_data(dev); 1664 1665 dsi->encoder.type = dsi->variant->port ? 1666 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1667 1668 dsi->regs = vc4_ioremap_regs(pdev, 0); 1669 if (IS_ERR(dsi->regs)) 1670 return PTR_ERR(dsi->regs); 1671 1672 dsi->regset.base = dsi->regs; 1673 dsi->regset.regs = dsi->variant->regs; 1674 dsi->regset.nregs = dsi->variant->nregs; 1675 1676 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1677 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1678 DSI_PORT_READ(ID), DSI_ID_VALUE); 1679 return -ENODEV; 1680 } 1681 1682 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1683 * writes from the ARM. It does handle writes from the DMA engine, 1684 * so set up a channel for talking to it. 1685 */ 1686 if (dsi->variant->broken_axi_workaround) { 1687 dma_cap_mask_t dma_mask; 1688 1689 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1690 &dsi->reg_dma_paddr, 1691 GFP_KERNEL); 1692 if (!dsi->reg_dma_mem) { 1693 drm_err(drm, "Failed to get DMA memory\n"); 1694 return -ENOMEM; 1695 } 1696 1697 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); 1698 if (ret) 1699 return ret; 1700 1701 dma_cap_zero(dma_mask); 1702 dma_cap_set(DMA_MEMCPY, dma_mask); 1703 1704 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1705 if (IS_ERR(dsi->reg_dma_chan)) { 1706 ret = PTR_ERR(dsi->reg_dma_chan); 1707 if (ret != -EPROBE_DEFER) 1708 drm_err(drm, "Failed to get DMA channel: %d\n", 1709 ret); 1710 return ret; 1711 } 1712 1713 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); 1714 if (ret) 1715 return ret; 1716 1717 /* Get the physical address of the device's registers. The 1718 * struct resource for the regs gives us the bus address 1719 * instead. 1720 */ 1721 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1722 0, NULL, NULL)); 1723 } 1724 1725 init_completion(&dsi->xfer_completion); 1726 /* At startup enable error-reporting interrupts and nothing else. */ 1727 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1728 /* Clear any existing interrupt state. */ 1729 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1730 1731 if (dsi->reg_dma_mem) 1732 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1733 vc4_dsi_irq_defer_to_thread_handler, 1734 vc4_dsi_irq_handler, 1735 IRQF_ONESHOT, 1736 "vc4 dsi", dsi); 1737 else 1738 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1739 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1740 if (ret) { 1741 if (ret != -EPROBE_DEFER) 1742 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1743 return ret; 1744 } 1745 1746 dsi->escape_clock = devm_clk_get(dev, "escape"); 1747 if (IS_ERR(dsi->escape_clock)) { 1748 ret = PTR_ERR(dsi->escape_clock); 1749 if (ret != -EPROBE_DEFER) 1750 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1751 return ret; 1752 } 1753 1754 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1755 if (IS_ERR(dsi->pll_phy_clock)) { 1756 ret = PTR_ERR(dsi->pll_phy_clock); 1757 if (ret != -EPROBE_DEFER) 1758 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1759 return ret; 1760 } 1761 1762 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1763 if (IS_ERR(dsi->pixel_clock)) { 1764 ret = PTR_ERR(dsi->pixel_clock); 1765 if (ret != -EPROBE_DEFER) 1766 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1767 return ret; 1768 } 1769 1770 dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0); 1771 if (IS_ERR(dsi->out_bridge)) 1772 return PTR_ERR(dsi->out_bridge); 1773 1774 /* The esc clock rate is supposed to always be 100Mhz. */ 1775 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1776 if (ret) { 1777 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1778 return ret; 1779 } 1780 1781 ret = vc4_dsi_init_phy_clocks(dsi); 1782 if (ret) 1783 return ret; 1784 1785 ret = drmm_encoder_init(drm, encoder, 1786 &vc4_dsi_encoder_funcs, 1787 DRM_MODE_ENCODER_DSI, 1788 NULL); 1789 if (ret) 1790 return ret; 1791 1792 ret = devm_pm_runtime_enable(dev); 1793 if (ret) 1794 return ret; 1795 1796 ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0); 1797 if (ret) 1798 return ret; 1799 1800 return 0; 1801 } 1802 1803 static const struct component_ops vc4_dsi_ops = { 1804 .bind = vc4_dsi_bind, 1805 }; 1806 1807 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1808 { 1809 struct device *dev = &pdev->dev; 1810 struct vc4_dsi *dsi; 1811 1812 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL); 1813 if (!dsi) 1814 return -ENOMEM; 1815 dev_set_drvdata(dev, dsi); 1816 1817 kref_init(&dsi->kref); 1818 1819 dsi->pdev = pdev; 1820 dsi->bridge.funcs = &vc4_dsi_bridge_funcs; 1821 #ifdef CONFIG_OF 1822 dsi->bridge.of_node = dev->of_node; 1823 #endif 1824 dsi->bridge.type = DRM_MODE_CONNECTOR_DSI; 1825 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1826 dsi->dsi_host.dev = dev; 1827 mipi_dsi_host_register(&dsi->dsi_host); 1828 1829 return 0; 1830 } 1831 1832 static void vc4_dsi_dev_remove(struct platform_device *pdev) 1833 { 1834 struct device *dev = &pdev->dev; 1835 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1836 1837 mipi_dsi_host_unregister(&dsi->dsi_host); 1838 vc4_dsi_put(dsi); 1839 } 1840 1841 struct platform_driver vc4_dsi_driver = { 1842 .probe = vc4_dsi_dev_probe, 1843 .remove = vc4_dsi_dev_remove, 1844 .driver = { 1845 .name = "vc4_dsi", 1846 .of_match_table = vc4_dsi_dt_match, 1847 }, 1848 }; 1849