1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5 * Copyright (C) 2013 Red Hat
6 * Author: Rob Clark <robdclark@gmail.com>
7 */
8
9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
43
44 #define CONVERT_S3_15(val) \
45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 struct msm_drm_private *priv = crtc->dev->dev_private;
50
51 return to_dpu_kms(priv->kms);
52 }
53
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 struct drm_device *dev = crtc->dev;
57 struct drm_encoder *encoder;
58
59 drm_for_each_encoder(encoder, dev)
60 if (encoder->crtc == crtc)
61 return encoder;
62
63 return NULL;
64 }
65
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 if (!src_name ||
69 !strcmp(src_name, "none"))
70 return DPU_CRTC_CRC_SOURCE_NONE;
71 if (!strcmp(src_name, "auto") ||
72 !strcmp(src_name, "lm"))
73 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 if (!strcmp(src_name, "encoder"))
75 return DPU_CRTC_CRC_SOURCE_ENCODER;
76
77 return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 const char *src_name, size_t *values_cnt)
82 {
83 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85
86 if (source < 0) {
87 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 return -EINVAL;
89 }
90
91 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 *values_cnt = crtc_state->num_mixers;
93 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 struct drm_encoder *drm_enc;
95
96 *values_cnt = 0;
97
98 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 }
101
102 return 0;
103 }
104
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 struct dpu_crtc_mixer *m;
108 int i;
109
110 for (i = 0; i < crtc_state->num_mixers; ++i) {
111 m = &crtc_state->mixers[i];
112
113 if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 continue;
115
116 /* Calculate MISR over 1 frame */
117 m->hw_lm->ops.setup_misr(m->hw_lm);
118 }
119 }
120
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 struct drm_encoder *drm_enc;
124
125 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 dpu_encoder_setup_misr(drm_enc);
127 }
128
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 enum dpu_crtc_crc_source current_source;
133 struct dpu_crtc_state *crtc_state;
134 struct drm_device *drm_dev = crtc->dev;
135
136 bool was_enabled;
137 bool enable = false;
138 int ret = 0;
139
140 if (source < 0) {
141 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 return -EINVAL;
143 }
144
145 ret = drm_modeset_lock(&crtc->mutex, NULL);
146
147 if (ret)
148 return ret;
149
150 enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 crtc_state = to_dpu_crtc_state(crtc->state);
152
153 spin_lock_irq(&drm_dev->event_lock);
154 current_source = crtc_state->crc_source;
155 spin_unlock_irq(&drm_dev->event_lock);
156
157 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158
159 if (!was_enabled && enable) {
160 ret = drm_crtc_vblank_get(crtc);
161
162 if (ret)
163 goto cleanup;
164
165 } else if (was_enabled && !enable) {
166 drm_crtc_vblank_put(crtc);
167 }
168
169 spin_lock_irq(&drm_dev->event_lock);
170 crtc_state->crc_source = source;
171 spin_unlock_irq(&drm_dev->event_lock);
172
173 crtc_state->crc_frame_skip_count = 0;
174
175 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 dpu_crtc_setup_lm_misr(crtc_state);
177 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 dpu_crtc_setup_encoder_misr(crtc);
179 else
180 ret = -EINVAL;
181
182 cleanup:
183 drm_modeset_unlock(&crtc->mutex);
184
185 return ret;
186 }
187
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 if (!encoder) {
192 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 return 0;
194 }
195
196 return dpu_encoder_get_vsync_count(encoder);
197 }
198
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 struct dpu_crtc_state *crtc_state)
201 {
202 struct dpu_crtc_mixer *m;
203 u32 crcs[CRTC_DUAL_MIXERS];
204
205 int rc = 0;
206 int i;
207
208 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209
210 for (i = 0; i < crtc_state->num_mixers; ++i) {
211
212 m = &crtc_state->mixers[i];
213
214 if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 continue;
216
217 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218
219 if (rc) {
220 if (rc != -ENODATA)
221 DRM_DEBUG_DRIVER("MISR read failed\n");
222 return rc;
223 }
224 }
225
226 return drm_crtc_add_crc_entry(crtc, true,
227 drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 struct drm_encoder *drm_enc;
233 int rc, pos = 0;
234 u32 crcs[INTF_MAX];
235
236 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 if (rc < 0) {
239 if (rc != -ENODATA)
240 DRM_DEBUG_DRIVER("MISR read failed\n");
241
242 return rc;
243 }
244
245 pos += rc;
246 }
247
248 return drm_crtc_add_crc_entry(crtc, true,
249 drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255
256 /* Skip first 2 frames in case of "uncooked" CRCs */
257 if (crtc_state->crc_frame_skip_count < 2) {
258 crtc_state->crc_frame_skip_count++;
259 return 0;
260 }
261
262 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 return dpu_crtc_get_encoder_crc(crtc);
266
267 return -EINVAL;
268 }
269
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 bool in_vblank_irq,
272 int *vpos, int *hpos,
273 ktime_t *stime, ktime_t *etime,
274 const struct drm_display_mode *mode)
275 {
276 unsigned int pipe = crtc->index;
277 struct drm_encoder *encoder;
278 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279
280 encoder = get_encoder_from_crtc(crtc);
281 if (!encoder) {
282 DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 return false;
284 }
285
286 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288
289 /*
290 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 * the end of VFP. Translate the porch values relative to the line
292 * counter positions.
293 */
294
295 vactive_start = vsw + vbp + 1;
296 vactive_end = vactive_start + mode->crtc_vdisplay;
297
298 /* last scan line before VSYNC */
299 vfp_end = mode->crtc_vtotal;
300
301 if (stime)
302 *stime = ktime_get();
303
304 line = dpu_encoder_get_linecount(encoder);
305
306 if (line < vactive_start)
307 line -= vactive_start;
308 else if (line > vactive_end)
309 line = line - vfp_end - vactive_start;
310 else
311 line -= vactive_start;
312
313 *vpos = line;
314 *hpos = 0;
315
316 if (etime)
317 *etime = ktime_get();
318
319 return true;
320 }
321
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 struct dpu_plane_state *pstate, const struct msm_format *format)
324 {
325 struct dpu_hw_mixer *lm = mixer->hw_lm;
326 uint32_t blend_op;
327 uint32_t fg_alpha, bg_alpha;
328
329 fg_alpha = pstate->base.alpha >> 8;
330 bg_alpha = 0xff - fg_alpha;
331
332 /* default to opaque blending */
333 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
334 !format->alpha_enable) {
335 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
336 DPU_BLEND_BG_ALPHA_BG_CONST;
337 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
338 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
339 DPU_BLEND_BG_ALPHA_FG_PIXEL;
340 if (fg_alpha != 0xff) {
341 bg_alpha = fg_alpha;
342 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
343 DPU_BLEND_BG_INV_MOD_ALPHA;
344 } else {
345 blend_op |= DPU_BLEND_BG_INV_ALPHA;
346 }
347 } else {
348 /* coverage blending */
349 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
350 DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 if (fg_alpha != 0xff) {
352 bg_alpha = fg_alpha;
353 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
354 DPU_BLEND_FG_INV_MOD_ALPHA |
355 DPU_BLEND_BG_MOD_ALPHA |
356 DPU_BLEND_BG_INV_MOD_ALPHA;
357 } else {
358 blend_op |= DPU_BLEND_BG_INV_ALPHA;
359 }
360 }
361
362 lm->ops.setup_blend_config(lm, pstate->stage,
363 fg_alpha, bg_alpha, blend_op);
364
365 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
366 &format->pixel_format, format->alpha_enable, blend_op);
367 }
368
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)369 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
370 {
371 struct dpu_crtc_state *crtc_state;
372 int lm_idx, lm_horiz_position;
373
374 crtc_state = to_dpu_crtc_state(crtc->state);
375
376 lm_horiz_position = 0;
377 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
378 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
379 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
380 struct dpu_hw_mixer_cfg cfg;
381
382 if (!lm_roi || !drm_rect_visible(lm_roi))
383 continue;
384
385 cfg.out_width = drm_rect_width(lm_roi);
386 cfg.out_height = drm_rect_height(lm_roi);
387 cfg.right_mixer = lm_horiz_position++;
388 cfg.flags = 0;
389 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
390 }
391 }
392
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 num_mixers,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)393 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
394 struct drm_plane *plane,
395 struct dpu_crtc_mixer *mixer,
396 u32 num_mixers,
397 enum dpu_stage stage,
398 const struct msm_format *format,
399 uint64_t modifier,
400 struct dpu_sw_pipe *pipe,
401 unsigned int stage_idx,
402 struct dpu_hw_stage_cfg *stage_cfg
403 )
404 {
405 uint32_t lm_idx;
406 enum dpu_sspp sspp_idx;
407 struct drm_plane_state *state;
408
409 sspp_idx = pipe->sspp->idx;
410
411 state = plane->state;
412
413 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
414 state, to_dpu_plane_state(state), stage_idx,
415 format->pixel_format,
416 modifier);
417
418 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
419 crtc->base.id,
420 stage,
421 plane->base.id,
422 sspp_idx - SSPP_NONE,
423 state->fb ? state->fb->base.id : -1,
424 pipe->multirect_index);
425
426 stage_cfg->stage[stage][stage_idx] = sspp_idx;
427 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
428
429 /* blend config update */
430 for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
431 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
432 }
433
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)434 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
435 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
436 struct dpu_hw_stage_cfg *stage_cfg)
437 {
438 struct drm_plane *plane;
439 struct drm_framebuffer *fb;
440 struct drm_plane_state *state;
441 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
442 struct dpu_plane_state *pstate = NULL;
443 const struct msm_format *format;
444 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
445
446 uint32_t lm_idx;
447 bool bg_alpha_enable = false;
448 DECLARE_BITMAP(fetch_active, SSPP_MAX);
449
450 memset(fetch_active, 0, sizeof(fetch_active));
451 drm_atomic_crtc_for_each_plane(plane, crtc) {
452 state = plane->state;
453 if (!state)
454 continue;
455
456 if (!state->visible)
457 continue;
458
459 pstate = to_dpu_plane_state(state);
460 fb = state->fb;
461
462 format = msm_framebuffer_format(pstate->base.fb);
463
464 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
465 bg_alpha_enable = true;
466
467 set_bit(pstate->pipe.sspp->idx, fetch_active);
468 _dpu_crtc_blend_setup_pipe(crtc, plane,
469 mixer, cstate->num_mixers,
470 pstate->stage,
471 format, fb ? fb->modifier : 0,
472 &pstate->pipe, 0, stage_cfg);
473
474 if (pstate->r_pipe.sspp) {
475 set_bit(pstate->r_pipe.sspp->idx, fetch_active);
476 _dpu_crtc_blend_setup_pipe(crtc, plane,
477 mixer, cstate->num_mixers,
478 pstate->stage,
479 format, fb ? fb->modifier : 0,
480 &pstate->r_pipe, 1, stage_cfg);
481 }
482
483 /* blend config update */
484 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
485 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format);
486
487 if (bg_alpha_enable && !format->alpha_enable)
488 mixer[lm_idx].mixer_op_mode = 0;
489 else
490 mixer[lm_idx].mixer_op_mode |=
491 1 << pstate->stage;
492 }
493 }
494
495 if (ctl->ops.set_active_pipes)
496 ctl->ops.set_active_pipes(ctl, fetch_active);
497
498 _dpu_crtc_program_lm_output_roi(crtc);
499 }
500
501 /**
502 * _dpu_crtc_blend_setup - configure crtc mixers
503 * @crtc: Pointer to drm crtc structure
504 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)505 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
506 {
507 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
508 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
509 struct dpu_crtc_mixer *mixer = cstate->mixers;
510 struct dpu_hw_ctl *ctl;
511 struct dpu_hw_mixer *lm;
512 struct dpu_hw_stage_cfg stage_cfg;
513 int i;
514
515 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
516
517 for (i = 0; i < cstate->num_mixers; i++) {
518 mixer[i].mixer_op_mode = 0;
519 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
520 mixer[i].lm_ctl->ops.clear_all_blendstages(
521 mixer[i].lm_ctl);
522 }
523
524 /* initialize stage cfg */
525 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
526
527 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
528
529 for (i = 0; i < cstate->num_mixers; i++) {
530 ctl = mixer[i].lm_ctl;
531 lm = mixer[i].hw_lm;
532
533 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
534
535 /* stage config flush mask */
536 ctl->ops.update_pending_flush_mixer(ctl,
537 mixer[i].hw_lm->idx);
538
539 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
540 mixer[i].hw_lm->idx - LM_0,
541 mixer[i].mixer_op_mode,
542 ctl->idx - CTL_0);
543
544 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
545 &stage_cfg);
546 }
547 }
548
549 /**
550 * _dpu_crtc_complete_flip - signal pending page_flip events
551 * Any pending vblank events are added to the vblank_event_list
552 * so that the next vblank interrupt shall signal them.
553 * However PAGE_FLIP events are not handled through the vblank_event_list.
554 * This API signals any pending PAGE_FLIP events requested through
555 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
556 * @crtc: Pointer to drm crtc structure
557 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)558 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
559 {
560 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
561 struct drm_device *dev = crtc->dev;
562 unsigned long flags;
563
564 spin_lock_irqsave(&dev->event_lock, flags);
565 if (dpu_crtc->event) {
566 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
567 dpu_crtc->event);
568 trace_dpu_crtc_complete_flip(DRMID(crtc));
569 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
570 dpu_crtc->event = NULL;
571 }
572 spin_unlock_irqrestore(&dev->event_lock, flags);
573 }
574
575 /**
576 * dpu_crtc_get_intf_mode - get interface mode of the given crtc
577 * @crtc: Pointert to crtc
578 */
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)579 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
580 {
581 struct drm_encoder *encoder;
582
583 /*
584 * TODO: This function is called from dpu debugfs and as part of atomic
585 * check. When called from debugfs, the crtc->mutex must be held to
586 * read crtc->state. However reading crtc->state from atomic check isn't
587 * allowed (unless you have a good reason, a big comment, and a deep
588 * understanding of how the atomic/modeset locks work (<- and this is
589 * probably not possible)). So we'll keep the WARN_ON here for now, but
590 * really we need to figure out a better way to track our operating mode
591 */
592 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
593
594 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
595 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
596 return dpu_encoder_get_intf_mode(encoder);
597
598 return INTF_MODE_NONE;
599 }
600
601 /**
602 * dpu_crtc_vblank_callback - called on vblank irq, issues completion events
603 * @crtc: Pointer to drm crtc object
604 */
dpu_crtc_vblank_callback(struct drm_crtc * crtc)605 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
606 {
607 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
608
609 /* keep statistics on vblank callback - with auto reset via debugfs */
610 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
611 dpu_crtc->vblank_cb_time = ktime_get();
612 else
613 dpu_crtc->vblank_cb_count++;
614
615 dpu_crtc_get_crc(crtc);
616
617 drm_crtc_handle_vblank(crtc);
618 trace_dpu_crtc_vblank_cb(DRMID(crtc));
619 }
620
dpu_crtc_frame_event_work(struct kthread_work * work)621 static void dpu_crtc_frame_event_work(struct kthread_work *work)
622 {
623 struct dpu_crtc_frame_event *fevent = container_of(work,
624 struct dpu_crtc_frame_event, work);
625 struct drm_crtc *crtc = fevent->crtc;
626 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
627 unsigned long flags;
628 bool frame_done = false;
629
630 DPU_ATRACE_BEGIN("crtc_frame_event");
631
632 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
633 ktime_to_ns(fevent->ts));
634
635 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
636 | DPU_ENCODER_FRAME_EVENT_ERROR
637 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
638
639 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
640 /* ignore vblank when not pending */
641 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
642 /* release bandwidth and other resources */
643 trace_dpu_crtc_frame_event_done(DRMID(crtc),
644 fevent->event);
645 dpu_core_perf_crtc_release_bw(crtc);
646 } else {
647 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
648 fevent->event);
649 }
650
651 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
652 | DPU_ENCODER_FRAME_EVENT_ERROR))
653 frame_done = true;
654 }
655
656 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
657 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
658 crtc->base.id, ktime_to_ns(fevent->ts));
659
660 if (frame_done)
661 complete_all(&dpu_crtc->frame_done_comp);
662
663 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
664 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
665 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
666 DPU_ATRACE_END("crtc_frame_event");
667 }
668
669 /**
670 * dpu_crtc_frame_event_cb - crtc frame event callback API
671 * @crtc: Pointer to crtc
672 * @event: Event to process
673 *
674 * Encoder may call this for different events from different context - IRQ,
675 * user thread, commit_thread, etc. Each event should be carefully reviewed and
676 * should be processed in proper task context to avoid schedulin delay or
677 * properly manage the irq context's bottom half processing.
678 */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)679 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
680 {
681 struct dpu_crtc *dpu_crtc;
682 struct msm_drm_private *priv;
683 struct dpu_crtc_frame_event *fevent;
684 unsigned long flags;
685 u32 crtc_id;
686
687 /* Nothing to do on idle event */
688 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
689 return;
690
691 dpu_crtc = to_dpu_crtc(crtc);
692 priv = crtc->dev->dev_private;
693 crtc_id = drm_crtc_index(crtc);
694
695 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
696
697 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
698 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
699 struct dpu_crtc_frame_event, list);
700 if (fevent)
701 list_del_init(&fevent->list);
702 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
703
704 if (!fevent) {
705 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
706 return;
707 }
708
709 fevent->event = event;
710 fevent->crtc = crtc;
711 fevent->ts = ktime_get();
712 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
713 }
714
715 /**
716 * dpu_crtc_complete_commit - callback signalling completion of current commit
717 * @crtc: Pointer to drm crtc object
718 */
dpu_crtc_complete_commit(struct drm_crtc * crtc)719 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
720 {
721 trace_dpu_crtc_complete_commit(DRMID(crtc));
722 dpu_core_perf_crtc_update(crtc, 0);
723 _dpu_crtc_complete_flip(crtc);
724 }
725
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)726 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
727 struct drm_crtc_state *state)
728 {
729 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
730 struct drm_display_mode *adj_mode = &state->adjusted_mode;
731 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
732 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
733 int i;
734
735 for (i = 0; i < cstate->num_mixers; i++) {
736 struct drm_rect *r = &cstate->lm_bounds[i];
737 r->x1 = crtc_split_width * i;
738 r->y1 = 0;
739 r->x2 = r->x1 + crtc_split_width;
740 r->y2 = adj_mode->vdisplay;
741
742 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
743
744 if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
745 return -E2BIG;
746 }
747
748 return 0;
749 }
750
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)751 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
752 struct dpu_hw_pcc_cfg *cfg)
753 {
754 struct drm_color_ctm *ctm;
755
756 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
757
758 ctm = (struct drm_color_ctm *)state->ctm->data;
759
760 if (!ctm)
761 return;
762
763 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
764 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
765 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
766
767 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
768 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
769 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
770
771 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
772 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
773 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
774 }
775
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)776 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
777 {
778 struct drm_crtc_state *state = crtc->state;
779 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
780 struct dpu_crtc_mixer *mixer = cstate->mixers;
781 struct dpu_hw_pcc_cfg cfg;
782 struct dpu_hw_ctl *ctl;
783 struct dpu_hw_dspp *dspp;
784 int i;
785
786
787 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
788 return;
789
790 for (i = 0; i < cstate->num_mixers; i++) {
791 ctl = mixer[i].lm_ctl;
792 dspp = mixer[i].hw_dspp;
793
794 if (!dspp || !dspp->ops.setup_pcc)
795 continue;
796
797 if (!state->ctm) {
798 dspp->ops.setup_pcc(dspp, NULL);
799 } else {
800 _dpu_crtc_get_pcc_coeff(state, &cfg);
801 dspp->ops.setup_pcc(dspp, &cfg);
802 }
803
804 /* stage config flush mask */
805 ctl->ops.update_pending_flush_dspp(ctl,
806 mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
807 }
808 }
809
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)810 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
811 struct drm_atomic_state *state)
812 {
813 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
814 struct drm_encoder *encoder;
815
816 if (!crtc->state->enable) {
817 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
818 crtc->base.id, crtc->state->enable);
819 return;
820 }
821
822 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
823
824 _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
825
826 /* encoder will trigger pending mask now */
827 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
828 dpu_encoder_trigger_kickoff_pending(encoder);
829
830 /*
831 * If no mixers have been allocated in dpu_crtc_atomic_check(),
832 * it means we are trying to flush a CRTC whose state is disabled:
833 * nothing else needs to be done.
834 */
835 if (unlikely(!cstate->num_mixers))
836 return;
837
838 _dpu_crtc_blend_setup(crtc);
839
840 _dpu_crtc_setup_cp_blocks(crtc);
841
842 /*
843 * PP_DONE irq is only used by command mode for now.
844 * It is better to request pending before FLUSH and START trigger
845 * to make sure no pp_done irq missed.
846 * This is safe because no pp_done will happen before SW trigger
847 * in command mode.
848 */
849 }
850
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)851 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
852 struct drm_atomic_state *state)
853 {
854 struct dpu_crtc *dpu_crtc;
855 struct drm_device *dev;
856 struct drm_plane *plane;
857 struct msm_drm_private *priv;
858 unsigned long flags;
859 struct dpu_crtc_state *cstate;
860
861 if (!crtc->state->enable) {
862 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
863 crtc->base.id, crtc->state->enable);
864 return;
865 }
866
867 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
868
869 dpu_crtc = to_dpu_crtc(crtc);
870 cstate = to_dpu_crtc_state(crtc->state);
871 dev = crtc->dev;
872 priv = dev->dev_private;
873
874 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
875 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
876 return;
877 }
878
879 WARN_ON(dpu_crtc->event);
880 spin_lock_irqsave(&dev->event_lock, flags);
881 dpu_crtc->event = crtc->state->event;
882 crtc->state->event = NULL;
883 spin_unlock_irqrestore(&dev->event_lock, flags);
884
885 /*
886 * If no mixers has been allocated in dpu_crtc_atomic_check(),
887 * it means we are trying to flush a CRTC whose state is disabled:
888 * nothing else needs to be done.
889 */
890 if (unlikely(!cstate->num_mixers))
891 return;
892
893 /* update performance setting before crtc kickoff */
894 dpu_core_perf_crtc_update(crtc, 1);
895
896 /*
897 * Final plane updates: Give each plane a chance to complete all
898 * required writes/flushing before crtc's "flush
899 * everything" call below.
900 */
901 drm_atomic_crtc_for_each_plane(plane, crtc) {
902 if (dpu_crtc->smmu_state.transition_error)
903 dpu_plane_set_error(plane, true);
904 dpu_plane_flush(plane);
905 }
906
907 /* Kickoff will be scheduled by outer layer */
908 }
909
910 /**
911 * dpu_crtc_destroy_state - state destroy hook
912 * @crtc: drm CRTC
913 * @state: CRTC state object to release
914 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)915 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
916 struct drm_crtc_state *state)
917 {
918 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
919
920 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
921
922 __drm_atomic_helper_crtc_destroy_state(state);
923
924 kfree(cstate);
925 }
926
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)927 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
928 {
929 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
930 int ret, rc = 0;
931
932 if (!atomic_read(&dpu_crtc->frame_pending)) {
933 DRM_DEBUG_ATOMIC("no frames pending\n");
934 return 0;
935 }
936
937 DPU_ATRACE_BEGIN("frame done completion wait");
938 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
939 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
940 if (!ret) {
941 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
942 rc = -ETIMEDOUT;
943 }
944 DPU_ATRACE_END("frame done completion wait");
945
946 return rc;
947 }
948
949 /**
950 * dpu_crtc_commit_kickoff - trigger kickoff of the commit for this crtc
951 * @crtc: Pointer to drm crtc object
952 */
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)953 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
954 {
955 struct drm_encoder *encoder;
956 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
957 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
958 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
959
960 /*
961 * If no mixers has been allocated in dpu_crtc_atomic_check(),
962 * it means we are trying to start a CRTC whose state is disabled:
963 * nothing else needs to be done.
964 */
965 if (unlikely(!cstate->num_mixers))
966 return;
967
968 DPU_ATRACE_BEGIN("crtc_commit");
969
970 drm_for_each_encoder_mask(encoder, crtc->dev,
971 crtc->state->encoder_mask) {
972 if (!dpu_encoder_is_valid_for_commit(encoder)) {
973 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
974 goto end;
975 }
976 }
977 /*
978 * Encoder will flush/start now, unless it has a tx pending. If so, it
979 * may delay and flush at an irq event (e.g. ppdone)
980 */
981 drm_for_each_encoder_mask(encoder, crtc->dev,
982 crtc->state->encoder_mask)
983 dpu_encoder_prepare_for_kickoff(encoder);
984
985 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
986 /* acquire bandwidth and other resources */
987 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
988 } else
989 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
990
991 dpu_crtc->play_count++;
992
993 dpu_vbif_clear_errors(dpu_kms);
994
995 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
996 dpu_encoder_kickoff(encoder);
997
998 reinit_completion(&dpu_crtc->frame_done_comp);
999
1000 end:
1001 DPU_ATRACE_END("crtc_commit");
1002 }
1003
dpu_crtc_reset(struct drm_crtc * crtc)1004 static void dpu_crtc_reset(struct drm_crtc *crtc)
1005 {
1006 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1007
1008 if (crtc->state)
1009 dpu_crtc_destroy_state(crtc, crtc->state);
1010
1011 if (cstate)
1012 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1013 else
1014 __drm_atomic_helper_crtc_reset(crtc, NULL);
1015 }
1016
1017 /**
1018 * dpu_crtc_duplicate_state - state duplicate hook
1019 * @crtc: Pointer to drm crtc structure
1020 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1021 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1022 {
1023 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1024
1025 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1026 if (!cstate) {
1027 DPU_ERROR("failed to allocate state\n");
1028 return NULL;
1029 }
1030
1031 /* duplicate base helper */
1032 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1033
1034 return &cstate->base;
1035 }
1036
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1037 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1038 const struct drm_crtc_state *state)
1039 {
1040 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1041 int i;
1042
1043 for (i = 0; i < cstate->num_mixers; i++) {
1044 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1045 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1046 if (cstate->mixers[i].hw_dspp)
1047 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1048 }
1049 }
1050
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1051 static void dpu_crtc_disable(struct drm_crtc *crtc,
1052 struct drm_atomic_state *state)
1053 {
1054 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1055 crtc);
1056 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1057 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1058 struct drm_encoder *encoder;
1059 unsigned long flags;
1060 bool release_bandwidth = false;
1061
1062 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1063
1064 /* If disable is triggered while in self refresh mode,
1065 * reset the encoder software state so that in enable
1066 * it won't trigger a warn while assigning crtc.
1067 */
1068 if (old_crtc_state->self_refresh_active) {
1069 drm_for_each_encoder_mask(encoder, crtc->dev,
1070 old_crtc_state->encoder_mask) {
1071 dpu_encoder_assign_crtc(encoder, NULL);
1072 }
1073 return;
1074 }
1075
1076 /* Disable/save vblank irq handling */
1077 drm_crtc_vblank_off(crtc);
1078
1079 drm_for_each_encoder_mask(encoder, crtc->dev,
1080 old_crtc_state->encoder_mask) {
1081 /* in video mode, we hold an extra bandwidth reference
1082 * as we cannot drop bandwidth at frame-done if any
1083 * crtc is being used in video mode.
1084 */
1085 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1086 release_bandwidth = true;
1087
1088 /*
1089 * If disable is triggered during psr active(e.g: screen dim in PSR),
1090 * we will need encoder->crtc connection to process the device sleep &
1091 * preserve it during psr sequence.
1092 */
1093 if (!crtc->state->self_refresh_active)
1094 dpu_encoder_assign_crtc(encoder, NULL);
1095 }
1096
1097 /* wait for frame_event_done completion */
1098 if (_dpu_crtc_wait_for_frame_done(crtc))
1099 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1100 crtc->base.id,
1101 atomic_read(&dpu_crtc->frame_pending));
1102
1103 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1104 dpu_crtc->enabled = false;
1105
1106 if (atomic_read(&dpu_crtc->frame_pending)) {
1107 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1108 atomic_read(&dpu_crtc->frame_pending));
1109 if (release_bandwidth)
1110 dpu_core_perf_crtc_release_bw(crtc);
1111 atomic_set(&dpu_crtc->frame_pending, 0);
1112 }
1113
1114 dpu_core_perf_crtc_update(crtc, 0);
1115
1116 /* disable clk & bw control until clk & bw properties are set */
1117 cstate->bw_control = false;
1118 cstate->bw_split_vote = false;
1119
1120 if (crtc->state->event && !crtc->state->active) {
1121 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1122 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1123 crtc->state->event = NULL;
1124 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1125 }
1126
1127 pm_runtime_put_sync(crtc->dev->dev);
1128 }
1129
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1130 static void dpu_crtc_enable(struct drm_crtc *crtc,
1131 struct drm_atomic_state *state)
1132 {
1133 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1134 struct drm_encoder *encoder;
1135 bool request_bandwidth = false;
1136 struct drm_crtc_state *old_crtc_state;
1137
1138 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1139
1140 pm_runtime_get_sync(crtc->dev->dev);
1141
1142 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1143
1144 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1145 /* in video mode, we hold an extra bandwidth reference
1146 * as we cannot drop bandwidth at frame-done if any
1147 * crtc is being used in video mode.
1148 */
1149 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1150 request_bandwidth = true;
1151 }
1152
1153 if (request_bandwidth)
1154 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1155
1156 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1157 dpu_crtc->enabled = true;
1158
1159 if (!old_crtc_state->self_refresh_active) {
1160 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1161 dpu_encoder_assign_crtc(encoder, crtc);
1162 }
1163
1164 /* Enable/restore vblank irq handling */
1165 drm_crtc_vblank_on(crtc);
1166 }
1167
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1168 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1169 {
1170 struct drm_crtc *crtc = cstate->crtc;
1171 struct drm_encoder *encoder;
1172
1173 if (cstate->self_refresh_active)
1174 return true;
1175
1176 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1177 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1178 return true;
1179 }
1180 }
1181
1182 return false;
1183 }
1184
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1185 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1186 struct drm_atomic_state *state)
1187 {
1188 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1189 crtc);
1190 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1191 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1192
1193 const struct drm_plane_state *pstate;
1194 struct drm_plane *plane;
1195
1196 int rc = 0;
1197
1198 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1199
1200 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1201 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1202 crtc->base.id, crtc_state->enable,
1203 crtc_state->active);
1204 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1205 return 0;
1206 }
1207
1208 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1209
1210 /* force a full mode set if active state changed */
1211 if (crtc_state->active_changed)
1212 crtc_state->mode_changed = true;
1213
1214 if (cstate->num_mixers) {
1215 rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1216 if (rc)
1217 return rc;
1218 }
1219
1220 /* FIXME: move this to dpu_plane_atomic_check? */
1221 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1222 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1223
1224 if (IS_ERR_OR_NULL(pstate)) {
1225 rc = PTR_ERR(pstate);
1226 DPU_ERROR("%s: failed to get plane%d state, %d\n",
1227 dpu_crtc->name, plane->base.id, rc);
1228 return rc;
1229 }
1230
1231 if (!pstate->visible)
1232 continue;
1233
1234 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1235 }
1236
1237 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1238
1239 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1240 if (rc) {
1241 DPU_ERROR("crtc%d failed performance check %d\n",
1242 crtc->base.id, rc);
1243 return rc;
1244 }
1245
1246 return 0;
1247 }
1248
dpu_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1249 static enum drm_mode_status dpu_crtc_mode_valid(struct drm_crtc *crtc,
1250 const struct drm_display_mode *mode)
1251 {
1252 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1253
1254 /*
1255 * max crtc width is equal to the max mixer width * 2 and max height is 4K
1256 */
1257 return drm_mode_validate_size(mode,
1258 2 * dpu_kms->catalog->caps->max_mixer_width,
1259 4096);
1260 }
1261
1262 /**
1263 * dpu_crtc_vblank - enable or disable vblanks for this crtc
1264 * @crtc: Pointer to drm crtc object
1265 * @en: true to enable vblanks, false to disable
1266 */
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1267 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1268 {
1269 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1270 struct drm_encoder *enc;
1271
1272 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1273
1274 /*
1275 * Normally we would iterate through encoder_mask in crtc state to find
1276 * attached encoders. In this case, we might be disabling vblank _after_
1277 * encoder_mask has been cleared.
1278 *
1279 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1280 * disable (which is also after encoder_mask is cleared). So instead of
1281 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1282 * currently assigned to our crtc.
1283 *
1284 * Note also that this function cannot be called while crtc is disabled
1285 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1286 * about the assigned crtcs being inconsistent with the current state
1287 * (which means no need to worry about modeset locks).
1288 */
1289 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1290 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1291 dpu_crtc);
1292
1293 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1294 }
1295
1296 return 0;
1297 }
1298
1299 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1300 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1301 {
1302 struct dpu_crtc *dpu_crtc;
1303 struct dpu_plane_state *pstate = NULL;
1304 struct dpu_crtc_mixer *m;
1305
1306 struct drm_crtc *crtc;
1307 struct drm_plane *plane;
1308 struct drm_display_mode *mode;
1309 struct drm_framebuffer *fb;
1310 struct drm_plane_state *state;
1311 struct dpu_crtc_state *cstate;
1312
1313 int i, out_width;
1314
1315 dpu_crtc = s->private;
1316 crtc = &dpu_crtc->base;
1317
1318 drm_modeset_lock_all(crtc->dev);
1319 cstate = to_dpu_crtc_state(crtc->state);
1320
1321 mode = &crtc->state->adjusted_mode;
1322 out_width = mode->hdisplay / cstate->num_mixers;
1323
1324 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1325 mode->hdisplay, mode->vdisplay);
1326
1327 seq_puts(s, "\n");
1328
1329 for (i = 0; i < cstate->num_mixers; ++i) {
1330 m = &cstate->mixers[i];
1331 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1332 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1333 out_width, mode->vdisplay);
1334 }
1335
1336 seq_puts(s, "\n");
1337
1338 drm_atomic_crtc_for_each_plane(plane, crtc) {
1339 pstate = to_dpu_plane_state(plane->state);
1340 state = plane->state;
1341
1342 if (!pstate || !state)
1343 continue;
1344
1345 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1346 pstate->stage);
1347
1348 if (plane->state->fb) {
1349 fb = plane->state->fb;
1350
1351 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1352 fb->base.id, (char *) &fb->format->format,
1353 fb->width, fb->height);
1354 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1355 seq_printf(s, "cpp[%d]:%u ",
1356 i, fb->format->cpp[i]);
1357 seq_puts(s, "\n\t");
1358
1359 seq_printf(s, "modifier:%8llu ", fb->modifier);
1360 seq_puts(s, "\n");
1361
1362 seq_puts(s, "\t");
1363 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1364 seq_printf(s, "pitches[%d]:%8u ", i,
1365 fb->pitches[i]);
1366 seq_puts(s, "\n");
1367
1368 seq_puts(s, "\t");
1369 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1370 seq_printf(s, "offsets[%d]:%8u ", i,
1371 fb->offsets[i]);
1372 seq_puts(s, "\n");
1373 }
1374
1375 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1376 state->src_x, state->src_y, state->src_w, state->src_h);
1377
1378 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1379 state->crtc_x, state->crtc_y, state->crtc_w,
1380 state->crtc_h);
1381 seq_printf(s, "\tsspp[0]:%s\n",
1382 pstate->pipe.sspp->cap->name);
1383 seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1384 pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1385 if (pstate->r_pipe.sspp) {
1386 seq_printf(s, "\tsspp[1]:%s\n",
1387 pstate->r_pipe.sspp->cap->name);
1388 seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1389 pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1390 }
1391
1392 seq_puts(s, "\n");
1393 }
1394 if (dpu_crtc->vblank_cb_count) {
1395 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1396 s64 diff_ms = ktime_to_ms(diff);
1397 s64 fps = diff_ms ? div_s64(
1398 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1399
1400 seq_printf(s,
1401 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1402 fps, dpu_crtc->vblank_cb_count,
1403 ktime_to_ms(diff), dpu_crtc->play_count);
1404
1405 /* reset time & count for next measurement */
1406 dpu_crtc->vblank_cb_count = 0;
1407 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1408 }
1409
1410 drm_modeset_unlock_all(crtc->dev);
1411
1412 return 0;
1413 }
1414
1415 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1416
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1417 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1418 {
1419 struct drm_crtc *crtc = s->private;
1420 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1421
1422 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1423 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1424 seq_printf(s, "core_clk_rate: %llu\n",
1425 dpu_crtc->cur_perf.core_clk_rate);
1426 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1427 seq_printf(s, "max_per_pipe_ib: %llu\n",
1428 dpu_crtc->cur_perf.max_per_pipe_ib);
1429
1430 return 0;
1431 }
1432 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1433
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1434 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1435 {
1436 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1437
1438 debugfs_create_file("status", 0400,
1439 crtc->debugfs_entry,
1440 dpu_crtc, &_dpu_debugfs_status_fops);
1441 debugfs_create_file("state", 0600,
1442 crtc->debugfs_entry,
1443 &dpu_crtc->base,
1444 &dpu_crtc_debugfs_state_fops);
1445
1446 return 0;
1447 }
1448 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1449 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1450 {
1451 return 0;
1452 }
1453 #endif /* CONFIG_DEBUG_FS */
1454
dpu_crtc_late_register(struct drm_crtc * crtc)1455 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1456 {
1457 return _dpu_crtc_init_debugfs(crtc);
1458 }
1459
1460 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1461 .set_config = drm_atomic_helper_set_config,
1462 .page_flip = drm_atomic_helper_page_flip,
1463 .reset = dpu_crtc_reset,
1464 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1465 .atomic_destroy_state = dpu_crtc_destroy_state,
1466 .atomic_print_state = dpu_crtc_atomic_print_state,
1467 .late_register = dpu_crtc_late_register,
1468 .verify_crc_source = dpu_crtc_verify_crc_source,
1469 .set_crc_source = dpu_crtc_set_crc_source,
1470 .enable_vblank = msm_crtc_enable_vblank,
1471 .disable_vblank = msm_crtc_disable_vblank,
1472 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1473 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1474 };
1475
1476 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1477 .atomic_disable = dpu_crtc_disable,
1478 .atomic_enable = dpu_crtc_enable,
1479 .atomic_check = dpu_crtc_atomic_check,
1480 .atomic_begin = dpu_crtc_atomic_begin,
1481 .atomic_flush = dpu_crtc_atomic_flush,
1482 .mode_valid = dpu_crtc_mode_valid,
1483 .get_scanout_position = dpu_crtc_get_scanout_position,
1484 };
1485
1486 /**
1487 * dpu_crtc_init - create a new crtc object
1488 * @dev: dpu device
1489 * @plane: base plane
1490 * @cursor: cursor plane
1491 * @return: new crtc object or error
1492 *
1493 * initialize CRTC
1494 */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1495 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1496 struct drm_plane *cursor)
1497 {
1498 struct msm_drm_private *priv = dev->dev_private;
1499 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1500 struct drm_crtc *crtc = NULL;
1501 struct dpu_crtc *dpu_crtc;
1502 int i, ret;
1503
1504 dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1505 plane, cursor,
1506 &dpu_crtc_funcs,
1507 NULL);
1508
1509 if (IS_ERR(dpu_crtc))
1510 return ERR_CAST(dpu_crtc);
1511
1512 crtc = &dpu_crtc->base;
1513 crtc->dev = dev;
1514
1515 spin_lock_init(&dpu_crtc->spin_lock);
1516 atomic_set(&dpu_crtc->frame_pending, 0);
1517
1518 init_completion(&dpu_crtc->frame_done_comp);
1519
1520 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1521
1522 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1523 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1524 list_add(&dpu_crtc->frame_events[i].list,
1525 &dpu_crtc->frame_event_list);
1526 kthread_init_work(&dpu_crtc->frame_events[i].work,
1527 dpu_crtc_frame_event_work);
1528 }
1529
1530 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1531
1532 if (dpu_kms->catalog->dspp_count)
1533 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1534
1535 /* save user friendly CRTC name for later */
1536 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1537
1538 /* initialize event handling */
1539 spin_lock_init(&dpu_crtc->event_lock);
1540
1541 ret = drm_self_refresh_helper_init(crtc);
1542 if (ret) {
1543 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1544 crtc->name, ret);
1545 return ERR_PTR(ret);
1546 }
1547
1548 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1549 return crtc;
1550 }
1551