xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision 53b48f62f29dce6dcad490dc1994286994098837)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 
50 /* Capabilities */
51 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
52 #define CQSPI_SUPPORTS_QUAD		BIT(1)
53 
54 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
55 
56 enum {
57 	CLK_QSPI_APB = 0,
58 	CLK_QSPI_AHB,
59 	CLK_QSPI_NUM,
60 };
61 
62 struct cqspi_st;
63 
64 struct cqspi_flash_pdata {
65 	struct cqspi_st	*cqspi;
66 	u32		clk_rate;
67 	u32		read_delay;
68 	u32		tshsl_ns;
69 	u32		tsd2d_ns;
70 	u32		tchsh_ns;
71 	u32		tslch_ns;
72 	u8		cs;
73 };
74 
75 struct cqspi_st {
76 	struct platform_device	*pdev;
77 	struct spi_controller	*host;
78 	struct clk		*clk;
79 	struct clk		*clks[CLK_QSPI_NUM];
80 	unsigned int		sclk;
81 
82 	void __iomem		*iobase;
83 	void __iomem		*ahb_base;
84 	resource_size_t		ahb_size;
85 	struct completion	transfer_complete;
86 
87 	struct dma_chan		*rx_chan;
88 	struct completion	rx_dma_complete;
89 	dma_addr_t		mmap_phys_base;
90 
91 	int			current_cs;
92 	unsigned long		master_ref_clk_hz;
93 	bool			is_decoded_cs;
94 	u32			fifo_depth;
95 	u32			fifo_width;
96 	u32			num_chipselect;
97 	bool			rclk_en;
98 	u32			trigger_address;
99 	u32			wr_delay;
100 	bool			use_direct_mode;
101 	bool			use_direct_mode_wr;
102 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
103 	bool			use_dma_read;
104 	u32			pd_dev_id;
105 	bool			wr_completion;
106 	bool			slow_sram;
107 	bool			apb_ahb_hazard;
108 
109 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
110 	bool			disable_stig_mode;
111 	refcount_t		refcount;
112 	refcount_t		inflight_ops;
113 
114 	const struct cqspi_driver_platdata *ddata;
115 };
116 
117 struct cqspi_driver_platdata {
118 	u32 hwcaps_mask;
119 	u16 quirks;
120 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
121 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
122 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
123 	int (*jh7110_clk_init)(struct platform_device *pdev,
124 			       struct cqspi_st *cqspi);
125 };
126 
127 /* Operation timeout value */
128 #define CQSPI_TIMEOUT_MS			500
129 #define CQSPI_READ_TIMEOUT_MS			10
130 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
131 
132 /* Runtime_pm autosuspend delay */
133 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
134 
135 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
136 #define CQSPI_DUMMY_BYTES_MAX			4
137 #define CQSPI_DUMMY_CLKS_MAX			31
138 
139 #define CQSPI_STIG_DATA_LEN_MAX			8
140 
141 /* Register map */
142 #define CQSPI_REG_CONFIG			0x00
143 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
144 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
145 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
146 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
147 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
148 #define CQSPI_REG_CONFIG_BAUD_LSB		19
149 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
150 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
151 #define CQSPI_REG_CONFIG_IDLE_LSB		31
152 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
153 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
154 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
155 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
156 
157 #define CQSPI_REG_RD_INSTR			0x04
158 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
159 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
160 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
161 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
162 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
163 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
164 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
165 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
166 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
167 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
168 
169 #define CQSPI_REG_WR_INSTR			0x08
170 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
171 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
172 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
173 
174 #define CQSPI_REG_DELAY				0x0C
175 #define CQSPI_REG_DELAY_TSLCH_LSB		0
176 #define CQSPI_REG_DELAY_TCHSH_LSB		8
177 #define CQSPI_REG_DELAY_TSD2D_LSB		16
178 #define CQSPI_REG_DELAY_TSHSL_LSB		24
179 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
180 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
181 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
182 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
183 
184 #define CQSPI_REG_READCAPTURE			0x10
185 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
186 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
187 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
188 
189 #define CQSPI_REG_SIZE				0x14
190 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
191 #define CQSPI_REG_SIZE_PAGE_LSB			4
192 #define CQSPI_REG_SIZE_BLOCK_LSB		16
193 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
194 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
195 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
196 
197 #define CQSPI_REG_SRAMPARTITION			0x18
198 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
199 
200 #define CQSPI_REG_DMA				0x20
201 #define CQSPI_REG_DMA_SINGLE_LSB		0
202 #define CQSPI_REG_DMA_BURST_LSB			8
203 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
204 #define CQSPI_REG_DMA_BURST_MASK		0xFF
205 
206 #define CQSPI_REG_REMAP				0x24
207 #define CQSPI_REG_MODE_BIT			0x28
208 
209 #define CQSPI_REG_SDRAMLEVEL			0x2C
210 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
211 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
212 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
213 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
214 
215 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
216 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
217 
218 #define CQSPI_REG_IRQSTATUS			0x40
219 #define CQSPI_REG_IRQMASK			0x44
220 
221 #define CQSPI_REG_INDIRECTRD			0x60
222 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
223 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
224 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
225 
226 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
227 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
228 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
229 
230 #define CQSPI_REG_CMDCTRL			0x90
231 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
232 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
233 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
234 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
235 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
236 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
237 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
238 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
239 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
240 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
241 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
242 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
243 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
244 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
245 
246 #define CQSPI_REG_INDIRECTWR			0x70
247 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
248 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
249 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
250 
251 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
252 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
253 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
254 
255 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
256 
257 #define CQSPI_REG_CMDADDRESS			0x94
258 #define CQSPI_REG_CMDREADDATALOWER		0xA0
259 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
260 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
261 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
262 
263 #define CQSPI_REG_POLLING_STATUS		0xB0
264 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
265 
266 #define CQSPI_REG_OP_EXT_LOWER			0xE0
267 #define CQSPI_REG_OP_EXT_READ_LSB		24
268 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
269 #define CQSPI_REG_OP_EXT_STIG_LSB		0
270 
271 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
272 
273 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
274 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
275 
276 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
277 
278 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
279 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
280 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
281 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
282 
283 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
284 
285 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
286 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
287 
288 /* Interrupt status bits */
289 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
290 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
291 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
292 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
293 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
294 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
295 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
296 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
297 
298 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
299 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
300 					 CQSPI_REG_IRQ_IND_COMP)
301 
302 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
303 					 CQSPI_REG_IRQ_WATERMARK	| \
304 					 CQSPI_REG_IRQ_UNDERFLOW)
305 
306 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
307 #define CQSPI_DMA_UNALIGN		0x3
308 
309 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
310 
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)311 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
312 			      void __iomem *reg, const u32 mask, bool clr,
313 			      bool busywait)
314 {
315 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
316 	u32 val;
317 
318 	if (busywait) {
319 		int ret = readl_relaxed_poll_timeout(reg, val,
320 						     (((clr ? ~val : val) & mask) == mask),
321 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
322 
323 		if (ret != -ETIMEDOUT)
324 			return ret;
325 
326 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
327 	}
328 
329 	return readl_relaxed_poll_timeout(reg, val,
330 					  (((clr ? ~val : val) & mask) == mask),
331 					  10, timeout_us);
332 }
333 
cqspi_is_idle(struct cqspi_st * cqspi)334 static bool cqspi_is_idle(struct cqspi_st *cqspi)
335 {
336 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
337 
338 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
339 }
340 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)341 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
342 {
343 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
344 
345 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
346 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
347 }
348 
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)349 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
350 {
351 	u32 dma_status;
352 
353 	dma_status = readl(cqspi->iobase +
354 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
355 	writel(dma_status, cqspi->iobase +
356 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
357 
358 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
359 }
360 
cqspi_irq_handler(int this_irq,void * dev)361 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
362 {
363 	struct cqspi_st *cqspi = dev;
364 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
365 	unsigned int irq_status;
366 
367 	/* Read interrupt status */
368 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
369 
370 	/* Clear interrupt */
371 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
372 
373 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
374 		if (ddata->get_dma_status(cqspi)) {
375 			complete(&cqspi->transfer_complete);
376 			return IRQ_HANDLED;
377 		}
378 	}
379 
380 	else if (!cqspi->slow_sram)
381 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
382 	else
383 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
384 
385 	if (irq_status)
386 		complete(&cqspi->transfer_complete);
387 
388 	return IRQ_HANDLED;
389 }
390 
cqspi_calc_rdreg(const struct spi_mem_op * op)391 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
392 {
393 	u32 rdreg = 0;
394 
395 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
396 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
397 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
398 
399 	return rdreg;
400 }
401 
cqspi_calc_dummy(const struct spi_mem_op * op)402 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
403 {
404 	unsigned int dummy_clk;
405 
406 	if (!op->dummy.nbytes)
407 		return 0;
408 
409 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
410 	if (op->cmd.dtr)
411 		dummy_clk /= 2;
412 
413 	return dummy_clk;
414 }
415 
cqspi_wait_idle(struct cqspi_st * cqspi)416 static int cqspi_wait_idle(struct cqspi_st *cqspi)
417 {
418 	const unsigned int poll_idle_retry = 3;
419 	unsigned int count = 0;
420 	unsigned long timeout;
421 
422 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
423 	while (1) {
424 		/*
425 		 * Read few times in succession to ensure the controller
426 		 * is indeed idle, that is, the bit does not transition
427 		 * low again.
428 		 */
429 		if (cqspi_is_idle(cqspi))
430 			count++;
431 		else
432 			count = 0;
433 
434 		if (count >= poll_idle_retry)
435 			return 0;
436 
437 		if (time_after(jiffies, timeout)) {
438 			/* Timeout, in busy mode. */
439 			dev_err(&cqspi->pdev->dev,
440 				"QSPI is still busy after %dms timeout.\n",
441 				CQSPI_TIMEOUT_MS);
442 			return -ETIMEDOUT;
443 		}
444 
445 		cpu_relax();
446 	}
447 }
448 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)449 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
450 {
451 	void __iomem *reg_base = cqspi->iobase;
452 	int ret;
453 
454 	/* Write the CMDCTRL without start execution. */
455 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
456 	/* Start execute */
457 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
458 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
459 
460 	/* Polling for completion. */
461 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
462 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
463 	if (ret) {
464 		dev_err(&cqspi->pdev->dev,
465 			"Flash command execution timed out.\n");
466 		return ret;
467 	}
468 
469 	/* Polling QSPI idle status. */
470 	return cqspi_wait_idle(cqspi);
471 }
472 
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)473 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
474 				  const struct spi_mem_op *op,
475 				  unsigned int shift)
476 {
477 	struct cqspi_st *cqspi = f_pdata->cqspi;
478 	void __iomem *reg_base = cqspi->iobase;
479 	unsigned int reg;
480 	u8 ext;
481 
482 	if (op->cmd.nbytes != 2)
483 		return -EINVAL;
484 
485 	/* Opcode extension is the LSB. */
486 	ext = op->cmd.opcode & 0xff;
487 
488 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
489 	reg &= ~(0xff << shift);
490 	reg |= ext << shift;
491 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
492 
493 	return 0;
494 }
495 
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)496 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
497 			    const struct spi_mem_op *op, unsigned int shift)
498 {
499 	struct cqspi_st *cqspi = f_pdata->cqspi;
500 	void __iomem *reg_base = cqspi->iobase;
501 	unsigned int reg;
502 	int ret;
503 
504 	reg = readl(reg_base + CQSPI_REG_CONFIG);
505 
506 	/*
507 	 * We enable dual byte opcode here. The callers have to set up the
508 	 * extension opcode based on which type of operation it is.
509 	 */
510 	if (op->cmd.dtr) {
511 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
512 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
513 
514 		/* Set up command opcode extension. */
515 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
516 		if (ret)
517 			return ret;
518 	} else {
519 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
520 		/* Shortcut if DTR is already disabled. */
521 		if ((reg & mask) == 0)
522 			return 0;
523 		reg &= ~mask;
524 	}
525 
526 	writel(reg, reg_base + CQSPI_REG_CONFIG);
527 
528 	return cqspi_wait_idle(cqspi);
529 }
530 
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)531 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
532 			      const struct spi_mem_op *op)
533 {
534 	struct cqspi_st *cqspi = f_pdata->cqspi;
535 	void __iomem *reg_base = cqspi->iobase;
536 	u8 *rxbuf = op->data.buf.in;
537 	u8 opcode;
538 	size_t n_rx = op->data.nbytes;
539 	unsigned int rdreg;
540 	unsigned int reg;
541 	unsigned int dummy_clk;
542 	size_t read_len;
543 	int status;
544 
545 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
546 	if (status)
547 		return status;
548 
549 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
550 		dev_err(&cqspi->pdev->dev,
551 			"Invalid input argument, len %zu rxbuf 0x%p\n",
552 			n_rx, rxbuf);
553 		return -EINVAL;
554 	}
555 
556 	if (op->cmd.dtr)
557 		opcode = op->cmd.opcode >> 8;
558 	else
559 		opcode = op->cmd.opcode;
560 
561 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
562 
563 	rdreg = cqspi_calc_rdreg(op);
564 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
565 
566 	dummy_clk = cqspi_calc_dummy(op);
567 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
568 		return -EOPNOTSUPP;
569 
570 	if (dummy_clk)
571 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
572 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
573 
574 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
575 
576 	/* 0 means 1 byte. */
577 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
578 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
579 
580 	/* setup ADDR BIT field */
581 	if (op->addr.nbytes) {
582 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
583 		reg |= ((op->addr.nbytes - 1) &
584 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
585 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
586 
587 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
588 	}
589 
590 	status = cqspi_exec_flash_cmd(cqspi, reg);
591 	if (status)
592 		return status;
593 
594 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
595 
596 	/* Put the read value into rx_buf */
597 	read_len = (n_rx > 4) ? 4 : n_rx;
598 	memcpy(rxbuf, &reg, read_len);
599 	rxbuf += read_len;
600 
601 	if (n_rx > 4) {
602 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
603 
604 		read_len = n_rx - read_len;
605 		memcpy(rxbuf, &reg, read_len);
606 	}
607 
608 	/* Reset CMD_CTRL Reg once command read completes */
609 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
610 
611 	return 0;
612 }
613 
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)614 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
615 			       const struct spi_mem_op *op)
616 {
617 	struct cqspi_st *cqspi = f_pdata->cqspi;
618 	void __iomem *reg_base = cqspi->iobase;
619 	u8 opcode;
620 	const u8 *txbuf = op->data.buf.out;
621 	size_t n_tx = op->data.nbytes;
622 	unsigned int reg;
623 	unsigned int data;
624 	size_t write_len;
625 	int ret;
626 
627 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
628 	if (ret)
629 		return ret;
630 
631 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
632 		dev_err(&cqspi->pdev->dev,
633 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
634 			n_tx, txbuf);
635 		return -EINVAL;
636 	}
637 
638 	reg = cqspi_calc_rdreg(op);
639 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
640 
641 	if (op->cmd.dtr)
642 		opcode = op->cmd.opcode >> 8;
643 	else
644 		opcode = op->cmd.opcode;
645 
646 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
647 
648 	if (op->addr.nbytes) {
649 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
650 		reg |= ((op->addr.nbytes - 1) &
651 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
652 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
653 
654 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
655 	}
656 
657 	if (n_tx) {
658 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
659 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
660 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
661 		data = 0;
662 		write_len = (n_tx > 4) ? 4 : n_tx;
663 		memcpy(&data, txbuf, write_len);
664 		txbuf += write_len;
665 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
666 
667 		if (n_tx > 4) {
668 			data = 0;
669 			write_len = n_tx - 4;
670 			memcpy(&data, txbuf, write_len);
671 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
672 		}
673 	}
674 
675 	ret = cqspi_exec_flash_cmd(cqspi, reg);
676 
677 	/* Reset CMD_CTRL Reg once command write completes */
678 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
679 
680 	return ret;
681 }
682 
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)683 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
684 			    const struct spi_mem_op *op)
685 {
686 	struct cqspi_st *cqspi = f_pdata->cqspi;
687 	void __iomem *reg_base = cqspi->iobase;
688 	unsigned int dummy_clk = 0;
689 	unsigned int reg;
690 	int ret;
691 	u8 opcode;
692 
693 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
694 	if (ret)
695 		return ret;
696 
697 	if (op->cmd.dtr)
698 		opcode = op->cmd.opcode >> 8;
699 	else
700 		opcode = op->cmd.opcode;
701 
702 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
703 	reg |= cqspi_calc_rdreg(op);
704 
705 	/* Setup dummy clock cycles */
706 	dummy_clk = cqspi_calc_dummy(op);
707 
708 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
709 		return -EOPNOTSUPP;
710 
711 	if (dummy_clk)
712 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
713 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
714 
715 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
716 
717 	/* Set address width */
718 	reg = readl(reg_base + CQSPI_REG_SIZE);
719 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
720 	reg |= (op->addr.nbytes - 1);
721 	writel(reg, reg_base + CQSPI_REG_SIZE);
722 	return 0;
723 }
724 
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)725 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
726 				       u8 *rxbuf, loff_t from_addr,
727 				       const size_t n_rx)
728 {
729 	struct cqspi_st *cqspi = f_pdata->cqspi;
730 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
731 	struct device *dev = &cqspi->pdev->dev;
732 	void __iomem *reg_base = cqspi->iobase;
733 	void __iomem *ahb_base = cqspi->ahb_base;
734 	unsigned int remaining = n_rx;
735 	unsigned int mod_bytes = n_rx % 4;
736 	unsigned int bytes_to_read = 0;
737 	u8 *rxbuf_end = rxbuf + n_rx;
738 	int ret = 0;
739 
740 	if (!refcount_read(&cqspi->refcount))
741 		return -ENODEV;
742 
743 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
744 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
745 
746 	/* Clear all interrupts. */
747 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
748 
749 	/*
750 	 * On SoCFPGA platform reading the SRAM is slow due to
751 	 * hardware limitation and causing read interrupt storm to CPU,
752 	 * so enabling only watermark interrupt to disable all read
753 	 * interrupts later as we want to run "bytes to read" loop with
754 	 * all the read interrupts disabled for max performance.
755 	 */
756 
757 	if (use_irq && cqspi->slow_sram)
758 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
759 	else if (use_irq)
760 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
761 	else
762 		writel(0, reg_base + CQSPI_REG_IRQMASK);
763 
764 	reinit_completion(&cqspi->transfer_complete);
765 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
766 	       reg_base + CQSPI_REG_INDIRECTRD);
767 
768 	while (remaining > 0) {
769 		if (use_irq &&
770 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
771 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
772 			ret = -ETIMEDOUT;
773 
774 		/*
775 		 * Disable all read interrupts until
776 		 * we are out of "bytes to read"
777 		 */
778 		if (cqspi->slow_sram)
779 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
780 
781 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
782 
783 		if (ret && bytes_to_read == 0) {
784 			dev_err(dev, "Indirect read timeout, no bytes\n");
785 			goto failrd;
786 		}
787 
788 		while (bytes_to_read != 0) {
789 			unsigned int word_remain = round_down(remaining, 4);
790 
791 			bytes_to_read *= cqspi->fifo_width;
792 			bytes_to_read = bytes_to_read > remaining ?
793 					remaining : bytes_to_read;
794 			bytes_to_read = round_down(bytes_to_read, 4);
795 			/* Read 4 byte word chunks then single bytes */
796 			if (bytes_to_read) {
797 				ioread32_rep(ahb_base, rxbuf,
798 					     (bytes_to_read / 4));
799 			} else if (!word_remain && mod_bytes) {
800 				unsigned int temp = ioread32(ahb_base);
801 
802 				bytes_to_read = mod_bytes;
803 				memcpy(rxbuf, &temp, min((unsigned int)
804 							 (rxbuf_end - rxbuf),
805 							 bytes_to_read));
806 			}
807 			rxbuf += bytes_to_read;
808 			remaining -= bytes_to_read;
809 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
810 		}
811 
812 		if (use_irq && remaining > 0) {
813 			reinit_completion(&cqspi->transfer_complete);
814 			if (cqspi->slow_sram)
815 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
816 		}
817 	}
818 
819 	/* Check indirect done status */
820 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
821 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
822 	if (ret) {
823 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
824 		goto failrd;
825 	}
826 
827 	/* Disable interrupt */
828 	writel(0, reg_base + CQSPI_REG_IRQMASK);
829 
830 	/* Clear indirect completion status */
831 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
832 
833 	return 0;
834 
835 failrd:
836 	/* Disable interrupt */
837 	writel(0, reg_base + CQSPI_REG_IRQMASK);
838 
839 	/* Cancel the indirect read */
840 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
841 	       reg_base + CQSPI_REG_INDIRECTRD);
842 	return ret;
843 }
844 
cqspi_device_reset(struct cqspi_st * cqspi)845 static void cqspi_device_reset(struct cqspi_st *cqspi)
846 {
847 	u32 reg;
848 
849 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
850 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
851 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
852 	/*
853 	 * NOTE: Delay timing implementation is derived from
854 	 * spi_nor_hw_reset()
855 	 */
856 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
857 	usleep_range(1, 5);
858 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
859 	usleep_range(100, 150);
860 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
861 	usleep_range(1000, 1200);
862 }
863 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)864 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
865 {
866 	void __iomem *reg_base = cqspi->iobase;
867 	unsigned int reg;
868 
869 	reg = readl(reg_base + CQSPI_REG_CONFIG);
870 
871 	if (enable)
872 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
873 	else
874 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
875 
876 	writel(reg, reg_base + CQSPI_REG_CONFIG);
877 }
878 
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)879 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
880 					  u_char *rxbuf, loff_t from_addr,
881 					  size_t n_rx)
882 {
883 	struct cqspi_st *cqspi = f_pdata->cqspi;
884 	struct device *dev = &cqspi->pdev->dev;
885 	void __iomem *reg_base = cqspi->iobase;
886 	u32 reg, bytes_to_dma;
887 	loff_t addr = from_addr;
888 	void *buf = rxbuf;
889 	dma_addr_t dma_addr;
890 	u8 bytes_rem;
891 	int ret = 0;
892 
893 	bytes_rem = n_rx % 4;
894 	bytes_to_dma = (n_rx - bytes_rem);
895 
896 	if (!bytes_to_dma)
897 		goto nondmard;
898 
899 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
900 	if (ret)
901 		return ret;
902 
903 	cqspi_controller_enable(cqspi, 0);
904 
905 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
906 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
907 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
908 
909 	cqspi_controller_enable(cqspi, 1);
910 
911 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
912 	if (dma_mapping_error(dev, dma_addr)) {
913 		dev_err(dev, "dma mapping failed\n");
914 		return -ENOMEM;
915 	}
916 
917 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
918 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
919 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
920 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
921 
922 	/* Clear all interrupts. */
923 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
924 
925 	/* Enable DMA done interrupt */
926 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
927 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
928 
929 	/* Default DMA periph configuration */
930 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
931 
932 	/* Configure DMA Dst address */
933 	writel(lower_32_bits(dma_addr),
934 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
935 	writel(upper_32_bits(dma_addr),
936 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
937 
938 	/* Configure DMA Src address */
939 	writel(cqspi->trigger_address, reg_base +
940 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
941 
942 	/* Set DMA destination size */
943 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
944 
945 	/* Set DMA destination control */
946 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
947 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
948 
949 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
950 	       reg_base + CQSPI_REG_INDIRECTRD);
951 
952 	reinit_completion(&cqspi->transfer_complete);
953 
954 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
955 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
956 		ret = -ETIMEDOUT;
957 		goto failrd;
958 	}
959 
960 	/* Disable DMA interrupt */
961 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
962 
963 	/* Clear indirect completion status */
964 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
965 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
966 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
967 
968 	cqspi_controller_enable(cqspi, 0);
969 
970 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
971 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
972 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
973 
974 	cqspi_controller_enable(cqspi, 1);
975 
976 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
977 					PM_OSPI_MUX_SEL_LINEAR);
978 	if (ret)
979 		return ret;
980 
981 nondmard:
982 	if (bytes_rem) {
983 		addr += bytes_to_dma;
984 		buf += bytes_to_dma;
985 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
986 						  bytes_rem);
987 		if (ret)
988 			return ret;
989 	}
990 
991 	return 0;
992 
993 failrd:
994 	/* Disable DMA interrupt */
995 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
996 
997 	/* Cancel the indirect read */
998 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
999 	       reg_base + CQSPI_REG_INDIRECTRD);
1000 
1001 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1002 
1003 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1004 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1005 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1006 
1007 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1008 
1009 	return ret;
1010 }
1011 
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1012 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1013 			     const struct spi_mem_op *op)
1014 {
1015 	unsigned int reg;
1016 	int ret;
1017 	struct cqspi_st *cqspi = f_pdata->cqspi;
1018 	void __iomem *reg_base = cqspi->iobase;
1019 	u8 opcode;
1020 
1021 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1022 	if (ret)
1023 		return ret;
1024 
1025 	if (op->cmd.dtr)
1026 		opcode = op->cmd.opcode >> 8;
1027 	else
1028 		opcode = op->cmd.opcode;
1029 
1030 	/* Set opcode. */
1031 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1032 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1033 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1034 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1035 	reg = cqspi_calc_rdreg(op);
1036 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1037 
1038 	/*
1039 	 * SPI NAND flashes require the address of the status register to be
1040 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1041 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1042 	 * command in DTR mode.
1043 	 *
1044 	 * But this controller does not support address phase in the Read SR
1045 	 * command when doing auto-HW polling. So, disable write completion
1046 	 * polling on the controller's side. spinand and spi-nor will take
1047 	 * care of polling the status register.
1048 	 */
1049 	if (cqspi->wr_completion) {
1050 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1051 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1052 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1053 		/*
1054 		 * DAC mode require auto polling as flash needs to be polled
1055 		 * for write completion in case of bubble in SPI transaction
1056 		 * due to slow CPU/DMA master.
1057 		 */
1058 		cqspi->use_direct_mode_wr = false;
1059 	}
1060 
1061 	reg = readl(reg_base + CQSPI_REG_SIZE);
1062 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1063 	reg |= (op->addr.nbytes - 1);
1064 	writel(reg, reg_base + CQSPI_REG_SIZE);
1065 	return 0;
1066 }
1067 
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1068 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1069 					loff_t to_addr, const u8 *txbuf,
1070 					const size_t n_tx)
1071 {
1072 	struct cqspi_st *cqspi = f_pdata->cqspi;
1073 	struct device *dev = &cqspi->pdev->dev;
1074 	void __iomem *reg_base = cqspi->iobase;
1075 	unsigned int remaining = n_tx;
1076 	unsigned int write_bytes;
1077 	int ret;
1078 
1079 	if (!refcount_read(&cqspi->refcount))
1080 		return -ENODEV;
1081 
1082 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1083 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1084 
1085 	/* Clear all interrupts. */
1086 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1087 
1088 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1089 
1090 	reinit_completion(&cqspi->transfer_complete);
1091 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1092 	       reg_base + CQSPI_REG_INDIRECTWR);
1093 	/*
1094 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1095 	 * Controller programming sequence, couple of cycles of
1096 	 * QSPI_REF_CLK delay is required for the above bit to
1097 	 * be internally synchronized by the QSPI module. Provide 5
1098 	 * cycles of delay.
1099 	 */
1100 	if (cqspi->wr_delay)
1101 		ndelay(cqspi->wr_delay);
1102 
1103 	/*
1104 	 * If a hazard exists between the APB and AHB interfaces, perform a
1105 	 * dummy readback from the controller to ensure synchronization.
1106 	 */
1107 	if (cqspi->apb_ahb_hazard)
1108 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1109 
1110 	while (remaining > 0) {
1111 		size_t write_words, mod_bytes;
1112 
1113 		write_bytes = remaining;
1114 		write_words = write_bytes / 4;
1115 		mod_bytes = write_bytes % 4;
1116 		/* Write 4 bytes at a time then single bytes. */
1117 		if (write_words) {
1118 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1119 			txbuf += (write_words * 4);
1120 		}
1121 		if (mod_bytes) {
1122 			unsigned int temp = 0xFFFFFFFF;
1123 
1124 			memcpy(&temp, txbuf, mod_bytes);
1125 			iowrite32(temp, cqspi->ahb_base);
1126 			txbuf += mod_bytes;
1127 		}
1128 
1129 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1130 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1131 			dev_err(dev, "Indirect write timeout\n");
1132 			ret = -ETIMEDOUT;
1133 			goto failwr;
1134 		}
1135 
1136 		remaining -= write_bytes;
1137 
1138 		if (remaining > 0)
1139 			reinit_completion(&cqspi->transfer_complete);
1140 	}
1141 
1142 	/* Check indirect done status */
1143 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1144 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1145 	if (ret) {
1146 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1147 		goto failwr;
1148 	}
1149 
1150 	/* Disable interrupt. */
1151 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1152 
1153 	/* Clear indirect completion status */
1154 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1155 
1156 	cqspi_wait_idle(cqspi);
1157 
1158 	return 0;
1159 
1160 failwr:
1161 	/* Disable interrupt. */
1162 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1163 
1164 	/* Cancel the indirect write */
1165 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1166 	       reg_base + CQSPI_REG_INDIRECTWR);
1167 	return ret;
1168 }
1169 
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1170 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1171 {
1172 	struct cqspi_st *cqspi = f_pdata->cqspi;
1173 	void __iomem *reg_base = cqspi->iobase;
1174 	unsigned int chip_select = f_pdata->cs;
1175 	unsigned int reg;
1176 
1177 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1178 	if (cqspi->is_decoded_cs) {
1179 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1180 	} else {
1181 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1182 
1183 		/* Convert CS if without decoder.
1184 		 * CS0 to 4b'1110
1185 		 * CS1 to 4b'1101
1186 		 * CS2 to 4b'1011
1187 		 * CS3 to 4b'0111
1188 		 */
1189 		chip_select = 0xF & ~(1 << chip_select);
1190 	}
1191 
1192 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1193 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1194 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1195 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1196 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1197 }
1198 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1199 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1200 					   const unsigned int ns_val)
1201 {
1202 	unsigned int ticks;
1203 
1204 	ticks = ref_clk_hz / 1000;	/* kHz */
1205 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1206 
1207 	return ticks;
1208 }
1209 
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1210 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1211 {
1212 	struct cqspi_st *cqspi = f_pdata->cqspi;
1213 	void __iomem *iobase = cqspi->iobase;
1214 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1215 	unsigned int tshsl, tchsh, tslch, tsd2d;
1216 	unsigned int reg;
1217 	unsigned int tsclk;
1218 
1219 	/* calculate the number of ref ticks for one sclk tick */
1220 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1221 
1222 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1223 	/* this particular value must be at least one sclk */
1224 	if (tshsl < tsclk)
1225 		tshsl = tsclk;
1226 
1227 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1228 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1229 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1230 
1231 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1232 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1233 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1234 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1235 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1236 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1237 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1238 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1239 	writel(reg, iobase + CQSPI_REG_DELAY);
1240 }
1241 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1242 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1243 {
1244 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1245 	void __iomem *reg_base = cqspi->iobase;
1246 	u32 reg, div;
1247 
1248 	/* Recalculate the baudrate divisor based on QSPI specification. */
1249 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1250 
1251 	/* Maximum baud divisor */
1252 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1253 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1254 		dev_warn(&cqspi->pdev->dev,
1255 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1256 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1257 	}
1258 
1259 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1260 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1261 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1262 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1263 }
1264 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1265 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1266 				   const bool bypass,
1267 				   const unsigned int delay)
1268 {
1269 	void __iomem *reg_base = cqspi->iobase;
1270 	unsigned int reg;
1271 
1272 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1273 
1274 	if (bypass)
1275 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1276 	else
1277 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1278 
1279 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1280 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1281 
1282 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1283 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1284 
1285 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1286 }
1287 
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1288 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1289 			    unsigned long sclk)
1290 {
1291 	struct cqspi_st *cqspi = f_pdata->cqspi;
1292 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1293 	int switch_ck = (cqspi->sclk != sclk);
1294 
1295 	if (switch_cs || switch_ck)
1296 		cqspi_controller_enable(cqspi, 0);
1297 
1298 	/* Switch chip select. */
1299 	if (switch_cs) {
1300 		cqspi->current_cs = f_pdata->cs;
1301 		cqspi_chipselect(f_pdata);
1302 	}
1303 
1304 	/* Setup baudrate divisor and delays */
1305 	if (switch_ck) {
1306 		cqspi->sclk = sclk;
1307 		cqspi_config_baudrate_div(cqspi);
1308 		cqspi_delay(f_pdata);
1309 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1310 				       f_pdata->read_delay);
1311 	}
1312 
1313 	if (switch_cs || switch_ck)
1314 		cqspi_controller_enable(cqspi, 1);
1315 }
1316 
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1317 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1318 			   const struct spi_mem_op *op)
1319 {
1320 	struct cqspi_st *cqspi = f_pdata->cqspi;
1321 	loff_t to = op->addr.val;
1322 	size_t len = op->data.nbytes;
1323 	const u_char *buf = op->data.buf.out;
1324 	int ret;
1325 
1326 	ret = cqspi_write_setup(f_pdata, op);
1327 	if (ret)
1328 		return ret;
1329 
1330 	/*
1331 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1332 	 * address (all 0s) with the read status register command in DTR mode.
1333 	 * But this controller does not support sending dummy address bytes to
1334 	 * the flash when it is polling the write completion register in DTR
1335 	 * mode. So, we can not use direct mode when in DTR mode for writing
1336 	 * data.
1337 	 */
1338 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1339 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1340 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1341 		return cqspi_wait_idle(cqspi);
1342 	}
1343 
1344 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1345 }
1346 
cqspi_rx_dma_callback(void * param)1347 static void cqspi_rx_dma_callback(void *param)
1348 {
1349 	struct cqspi_st *cqspi = param;
1350 
1351 	complete(&cqspi->rx_dma_complete);
1352 }
1353 
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1354 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1355 				     u_char *buf, loff_t from, size_t len)
1356 {
1357 	struct cqspi_st *cqspi = f_pdata->cqspi;
1358 	struct device *dev = &cqspi->pdev->dev;
1359 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1360 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1361 	int ret = 0;
1362 	struct dma_async_tx_descriptor *tx;
1363 	dma_cookie_t cookie;
1364 	dma_addr_t dma_dst;
1365 	struct device *ddev;
1366 
1367 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1368 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1369 		return 0;
1370 	}
1371 
1372 	ddev = cqspi->rx_chan->device->dev;
1373 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1374 	if (dma_mapping_error(ddev, dma_dst)) {
1375 		dev_err(dev, "dma mapping failed\n");
1376 		return -ENOMEM;
1377 	}
1378 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1379 				       len, flags);
1380 	if (!tx) {
1381 		dev_err(dev, "device_prep_dma_memcpy error\n");
1382 		ret = -EIO;
1383 		goto err_unmap;
1384 	}
1385 
1386 	tx->callback = cqspi_rx_dma_callback;
1387 	tx->callback_param = cqspi;
1388 	cookie = tx->tx_submit(tx);
1389 	reinit_completion(&cqspi->rx_dma_complete);
1390 
1391 	ret = dma_submit_error(cookie);
1392 	if (ret) {
1393 		dev_err(dev, "dma_submit_error %d\n", cookie);
1394 		ret = -EIO;
1395 		goto err_unmap;
1396 	}
1397 
1398 	dma_async_issue_pending(cqspi->rx_chan);
1399 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1400 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1401 		dmaengine_terminate_sync(cqspi->rx_chan);
1402 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1403 		ret = -ETIMEDOUT;
1404 		goto err_unmap;
1405 	}
1406 
1407 err_unmap:
1408 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1409 
1410 	return ret;
1411 }
1412 
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1413 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1414 			  const struct spi_mem_op *op)
1415 {
1416 	struct cqspi_st *cqspi = f_pdata->cqspi;
1417 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1418 	loff_t from = op->addr.val;
1419 	size_t len = op->data.nbytes;
1420 	u_char *buf = op->data.buf.in;
1421 	u64 dma_align = (u64)(uintptr_t)buf;
1422 	int ret;
1423 
1424 	ret = cqspi_read_setup(f_pdata, op);
1425 	if (ret)
1426 		return ret;
1427 
1428 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1429 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1430 
1431 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1432 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1433 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1434 
1435 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1436 }
1437 
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1438 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1439 {
1440 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1441 	struct cqspi_flash_pdata *f_pdata;
1442 
1443 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1444 	cqspi_configure(f_pdata, op->max_freq);
1445 
1446 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1447 	/*
1448 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1449 	 * which is unsupported on some flash devices during register
1450 	 * reads, prefer STIG mode for such small reads.
1451 	 */
1452 		if (!op->addr.nbytes ||
1453 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1454 		     !cqspi->disable_stig_mode))
1455 			return cqspi_command_read(f_pdata, op);
1456 
1457 		return cqspi_read(f_pdata, op);
1458 	}
1459 
1460 	if (!op->addr.nbytes || !op->data.buf.out)
1461 		return cqspi_command_write(f_pdata, op);
1462 
1463 	return cqspi_write(f_pdata, op);
1464 }
1465 
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1466 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1467 {
1468 	int ret;
1469 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1470 	struct device *dev = &cqspi->pdev->dev;
1471 
1472 	if (refcount_read(&cqspi->inflight_ops) == 0)
1473 		return -ENODEV;
1474 
1475 	ret = pm_runtime_resume_and_get(dev);
1476 	if (ret) {
1477 		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1478 		return ret;
1479 	}
1480 
1481 	if (!refcount_read(&cqspi->refcount))
1482 		return -EBUSY;
1483 
1484 	refcount_inc(&cqspi->inflight_ops);
1485 
1486 	if (!refcount_read(&cqspi->refcount)) {
1487 		if (refcount_read(&cqspi->inflight_ops))
1488 			refcount_dec(&cqspi->inflight_ops);
1489 		return -EBUSY;
1490 	}
1491 
1492 	ret = cqspi_mem_process(mem, op);
1493 
1494 	pm_runtime_put_autosuspend(dev);
1495 
1496 	if (ret)
1497 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1498 
1499 	if (refcount_read(&cqspi->inflight_ops) > 1)
1500 		refcount_dec(&cqspi->inflight_ops);
1501 
1502 	return ret;
1503 }
1504 
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1505 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1506 				  const struct spi_mem_op *op)
1507 {
1508 	bool all_true, all_false;
1509 
1510 	/*
1511 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1512 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1513 	 */
1514 	all_true = op->cmd.dtr &&
1515 		   (!op->addr.nbytes || op->addr.dtr) &&
1516 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1517 		   (!op->data.nbytes || op->data.dtr);
1518 
1519 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1520 		    !op->data.dtr;
1521 
1522 	if (all_true) {
1523 		/* Right now we only support 8-8-8 DTR mode. */
1524 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1525 			return false;
1526 		if (op->addr.nbytes && op->addr.buswidth != 8)
1527 			return false;
1528 		if (op->data.nbytes && op->data.buswidth != 8)
1529 			return false;
1530 	} else if (!all_false) {
1531 		/* Mixed DTR modes are not supported. */
1532 		return false;
1533 	}
1534 
1535 	return spi_mem_default_supports_op(mem, op);
1536 }
1537 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1538 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1539 				    struct cqspi_flash_pdata *f_pdata,
1540 				    struct device_node *np)
1541 {
1542 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1543 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1544 		return -ENXIO;
1545 	}
1546 
1547 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1548 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1549 		return -ENXIO;
1550 	}
1551 
1552 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1553 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1554 		return -ENXIO;
1555 	}
1556 
1557 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1558 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1559 		return -ENXIO;
1560 	}
1561 
1562 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1563 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1564 		return -ENXIO;
1565 	}
1566 
1567 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1568 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1569 		return -ENXIO;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
cqspi_of_get_pdata(struct cqspi_st * cqspi)1575 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1576 {
1577 	struct device *dev = &cqspi->pdev->dev;
1578 	struct device_node *np = dev->of_node;
1579 	u32 id[2];
1580 
1581 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1582 
1583 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1584 		/* Zero signals FIFO depth should be runtime detected. */
1585 		cqspi->fifo_depth = 0;
1586 	}
1587 
1588 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1589 		dev_err(dev, "couldn't determine fifo-width\n");
1590 		return -ENXIO;
1591 	}
1592 
1593 	if (of_property_read_u32(np, "cdns,trigger-address",
1594 				 &cqspi->trigger_address)) {
1595 		dev_err(dev, "couldn't determine trigger-address\n");
1596 		return -ENXIO;
1597 	}
1598 
1599 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1600 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1601 
1602 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1603 
1604 	if (!of_property_read_u32_array(np, "power-domains", id,
1605 					ARRAY_SIZE(id)))
1606 		cqspi->pd_dev_id = id[1];
1607 
1608 	return 0;
1609 }
1610 
cqspi_controller_init(struct cqspi_st * cqspi)1611 static void cqspi_controller_init(struct cqspi_st *cqspi)
1612 {
1613 	u32 reg;
1614 
1615 	/* Configure the remap address register, no remap */
1616 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1617 
1618 	/* Disable all interrupts. */
1619 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1620 
1621 	/* Configure the SRAM split to 1:1 . */
1622 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1623 
1624 	/* Load indirect trigger address. */
1625 	writel(cqspi->trigger_address,
1626 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1627 
1628 	/* Program read watermark -- 1/2 of the FIFO. */
1629 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1630 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1631 	/* Program write watermark -- 1/8 of the FIFO. */
1632 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1633 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1634 
1635 	/* Disable direct access controller */
1636 	if (!cqspi->use_direct_mode) {
1637 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1638 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1639 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1640 	}
1641 
1642 	/* Enable DMA interface */
1643 	if (cqspi->use_dma_read) {
1644 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1645 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1646 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1647 	}
1648 }
1649 
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1650 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1651 {
1652 	struct device *dev = &cqspi->pdev->dev;
1653 	u32 reg, fifo_depth;
1654 
1655 	/*
1656 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1657 	 * the FIFO depth.
1658 	 */
1659 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1660 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1661 	fifo_depth = reg + 1;
1662 
1663 	/* FIFO depth of zero means no value from devicetree was provided. */
1664 	if (cqspi->fifo_depth == 0) {
1665 		cqspi->fifo_depth = fifo_depth;
1666 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1667 	} else if (fifo_depth != cqspi->fifo_depth) {
1668 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1669 			 fifo_depth, cqspi->fifo_depth);
1670 	}
1671 }
1672 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1673 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1674 {
1675 	dma_cap_mask_t mask;
1676 
1677 	dma_cap_zero(mask);
1678 	dma_cap_set(DMA_MEMCPY, mask);
1679 
1680 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1681 	if (IS_ERR(cqspi->rx_chan)) {
1682 		int ret = PTR_ERR(cqspi->rx_chan);
1683 
1684 		cqspi->rx_chan = NULL;
1685 		if (ret == -ENODEV) {
1686 			/* DMA support is not mandatory */
1687 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1688 			return 0;
1689 		}
1690 
1691 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1692 	}
1693 	init_completion(&cqspi->rx_dma_complete);
1694 
1695 	return 0;
1696 }
1697 
cqspi_get_name(struct spi_mem * mem)1698 static const char *cqspi_get_name(struct spi_mem *mem)
1699 {
1700 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1701 	struct device *dev = &cqspi->pdev->dev;
1702 
1703 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1704 			      spi_get_chipselect(mem->spi, 0));
1705 }
1706 
1707 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1708 	.exec_op = cqspi_exec_mem_op,
1709 	.get_name = cqspi_get_name,
1710 	.supports_op = cqspi_supports_mem_op,
1711 };
1712 
1713 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1714 	.dtr = true,
1715 	.per_op_freq = true,
1716 };
1717 
cqspi_setup_flash(struct cqspi_st * cqspi)1718 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1719 {
1720 	unsigned int max_cs = cqspi->num_chipselect - 1;
1721 	struct platform_device *pdev = cqspi->pdev;
1722 	struct device *dev = &pdev->dev;
1723 	struct cqspi_flash_pdata *f_pdata;
1724 	unsigned int cs;
1725 	int ret;
1726 
1727 	/* Get flash device data */
1728 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1729 		ret = of_property_read_u32(np, "reg", &cs);
1730 		if (ret) {
1731 			dev_err(dev, "Couldn't determine chip select.\n");
1732 			return ret;
1733 		}
1734 
1735 		if (cs >= cqspi->num_chipselect) {
1736 			dev_err(dev, "Chip select %d out of range.\n", cs);
1737 			return -EINVAL;
1738 		} else if (cs < max_cs) {
1739 			max_cs = cs;
1740 		}
1741 
1742 		f_pdata = &cqspi->f_pdata[cs];
1743 		f_pdata->cqspi = cqspi;
1744 		f_pdata->cs = cs;
1745 
1746 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1747 		if (ret)
1748 			return ret;
1749 	}
1750 
1751 	cqspi->num_chipselect = max_cs + 1;
1752 	return 0;
1753 }
1754 
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1755 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1756 {
1757 	static struct clk_bulk_data qspiclk[] = {
1758 		{ .id = "apb" },
1759 		{ .id = "ahb" },
1760 	};
1761 
1762 	int ret = 0;
1763 
1764 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1765 	if (ret) {
1766 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1767 		return ret;
1768 	}
1769 
1770 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1771 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1772 
1773 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1774 	if (ret) {
1775 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1776 		return ret;
1777 	}
1778 
1779 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1780 	if (ret) {
1781 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1782 		goto disable_apb_clk;
1783 	}
1784 
1785 	cqspi->is_jh7110 = true;
1786 
1787 	return 0;
1788 
1789 disable_apb_clk:
1790 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1791 
1792 	return ret;
1793 }
1794 
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1795 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1796 {
1797 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1798 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1799 }
cqspi_probe(struct platform_device * pdev)1800 static int cqspi_probe(struct platform_device *pdev)
1801 {
1802 	const struct cqspi_driver_platdata *ddata;
1803 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1804 	struct device *dev = &pdev->dev;
1805 	struct spi_controller *host;
1806 	struct resource *res_ahb;
1807 	struct cqspi_st *cqspi;
1808 	int ret;
1809 	int irq;
1810 
1811 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1812 	if (!host)
1813 		return -ENOMEM;
1814 
1815 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1816 	host->mem_ops = &cqspi_mem_ops;
1817 	host->mem_caps = &cqspi_mem_caps;
1818 	host->dev.of_node = pdev->dev.of_node;
1819 
1820 	cqspi = spi_controller_get_devdata(host);
1821 
1822 	cqspi->pdev = pdev;
1823 	cqspi->host = host;
1824 	cqspi->is_jh7110 = false;
1825 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1826 	platform_set_drvdata(pdev, cqspi);
1827 
1828 	/* Obtain configuration from OF. */
1829 	ret = cqspi_of_get_pdata(cqspi);
1830 	if (ret) {
1831 		dev_err(dev, "Cannot get mandatory OF data.\n");
1832 		return -ENODEV;
1833 	}
1834 
1835 	/* Obtain QSPI clock. */
1836 	cqspi->clk = devm_clk_get(dev, NULL);
1837 	if (IS_ERR(cqspi->clk)) {
1838 		dev_err(dev, "Cannot claim QSPI clock.\n");
1839 		ret = PTR_ERR(cqspi->clk);
1840 		return ret;
1841 	}
1842 
1843 	/* Obtain and remap controller address. */
1844 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1845 	if (IS_ERR(cqspi->iobase)) {
1846 		dev_err(dev, "Cannot remap controller address.\n");
1847 		ret = PTR_ERR(cqspi->iobase);
1848 		return ret;
1849 	}
1850 
1851 	/* Obtain and remap AHB address. */
1852 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1853 	if (IS_ERR(cqspi->ahb_base)) {
1854 		dev_err(dev, "Cannot remap AHB address.\n");
1855 		ret = PTR_ERR(cqspi->ahb_base);
1856 		return ret;
1857 	}
1858 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1859 	cqspi->ahb_size = resource_size(res_ahb);
1860 
1861 	init_completion(&cqspi->transfer_complete);
1862 
1863 	/* Obtain IRQ line. */
1864 	irq = platform_get_irq(pdev, 0);
1865 	if (irq < 0)
1866 		return -ENXIO;
1867 
1868 	ret = pm_runtime_set_active(dev);
1869 	if (ret)
1870 		return ret;
1871 
1872 
1873 	ret = clk_prepare_enable(cqspi->clk);
1874 	if (ret) {
1875 		dev_err(dev, "Cannot enable QSPI clock.\n");
1876 		goto probe_clk_failed;
1877 	}
1878 
1879 	/* Obtain QSPI reset control */
1880 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1881 	if (IS_ERR(rstc)) {
1882 		ret = PTR_ERR(rstc);
1883 		dev_err(dev, "Cannot get QSPI reset.\n");
1884 		goto probe_reset_failed;
1885 	}
1886 
1887 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1888 	if (IS_ERR(rstc_ocp)) {
1889 		ret = PTR_ERR(rstc_ocp);
1890 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1891 		goto probe_reset_failed;
1892 	}
1893 
1894 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1895 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1896 		if (IS_ERR(rstc_ref)) {
1897 			ret = PTR_ERR(rstc_ref);
1898 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1899 			goto probe_reset_failed;
1900 		}
1901 		reset_control_assert(rstc_ref);
1902 		reset_control_deassert(rstc_ref);
1903 	}
1904 
1905 	reset_control_assert(rstc);
1906 	reset_control_deassert(rstc);
1907 
1908 	reset_control_assert(rstc_ocp);
1909 	reset_control_deassert(rstc_ocp);
1910 
1911 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1912 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1913 
1914 	/* write completion is supported by default */
1915 	cqspi->wr_completion = true;
1916 
1917 	if (ddata) {
1918 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1919 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1920 						cqspi->master_ref_clk_hz);
1921 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1922 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1923 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1924 			host->mode_bits |= SPI_TX_QUAD;
1925 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1926 			cqspi->use_direct_mode = true;
1927 			cqspi->use_direct_mode_wr = true;
1928 		}
1929 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1930 			cqspi->use_dma_read = true;
1931 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1932 			cqspi->wr_completion = false;
1933 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1934 			cqspi->slow_sram = true;
1935 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1936 			cqspi->apb_ahb_hazard = true;
1937 
1938 		if (ddata->jh7110_clk_init) {
1939 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1940 			if (ret)
1941 				goto probe_reset_failed;
1942 		}
1943 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1944 			cqspi->disable_stig_mode = true;
1945 
1946 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1947 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1948 			if (ret)
1949 				goto probe_reset_failed;
1950 		}
1951 	}
1952 
1953 	refcount_set(&cqspi->refcount, 1);
1954 	refcount_set(&cqspi->inflight_ops, 1);
1955 
1956 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1957 			       pdev->name, cqspi);
1958 	if (ret) {
1959 		dev_err(dev, "Cannot request IRQ.\n");
1960 		goto probe_reset_failed;
1961 	}
1962 
1963 	cqspi_wait_idle(cqspi);
1964 	cqspi_controller_enable(cqspi, 0);
1965 	cqspi_controller_detect_fifo_depth(cqspi);
1966 	cqspi_controller_init(cqspi);
1967 	cqspi_controller_enable(cqspi, 1);
1968 	cqspi->current_cs = -1;
1969 	cqspi->sclk = 0;
1970 
1971 	ret = cqspi_setup_flash(cqspi);
1972 	if (ret) {
1973 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1974 		goto probe_setup_failed;
1975 	}
1976 
1977 	host->num_chipselect = cqspi->num_chipselect;
1978 
1979 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1980 		cqspi_device_reset(cqspi);
1981 
1982 	if (cqspi->use_direct_mode) {
1983 		ret = cqspi_request_mmap_dma(cqspi);
1984 		if (ret == -EPROBE_DEFER)
1985 			goto probe_setup_failed;
1986 	}
1987 
1988 	pm_runtime_enable(dev);
1989 
1990 	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1991 	pm_runtime_use_autosuspend(dev);
1992 	pm_runtime_get_noresume(dev);
1993 
1994 	ret = spi_register_controller(host);
1995 	if (ret) {
1996 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1997 		goto probe_setup_failed;
1998 	}
1999 
2000 	pm_runtime_put_autosuspend(dev);
2001 
2002 	return 0;
2003 probe_setup_failed:
2004 	cqspi_controller_enable(cqspi, 0);
2005 	pm_runtime_disable(dev);
2006 probe_reset_failed:
2007 	if (cqspi->is_jh7110)
2008 		cqspi_jh7110_disable_clk(pdev, cqspi);
2009 	clk_disable_unprepare(cqspi->clk);
2010 probe_clk_failed:
2011 	return ret;
2012 }
2013 
cqspi_remove(struct platform_device * pdev)2014 static void cqspi_remove(struct platform_device *pdev)
2015 {
2016 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2017 
2018 	refcount_set(&cqspi->refcount, 0);
2019 
2020 	if (!refcount_dec_and_test(&cqspi->inflight_ops))
2021 		cqspi_wait_idle(cqspi);
2022 
2023 	spi_unregister_controller(cqspi->host);
2024 	cqspi_controller_enable(cqspi, 0);
2025 
2026 	if (cqspi->rx_chan)
2027 		dma_release_channel(cqspi->rx_chan);
2028 
2029 	if (pm_runtime_get_sync(&pdev->dev) >= 0)
2030 		clk_disable(cqspi->clk);
2031 
2032 	if (cqspi->is_jh7110)
2033 		cqspi_jh7110_disable_clk(pdev, cqspi);
2034 
2035 	pm_runtime_put_sync(&pdev->dev);
2036 	pm_runtime_disable(&pdev->dev);
2037 }
2038 
cqspi_runtime_suspend(struct device * dev)2039 static int cqspi_runtime_suspend(struct device *dev)
2040 {
2041 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2042 
2043 	cqspi_controller_enable(cqspi, 0);
2044 	clk_disable_unprepare(cqspi->clk);
2045 	return 0;
2046 }
2047 
cqspi_runtime_resume(struct device * dev)2048 static int cqspi_runtime_resume(struct device *dev)
2049 {
2050 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2051 
2052 	clk_prepare_enable(cqspi->clk);
2053 	cqspi_wait_idle(cqspi);
2054 	cqspi_controller_enable(cqspi, 0);
2055 	cqspi_controller_init(cqspi);
2056 	cqspi_controller_enable(cqspi, 1);
2057 
2058 	cqspi->current_cs = -1;
2059 	cqspi->sclk = 0;
2060 	return 0;
2061 }
2062 
cqspi_suspend(struct device * dev)2063 static int cqspi_suspend(struct device *dev)
2064 {
2065 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2066 	int ret;
2067 
2068 	ret = spi_controller_suspend(cqspi->host);
2069 	if (ret)
2070 		return ret;
2071 
2072 	return pm_runtime_force_suspend(dev);
2073 }
2074 
cqspi_resume(struct device * dev)2075 static int cqspi_resume(struct device *dev)
2076 {
2077 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2078 	int ret;
2079 
2080 	ret = pm_runtime_force_resume(dev);
2081 	if (ret) {
2082 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2083 		return ret;
2084 	}
2085 
2086 	return spi_controller_resume(cqspi->host);
2087 }
2088 
2089 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2090 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2091 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2092 };
2093 
2094 static const struct cqspi_driver_platdata cdns_qspi = {
2095 	.quirks = CQSPI_DISABLE_DAC_MODE,
2096 };
2097 
2098 static const struct cqspi_driver_platdata k2g_qspi = {
2099 	.quirks = CQSPI_NEEDS_WR_DELAY,
2100 };
2101 
2102 static const struct cqspi_driver_platdata am654_ospi = {
2103 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2104 	.quirks = CQSPI_NEEDS_WR_DELAY,
2105 };
2106 
2107 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2108 	.quirks = CQSPI_DISABLE_DAC_MODE,
2109 };
2110 
2111 static const struct cqspi_driver_platdata socfpga_qspi = {
2112 	.quirks = CQSPI_DISABLE_DAC_MODE
2113 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2114 			| CQSPI_SLOW_SRAM
2115 			| CQSPI_DISABLE_STIG_MODE,
2116 };
2117 
2118 static const struct cqspi_driver_platdata versal_ospi = {
2119 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2120 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2121 			| CQSPI_DMA_SET_MASK,
2122 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2123 	.get_dma_status = cqspi_get_versal_dma_status,
2124 };
2125 
2126 static const struct cqspi_driver_platdata versal2_ospi = {
2127 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2128 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2129 			| CQSPI_DMA_SET_MASK
2130 			| CQSPI_SUPPORT_DEVICE_RESET,
2131 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2132 	.get_dma_status = cqspi_get_versal_dma_status,
2133 };
2134 
2135 static const struct cqspi_driver_platdata jh7110_qspi = {
2136 	.quirks = CQSPI_DISABLE_DAC_MODE,
2137 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2138 };
2139 
2140 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2141 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2142 };
2143 
2144 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2145 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2146 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2147 			CQSPI_RD_NO_IRQ,
2148 };
2149 
2150 static const struct of_device_id cqspi_dt_ids[] = {
2151 	{
2152 		.compatible = "cdns,qspi-nor",
2153 		.data = &cdns_qspi,
2154 	},
2155 	{
2156 		.compatible = "ti,k2g-qspi",
2157 		.data = &k2g_qspi,
2158 	},
2159 	{
2160 		.compatible = "ti,am654-ospi",
2161 		.data = &am654_ospi,
2162 	},
2163 	{
2164 		.compatible = "intel,lgm-qspi",
2165 		.data = &intel_lgm_qspi,
2166 	},
2167 	{
2168 		.compatible = "xlnx,versal-ospi-1.0",
2169 		.data = &versal_ospi,
2170 	},
2171 	{
2172 		.compatible = "intel,socfpga-qspi",
2173 		.data = &socfpga_qspi,
2174 	},
2175 	{
2176 		.compatible = "starfive,jh7110-qspi",
2177 		.data = &jh7110_qspi,
2178 	},
2179 	{
2180 		.compatible = "amd,pensando-elba-qspi",
2181 		.data = &pensando_cdns_qspi,
2182 	},
2183 	{
2184 		.compatible = "mobileye,eyeq5-ospi",
2185 		.data = &mobileye_eyeq5_ospi,
2186 	},
2187 	{
2188 		.compatible = "amd,versal2-ospi",
2189 		.data = &versal2_ospi,
2190 	},
2191 	{ /* end of table */ }
2192 };
2193 
2194 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2195 
2196 static struct platform_driver cqspi_platform_driver = {
2197 	.probe = cqspi_probe,
2198 	.remove = cqspi_remove,
2199 	.driver = {
2200 		.name = CQSPI_NAME,
2201 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2202 		.of_match_table = cqspi_dt_ids,
2203 	},
2204 };
2205 
2206 module_platform_driver(cqspi_platform_driver);
2207 
2208 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2209 MODULE_LICENSE("GPL v2");
2210 MODULE_ALIAS("platform:" CQSPI_NAME);
2211 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2212 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2213 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2214 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2215 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2216