1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT 4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
43 #define CQSPI_SLOW_SRAM BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45 #define CQSPI_RD_NO_IRQ BIT(6)
46 #define CQSPI_DMA_SET_MASK BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE BIT(9)
49
50 /* Capabilities */
51 #define CQSPI_SUPPORTS_OCTAL BIT(0)
52 #define CQSPI_SUPPORTS_QUAD BIT(1)
53
54 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
55
56 enum {
57 CLK_QSPI_APB = 0,
58 CLK_QSPI_AHB,
59 CLK_QSPI_NUM,
60 };
61
62 struct cqspi_st;
63
64 struct cqspi_flash_pdata {
65 struct cqspi_st *cqspi;
66 u32 clk_rate;
67 u32 read_delay;
68 u32 tshsl_ns;
69 u32 tsd2d_ns;
70 u32 tchsh_ns;
71 u32 tslch_ns;
72 u8 cs;
73 };
74
75 struct cqspi_st {
76 struct platform_device *pdev;
77 struct spi_controller *host;
78 struct clk *clk;
79 struct clk *clks[CLK_QSPI_NUM];
80 unsigned int sclk;
81
82 void __iomem *iobase;
83 void __iomem *ahb_base;
84 resource_size_t ahb_size;
85 struct completion transfer_complete;
86
87 struct dma_chan *rx_chan;
88 struct completion rx_dma_complete;
89 dma_addr_t mmap_phys_base;
90
91 int current_cs;
92 unsigned long master_ref_clk_hz;
93 bool is_decoded_cs;
94 u32 fifo_depth;
95 u32 fifo_width;
96 u32 num_chipselect;
97 bool rclk_en;
98 u32 trigger_address;
99 u32 wr_delay;
100 bool use_direct_mode;
101 bool use_direct_mode_wr;
102 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
103 bool use_dma_read;
104 u32 pd_dev_id;
105 bool wr_completion;
106 bool slow_sram;
107 bool apb_ahb_hazard;
108
109 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
110 bool disable_stig_mode;
111 refcount_t refcount;
112 refcount_t inflight_ops;
113
114 const struct cqspi_driver_platdata *ddata;
115 };
116
117 struct cqspi_driver_platdata {
118 u32 hwcaps_mask;
119 u16 quirks;
120 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
121 u_char *rxbuf, loff_t from_addr, size_t n_rx);
122 u32 (*get_dma_status)(struct cqspi_st *cqspi);
123 int (*jh7110_clk_init)(struct platform_device *pdev,
124 struct cqspi_st *cqspi);
125 };
126
127 /* Operation timeout value */
128 #define CQSPI_TIMEOUT_MS 500
129 #define CQSPI_READ_TIMEOUT_MS 10
130 #define CQSPI_BUSYWAIT_TIMEOUT_US 500
131
132 /* Runtime_pm autosuspend delay */
133 #define CQSPI_AUTOSUSPEND_TIMEOUT 2000
134
135 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
136 #define CQSPI_DUMMY_BYTES_MAX 4
137 #define CQSPI_DUMMY_CLKS_MAX 31
138
139 #define CQSPI_STIG_DATA_LEN_MAX 8
140
141 /* Register map */
142 #define CQSPI_REG_CONFIG 0x00
143 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
144 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
145 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
146 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
147 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
148 #define CQSPI_REG_CONFIG_BAUD_LSB 19
149 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
150 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
151 #define CQSPI_REG_CONFIG_IDLE_LSB 31
152 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
153 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
154 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK BIT(5)
155 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK BIT(6)
156
157 #define CQSPI_REG_RD_INSTR 0x04
158 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
159 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
160 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
161 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
162 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
163 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
164 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
165 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
166 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
167 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
168
169 #define CQSPI_REG_WR_INSTR 0x08
170 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
171 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
172 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
173
174 #define CQSPI_REG_DELAY 0x0C
175 #define CQSPI_REG_DELAY_TSLCH_LSB 0
176 #define CQSPI_REG_DELAY_TCHSH_LSB 8
177 #define CQSPI_REG_DELAY_TSD2D_LSB 16
178 #define CQSPI_REG_DELAY_TSHSL_LSB 24
179 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
180 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
181 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
182 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
183
184 #define CQSPI_REG_READCAPTURE 0x10
185 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
186 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
187 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
188
189 #define CQSPI_REG_SIZE 0x14
190 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
191 #define CQSPI_REG_SIZE_PAGE_LSB 4
192 #define CQSPI_REG_SIZE_BLOCK_LSB 16
193 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
194 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
195 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
196
197 #define CQSPI_REG_SRAMPARTITION 0x18
198 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
199
200 #define CQSPI_REG_DMA 0x20
201 #define CQSPI_REG_DMA_SINGLE_LSB 0
202 #define CQSPI_REG_DMA_BURST_LSB 8
203 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
204 #define CQSPI_REG_DMA_BURST_MASK 0xFF
205
206 #define CQSPI_REG_REMAP 0x24
207 #define CQSPI_REG_MODE_BIT 0x28
208
209 #define CQSPI_REG_SDRAMLEVEL 0x2C
210 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
211 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
212 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
213 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
214
215 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
216 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
217
218 #define CQSPI_REG_IRQSTATUS 0x40
219 #define CQSPI_REG_IRQMASK 0x44
220
221 #define CQSPI_REG_INDIRECTRD 0x60
222 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
223 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
224 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
225
226 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
227 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
228 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
229
230 #define CQSPI_REG_CMDCTRL 0x90
231 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
232 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
233 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
234 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
235 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
236 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
237 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
238 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
239 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
240 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
241 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
242 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
243 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
244 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
245
246 #define CQSPI_REG_INDIRECTWR 0x70
247 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
248 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
249 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
250
251 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
252 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
253 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
254
255 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
256
257 #define CQSPI_REG_CMDADDRESS 0x94
258 #define CQSPI_REG_CMDREADDATALOWER 0xA0
259 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
260 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
261 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
262
263 #define CQSPI_REG_POLLING_STATUS 0xB0
264 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
265
266 #define CQSPI_REG_OP_EXT_LOWER 0xE0
267 #define CQSPI_REG_OP_EXT_READ_LSB 24
268 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
269 #define CQSPI_REG_OP_EXT_STIG_LSB 0
270
271 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
272
273 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
274 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
275
276 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
277
278 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
279 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
280 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
281 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
282
283 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
284
285 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
286 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
287
288 /* Interrupt status bits */
289 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
290 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
291 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
292 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
293 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
294 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
295 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
296 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
297
298 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
299 CQSPI_REG_IRQ_IND_SRAM_FULL | \
300 CQSPI_REG_IRQ_IND_COMP)
301
302 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
303 CQSPI_REG_IRQ_WATERMARK | \
304 CQSPI_REG_IRQ_UNDERFLOW)
305
306 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
307 #define CQSPI_DMA_UNALIGN 0x3
308
309 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
310
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)311 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
312 void __iomem *reg, const u32 mask, bool clr,
313 bool busywait)
314 {
315 u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
316 u32 val;
317
318 if (busywait) {
319 int ret = readl_relaxed_poll_timeout(reg, val,
320 (((clr ? ~val : val) & mask) == mask),
321 0, CQSPI_BUSYWAIT_TIMEOUT_US);
322
323 if (ret != -ETIMEDOUT)
324 return ret;
325
326 timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
327 }
328
329 return readl_relaxed_poll_timeout(reg, val,
330 (((clr ? ~val : val) & mask) == mask),
331 10, timeout_us);
332 }
333
cqspi_is_idle(struct cqspi_st * cqspi)334 static bool cqspi_is_idle(struct cqspi_st *cqspi)
335 {
336 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
337
338 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
339 }
340
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)341 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
342 {
343 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
344
345 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
346 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
347 }
348
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)349 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
350 {
351 u32 dma_status;
352
353 dma_status = readl(cqspi->iobase +
354 CQSPI_REG_VERSAL_DMA_DST_I_STS);
355 writel(dma_status, cqspi->iobase +
356 CQSPI_REG_VERSAL_DMA_DST_I_STS);
357
358 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
359 }
360
cqspi_irq_handler(int this_irq,void * dev)361 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
362 {
363 struct cqspi_st *cqspi = dev;
364 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
365 unsigned int irq_status;
366
367 /* Read interrupt status */
368 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
369
370 /* Clear interrupt */
371 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
372
373 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
374 if (ddata->get_dma_status(cqspi)) {
375 complete(&cqspi->transfer_complete);
376 return IRQ_HANDLED;
377 }
378 }
379
380 else if (!cqspi->slow_sram)
381 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
382 else
383 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
384
385 if (irq_status)
386 complete(&cqspi->transfer_complete);
387
388 return IRQ_HANDLED;
389 }
390
cqspi_calc_rdreg(const struct spi_mem_op * op)391 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
392 {
393 u32 rdreg = 0;
394
395 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
396 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
397 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
398
399 return rdreg;
400 }
401
cqspi_calc_dummy(const struct spi_mem_op * op)402 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
403 {
404 unsigned int dummy_clk;
405
406 if (!op->dummy.nbytes)
407 return 0;
408
409 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
410 if (op->cmd.dtr)
411 dummy_clk /= 2;
412
413 return dummy_clk;
414 }
415
cqspi_wait_idle(struct cqspi_st * cqspi)416 static int cqspi_wait_idle(struct cqspi_st *cqspi)
417 {
418 const unsigned int poll_idle_retry = 3;
419 unsigned int count = 0;
420 unsigned long timeout;
421
422 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
423 while (1) {
424 /*
425 * Read few times in succession to ensure the controller
426 * is indeed idle, that is, the bit does not transition
427 * low again.
428 */
429 if (cqspi_is_idle(cqspi))
430 count++;
431 else
432 count = 0;
433
434 if (count >= poll_idle_retry)
435 return 0;
436
437 if (time_after(jiffies, timeout)) {
438 /* Timeout, in busy mode. */
439 dev_err(&cqspi->pdev->dev,
440 "QSPI is still busy after %dms timeout.\n",
441 CQSPI_TIMEOUT_MS);
442 return -ETIMEDOUT;
443 }
444
445 cpu_relax();
446 }
447 }
448
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)449 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
450 {
451 void __iomem *reg_base = cqspi->iobase;
452 int ret;
453
454 /* Write the CMDCTRL without start execution. */
455 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
456 /* Start execute */
457 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
458 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
459
460 /* Polling for completion. */
461 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
462 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
463 if (ret) {
464 dev_err(&cqspi->pdev->dev,
465 "Flash command execution timed out.\n");
466 return ret;
467 }
468
469 /* Polling QSPI idle status. */
470 return cqspi_wait_idle(cqspi);
471 }
472
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)473 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
474 const struct spi_mem_op *op,
475 unsigned int shift)
476 {
477 struct cqspi_st *cqspi = f_pdata->cqspi;
478 void __iomem *reg_base = cqspi->iobase;
479 unsigned int reg;
480 u8 ext;
481
482 if (op->cmd.nbytes != 2)
483 return -EINVAL;
484
485 /* Opcode extension is the LSB. */
486 ext = op->cmd.opcode & 0xff;
487
488 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
489 reg &= ~(0xff << shift);
490 reg |= ext << shift;
491 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
492
493 return 0;
494 }
495
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)496 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
497 const struct spi_mem_op *op, unsigned int shift)
498 {
499 struct cqspi_st *cqspi = f_pdata->cqspi;
500 void __iomem *reg_base = cqspi->iobase;
501 unsigned int reg;
502 int ret;
503
504 reg = readl(reg_base + CQSPI_REG_CONFIG);
505
506 /*
507 * We enable dual byte opcode here. The callers have to set up the
508 * extension opcode based on which type of operation it is.
509 */
510 if (op->cmd.dtr) {
511 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
512 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
513
514 /* Set up command opcode extension. */
515 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
516 if (ret)
517 return ret;
518 } else {
519 unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
520 /* Shortcut if DTR is already disabled. */
521 if ((reg & mask) == 0)
522 return 0;
523 reg &= ~mask;
524 }
525
526 writel(reg, reg_base + CQSPI_REG_CONFIG);
527
528 return cqspi_wait_idle(cqspi);
529 }
530
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)531 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
532 const struct spi_mem_op *op)
533 {
534 struct cqspi_st *cqspi = f_pdata->cqspi;
535 void __iomem *reg_base = cqspi->iobase;
536 u8 *rxbuf = op->data.buf.in;
537 u8 opcode;
538 size_t n_rx = op->data.nbytes;
539 unsigned int rdreg;
540 unsigned int reg;
541 unsigned int dummy_clk;
542 size_t read_len;
543 int status;
544
545 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
546 if (status)
547 return status;
548
549 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
550 dev_err(&cqspi->pdev->dev,
551 "Invalid input argument, len %zu rxbuf 0x%p\n",
552 n_rx, rxbuf);
553 return -EINVAL;
554 }
555
556 if (op->cmd.dtr)
557 opcode = op->cmd.opcode >> 8;
558 else
559 opcode = op->cmd.opcode;
560
561 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
562
563 rdreg = cqspi_calc_rdreg(op);
564 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
565
566 dummy_clk = cqspi_calc_dummy(op);
567 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
568 return -EOPNOTSUPP;
569
570 if (dummy_clk)
571 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
572 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
573
574 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
575
576 /* 0 means 1 byte. */
577 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
578 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
579
580 /* setup ADDR BIT field */
581 if (op->addr.nbytes) {
582 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
583 reg |= ((op->addr.nbytes - 1) &
584 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
585 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
586
587 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
588 }
589
590 status = cqspi_exec_flash_cmd(cqspi, reg);
591 if (status)
592 return status;
593
594 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
595
596 /* Put the read value into rx_buf */
597 read_len = (n_rx > 4) ? 4 : n_rx;
598 memcpy(rxbuf, ®, read_len);
599 rxbuf += read_len;
600
601 if (n_rx > 4) {
602 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
603
604 read_len = n_rx - read_len;
605 memcpy(rxbuf, ®, read_len);
606 }
607
608 /* Reset CMD_CTRL Reg once command read completes */
609 writel(0, reg_base + CQSPI_REG_CMDCTRL);
610
611 return 0;
612 }
613
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)614 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
615 const struct spi_mem_op *op)
616 {
617 struct cqspi_st *cqspi = f_pdata->cqspi;
618 void __iomem *reg_base = cqspi->iobase;
619 u8 opcode;
620 const u8 *txbuf = op->data.buf.out;
621 size_t n_tx = op->data.nbytes;
622 unsigned int reg;
623 unsigned int data;
624 size_t write_len;
625 int ret;
626
627 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
628 if (ret)
629 return ret;
630
631 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
632 dev_err(&cqspi->pdev->dev,
633 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
634 n_tx, txbuf);
635 return -EINVAL;
636 }
637
638 reg = cqspi_calc_rdreg(op);
639 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
640
641 if (op->cmd.dtr)
642 opcode = op->cmd.opcode >> 8;
643 else
644 opcode = op->cmd.opcode;
645
646 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
647
648 if (op->addr.nbytes) {
649 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
650 reg |= ((op->addr.nbytes - 1) &
651 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
652 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
653
654 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
655 }
656
657 if (n_tx) {
658 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
659 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
660 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
661 data = 0;
662 write_len = (n_tx > 4) ? 4 : n_tx;
663 memcpy(&data, txbuf, write_len);
664 txbuf += write_len;
665 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
666
667 if (n_tx > 4) {
668 data = 0;
669 write_len = n_tx - 4;
670 memcpy(&data, txbuf, write_len);
671 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
672 }
673 }
674
675 ret = cqspi_exec_flash_cmd(cqspi, reg);
676
677 /* Reset CMD_CTRL Reg once command write completes */
678 writel(0, reg_base + CQSPI_REG_CMDCTRL);
679
680 return ret;
681 }
682
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)683 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
684 const struct spi_mem_op *op)
685 {
686 struct cqspi_st *cqspi = f_pdata->cqspi;
687 void __iomem *reg_base = cqspi->iobase;
688 unsigned int dummy_clk = 0;
689 unsigned int reg;
690 int ret;
691 u8 opcode;
692
693 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
694 if (ret)
695 return ret;
696
697 if (op->cmd.dtr)
698 opcode = op->cmd.opcode >> 8;
699 else
700 opcode = op->cmd.opcode;
701
702 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
703 reg |= cqspi_calc_rdreg(op);
704
705 /* Setup dummy clock cycles */
706 dummy_clk = cqspi_calc_dummy(op);
707
708 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
709 return -EOPNOTSUPP;
710
711 if (dummy_clk)
712 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
713 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
714
715 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
716
717 /* Set address width */
718 reg = readl(reg_base + CQSPI_REG_SIZE);
719 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
720 reg |= (op->addr.nbytes - 1);
721 writel(reg, reg_base + CQSPI_REG_SIZE);
722 return 0;
723 }
724
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)725 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
726 u8 *rxbuf, loff_t from_addr,
727 const size_t n_rx)
728 {
729 struct cqspi_st *cqspi = f_pdata->cqspi;
730 bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
731 struct device *dev = &cqspi->pdev->dev;
732 void __iomem *reg_base = cqspi->iobase;
733 void __iomem *ahb_base = cqspi->ahb_base;
734 unsigned int remaining = n_rx;
735 unsigned int mod_bytes = n_rx % 4;
736 unsigned int bytes_to_read = 0;
737 u8 *rxbuf_end = rxbuf + n_rx;
738 int ret = 0;
739
740 if (!refcount_read(&cqspi->refcount))
741 return -ENODEV;
742
743 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
744 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
745
746 /* Clear all interrupts. */
747 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
748
749 /*
750 * On SoCFPGA platform reading the SRAM is slow due to
751 * hardware limitation and causing read interrupt storm to CPU,
752 * so enabling only watermark interrupt to disable all read
753 * interrupts later as we want to run "bytes to read" loop with
754 * all the read interrupts disabled for max performance.
755 */
756
757 if (use_irq && cqspi->slow_sram)
758 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
759 else if (use_irq)
760 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
761 else
762 writel(0, reg_base + CQSPI_REG_IRQMASK);
763
764 reinit_completion(&cqspi->transfer_complete);
765 writel(CQSPI_REG_INDIRECTRD_START_MASK,
766 reg_base + CQSPI_REG_INDIRECTRD);
767
768 while (remaining > 0) {
769 if (use_irq &&
770 !wait_for_completion_timeout(&cqspi->transfer_complete,
771 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
772 ret = -ETIMEDOUT;
773
774 /*
775 * Disable all read interrupts until
776 * we are out of "bytes to read"
777 */
778 if (cqspi->slow_sram)
779 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
780
781 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
782
783 if (ret && bytes_to_read == 0) {
784 dev_err(dev, "Indirect read timeout, no bytes\n");
785 goto failrd;
786 }
787
788 while (bytes_to_read != 0) {
789 unsigned int word_remain = round_down(remaining, 4);
790
791 bytes_to_read *= cqspi->fifo_width;
792 bytes_to_read = bytes_to_read > remaining ?
793 remaining : bytes_to_read;
794 bytes_to_read = round_down(bytes_to_read, 4);
795 /* Read 4 byte word chunks then single bytes */
796 if (bytes_to_read) {
797 ioread32_rep(ahb_base, rxbuf,
798 (bytes_to_read / 4));
799 } else if (!word_remain && mod_bytes) {
800 unsigned int temp = ioread32(ahb_base);
801
802 bytes_to_read = mod_bytes;
803 memcpy(rxbuf, &temp, min((unsigned int)
804 (rxbuf_end - rxbuf),
805 bytes_to_read));
806 }
807 rxbuf += bytes_to_read;
808 remaining -= bytes_to_read;
809 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
810 }
811
812 if (use_irq && remaining > 0) {
813 reinit_completion(&cqspi->transfer_complete);
814 if (cqspi->slow_sram)
815 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
816 }
817 }
818
819 /* Check indirect done status */
820 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
821 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
822 if (ret) {
823 dev_err(dev, "Indirect read completion error (%i)\n", ret);
824 goto failrd;
825 }
826
827 /* Disable interrupt */
828 writel(0, reg_base + CQSPI_REG_IRQMASK);
829
830 /* Clear indirect completion status */
831 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
832
833 return 0;
834
835 failrd:
836 /* Disable interrupt */
837 writel(0, reg_base + CQSPI_REG_IRQMASK);
838
839 /* Cancel the indirect read */
840 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
841 reg_base + CQSPI_REG_INDIRECTRD);
842 return ret;
843 }
844
cqspi_device_reset(struct cqspi_st * cqspi)845 static void cqspi_device_reset(struct cqspi_st *cqspi)
846 {
847 u32 reg;
848
849 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
850 reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
851 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
852 /*
853 * NOTE: Delay timing implementation is derived from
854 * spi_nor_hw_reset()
855 */
856 writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
857 usleep_range(1, 5);
858 writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
859 usleep_range(100, 150);
860 writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
861 usleep_range(1000, 1200);
862 }
863
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)864 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
865 {
866 void __iomem *reg_base = cqspi->iobase;
867 unsigned int reg;
868
869 reg = readl(reg_base + CQSPI_REG_CONFIG);
870
871 if (enable)
872 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
873 else
874 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
875
876 writel(reg, reg_base + CQSPI_REG_CONFIG);
877 }
878
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)879 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
880 u_char *rxbuf, loff_t from_addr,
881 size_t n_rx)
882 {
883 struct cqspi_st *cqspi = f_pdata->cqspi;
884 struct device *dev = &cqspi->pdev->dev;
885 void __iomem *reg_base = cqspi->iobase;
886 u32 reg, bytes_to_dma;
887 loff_t addr = from_addr;
888 void *buf = rxbuf;
889 dma_addr_t dma_addr;
890 u8 bytes_rem;
891 int ret = 0;
892
893 bytes_rem = n_rx % 4;
894 bytes_to_dma = (n_rx - bytes_rem);
895
896 if (!bytes_to_dma)
897 goto nondmard;
898
899 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
900 if (ret)
901 return ret;
902
903 cqspi_controller_enable(cqspi, 0);
904
905 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
906 reg |= CQSPI_REG_CONFIG_DMA_MASK;
907 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
908
909 cqspi_controller_enable(cqspi, 1);
910
911 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
912 if (dma_mapping_error(dev, dma_addr)) {
913 dev_err(dev, "dma mapping failed\n");
914 return -ENOMEM;
915 }
916
917 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
918 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
919 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
920 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
921
922 /* Clear all interrupts. */
923 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
924
925 /* Enable DMA done interrupt */
926 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
927 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
928
929 /* Default DMA periph configuration */
930 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
931
932 /* Configure DMA Dst address */
933 writel(lower_32_bits(dma_addr),
934 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
935 writel(upper_32_bits(dma_addr),
936 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
937
938 /* Configure DMA Src address */
939 writel(cqspi->trigger_address, reg_base +
940 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
941
942 /* Set DMA destination size */
943 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
944
945 /* Set DMA destination control */
946 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
947 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
948
949 writel(CQSPI_REG_INDIRECTRD_START_MASK,
950 reg_base + CQSPI_REG_INDIRECTRD);
951
952 reinit_completion(&cqspi->transfer_complete);
953
954 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
955 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
956 ret = -ETIMEDOUT;
957 goto failrd;
958 }
959
960 /* Disable DMA interrupt */
961 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
962
963 /* Clear indirect completion status */
964 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
965 cqspi->iobase + CQSPI_REG_INDIRECTRD);
966 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
967
968 cqspi_controller_enable(cqspi, 0);
969
970 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
971 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
972 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
973
974 cqspi_controller_enable(cqspi, 1);
975
976 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
977 PM_OSPI_MUX_SEL_LINEAR);
978 if (ret)
979 return ret;
980
981 nondmard:
982 if (bytes_rem) {
983 addr += bytes_to_dma;
984 buf += bytes_to_dma;
985 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
986 bytes_rem);
987 if (ret)
988 return ret;
989 }
990
991 return 0;
992
993 failrd:
994 /* Disable DMA interrupt */
995 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
996
997 /* Cancel the indirect read */
998 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
999 reg_base + CQSPI_REG_INDIRECTRD);
1000
1001 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1002
1003 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1004 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1005 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1006
1007 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1008
1009 return ret;
1010 }
1011
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1012 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1013 const struct spi_mem_op *op)
1014 {
1015 unsigned int reg;
1016 int ret;
1017 struct cqspi_st *cqspi = f_pdata->cqspi;
1018 void __iomem *reg_base = cqspi->iobase;
1019 u8 opcode;
1020
1021 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1022 if (ret)
1023 return ret;
1024
1025 if (op->cmd.dtr)
1026 opcode = op->cmd.opcode >> 8;
1027 else
1028 opcode = op->cmd.opcode;
1029
1030 /* Set opcode. */
1031 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1032 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1033 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1034 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1035 reg = cqspi_calc_rdreg(op);
1036 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1037
1038 /*
1039 * SPI NAND flashes require the address of the status register to be
1040 * passed in the Read SR command. Also, some SPI NOR flashes like the
1041 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1042 * command in DTR mode.
1043 *
1044 * But this controller does not support address phase in the Read SR
1045 * command when doing auto-HW polling. So, disable write completion
1046 * polling on the controller's side. spinand and spi-nor will take
1047 * care of polling the status register.
1048 */
1049 if (cqspi->wr_completion) {
1050 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1051 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1052 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1053 /*
1054 * DAC mode require auto polling as flash needs to be polled
1055 * for write completion in case of bubble in SPI transaction
1056 * due to slow CPU/DMA master.
1057 */
1058 cqspi->use_direct_mode_wr = false;
1059 }
1060
1061 reg = readl(reg_base + CQSPI_REG_SIZE);
1062 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1063 reg |= (op->addr.nbytes - 1);
1064 writel(reg, reg_base + CQSPI_REG_SIZE);
1065 return 0;
1066 }
1067
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1068 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1069 loff_t to_addr, const u8 *txbuf,
1070 const size_t n_tx)
1071 {
1072 struct cqspi_st *cqspi = f_pdata->cqspi;
1073 struct device *dev = &cqspi->pdev->dev;
1074 void __iomem *reg_base = cqspi->iobase;
1075 unsigned int remaining = n_tx;
1076 unsigned int write_bytes;
1077 int ret;
1078
1079 if (!refcount_read(&cqspi->refcount))
1080 return -ENODEV;
1081
1082 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1083 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1084
1085 /* Clear all interrupts. */
1086 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1087
1088 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1089
1090 reinit_completion(&cqspi->transfer_complete);
1091 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1092 reg_base + CQSPI_REG_INDIRECTWR);
1093 /*
1094 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1095 * Controller programming sequence, couple of cycles of
1096 * QSPI_REF_CLK delay is required for the above bit to
1097 * be internally synchronized by the QSPI module. Provide 5
1098 * cycles of delay.
1099 */
1100 if (cqspi->wr_delay)
1101 ndelay(cqspi->wr_delay);
1102
1103 /*
1104 * If a hazard exists between the APB and AHB interfaces, perform a
1105 * dummy readback from the controller to ensure synchronization.
1106 */
1107 if (cqspi->apb_ahb_hazard)
1108 readl(reg_base + CQSPI_REG_INDIRECTWR);
1109
1110 while (remaining > 0) {
1111 size_t write_words, mod_bytes;
1112
1113 write_bytes = remaining;
1114 write_words = write_bytes / 4;
1115 mod_bytes = write_bytes % 4;
1116 /* Write 4 bytes at a time then single bytes. */
1117 if (write_words) {
1118 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1119 txbuf += (write_words * 4);
1120 }
1121 if (mod_bytes) {
1122 unsigned int temp = 0xFFFFFFFF;
1123
1124 memcpy(&temp, txbuf, mod_bytes);
1125 iowrite32(temp, cqspi->ahb_base);
1126 txbuf += mod_bytes;
1127 }
1128
1129 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1130 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1131 dev_err(dev, "Indirect write timeout\n");
1132 ret = -ETIMEDOUT;
1133 goto failwr;
1134 }
1135
1136 remaining -= write_bytes;
1137
1138 if (remaining > 0)
1139 reinit_completion(&cqspi->transfer_complete);
1140 }
1141
1142 /* Check indirect done status */
1143 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1144 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1145 if (ret) {
1146 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1147 goto failwr;
1148 }
1149
1150 /* Disable interrupt. */
1151 writel(0, reg_base + CQSPI_REG_IRQMASK);
1152
1153 /* Clear indirect completion status */
1154 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1155
1156 cqspi_wait_idle(cqspi);
1157
1158 return 0;
1159
1160 failwr:
1161 /* Disable interrupt. */
1162 writel(0, reg_base + CQSPI_REG_IRQMASK);
1163
1164 /* Cancel the indirect write */
1165 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1166 reg_base + CQSPI_REG_INDIRECTWR);
1167 return ret;
1168 }
1169
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1170 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1171 {
1172 struct cqspi_st *cqspi = f_pdata->cqspi;
1173 void __iomem *reg_base = cqspi->iobase;
1174 unsigned int chip_select = f_pdata->cs;
1175 unsigned int reg;
1176
1177 reg = readl(reg_base + CQSPI_REG_CONFIG);
1178 if (cqspi->is_decoded_cs) {
1179 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1180 } else {
1181 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1182
1183 /* Convert CS if without decoder.
1184 * CS0 to 4b'1110
1185 * CS1 to 4b'1101
1186 * CS2 to 4b'1011
1187 * CS3 to 4b'0111
1188 */
1189 chip_select = 0xF & ~(1 << chip_select);
1190 }
1191
1192 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1193 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1194 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1195 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1196 writel(reg, reg_base + CQSPI_REG_CONFIG);
1197 }
1198
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1199 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1200 const unsigned int ns_val)
1201 {
1202 unsigned int ticks;
1203
1204 ticks = ref_clk_hz / 1000; /* kHz */
1205 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1206
1207 return ticks;
1208 }
1209
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1210 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1211 {
1212 struct cqspi_st *cqspi = f_pdata->cqspi;
1213 void __iomem *iobase = cqspi->iobase;
1214 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1215 unsigned int tshsl, tchsh, tslch, tsd2d;
1216 unsigned int reg;
1217 unsigned int tsclk;
1218
1219 /* calculate the number of ref ticks for one sclk tick */
1220 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1221
1222 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1223 /* this particular value must be at least one sclk */
1224 if (tshsl < tsclk)
1225 tshsl = tsclk;
1226
1227 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1228 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1229 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1230
1231 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1232 << CQSPI_REG_DELAY_TSHSL_LSB;
1233 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1234 << CQSPI_REG_DELAY_TCHSH_LSB;
1235 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1236 << CQSPI_REG_DELAY_TSLCH_LSB;
1237 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1238 << CQSPI_REG_DELAY_TSD2D_LSB;
1239 writel(reg, iobase + CQSPI_REG_DELAY);
1240 }
1241
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1242 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1243 {
1244 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1245 void __iomem *reg_base = cqspi->iobase;
1246 u32 reg, div;
1247
1248 /* Recalculate the baudrate divisor based on QSPI specification. */
1249 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1250
1251 /* Maximum baud divisor */
1252 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1253 div = CQSPI_REG_CONFIG_BAUD_MASK;
1254 dev_warn(&cqspi->pdev->dev,
1255 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1256 cqspi->sclk, ref_clk_hz/((div+1)*2));
1257 }
1258
1259 reg = readl(reg_base + CQSPI_REG_CONFIG);
1260 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1261 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1262 writel(reg, reg_base + CQSPI_REG_CONFIG);
1263 }
1264
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1265 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1266 const bool bypass,
1267 const unsigned int delay)
1268 {
1269 void __iomem *reg_base = cqspi->iobase;
1270 unsigned int reg;
1271
1272 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1273
1274 if (bypass)
1275 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1276 else
1277 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1278
1279 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1280 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1281
1282 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1283 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1284
1285 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1286 }
1287
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1288 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1289 unsigned long sclk)
1290 {
1291 struct cqspi_st *cqspi = f_pdata->cqspi;
1292 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1293 int switch_ck = (cqspi->sclk != sclk);
1294
1295 if (switch_cs || switch_ck)
1296 cqspi_controller_enable(cqspi, 0);
1297
1298 /* Switch chip select. */
1299 if (switch_cs) {
1300 cqspi->current_cs = f_pdata->cs;
1301 cqspi_chipselect(f_pdata);
1302 }
1303
1304 /* Setup baudrate divisor and delays */
1305 if (switch_ck) {
1306 cqspi->sclk = sclk;
1307 cqspi_config_baudrate_div(cqspi);
1308 cqspi_delay(f_pdata);
1309 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1310 f_pdata->read_delay);
1311 }
1312
1313 if (switch_cs || switch_ck)
1314 cqspi_controller_enable(cqspi, 1);
1315 }
1316
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1317 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1318 const struct spi_mem_op *op)
1319 {
1320 struct cqspi_st *cqspi = f_pdata->cqspi;
1321 loff_t to = op->addr.val;
1322 size_t len = op->data.nbytes;
1323 const u_char *buf = op->data.buf.out;
1324 int ret;
1325
1326 ret = cqspi_write_setup(f_pdata, op);
1327 if (ret)
1328 return ret;
1329
1330 /*
1331 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1332 * address (all 0s) with the read status register command in DTR mode.
1333 * But this controller does not support sending dummy address bytes to
1334 * the flash when it is polling the write completion register in DTR
1335 * mode. So, we can not use direct mode when in DTR mode for writing
1336 * data.
1337 */
1338 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1339 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1340 memcpy_toio(cqspi->ahb_base + to, buf, len);
1341 return cqspi_wait_idle(cqspi);
1342 }
1343
1344 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1345 }
1346
cqspi_rx_dma_callback(void * param)1347 static void cqspi_rx_dma_callback(void *param)
1348 {
1349 struct cqspi_st *cqspi = param;
1350
1351 complete(&cqspi->rx_dma_complete);
1352 }
1353
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1354 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1355 u_char *buf, loff_t from, size_t len)
1356 {
1357 struct cqspi_st *cqspi = f_pdata->cqspi;
1358 struct device *dev = &cqspi->pdev->dev;
1359 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1360 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1361 int ret = 0;
1362 struct dma_async_tx_descriptor *tx;
1363 dma_cookie_t cookie;
1364 dma_addr_t dma_dst;
1365 struct device *ddev;
1366
1367 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1368 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1369 return 0;
1370 }
1371
1372 ddev = cqspi->rx_chan->device->dev;
1373 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1374 if (dma_mapping_error(ddev, dma_dst)) {
1375 dev_err(dev, "dma mapping failed\n");
1376 return -ENOMEM;
1377 }
1378 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1379 len, flags);
1380 if (!tx) {
1381 dev_err(dev, "device_prep_dma_memcpy error\n");
1382 ret = -EIO;
1383 goto err_unmap;
1384 }
1385
1386 tx->callback = cqspi_rx_dma_callback;
1387 tx->callback_param = cqspi;
1388 cookie = tx->tx_submit(tx);
1389 reinit_completion(&cqspi->rx_dma_complete);
1390
1391 ret = dma_submit_error(cookie);
1392 if (ret) {
1393 dev_err(dev, "dma_submit_error %d\n", cookie);
1394 ret = -EIO;
1395 goto err_unmap;
1396 }
1397
1398 dma_async_issue_pending(cqspi->rx_chan);
1399 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1400 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1401 dmaengine_terminate_sync(cqspi->rx_chan);
1402 dev_err(dev, "DMA wait_for_completion_timeout\n");
1403 ret = -ETIMEDOUT;
1404 goto err_unmap;
1405 }
1406
1407 err_unmap:
1408 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1409
1410 return ret;
1411 }
1412
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1413 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1414 const struct spi_mem_op *op)
1415 {
1416 struct cqspi_st *cqspi = f_pdata->cqspi;
1417 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1418 loff_t from = op->addr.val;
1419 size_t len = op->data.nbytes;
1420 u_char *buf = op->data.buf.in;
1421 u64 dma_align = (u64)(uintptr_t)buf;
1422 int ret;
1423
1424 ret = cqspi_read_setup(f_pdata, op);
1425 if (ret)
1426 return ret;
1427
1428 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1429 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1430
1431 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1432 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1433 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1434
1435 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1436 }
1437
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1438 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1439 {
1440 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1441 struct cqspi_flash_pdata *f_pdata;
1442
1443 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1444 cqspi_configure(f_pdata, op->max_freq);
1445
1446 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1447 /*
1448 * Performing reads in DAC mode forces to read minimum 4 bytes
1449 * which is unsupported on some flash devices during register
1450 * reads, prefer STIG mode for such small reads.
1451 */
1452 if (!op->addr.nbytes ||
1453 (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1454 !cqspi->disable_stig_mode))
1455 return cqspi_command_read(f_pdata, op);
1456
1457 return cqspi_read(f_pdata, op);
1458 }
1459
1460 if (!op->addr.nbytes || !op->data.buf.out)
1461 return cqspi_command_write(f_pdata, op);
1462
1463 return cqspi_write(f_pdata, op);
1464 }
1465
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1466 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1467 {
1468 int ret;
1469 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1470 struct device *dev = &cqspi->pdev->dev;
1471
1472 if (refcount_read(&cqspi->inflight_ops) == 0)
1473 return -ENODEV;
1474
1475 ret = pm_runtime_resume_and_get(dev);
1476 if (ret) {
1477 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1478 return ret;
1479 }
1480
1481 if (!refcount_read(&cqspi->refcount))
1482 return -EBUSY;
1483
1484 refcount_inc(&cqspi->inflight_ops);
1485
1486 if (!refcount_read(&cqspi->refcount)) {
1487 if (refcount_read(&cqspi->inflight_ops))
1488 refcount_dec(&cqspi->inflight_ops);
1489 return -EBUSY;
1490 }
1491
1492 ret = cqspi_mem_process(mem, op);
1493
1494 pm_runtime_put_autosuspend(dev);
1495
1496 if (ret)
1497 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1498
1499 if (refcount_read(&cqspi->inflight_ops) > 1)
1500 refcount_dec(&cqspi->inflight_ops);
1501
1502 return ret;
1503 }
1504
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1505 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1506 const struct spi_mem_op *op)
1507 {
1508 bool all_true, all_false;
1509
1510 /*
1511 * op->dummy.dtr is required for converting nbytes into ncycles.
1512 * Also, don't check the dtr field of the op phase having zero nbytes.
1513 */
1514 all_true = op->cmd.dtr &&
1515 (!op->addr.nbytes || op->addr.dtr) &&
1516 (!op->dummy.nbytes || op->dummy.dtr) &&
1517 (!op->data.nbytes || op->data.dtr);
1518
1519 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1520 !op->data.dtr;
1521
1522 if (all_true) {
1523 /* Right now we only support 8-8-8 DTR mode. */
1524 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1525 return false;
1526 if (op->addr.nbytes && op->addr.buswidth != 8)
1527 return false;
1528 if (op->data.nbytes && op->data.buswidth != 8)
1529 return false;
1530 } else if (!all_false) {
1531 /* Mixed DTR modes are not supported. */
1532 return false;
1533 }
1534
1535 return spi_mem_default_supports_op(mem, op);
1536 }
1537
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1538 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1539 struct cqspi_flash_pdata *f_pdata,
1540 struct device_node *np)
1541 {
1542 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1543 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1544 return -ENXIO;
1545 }
1546
1547 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1548 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1549 return -ENXIO;
1550 }
1551
1552 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1553 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1554 return -ENXIO;
1555 }
1556
1557 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1558 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1559 return -ENXIO;
1560 }
1561
1562 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1563 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1564 return -ENXIO;
1565 }
1566
1567 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1568 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1569 return -ENXIO;
1570 }
1571
1572 return 0;
1573 }
1574
cqspi_of_get_pdata(struct cqspi_st * cqspi)1575 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1576 {
1577 struct device *dev = &cqspi->pdev->dev;
1578 struct device_node *np = dev->of_node;
1579 u32 id[2];
1580
1581 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1582
1583 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1584 /* Zero signals FIFO depth should be runtime detected. */
1585 cqspi->fifo_depth = 0;
1586 }
1587
1588 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1589 dev_err(dev, "couldn't determine fifo-width\n");
1590 return -ENXIO;
1591 }
1592
1593 if (of_property_read_u32(np, "cdns,trigger-address",
1594 &cqspi->trigger_address)) {
1595 dev_err(dev, "couldn't determine trigger-address\n");
1596 return -ENXIO;
1597 }
1598
1599 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1600 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1601
1602 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1603
1604 if (!of_property_read_u32_array(np, "power-domains", id,
1605 ARRAY_SIZE(id)))
1606 cqspi->pd_dev_id = id[1];
1607
1608 return 0;
1609 }
1610
cqspi_controller_init(struct cqspi_st * cqspi)1611 static void cqspi_controller_init(struct cqspi_st *cqspi)
1612 {
1613 u32 reg;
1614
1615 /* Configure the remap address register, no remap */
1616 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1617
1618 /* Disable all interrupts. */
1619 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1620
1621 /* Configure the SRAM split to 1:1 . */
1622 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1623
1624 /* Load indirect trigger address. */
1625 writel(cqspi->trigger_address,
1626 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1627
1628 /* Program read watermark -- 1/2 of the FIFO. */
1629 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1630 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1631 /* Program write watermark -- 1/8 of the FIFO. */
1632 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1633 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1634
1635 /* Disable direct access controller */
1636 if (!cqspi->use_direct_mode) {
1637 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1638 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1639 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1640 }
1641
1642 /* Enable DMA interface */
1643 if (cqspi->use_dma_read) {
1644 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1645 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1646 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1647 }
1648 }
1649
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1650 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1651 {
1652 struct device *dev = &cqspi->pdev->dev;
1653 u32 reg, fifo_depth;
1654
1655 /*
1656 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1657 * the FIFO depth.
1658 */
1659 writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1660 reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1661 fifo_depth = reg + 1;
1662
1663 /* FIFO depth of zero means no value from devicetree was provided. */
1664 if (cqspi->fifo_depth == 0) {
1665 cqspi->fifo_depth = fifo_depth;
1666 dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1667 } else if (fifo_depth != cqspi->fifo_depth) {
1668 dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1669 fifo_depth, cqspi->fifo_depth);
1670 }
1671 }
1672
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1673 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1674 {
1675 dma_cap_mask_t mask;
1676
1677 dma_cap_zero(mask);
1678 dma_cap_set(DMA_MEMCPY, mask);
1679
1680 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1681 if (IS_ERR(cqspi->rx_chan)) {
1682 int ret = PTR_ERR(cqspi->rx_chan);
1683
1684 cqspi->rx_chan = NULL;
1685 if (ret == -ENODEV) {
1686 /* DMA support is not mandatory */
1687 dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1688 return 0;
1689 }
1690
1691 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1692 }
1693 init_completion(&cqspi->rx_dma_complete);
1694
1695 return 0;
1696 }
1697
cqspi_get_name(struct spi_mem * mem)1698 static const char *cqspi_get_name(struct spi_mem *mem)
1699 {
1700 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1701 struct device *dev = &cqspi->pdev->dev;
1702
1703 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1704 spi_get_chipselect(mem->spi, 0));
1705 }
1706
1707 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1708 .exec_op = cqspi_exec_mem_op,
1709 .get_name = cqspi_get_name,
1710 .supports_op = cqspi_supports_mem_op,
1711 };
1712
1713 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1714 .dtr = true,
1715 .per_op_freq = true,
1716 };
1717
cqspi_setup_flash(struct cqspi_st * cqspi)1718 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1719 {
1720 unsigned int max_cs = cqspi->num_chipselect - 1;
1721 struct platform_device *pdev = cqspi->pdev;
1722 struct device *dev = &pdev->dev;
1723 struct cqspi_flash_pdata *f_pdata;
1724 unsigned int cs;
1725 int ret;
1726
1727 /* Get flash device data */
1728 for_each_available_child_of_node_scoped(dev->of_node, np) {
1729 ret = of_property_read_u32(np, "reg", &cs);
1730 if (ret) {
1731 dev_err(dev, "Couldn't determine chip select.\n");
1732 return ret;
1733 }
1734
1735 if (cs >= cqspi->num_chipselect) {
1736 dev_err(dev, "Chip select %d out of range.\n", cs);
1737 return -EINVAL;
1738 } else if (cs < max_cs) {
1739 max_cs = cs;
1740 }
1741
1742 f_pdata = &cqspi->f_pdata[cs];
1743 f_pdata->cqspi = cqspi;
1744 f_pdata->cs = cs;
1745
1746 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1747 if (ret)
1748 return ret;
1749 }
1750
1751 cqspi->num_chipselect = max_cs + 1;
1752 return 0;
1753 }
1754
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1755 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1756 {
1757 static struct clk_bulk_data qspiclk[] = {
1758 { .id = "apb" },
1759 { .id = "ahb" },
1760 };
1761
1762 int ret = 0;
1763
1764 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1765 if (ret) {
1766 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1767 return ret;
1768 }
1769
1770 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1771 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1772
1773 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1774 if (ret) {
1775 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1776 return ret;
1777 }
1778
1779 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1780 if (ret) {
1781 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1782 goto disable_apb_clk;
1783 }
1784
1785 cqspi->is_jh7110 = true;
1786
1787 return 0;
1788
1789 disable_apb_clk:
1790 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1791
1792 return ret;
1793 }
1794
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1795 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1796 {
1797 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1798 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1799 }
cqspi_probe(struct platform_device * pdev)1800 static int cqspi_probe(struct platform_device *pdev)
1801 {
1802 const struct cqspi_driver_platdata *ddata;
1803 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1804 struct device *dev = &pdev->dev;
1805 struct spi_controller *host;
1806 struct resource *res_ahb;
1807 struct cqspi_st *cqspi;
1808 int ret;
1809 int irq;
1810
1811 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1812 if (!host)
1813 return -ENOMEM;
1814
1815 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1816 host->mem_ops = &cqspi_mem_ops;
1817 host->mem_caps = &cqspi_mem_caps;
1818 host->dev.of_node = pdev->dev.of_node;
1819
1820 cqspi = spi_controller_get_devdata(host);
1821
1822 cqspi->pdev = pdev;
1823 cqspi->host = host;
1824 cqspi->is_jh7110 = false;
1825 cqspi->ddata = ddata = of_device_get_match_data(dev);
1826 platform_set_drvdata(pdev, cqspi);
1827
1828 /* Obtain configuration from OF. */
1829 ret = cqspi_of_get_pdata(cqspi);
1830 if (ret) {
1831 dev_err(dev, "Cannot get mandatory OF data.\n");
1832 return -ENODEV;
1833 }
1834
1835 /* Obtain QSPI clock. */
1836 cqspi->clk = devm_clk_get(dev, NULL);
1837 if (IS_ERR(cqspi->clk)) {
1838 dev_err(dev, "Cannot claim QSPI clock.\n");
1839 ret = PTR_ERR(cqspi->clk);
1840 return ret;
1841 }
1842
1843 /* Obtain and remap controller address. */
1844 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1845 if (IS_ERR(cqspi->iobase)) {
1846 dev_err(dev, "Cannot remap controller address.\n");
1847 ret = PTR_ERR(cqspi->iobase);
1848 return ret;
1849 }
1850
1851 /* Obtain and remap AHB address. */
1852 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1853 if (IS_ERR(cqspi->ahb_base)) {
1854 dev_err(dev, "Cannot remap AHB address.\n");
1855 ret = PTR_ERR(cqspi->ahb_base);
1856 return ret;
1857 }
1858 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1859 cqspi->ahb_size = resource_size(res_ahb);
1860
1861 init_completion(&cqspi->transfer_complete);
1862
1863 /* Obtain IRQ line. */
1864 irq = platform_get_irq(pdev, 0);
1865 if (irq < 0)
1866 return -ENXIO;
1867
1868 ret = pm_runtime_set_active(dev);
1869 if (ret)
1870 return ret;
1871
1872
1873 ret = clk_prepare_enable(cqspi->clk);
1874 if (ret) {
1875 dev_err(dev, "Cannot enable QSPI clock.\n");
1876 goto probe_clk_failed;
1877 }
1878
1879 /* Obtain QSPI reset control */
1880 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1881 if (IS_ERR(rstc)) {
1882 ret = PTR_ERR(rstc);
1883 dev_err(dev, "Cannot get QSPI reset.\n");
1884 goto probe_reset_failed;
1885 }
1886
1887 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1888 if (IS_ERR(rstc_ocp)) {
1889 ret = PTR_ERR(rstc_ocp);
1890 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1891 goto probe_reset_failed;
1892 }
1893
1894 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1895 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1896 if (IS_ERR(rstc_ref)) {
1897 ret = PTR_ERR(rstc_ref);
1898 dev_err(dev, "Cannot get QSPI REF reset.\n");
1899 goto probe_reset_failed;
1900 }
1901 reset_control_assert(rstc_ref);
1902 reset_control_deassert(rstc_ref);
1903 }
1904
1905 reset_control_assert(rstc);
1906 reset_control_deassert(rstc);
1907
1908 reset_control_assert(rstc_ocp);
1909 reset_control_deassert(rstc_ocp);
1910
1911 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1912 host->max_speed_hz = cqspi->master_ref_clk_hz;
1913
1914 /* write completion is supported by default */
1915 cqspi->wr_completion = true;
1916
1917 if (ddata) {
1918 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1919 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1920 cqspi->master_ref_clk_hz);
1921 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1922 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1923 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1924 host->mode_bits |= SPI_TX_QUAD;
1925 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1926 cqspi->use_direct_mode = true;
1927 cqspi->use_direct_mode_wr = true;
1928 }
1929 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1930 cqspi->use_dma_read = true;
1931 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1932 cqspi->wr_completion = false;
1933 if (ddata->quirks & CQSPI_SLOW_SRAM)
1934 cqspi->slow_sram = true;
1935 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1936 cqspi->apb_ahb_hazard = true;
1937
1938 if (ddata->jh7110_clk_init) {
1939 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1940 if (ret)
1941 goto probe_reset_failed;
1942 }
1943 if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1944 cqspi->disable_stig_mode = true;
1945
1946 if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1947 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1948 if (ret)
1949 goto probe_reset_failed;
1950 }
1951 }
1952
1953 refcount_set(&cqspi->refcount, 1);
1954 refcount_set(&cqspi->inflight_ops, 1);
1955
1956 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1957 pdev->name, cqspi);
1958 if (ret) {
1959 dev_err(dev, "Cannot request IRQ.\n");
1960 goto probe_reset_failed;
1961 }
1962
1963 cqspi_wait_idle(cqspi);
1964 cqspi_controller_enable(cqspi, 0);
1965 cqspi_controller_detect_fifo_depth(cqspi);
1966 cqspi_controller_init(cqspi);
1967 cqspi_controller_enable(cqspi, 1);
1968 cqspi->current_cs = -1;
1969 cqspi->sclk = 0;
1970
1971 ret = cqspi_setup_flash(cqspi);
1972 if (ret) {
1973 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1974 goto probe_setup_failed;
1975 }
1976
1977 host->num_chipselect = cqspi->num_chipselect;
1978
1979 if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1980 cqspi_device_reset(cqspi);
1981
1982 if (cqspi->use_direct_mode) {
1983 ret = cqspi_request_mmap_dma(cqspi);
1984 if (ret == -EPROBE_DEFER)
1985 goto probe_setup_failed;
1986 }
1987
1988 pm_runtime_enable(dev);
1989
1990 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1991 pm_runtime_use_autosuspend(dev);
1992 pm_runtime_get_noresume(dev);
1993
1994 ret = spi_register_controller(host);
1995 if (ret) {
1996 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1997 goto probe_setup_failed;
1998 }
1999
2000 pm_runtime_put_autosuspend(dev);
2001
2002 return 0;
2003 probe_setup_failed:
2004 cqspi_controller_enable(cqspi, 0);
2005 pm_runtime_disable(dev);
2006 probe_reset_failed:
2007 if (cqspi->is_jh7110)
2008 cqspi_jh7110_disable_clk(pdev, cqspi);
2009 clk_disable_unprepare(cqspi->clk);
2010 probe_clk_failed:
2011 return ret;
2012 }
2013
cqspi_remove(struct platform_device * pdev)2014 static void cqspi_remove(struct platform_device *pdev)
2015 {
2016 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2017
2018 refcount_set(&cqspi->refcount, 0);
2019
2020 if (!refcount_dec_and_test(&cqspi->inflight_ops))
2021 cqspi_wait_idle(cqspi);
2022
2023 spi_unregister_controller(cqspi->host);
2024 cqspi_controller_enable(cqspi, 0);
2025
2026 if (cqspi->rx_chan)
2027 dma_release_channel(cqspi->rx_chan);
2028
2029 if (pm_runtime_get_sync(&pdev->dev) >= 0)
2030 clk_disable(cqspi->clk);
2031
2032 if (cqspi->is_jh7110)
2033 cqspi_jh7110_disable_clk(pdev, cqspi);
2034
2035 pm_runtime_put_sync(&pdev->dev);
2036 pm_runtime_disable(&pdev->dev);
2037 }
2038
cqspi_runtime_suspend(struct device * dev)2039 static int cqspi_runtime_suspend(struct device *dev)
2040 {
2041 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2042
2043 cqspi_controller_enable(cqspi, 0);
2044 clk_disable_unprepare(cqspi->clk);
2045 return 0;
2046 }
2047
cqspi_runtime_resume(struct device * dev)2048 static int cqspi_runtime_resume(struct device *dev)
2049 {
2050 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2051
2052 clk_prepare_enable(cqspi->clk);
2053 cqspi_wait_idle(cqspi);
2054 cqspi_controller_enable(cqspi, 0);
2055 cqspi_controller_init(cqspi);
2056 cqspi_controller_enable(cqspi, 1);
2057
2058 cqspi->current_cs = -1;
2059 cqspi->sclk = 0;
2060 return 0;
2061 }
2062
cqspi_suspend(struct device * dev)2063 static int cqspi_suspend(struct device *dev)
2064 {
2065 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2066 int ret;
2067
2068 ret = spi_controller_suspend(cqspi->host);
2069 if (ret)
2070 return ret;
2071
2072 return pm_runtime_force_suspend(dev);
2073 }
2074
cqspi_resume(struct device * dev)2075 static int cqspi_resume(struct device *dev)
2076 {
2077 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2078 int ret;
2079
2080 ret = pm_runtime_force_resume(dev);
2081 if (ret) {
2082 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2083 return ret;
2084 }
2085
2086 return spi_controller_resume(cqspi->host);
2087 }
2088
2089 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2090 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2091 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2092 };
2093
2094 static const struct cqspi_driver_platdata cdns_qspi = {
2095 .quirks = CQSPI_DISABLE_DAC_MODE,
2096 };
2097
2098 static const struct cqspi_driver_platdata k2g_qspi = {
2099 .quirks = CQSPI_NEEDS_WR_DELAY,
2100 };
2101
2102 static const struct cqspi_driver_platdata am654_ospi = {
2103 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2104 .quirks = CQSPI_NEEDS_WR_DELAY,
2105 };
2106
2107 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2108 .quirks = CQSPI_DISABLE_DAC_MODE,
2109 };
2110
2111 static const struct cqspi_driver_platdata socfpga_qspi = {
2112 .quirks = CQSPI_DISABLE_DAC_MODE
2113 | CQSPI_NO_SUPPORT_WR_COMPLETION
2114 | CQSPI_SLOW_SRAM
2115 | CQSPI_DISABLE_STIG_MODE,
2116 };
2117
2118 static const struct cqspi_driver_platdata versal_ospi = {
2119 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2120 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2121 | CQSPI_DMA_SET_MASK,
2122 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2123 .get_dma_status = cqspi_get_versal_dma_status,
2124 };
2125
2126 static const struct cqspi_driver_platdata versal2_ospi = {
2127 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2128 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2129 | CQSPI_DMA_SET_MASK
2130 | CQSPI_SUPPORT_DEVICE_RESET,
2131 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2132 .get_dma_status = cqspi_get_versal_dma_status,
2133 };
2134
2135 static const struct cqspi_driver_platdata jh7110_qspi = {
2136 .quirks = CQSPI_DISABLE_DAC_MODE,
2137 .jh7110_clk_init = cqspi_jh7110_clk_init,
2138 };
2139
2140 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2141 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2142 };
2143
2144 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2145 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2146 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2147 CQSPI_RD_NO_IRQ,
2148 };
2149
2150 static const struct of_device_id cqspi_dt_ids[] = {
2151 {
2152 .compatible = "cdns,qspi-nor",
2153 .data = &cdns_qspi,
2154 },
2155 {
2156 .compatible = "ti,k2g-qspi",
2157 .data = &k2g_qspi,
2158 },
2159 {
2160 .compatible = "ti,am654-ospi",
2161 .data = &am654_ospi,
2162 },
2163 {
2164 .compatible = "intel,lgm-qspi",
2165 .data = &intel_lgm_qspi,
2166 },
2167 {
2168 .compatible = "xlnx,versal-ospi-1.0",
2169 .data = &versal_ospi,
2170 },
2171 {
2172 .compatible = "intel,socfpga-qspi",
2173 .data = &socfpga_qspi,
2174 },
2175 {
2176 .compatible = "starfive,jh7110-qspi",
2177 .data = &jh7110_qspi,
2178 },
2179 {
2180 .compatible = "amd,pensando-elba-qspi",
2181 .data = &pensando_cdns_qspi,
2182 },
2183 {
2184 .compatible = "mobileye,eyeq5-ospi",
2185 .data = &mobileye_eyeq5_ospi,
2186 },
2187 {
2188 .compatible = "amd,versal2-ospi",
2189 .data = &versal2_ospi,
2190 },
2191 { /* end of table */ }
2192 };
2193
2194 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2195
2196 static struct platform_driver cqspi_platform_driver = {
2197 .probe = cqspi_probe,
2198 .remove = cqspi_remove,
2199 .driver = {
2200 .name = CQSPI_NAME,
2201 .pm = pm_ptr(&cqspi_dev_pm_ops),
2202 .of_match_table = cqspi_dt_ids,
2203 },
2204 };
2205
2206 module_platform_driver(cqspi_platform_driver);
2207
2208 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2209 MODULE_LICENSE("GPL v2");
2210 MODULE_ALIAS("platform:" CQSPI_NAME);
2211 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2212 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2213 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2214 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2215 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2216