1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT 4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
43 #define CQSPI_SLOW_SRAM BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45 #define CQSPI_RD_NO_IRQ BIT(6)
46
47 /* Capabilities */
48 #define CQSPI_SUPPORTS_OCTAL BIT(0)
49
50 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
51
52 enum {
53 CLK_QSPI_APB = 0,
54 CLK_QSPI_AHB,
55 CLK_QSPI_NUM,
56 };
57
58 struct cqspi_st;
59
60 struct cqspi_flash_pdata {
61 struct cqspi_st *cqspi;
62 u32 clk_rate;
63 u32 read_delay;
64 u32 tshsl_ns;
65 u32 tsd2d_ns;
66 u32 tchsh_ns;
67 u32 tslch_ns;
68 u8 cs;
69 };
70
71 struct cqspi_st {
72 struct platform_device *pdev;
73 struct spi_controller *host;
74 struct clk *clk;
75 struct clk *clks[CLK_QSPI_NUM];
76 unsigned int sclk;
77
78 void __iomem *iobase;
79 void __iomem *ahb_base;
80 resource_size_t ahb_size;
81 struct completion transfer_complete;
82
83 struct dma_chan *rx_chan;
84 struct completion rx_dma_complete;
85 dma_addr_t mmap_phys_base;
86
87 int current_cs;
88 unsigned long master_ref_clk_hz;
89 bool is_decoded_cs;
90 u32 fifo_depth;
91 u32 fifo_width;
92 u32 num_chipselect;
93 bool rclk_en;
94 u32 trigger_address;
95 u32 wr_delay;
96 bool use_direct_mode;
97 bool use_direct_mode_wr;
98 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
99 bool use_dma_read;
100 u32 pd_dev_id;
101 bool wr_completion;
102 bool slow_sram;
103 bool apb_ahb_hazard;
104
105 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
106
107 const struct cqspi_driver_platdata *ddata;
108 };
109
110 struct cqspi_driver_platdata {
111 u32 hwcaps_mask;
112 u8 quirks;
113 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
114 u_char *rxbuf, loff_t from_addr, size_t n_rx);
115 u32 (*get_dma_status)(struct cqspi_st *cqspi);
116 int (*jh7110_clk_init)(struct platform_device *pdev,
117 struct cqspi_st *cqspi);
118 };
119
120 /* Operation timeout value */
121 #define CQSPI_TIMEOUT_MS 500
122 #define CQSPI_READ_TIMEOUT_MS 10
123 #define CQSPI_BUSYWAIT_TIMEOUT_US 500
124
125 /* Runtime_pm autosuspend delay */
126 #define CQSPI_AUTOSUSPEND_TIMEOUT 2000
127
128 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
129 #define CQSPI_DUMMY_BYTES_MAX 4
130 #define CQSPI_DUMMY_CLKS_MAX 31
131
132 #define CQSPI_STIG_DATA_LEN_MAX 8
133
134 /* Register map */
135 #define CQSPI_REG_CONFIG 0x00
136 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
137 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
138 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
139 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
140 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
141 #define CQSPI_REG_CONFIG_BAUD_LSB 19
142 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
143 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
144 #define CQSPI_REG_CONFIG_IDLE_LSB 31
145 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
146 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
147
148 #define CQSPI_REG_RD_INSTR 0x04
149 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
150 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
151 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
152 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
153 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
154 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
155 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
156 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
157 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
158 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
159
160 #define CQSPI_REG_WR_INSTR 0x08
161 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
162 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
163 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
164
165 #define CQSPI_REG_DELAY 0x0C
166 #define CQSPI_REG_DELAY_TSLCH_LSB 0
167 #define CQSPI_REG_DELAY_TCHSH_LSB 8
168 #define CQSPI_REG_DELAY_TSD2D_LSB 16
169 #define CQSPI_REG_DELAY_TSHSL_LSB 24
170 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
171 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
172 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
173 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
174
175 #define CQSPI_REG_READCAPTURE 0x10
176 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
177 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
178 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
179
180 #define CQSPI_REG_SIZE 0x14
181 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
182 #define CQSPI_REG_SIZE_PAGE_LSB 4
183 #define CQSPI_REG_SIZE_BLOCK_LSB 16
184 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
185 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
186 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
187
188 #define CQSPI_REG_SRAMPARTITION 0x18
189 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
190
191 #define CQSPI_REG_DMA 0x20
192 #define CQSPI_REG_DMA_SINGLE_LSB 0
193 #define CQSPI_REG_DMA_BURST_LSB 8
194 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
195 #define CQSPI_REG_DMA_BURST_MASK 0xFF
196
197 #define CQSPI_REG_REMAP 0x24
198 #define CQSPI_REG_MODE_BIT 0x28
199
200 #define CQSPI_REG_SDRAMLEVEL 0x2C
201 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
202 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
203 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
204 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
205
206 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
207 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
208
209 #define CQSPI_REG_IRQSTATUS 0x40
210 #define CQSPI_REG_IRQMASK 0x44
211
212 #define CQSPI_REG_INDIRECTRD 0x60
213 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
214 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
215 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
216
217 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
218 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
219 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
220
221 #define CQSPI_REG_CMDCTRL 0x90
222 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
223 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
224 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
225 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
226 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
227 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
228 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
229 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
230 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
231 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
232 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
233 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
234 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
235 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
236
237 #define CQSPI_REG_INDIRECTWR 0x70
238 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
239 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
240 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
241
242 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
243 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
244 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
245
246 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
247
248 #define CQSPI_REG_CMDADDRESS 0x94
249 #define CQSPI_REG_CMDREADDATALOWER 0xA0
250 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
251 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
252 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
253
254 #define CQSPI_REG_POLLING_STATUS 0xB0
255 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
256
257 #define CQSPI_REG_OP_EXT_LOWER 0xE0
258 #define CQSPI_REG_OP_EXT_READ_LSB 24
259 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
260 #define CQSPI_REG_OP_EXT_STIG_LSB 0
261
262 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
263
264 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
265 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
266
267 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
268
269 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
270 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
271 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
272 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
273
274 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
275
276 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
277 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
278
279 /* Interrupt status bits */
280 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
281 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
282 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
283 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
284 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
285 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
286 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
287 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
288
289 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
290 CQSPI_REG_IRQ_IND_SRAM_FULL | \
291 CQSPI_REG_IRQ_IND_COMP)
292
293 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
294 CQSPI_REG_IRQ_WATERMARK | \
295 CQSPI_REG_IRQ_UNDERFLOW)
296
297 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
298 #define CQSPI_DMA_UNALIGN 0x3
299
300 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
301
cqspi_wait_for_bit(const struct cqspi_driver_platdata * ddata,void __iomem * reg,const u32 mask,bool clr,bool busywait)302 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
303 void __iomem *reg, const u32 mask, bool clr,
304 bool busywait)
305 {
306 u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
307 u32 val;
308
309 if (busywait) {
310 int ret = readl_relaxed_poll_timeout(reg, val,
311 (((clr ? ~val : val) & mask) == mask),
312 0, CQSPI_BUSYWAIT_TIMEOUT_US);
313
314 if (ret != -ETIMEDOUT)
315 return ret;
316
317 timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
318 }
319
320 return readl_relaxed_poll_timeout(reg, val,
321 (((clr ? ~val : val) & mask) == mask),
322 10, timeout_us);
323 }
324
cqspi_is_idle(struct cqspi_st * cqspi)325 static bool cqspi_is_idle(struct cqspi_st *cqspi)
326 {
327 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
328
329 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
330 }
331
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)332 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
333 {
334 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
335
336 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
337 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
338 }
339
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)340 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
341 {
342 u32 dma_status;
343
344 dma_status = readl(cqspi->iobase +
345 CQSPI_REG_VERSAL_DMA_DST_I_STS);
346 writel(dma_status, cqspi->iobase +
347 CQSPI_REG_VERSAL_DMA_DST_I_STS);
348
349 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
350 }
351
cqspi_irq_handler(int this_irq,void * dev)352 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
353 {
354 struct cqspi_st *cqspi = dev;
355 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
356 unsigned int irq_status;
357
358 /* Read interrupt status */
359 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
360
361 /* Clear interrupt */
362 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
363
364 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
365 if (ddata->get_dma_status(cqspi)) {
366 complete(&cqspi->transfer_complete);
367 return IRQ_HANDLED;
368 }
369 }
370
371 else if (!cqspi->slow_sram)
372 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
373 else
374 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
375
376 if (irq_status)
377 complete(&cqspi->transfer_complete);
378
379 return IRQ_HANDLED;
380 }
381
cqspi_calc_rdreg(const struct spi_mem_op * op)382 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
383 {
384 u32 rdreg = 0;
385
386 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
387 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
388 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
389
390 return rdreg;
391 }
392
cqspi_calc_dummy(const struct spi_mem_op * op)393 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
394 {
395 unsigned int dummy_clk;
396
397 if (!op->dummy.nbytes)
398 return 0;
399
400 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
401 if (op->cmd.dtr)
402 dummy_clk /= 2;
403
404 return dummy_clk;
405 }
406
cqspi_wait_idle(struct cqspi_st * cqspi)407 static int cqspi_wait_idle(struct cqspi_st *cqspi)
408 {
409 const unsigned int poll_idle_retry = 3;
410 unsigned int count = 0;
411 unsigned long timeout;
412
413 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
414 while (1) {
415 /*
416 * Read few times in succession to ensure the controller
417 * is indeed idle, that is, the bit does not transition
418 * low again.
419 */
420 if (cqspi_is_idle(cqspi))
421 count++;
422 else
423 count = 0;
424
425 if (count >= poll_idle_retry)
426 return 0;
427
428 if (time_after(jiffies, timeout)) {
429 /* Timeout, in busy mode. */
430 dev_err(&cqspi->pdev->dev,
431 "QSPI is still busy after %dms timeout.\n",
432 CQSPI_TIMEOUT_MS);
433 return -ETIMEDOUT;
434 }
435
436 cpu_relax();
437 }
438 }
439
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)440 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
441 {
442 void __iomem *reg_base = cqspi->iobase;
443 int ret;
444
445 /* Write the CMDCTRL without start execution. */
446 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
447 /* Start execute */
448 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
449 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
450
451 /* Polling for completion. */
452 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
453 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
454 if (ret) {
455 dev_err(&cqspi->pdev->dev,
456 "Flash command execution timed out.\n");
457 return ret;
458 }
459
460 /* Polling QSPI idle status. */
461 return cqspi_wait_idle(cqspi);
462 }
463
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)464 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
465 const struct spi_mem_op *op,
466 unsigned int shift)
467 {
468 struct cqspi_st *cqspi = f_pdata->cqspi;
469 void __iomem *reg_base = cqspi->iobase;
470 unsigned int reg;
471 u8 ext;
472
473 if (op->cmd.nbytes != 2)
474 return -EINVAL;
475
476 /* Opcode extension is the LSB. */
477 ext = op->cmd.opcode & 0xff;
478
479 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
480 reg &= ~(0xff << shift);
481 reg |= ext << shift;
482 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
483
484 return 0;
485 }
486
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)487 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
488 const struct spi_mem_op *op, unsigned int shift)
489 {
490 struct cqspi_st *cqspi = f_pdata->cqspi;
491 void __iomem *reg_base = cqspi->iobase;
492 unsigned int reg;
493 int ret;
494
495 reg = readl(reg_base + CQSPI_REG_CONFIG);
496
497 /*
498 * We enable dual byte opcode here. The callers have to set up the
499 * extension opcode based on which type of operation it is.
500 */
501 if (op->cmd.dtr) {
502 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
503 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
504
505 /* Set up command opcode extension. */
506 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
507 if (ret)
508 return ret;
509 } else {
510 unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
511 /* Shortcut if DTR is already disabled. */
512 if ((reg & mask) == 0)
513 return 0;
514 reg &= ~mask;
515 }
516
517 writel(reg, reg_base + CQSPI_REG_CONFIG);
518
519 return cqspi_wait_idle(cqspi);
520 }
521
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)522 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
523 const struct spi_mem_op *op)
524 {
525 struct cqspi_st *cqspi = f_pdata->cqspi;
526 void __iomem *reg_base = cqspi->iobase;
527 u8 *rxbuf = op->data.buf.in;
528 u8 opcode;
529 size_t n_rx = op->data.nbytes;
530 unsigned int rdreg;
531 unsigned int reg;
532 unsigned int dummy_clk;
533 size_t read_len;
534 int status;
535
536 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
537 if (status)
538 return status;
539
540 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
541 dev_err(&cqspi->pdev->dev,
542 "Invalid input argument, len %zu rxbuf 0x%p\n",
543 n_rx, rxbuf);
544 return -EINVAL;
545 }
546
547 if (op->cmd.dtr)
548 opcode = op->cmd.opcode >> 8;
549 else
550 opcode = op->cmd.opcode;
551
552 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
553
554 rdreg = cqspi_calc_rdreg(op);
555 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
556
557 dummy_clk = cqspi_calc_dummy(op);
558 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
559 return -EOPNOTSUPP;
560
561 if (dummy_clk)
562 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
563 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
564
565 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
566
567 /* 0 means 1 byte. */
568 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
569 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
570
571 /* setup ADDR BIT field */
572 if (op->addr.nbytes) {
573 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
574 reg |= ((op->addr.nbytes - 1) &
575 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
576 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
577
578 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
579 }
580
581 status = cqspi_exec_flash_cmd(cqspi, reg);
582 if (status)
583 return status;
584
585 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
586
587 /* Put the read value into rx_buf */
588 read_len = (n_rx > 4) ? 4 : n_rx;
589 memcpy(rxbuf, ®, read_len);
590 rxbuf += read_len;
591
592 if (n_rx > 4) {
593 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
594
595 read_len = n_rx - read_len;
596 memcpy(rxbuf, ®, read_len);
597 }
598
599 /* Reset CMD_CTRL Reg once command read completes */
600 writel(0, reg_base + CQSPI_REG_CMDCTRL);
601
602 return 0;
603 }
604
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)605 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
606 const struct spi_mem_op *op)
607 {
608 struct cqspi_st *cqspi = f_pdata->cqspi;
609 void __iomem *reg_base = cqspi->iobase;
610 u8 opcode;
611 const u8 *txbuf = op->data.buf.out;
612 size_t n_tx = op->data.nbytes;
613 unsigned int reg;
614 unsigned int data;
615 size_t write_len;
616 int ret;
617
618 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
619 if (ret)
620 return ret;
621
622 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
623 dev_err(&cqspi->pdev->dev,
624 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
625 n_tx, txbuf);
626 return -EINVAL;
627 }
628
629 reg = cqspi_calc_rdreg(op);
630 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
631
632 if (op->cmd.dtr)
633 opcode = op->cmd.opcode >> 8;
634 else
635 opcode = op->cmd.opcode;
636
637 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
638
639 if (op->addr.nbytes) {
640 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
641 reg |= ((op->addr.nbytes - 1) &
642 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
643 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
644
645 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
646 }
647
648 if (n_tx) {
649 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
650 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
651 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
652 data = 0;
653 write_len = (n_tx > 4) ? 4 : n_tx;
654 memcpy(&data, txbuf, write_len);
655 txbuf += write_len;
656 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
657
658 if (n_tx > 4) {
659 data = 0;
660 write_len = n_tx - 4;
661 memcpy(&data, txbuf, write_len);
662 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
663 }
664 }
665
666 ret = cqspi_exec_flash_cmd(cqspi, reg);
667
668 /* Reset CMD_CTRL Reg once command write completes */
669 writel(0, reg_base + CQSPI_REG_CMDCTRL);
670
671 return ret;
672 }
673
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)674 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
675 const struct spi_mem_op *op)
676 {
677 struct cqspi_st *cqspi = f_pdata->cqspi;
678 void __iomem *reg_base = cqspi->iobase;
679 unsigned int dummy_clk = 0;
680 unsigned int reg;
681 int ret;
682 u8 opcode;
683
684 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
685 if (ret)
686 return ret;
687
688 if (op->cmd.dtr)
689 opcode = op->cmd.opcode >> 8;
690 else
691 opcode = op->cmd.opcode;
692
693 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
694 reg |= cqspi_calc_rdreg(op);
695
696 /* Setup dummy clock cycles */
697 dummy_clk = cqspi_calc_dummy(op);
698
699 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
700 return -EOPNOTSUPP;
701
702 if (dummy_clk)
703 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
704 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
705
706 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
707
708 /* Set address width */
709 reg = readl(reg_base + CQSPI_REG_SIZE);
710 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
711 reg |= (op->addr.nbytes - 1);
712 writel(reg, reg_base + CQSPI_REG_SIZE);
713 return 0;
714 }
715
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)716 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
717 u8 *rxbuf, loff_t from_addr,
718 const size_t n_rx)
719 {
720 struct cqspi_st *cqspi = f_pdata->cqspi;
721 bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
722 struct device *dev = &cqspi->pdev->dev;
723 void __iomem *reg_base = cqspi->iobase;
724 void __iomem *ahb_base = cqspi->ahb_base;
725 unsigned int remaining = n_rx;
726 unsigned int mod_bytes = n_rx % 4;
727 unsigned int bytes_to_read = 0;
728 u8 *rxbuf_end = rxbuf + n_rx;
729 int ret = 0;
730
731 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
732 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
733
734 /* Clear all interrupts. */
735 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
736
737 /*
738 * On SoCFPGA platform reading the SRAM is slow due to
739 * hardware limitation and causing read interrupt storm to CPU,
740 * so enabling only watermark interrupt to disable all read
741 * interrupts later as we want to run "bytes to read" loop with
742 * all the read interrupts disabled for max performance.
743 */
744
745 if (use_irq && cqspi->slow_sram)
746 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
747 else if (use_irq)
748 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
749 else
750 writel(0, reg_base + CQSPI_REG_IRQMASK);
751
752 reinit_completion(&cqspi->transfer_complete);
753 writel(CQSPI_REG_INDIRECTRD_START_MASK,
754 reg_base + CQSPI_REG_INDIRECTRD);
755
756 while (remaining > 0) {
757 if (use_irq &&
758 !wait_for_completion_timeout(&cqspi->transfer_complete,
759 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
760 ret = -ETIMEDOUT;
761
762 /*
763 * Disable all read interrupts until
764 * we are out of "bytes to read"
765 */
766 if (cqspi->slow_sram)
767 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
768
769 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
770
771 if (ret && bytes_to_read == 0) {
772 dev_err(dev, "Indirect read timeout, no bytes\n");
773 goto failrd;
774 }
775
776 while (bytes_to_read != 0) {
777 unsigned int word_remain = round_down(remaining, 4);
778
779 bytes_to_read *= cqspi->fifo_width;
780 bytes_to_read = bytes_to_read > remaining ?
781 remaining : bytes_to_read;
782 bytes_to_read = round_down(bytes_to_read, 4);
783 /* Read 4 byte word chunks then single bytes */
784 if (bytes_to_read) {
785 ioread32_rep(ahb_base, rxbuf,
786 (bytes_to_read / 4));
787 } else if (!word_remain && mod_bytes) {
788 unsigned int temp = ioread32(ahb_base);
789
790 bytes_to_read = mod_bytes;
791 memcpy(rxbuf, &temp, min((unsigned int)
792 (rxbuf_end - rxbuf),
793 bytes_to_read));
794 }
795 rxbuf += bytes_to_read;
796 remaining -= bytes_to_read;
797 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
798 }
799
800 if (use_irq && remaining > 0) {
801 reinit_completion(&cqspi->transfer_complete);
802 if (cqspi->slow_sram)
803 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
804 }
805 }
806
807 /* Check indirect done status */
808 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
809 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
810 if (ret) {
811 dev_err(dev, "Indirect read completion error (%i)\n", ret);
812 goto failrd;
813 }
814
815 /* Disable interrupt */
816 writel(0, reg_base + CQSPI_REG_IRQMASK);
817
818 /* Clear indirect completion status */
819 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
820
821 return 0;
822
823 failrd:
824 /* Disable interrupt */
825 writel(0, reg_base + CQSPI_REG_IRQMASK);
826
827 /* Cancel the indirect read */
828 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
829 reg_base + CQSPI_REG_INDIRECTRD);
830 return ret;
831 }
832
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)833 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
834 {
835 void __iomem *reg_base = cqspi->iobase;
836 unsigned int reg;
837
838 reg = readl(reg_base + CQSPI_REG_CONFIG);
839
840 if (enable)
841 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
842 else
843 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
844
845 writel(reg, reg_base + CQSPI_REG_CONFIG);
846 }
847
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)848 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
849 u_char *rxbuf, loff_t from_addr,
850 size_t n_rx)
851 {
852 struct cqspi_st *cqspi = f_pdata->cqspi;
853 struct device *dev = &cqspi->pdev->dev;
854 void __iomem *reg_base = cqspi->iobase;
855 u32 reg, bytes_to_dma;
856 loff_t addr = from_addr;
857 void *buf = rxbuf;
858 dma_addr_t dma_addr;
859 u8 bytes_rem;
860 int ret = 0;
861
862 bytes_rem = n_rx % 4;
863 bytes_to_dma = (n_rx - bytes_rem);
864
865 if (!bytes_to_dma)
866 goto nondmard;
867
868 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
869 if (ret)
870 return ret;
871
872 cqspi_controller_enable(cqspi, 0);
873
874 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
875 reg |= CQSPI_REG_CONFIG_DMA_MASK;
876 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
877
878 cqspi_controller_enable(cqspi, 1);
879
880 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
881 if (dma_mapping_error(dev, dma_addr)) {
882 dev_err(dev, "dma mapping failed\n");
883 return -ENOMEM;
884 }
885
886 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
887 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
888 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
889 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
890
891 /* Clear all interrupts. */
892 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
893
894 /* Enable DMA done interrupt */
895 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
896 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
897
898 /* Default DMA periph configuration */
899 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
900
901 /* Configure DMA Dst address */
902 writel(lower_32_bits(dma_addr),
903 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
904 writel(upper_32_bits(dma_addr),
905 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
906
907 /* Configure DMA Src address */
908 writel(cqspi->trigger_address, reg_base +
909 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
910
911 /* Set DMA destination size */
912 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
913
914 /* Set DMA destination control */
915 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
916 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
917
918 writel(CQSPI_REG_INDIRECTRD_START_MASK,
919 reg_base + CQSPI_REG_INDIRECTRD);
920
921 reinit_completion(&cqspi->transfer_complete);
922
923 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
924 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
925 ret = -ETIMEDOUT;
926 goto failrd;
927 }
928
929 /* Disable DMA interrupt */
930 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
931
932 /* Clear indirect completion status */
933 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
934 cqspi->iobase + CQSPI_REG_INDIRECTRD);
935 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
936
937 cqspi_controller_enable(cqspi, 0);
938
939 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
940 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
941 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
942
943 cqspi_controller_enable(cqspi, 1);
944
945 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
946 PM_OSPI_MUX_SEL_LINEAR);
947 if (ret)
948 return ret;
949
950 nondmard:
951 if (bytes_rem) {
952 addr += bytes_to_dma;
953 buf += bytes_to_dma;
954 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
955 bytes_rem);
956 if (ret)
957 return ret;
958 }
959
960 return 0;
961
962 failrd:
963 /* Disable DMA interrupt */
964 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
965
966 /* Cancel the indirect read */
967 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
968 reg_base + CQSPI_REG_INDIRECTRD);
969
970 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
971
972 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
973 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
974 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
975
976 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
977
978 return ret;
979 }
980
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)981 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
982 const struct spi_mem_op *op)
983 {
984 unsigned int reg;
985 int ret;
986 struct cqspi_st *cqspi = f_pdata->cqspi;
987 void __iomem *reg_base = cqspi->iobase;
988 u8 opcode;
989
990 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
991 if (ret)
992 return ret;
993
994 if (op->cmd.dtr)
995 opcode = op->cmd.opcode >> 8;
996 else
997 opcode = op->cmd.opcode;
998
999 /* Set opcode. */
1000 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1001 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1002 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1003 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1004 reg = cqspi_calc_rdreg(op);
1005 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1006
1007 /*
1008 * SPI NAND flashes require the address of the status register to be
1009 * passed in the Read SR command. Also, some SPI NOR flashes like the
1010 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1011 * command in DTR mode.
1012 *
1013 * But this controller does not support address phase in the Read SR
1014 * command when doing auto-HW polling. So, disable write completion
1015 * polling on the controller's side. spinand and spi-nor will take
1016 * care of polling the status register.
1017 */
1018 if (cqspi->wr_completion) {
1019 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1020 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1021 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1022 /*
1023 * DAC mode require auto polling as flash needs to be polled
1024 * for write completion in case of bubble in SPI transaction
1025 * due to slow CPU/DMA master.
1026 */
1027 cqspi->use_direct_mode_wr = false;
1028 }
1029
1030 reg = readl(reg_base + CQSPI_REG_SIZE);
1031 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1032 reg |= (op->addr.nbytes - 1);
1033 writel(reg, reg_base + CQSPI_REG_SIZE);
1034 return 0;
1035 }
1036
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)1037 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1038 loff_t to_addr, const u8 *txbuf,
1039 const size_t n_tx)
1040 {
1041 struct cqspi_st *cqspi = f_pdata->cqspi;
1042 struct device *dev = &cqspi->pdev->dev;
1043 void __iomem *reg_base = cqspi->iobase;
1044 unsigned int remaining = n_tx;
1045 unsigned int write_bytes;
1046 int ret;
1047
1048 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1049 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1050
1051 /* Clear all interrupts. */
1052 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1053
1054 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1055
1056 reinit_completion(&cqspi->transfer_complete);
1057 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1058 reg_base + CQSPI_REG_INDIRECTWR);
1059 /*
1060 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1061 * Controller programming sequence, couple of cycles of
1062 * QSPI_REF_CLK delay is required for the above bit to
1063 * be internally synchronized by the QSPI module. Provide 5
1064 * cycles of delay.
1065 */
1066 if (cqspi->wr_delay)
1067 ndelay(cqspi->wr_delay);
1068
1069 /*
1070 * If a hazard exists between the APB and AHB interfaces, perform a
1071 * dummy readback from the controller to ensure synchronization.
1072 */
1073 if (cqspi->apb_ahb_hazard)
1074 readl(reg_base + CQSPI_REG_INDIRECTWR);
1075
1076 while (remaining > 0) {
1077 size_t write_words, mod_bytes;
1078
1079 write_bytes = remaining;
1080 write_words = write_bytes / 4;
1081 mod_bytes = write_bytes % 4;
1082 /* Write 4 bytes at a time then single bytes. */
1083 if (write_words) {
1084 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1085 txbuf += (write_words * 4);
1086 }
1087 if (mod_bytes) {
1088 unsigned int temp = 0xFFFFFFFF;
1089
1090 memcpy(&temp, txbuf, mod_bytes);
1091 iowrite32(temp, cqspi->ahb_base);
1092 txbuf += mod_bytes;
1093 }
1094
1095 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1096 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1097 dev_err(dev, "Indirect write timeout\n");
1098 ret = -ETIMEDOUT;
1099 goto failwr;
1100 }
1101
1102 remaining -= write_bytes;
1103
1104 if (remaining > 0)
1105 reinit_completion(&cqspi->transfer_complete);
1106 }
1107
1108 /* Check indirect done status */
1109 ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1110 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1111 if (ret) {
1112 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1113 goto failwr;
1114 }
1115
1116 /* Disable interrupt. */
1117 writel(0, reg_base + CQSPI_REG_IRQMASK);
1118
1119 /* Clear indirect completion status */
1120 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1121
1122 cqspi_wait_idle(cqspi);
1123
1124 return 0;
1125
1126 failwr:
1127 /* Disable interrupt. */
1128 writel(0, reg_base + CQSPI_REG_IRQMASK);
1129
1130 /* Cancel the indirect write */
1131 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1132 reg_base + CQSPI_REG_INDIRECTWR);
1133 return ret;
1134 }
1135
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1136 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1137 {
1138 struct cqspi_st *cqspi = f_pdata->cqspi;
1139 void __iomem *reg_base = cqspi->iobase;
1140 unsigned int chip_select = f_pdata->cs;
1141 unsigned int reg;
1142
1143 reg = readl(reg_base + CQSPI_REG_CONFIG);
1144 if (cqspi->is_decoded_cs) {
1145 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1146 } else {
1147 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1148
1149 /* Convert CS if without decoder.
1150 * CS0 to 4b'1110
1151 * CS1 to 4b'1101
1152 * CS2 to 4b'1011
1153 * CS3 to 4b'0111
1154 */
1155 chip_select = 0xF & ~(1 << chip_select);
1156 }
1157
1158 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1159 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1160 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1161 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1162 writel(reg, reg_base + CQSPI_REG_CONFIG);
1163 }
1164
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1165 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1166 const unsigned int ns_val)
1167 {
1168 unsigned int ticks;
1169
1170 ticks = ref_clk_hz / 1000; /* kHz */
1171 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1172
1173 return ticks;
1174 }
1175
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1176 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1177 {
1178 struct cqspi_st *cqspi = f_pdata->cqspi;
1179 void __iomem *iobase = cqspi->iobase;
1180 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1181 unsigned int tshsl, tchsh, tslch, tsd2d;
1182 unsigned int reg;
1183 unsigned int tsclk;
1184
1185 /* calculate the number of ref ticks for one sclk tick */
1186 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1187
1188 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1189 /* this particular value must be at least one sclk */
1190 if (tshsl < tsclk)
1191 tshsl = tsclk;
1192
1193 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1194 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1195 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1196
1197 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1198 << CQSPI_REG_DELAY_TSHSL_LSB;
1199 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1200 << CQSPI_REG_DELAY_TCHSH_LSB;
1201 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1202 << CQSPI_REG_DELAY_TSLCH_LSB;
1203 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1204 << CQSPI_REG_DELAY_TSD2D_LSB;
1205 writel(reg, iobase + CQSPI_REG_DELAY);
1206 }
1207
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1208 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1209 {
1210 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1211 void __iomem *reg_base = cqspi->iobase;
1212 u32 reg, div;
1213
1214 /* Recalculate the baudrate divisor based on QSPI specification. */
1215 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1216
1217 /* Maximum baud divisor */
1218 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1219 div = CQSPI_REG_CONFIG_BAUD_MASK;
1220 dev_warn(&cqspi->pdev->dev,
1221 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1222 cqspi->sclk, ref_clk_hz/((div+1)*2));
1223 }
1224
1225 reg = readl(reg_base + CQSPI_REG_CONFIG);
1226 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1227 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1228 writel(reg, reg_base + CQSPI_REG_CONFIG);
1229 }
1230
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1231 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1232 const bool bypass,
1233 const unsigned int delay)
1234 {
1235 void __iomem *reg_base = cqspi->iobase;
1236 unsigned int reg;
1237
1238 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1239
1240 if (bypass)
1241 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1242 else
1243 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1244
1245 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1246 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1247
1248 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1249 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1250
1251 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1252 }
1253
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1254 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1255 unsigned long sclk)
1256 {
1257 struct cqspi_st *cqspi = f_pdata->cqspi;
1258 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1259 int switch_ck = (cqspi->sclk != sclk);
1260
1261 if (switch_cs || switch_ck)
1262 cqspi_controller_enable(cqspi, 0);
1263
1264 /* Switch chip select. */
1265 if (switch_cs) {
1266 cqspi->current_cs = f_pdata->cs;
1267 cqspi_chipselect(f_pdata);
1268 }
1269
1270 /* Setup baudrate divisor and delays */
1271 if (switch_ck) {
1272 cqspi->sclk = sclk;
1273 cqspi_config_baudrate_div(cqspi);
1274 cqspi_delay(f_pdata);
1275 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1276 f_pdata->read_delay);
1277 }
1278
1279 if (switch_cs || switch_ck)
1280 cqspi_controller_enable(cqspi, 1);
1281 }
1282
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1283 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1284 const struct spi_mem_op *op)
1285 {
1286 struct cqspi_st *cqspi = f_pdata->cqspi;
1287 loff_t to = op->addr.val;
1288 size_t len = op->data.nbytes;
1289 const u_char *buf = op->data.buf.out;
1290 int ret;
1291
1292 ret = cqspi_write_setup(f_pdata, op);
1293 if (ret)
1294 return ret;
1295
1296 /*
1297 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1298 * address (all 0s) with the read status register command in DTR mode.
1299 * But this controller does not support sending dummy address bytes to
1300 * the flash when it is polling the write completion register in DTR
1301 * mode. So, we can not use direct mode when in DTR mode for writing
1302 * data.
1303 */
1304 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1305 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1306 memcpy_toio(cqspi->ahb_base + to, buf, len);
1307 return cqspi_wait_idle(cqspi);
1308 }
1309
1310 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1311 }
1312
cqspi_rx_dma_callback(void * param)1313 static void cqspi_rx_dma_callback(void *param)
1314 {
1315 struct cqspi_st *cqspi = param;
1316
1317 complete(&cqspi->rx_dma_complete);
1318 }
1319
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1320 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1321 u_char *buf, loff_t from, size_t len)
1322 {
1323 struct cqspi_st *cqspi = f_pdata->cqspi;
1324 struct device *dev = &cqspi->pdev->dev;
1325 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1326 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1327 int ret = 0;
1328 struct dma_async_tx_descriptor *tx;
1329 dma_cookie_t cookie;
1330 dma_addr_t dma_dst;
1331 struct device *ddev;
1332
1333 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1334 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1335 return 0;
1336 }
1337
1338 ddev = cqspi->rx_chan->device->dev;
1339 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1340 if (dma_mapping_error(ddev, dma_dst)) {
1341 dev_err(dev, "dma mapping failed\n");
1342 return -ENOMEM;
1343 }
1344 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1345 len, flags);
1346 if (!tx) {
1347 dev_err(dev, "device_prep_dma_memcpy error\n");
1348 ret = -EIO;
1349 goto err_unmap;
1350 }
1351
1352 tx->callback = cqspi_rx_dma_callback;
1353 tx->callback_param = cqspi;
1354 cookie = tx->tx_submit(tx);
1355 reinit_completion(&cqspi->rx_dma_complete);
1356
1357 ret = dma_submit_error(cookie);
1358 if (ret) {
1359 dev_err(dev, "dma_submit_error %d\n", cookie);
1360 ret = -EIO;
1361 goto err_unmap;
1362 }
1363
1364 dma_async_issue_pending(cqspi->rx_chan);
1365 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1366 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1367 dmaengine_terminate_sync(cqspi->rx_chan);
1368 dev_err(dev, "DMA wait_for_completion_timeout\n");
1369 ret = -ETIMEDOUT;
1370 goto err_unmap;
1371 }
1372
1373 err_unmap:
1374 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1375
1376 return ret;
1377 }
1378
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1379 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1380 const struct spi_mem_op *op)
1381 {
1382 struct cqspi_st *cqspi = f_pdata->cqspi;
1383 const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1384 loff_t from = op->addr.val;
1385 size_t len = op->data.nbytes;
1386 u_char *buf = op->data.buf.in;
1387 u64 dma_align = (u64)(uintptr_t)buf;
1388 int ret;
1389
1390 ret = cqspi_read_setup(f_pdata, op);
1391 if (ret)
1392 return ret;
1393
1394 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1395 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1396
1397 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1398 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1399 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1400
1401 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1402 }
1403
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1404 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1405 {
1406 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1407 struct cqspi_flash_pdata *f_pdata;
1408
1409 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1410 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1411
1412 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1413 /*
1414 * Performing reads in DAC mode forces to read minimum 4 bytes
1415 * which is unsupported on some flash devices during register
1416 * reads, prefer STIG mode for such small reads.
1417 */
1418 if (!op->addr.nbytes ||
1419 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1420 return cqspi_command_read(f_pdata, op);
1421
1422 return cqspi_read(f_pdata, op);
1423 }
1424
1425 if (!op->addr.nbytes || !op->data.buf.out)
1426 return cqspi_command_write(f_pdata, op);
1427
1428 return cqspi_write(f_pdata, op);
1429 }
1430
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1431 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1432 {
1433 int ret;
1434 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1435 struct device *dev = &cqspi->pdev->dev;
1436
1437 ret = pm_runtime_resume_and_get(dev);
1438 if (ret) {
1439 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1440 return ret;
1441 }
1442
1443 ret = cqspi_mem_process(mem, op);
1444
1445 pm_runtime_mark_last_busy(dev);
1446 pm_runtime_put_autosuspend(dev);
1447
1448 if (ret)
1449 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1450
1451 return ret;
1452 }
1453
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1454 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1455 const struct spi_mem_op *op)
1456 {
1457 bool all_true, all_false;
1458
1459 /*
1460 * op->dummy.dtr is required for converting nbytes into ncycles.
1461 * Also, don't check the dtr field of the op phase having zero nbytes.
1462 */
1463 all_true = op->cmd.dtr &&
1464 (!op->addr.nbytes || op->addr.dtr) &&
1465 (!op->dummy.nbytes || op->dummy.dtr) &&
1466 (!op->data.nbytes || op->data.dtr);
1467
1468 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1469 !op->data.dtr;
1470
1471 if (all_true) {
1472 /* Right now we only support 8-8-8 DTR mode. */
1473 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1474 return false;
1475 if (op->addr.nbytes && op->addr.buswidth != 8)
1476 return false;
1477 if (op->data.nbytes && op->data.buswidth != 8)
1478 return false;
1479 } else if (!all_false) {
1480 /* Mixed DTR modes are not supported. */
1481 return false;
1482 }
1483
1484 return spi_mem_default_supports_op(mem, op);
1485 }
1486
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1487 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1488 struct cqspi_flash_pdata *f_pdata,
1489 struct device_node *np)
1490 {
1491 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1492 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1493 return -ENXIO;
1494 }
1495
1496 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1497 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1498 return -ENXIO;
1499 }
1500
1501 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1502 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1503 return -ENXIO;
1504 }
1505
1506 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1507 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1508 return -ENXIO;
1509 }
1510
1511 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1512 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1513 return -ENXIO;
1514 }
1515
1516 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1517 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1518 return -ENXIO;
1519 }
1520
1521 return 0;
1522 }
1523
cqspi_of_get_pdata(struct cqspi_st * cqspi)1524 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1525 {
1526 struct device *dev = &cqspi->pdev->dev;
1527 struct device_node *np = dev->of_node;
1528 u32 id[2];
1529
1530 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1531
1532 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1533 /* Zero signals FIFO depth should be runtime detected. */
1534 cqspi->fifo_depth = 0;
1535 }
1536
1537 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1538 dev_err(dev, "couldn't determine fifo-width\n");
1539 return -ENXIO;
1540 }
1541
1542 if (of_property_read_u32(np, "cdns,trigger-address",
1543 &cqspi->trigger_address)) {
1544 dev_err(dev, "couldn't determine trigger-address\n");
1545 return -ENXIO;
1546 }
1547
1548 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1549 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1550
1551 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1552
1553 if (!of_property_read_u32_array(np, "power-domains", id,
1554 ARRAY_SIZE(id)))
1555 cqspi->pd_dev_id = id[1];
1556
1557 return 0;
1558 }
1559
cqspi_controller_init(struct cqspi_st * cqspi)1560 static void cqspi_controller_init(struct cqspi_st *cqspi)
1561 {
1562 u32 reg;
1563
1564 /* Configure the remap address register, no remap */
1565 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1566
1567 /* Disable all interrupts. */
1568 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1569
1570 /* Configure the SRAM split to 1:1 . */
1571 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1572
1573 /* Load indirect trigger address. */
1574 writel(cqspi->trigger_address,
1575 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1576
1577 /* Program read watermark -- 1/2 of the FIFO. */
1578 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1579 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1580 /* Program write watermark -- 1/8 of the FIFO. */
1581 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1582 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1583
1584 /* Disable direct access controller */
1585 if (!cqspi->use_direct_mode) {
1586 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1587 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1588 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1589 }
1590
1591 /* Enable DMA interface */
1592 if (cqspi->use_dma_read) {
1593 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1594 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1595 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1596 }
1597 }
1598
cqspi_controller_detect_fifo_depth(struct cqspi_st * cqspi)1599 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1600 {
1601 struct device *dev = &cqspi->pdev->dev;
1602 u32 reg, fifo_depth;
1603
1604 /*
1605 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1606 * the FIFO depth.
1607 */
1608 writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1609 reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1610 fifo_depth = reg + 1;
1611
1612 /* FIFO depth of zero means no value from devicetree was provided. */
1613 if (cqspi->fifo_depth == 0) {
1614 cqspi->fifo_depth = fifo_depth;
1615 dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1616 } else if (fifo_depth != cqspi->fifo_depth) {
1617 dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1618 fifo_depth, cqspi->fifo_depth);
1619 }
1620 }
1621
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1622 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1623 {
1624 dma_cap_mask_t mask;
1625
1626 dma_cap_zero(mask);
1627 dma_cap_set(DMA_MEMCPY, mask);
1628
1629 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1630 if (IS_ERR(cqspi->rx_chan)) {
1631 int ret = PTR_ERR(cqspi->rx_chan);
1632
1633 cqspi->rx_chan = NULL;
1634 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1635 }
1636 init_completion(&cqspi->rx_dma_complete);
1637
1638 return 0;
1639 }
1640
cqspi_get_name(struct spi_mem * mem)1641 static const char *cqspi_get_name(struct spi_mem *mem)
1642 {
1643 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1644 struct device *dev = &cqspi->pdev->dev;
1645
1646 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1647 spi_get_chipselect(mem->spi, 0));
1648 }
1649
1650 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1651 .exec_op = cqspi_exec_mem_op,
1652 .get_name = cqspi_get_name,
1653 .supports_op = cqspi_supports_mem_op,
1654 };
1655
1656 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1657 .dtr = true,
1658 };
1659
cqspi_setup_flash(struct cqspi_st * cqspi)1660 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1661 {
1662 unsigned int max_cs = cqspi->num_chipselect - 1;
1663 struct platform_device *pdev = cqspi->pdev;
1664 struct device *dev = &pdev->dev;
1665 struct cqspi_flash_pdata *f_pdata;
1666 unsigned int cs;
1667 int ret;
1668
1669 /* Get flash device data */
1670 for_each_available_child_of_node_scoped(dev->of_node, np) {
1671 ret = of_property_read_u32(np, "reg", &cs);
1672 if (ret) {
1673 dev_err(dev, "Couldn't determine chip select.\n");
1674 return ret;
1675 }
1676
1677 if (cs >= cqspi->num_chipselect) {
1678 dev_err(dev, "Chip select %d out of range.\n", cs);
1679 return -EINVAL;
1680 } else if (cs < max_cs) {
1681 max_cs = cs;
1682 }
1683
1684 f_pdata = &cqspi->f_pdata[cs];
1685 f_pdata->cqspi = cqspi;
1686 f_pdata->cs = cs;
1687
1688 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1689 if (ret)
1690 return ret;
1691 }
1692
1693 cqspi->num_chipselect = max_cs + 1;
1694 return 0;
1695 }
1696
cqspi_jh7110_clk_init(struct platform_device * pdev,struct cqspi_st * cqspi)1697 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1698 {
1699 static struct clk_bulk_data qspiclk[] = {
1700 { .id = "apb" },
1701 { .id = "ahb" },
1702 };
1703
1704 int ret = 0;
1705
1706 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1707 if (ret) {
1708 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1709 return ret;
1710 }
1711
1712 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1713 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1714
1715 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1716 if (ret) {
1717 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1718 return ret;
1719 }
1720
1721 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1722 if (ret) {
1723 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1724 goto disable_apb_clk;
1725 }
1726
1727 cqspi->is_jh7110 = true;
1728
1729 return 0;
1730
1731 disable_apb_clk:
1732 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1733
1734 return ret;
1735 }
1736
cqspi_jh7110_disable_clk(struct platform_device * pdev,struct cqspi_st * cqspi)1737 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1738 {
1739 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1740 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1741 }
cqspi_probe(struct platform_device * pdev)1742 static int cqspi_probe(struct platform_device *pdev)
1743 {
1744 const struct cqspi_driver_platdata *ddata;
1745 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1746 struct device *dev = &pdev->dev;
1747 struct spi_controller *host;
1748 struct resource *res_ahb;
1749 struct cqspi_st *cqspi;
1750 int ret;
1751 int irq;
1752
1753 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1754 if (!host)
1755 return -ENOMEM;
1756
1757 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1758 host->mem_ops = &cqspi_mem_ops;
1759 host->mem_caps = &cqspi_mem_caps;
1760 host->dev.of_node = pdev->dev.of_node;
1761
1762 cqspi = spi_controller_get_devdata(host);
1763
1764 cqspi->pdev = pdev;
1765 cqspi->host = host;
1766 cqspi->is_jh7110 = false;
1767 cqspi->ddata = ddata = of_device_get_match_data(dev);
1768 platform_set_drvdata(pdev, cqspi);
1769
1770 /* Obtain configuration from OF. */
1771 ret = cqspi_of_get_pdata(cqspi);
1772 if (ret) {
1773 dev_err(dev, "Cannot get mandatory OF data.\n");
1774 return -ENODEV;
1775 }
1776
1777 /* Obtain QSPI clock. */
1778 cqspi->clk = devm_clk_get(dev, NULL);
1779 if (IS_ERR(cqspi->clk)) {
1780 dev_err(dev, "Cannot claim QSPI clock.\n");
1781 ret = PTR_ERR(cqspi->clk);
1782 return ret;
1783 }
1784
1785 /* Obtain and remap controller address. */
1786 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1787 if (IS_ERR(cqspi->iobase)) {
1788 dev_err(dev, "Cannot remap controller address.\n");
1789 ret = PTR_ERR(cqspi->iobase);
1790 return ret;
1791 }
1792
1793 /* Obtain and remap AHB address. */
1794 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1795 if (IS_ERR(cqspi->ahb_base)) {
1796 dev_err(dev, "Cannot remap AHB address.\n");
1797 ret = PTR_ERR(cqspi->ahb_base);
1798 return ret;
1799 }
1800 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1801 cqspi->ahb_size = resource_size(res_ahb);
1802
1803 init_completion(&cqspi->transfer_complete);
1804
1805 /* Obtain IRQ line. */
1806 irq = platform_get_irq(pdev, 0);
1807 if (irq < 0)
1808 return -ENXIO;
1809
1810 ret = pm_runtime_set_active(dev);
1811 if (ret)
1812 return ret;
1813
1814
1815 ret = clk_prepare_enable(cqspi->clk);
1816 if (ret) {
1817 dev_err(dev, "Cannot enable QSPI clock.\n");
1818 goto probe_clk_failed;
1819 }
1820
1821 /* Obtain QSPI reset control */
1822 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1823 if (IS_ERR(rstc)) {
1824 ret = PTR_ERR(rstc);
1825 dev_err(dev, "Cannot get QSPI reset.\n");
1826 goto probe_reset_failed;
1827 }
1828
1829 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1830 if (IS_ERR(rstc_ocp)) {
1831 ret = PTR_ERR(rstc_ocp);
1832 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1833 goto probe_reset_failed;
1834 }
1835
1836 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1837 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1838 if (IS_ERR(rstc_ref)) {
1839 ret = PTR_ERR(rstc_ref);
1840 dev_err(dev, "Cannot get QSPI REF reset.\n");
1841 goto probe_reset_failed;
1842 }
1843 reset_control_assert(rstc_ref);
1844 reset_control_deassert(rstc_ref);
1845 }
1846
1847 reset_control_assert(rstc);
1848 reset_control_deassert(rstc);
1849
1850 reset_control_assert(rstc_ocp);
1851 reset_control_deassert(rstc_ocp);
1852
1853 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1854 host->max_speed_hz = cqspi->master_ref_clk_hz;
1855
1856 /* write completion is supported by default */
1857 cqspi->wr_completion = true;
1858
1859 if (ddata) {
1860 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1861 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1862 cqspi->master_ref_clk_hz);
1863 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1864 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1865 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1866 cqspi->use_direct_mode = true;
1867 cqspi->use_direct_mode_wr = true;
1868 }
1869 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1870 cqspi->use_dma_read = true;
1871 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1872 cqspi->wr_completion = false;
1873 if (ddata->quirks & CQSPI_SLOW_SRAM)
1874 cqspi->slow_sram = true;
1875 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1876 cqspi->apb_ahb_hazard = true;
1877
1878 if (ddata->jh7110_clk_init) {
1879 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1880 if (ret)
1881 goto probe_reset_failed;
1882 }
1883
1884 if (of_device_is_compatible(pdev->dev.of_node,
1885 "xlnx,versal-ospi-1.0")) {
1886 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1887 if (ret)
1888 goto probe_reset_failed;
1889 }
1890 }
1891
1892 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1893 pdev->name, cqspi);
1894 if (ret) {
1895 dev_err(dev, "Cannot request IRQ.\n");
1896 goto probe_reset_failed;
1897 }
1898
1899 cqspi_wait_idle(cqspi);
1900 cqspi_controller_enable(cqspi, 0);
1901 cqspi_controller_detect_fifo_depth(cqspi);
1902 cqspi_controller_init(cqspi);
1903 cqspi_controller_enable(cqspi, 1);
1904 cqspi->current_cs = -1;
1905 cqspi->sclk = 0;
1906
1907 ret = cqspi_setup_flash(cqspi);
1908 if (ret) {
1909 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1910 goto probe_setup_failed;
1911 }
1912
1913 host->num_chipselect = cqspi->num_chipselect;
1914
1915 if (cqspi->use_direct_mode) {
1916 ret = cqspi_request_mmap_dma(cqspi);
1917 if (ret == -EPROBE_DEFER)
1918 goto probe_setup_failed;
1919 }
1920
1921 ret = devm_pm_runtime_enable(dev);
1922 if (ret) {
1923 if (cqspi->rx_chan)
1924 dma_release_channel(cqspi->rx_chan);
1925 goto probe_setup_failed;
1926 }
1927
1928 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1929 pm_runtime_use_autosuspend(dev);
1930 pm_runtime_get_noresume(dev);
1931
1932 ret = spi_register_controller(host);
1933 if (ret) {
1934 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1935 goto probe_setup_failed;
1936 }
1937
1938 pm_runtime_mark_last_busy(dev);
1939 pm_runtime_put_autosuspend(dev);
1940
1941 return 0;
1942 probe_setup_failed:
1943 cqspi_controller_enable(cqspi, 0);
1944 probe_reset_failed:
1945 if (cqspi->is_jh7110)
1946 cqspi_jh7110_disable_clk(pdev, cqspi);
1947 clk_disable_unprepare(cqspi->clk);
1948 probe_clk_failed:
1949 return ret;
1950 }
1951
cqspi_remove(struct platform_device * pdev)1952 static void cqspi_remove(struct platform_device *pdev)
1953 {
1954 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1955
1956 spi_unregister_controller(cqspi->host);
1957 cqspi_controller_enable(cqspi, 0);
1958
1959 if (cqspi->rx_chan)
1960 dma_release_channel(cqspi->rx_chan);
1961
1962 clk_disable_unprepare(cqspi->clk);
1963
1964 if (cqspi->is_jh7110)
1965 cqspi_jh7110_disable_clk(pdev, cqspi);
1966
1967 pm_runtime_put_sync(&pdev->dev);
1968 pm_runtime_disable(&pdev->dev);
1969 }
1970
cqspi_runtime_suspend(struct device * dev)1971 static int cqspi_runtime_suspend(struct device *dev)
1972 {
1973 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1974
1975 cqspi_controller_enable(cqspi, 0);
1976 clk_disable_unprepare(cqspi->clk);
1977 return 0;
1978 }
1979
cqspi_runtime_resume(struct device * dev)1980 static int cqspi_runtime_resume(struct device *dev)
1981 {
1982 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1983
1984 clk_prepare_enable(cqspi->clk);
1985 cqspi_wait_idle(cqspi);
1986 cqspi_controller_enable(cqspi, 0);
1987 cqspi_controller_init(cqspi);
1988 cqspi_controller_enable(cqspi, 1);
1989
1990 cqspi->current_cs = -1;
1991 cqspi->sclk = 0;
1992 return 0;
1993 }
1994
cqspi_suspend(struct device * dev)1995 static int cqspi_suspend(struct device *dev)
1996 {
1997 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1998 int ret;
1999
2000 ret = spi_controller_suspend(cqspi->host);
2001 if (ret)
2002 return ret;
2003
2004 return pm_runtime_force_suspend(dev);
2005 }
2006
cqspi_resume(struct device * dev)2007 static int cqspi_resume(struct device *dev)
2008 {
2009 struct cqspi_st *cqspi = dev_get_drvdata(dev);
2010 int ret;
2011
2012 ret = pm_runtime_force_resume(dev);
2013 if (ret) {
2014 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2015 return ret;
2016 }
2017
2018 return spi_controller_resume(cqspi->host);
2019 }
2020
2021 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2022 RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2023 SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2024 };
2025
2026 static const struct cqspi_driver_platdata cdns_qspi = {
2027 .quirks = CQSPI_DISABLE_DAC_MODE,
2028 };
2029
2030 static const struct cqspi_driver_platdata k2g_qspi = {
2031 .quirks = CQSPI_NEEDS_WR_DELAY,
2032 };
2033
2034 static const struct cqspi_driver_platdata am654_ospi = {
2035 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2036 .quirks = CQSPI_NEEDS_WR_DELAY,
2037 };
2038
2039 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2040 .quirks = CQSPI_DISABLE_DAC_MODE,
2041 };
2042
2043 static const struct cqspi_driver_platdata socfpga_qspi = {
2044 .quirks = CQSPI_DISABLE_DAC_MODE
2045 | CQSPI_NO_SUPPORT_WR_COMPLETION
2046 | CQSPI_SLOW_SRAM,
2047 };
2048
2049 static const struct cqspi_driver_platdata versal_ospi = {
2050 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2051 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2052 .indirect_read_dma = cqspi_versal_indirect_read_dma,
2053 .get_dma_status = cqspi_get_versal_dma_status,
2054 };
2055
2056 static const struct cqspi_driver_platdata jh7110_qspi = {
2057 .quirks = CQSPI_DISABLE_DAC_MODE,
2058 .jh7110_clk_init = cqspi_jh7110_clk_init,
2059 };
2060
2061 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2062 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2063 };
2064
2065 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2066 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2067 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2068 CQSPI_RD_NO_IRQ,
2069 };
2070
2071 static const struct of_device_id cqspi_dt_ids[] = {
2072 {
2073 .compatible = "cdns,qspi-nor",
2074 .data = &cdns_qspi,
2075 },
2076 {
2077 .compatible = "ti,k2g-qspi",
2078 .data = &k2g_qspi,
2079 },
2080 {
2081 .compatible = "ti,am654-ospi",
2082 .data = &am654_ospi,
2083 },
2084 {
2085 .compatible = "intel,lgm-qspi",
2086 .data = &intel_lgm_qspi,
2087 },
2088 {
2089 .compatible = "xlnx,versal-ospi-1.0",
2090 .data = &versal_ospi,
2091 },
2092 {
2093 .compatible = "intel,socfpga-qspi",
2094 .data = &socfpga_qspi,
2095 },
2096 {
2097 .compatible = "starfive,jh7110-qspi",
2098 .data = &jh7110_qspi,
2099 },
2100 {
2101 .compatible = "amd,pensando-elba-qspi",
2102 .data = &pensando_cdns_qspi,
2103 },
2104 {
2105 .compatible = "mobileye,eyeq5-ospi",
2106 .data = &mobileye_eyeq5_ospi,
2107 },
2108 { /* end of table */ }
2109 };
2110
2111 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2112
2113 static struct platform_driver cqspi_platform_driver = {
2114 .probe = cqspi_probe,
2115 .remove_new = cqspi_remove,
2116 .driver = {
2117 .name = CQSPI_NAME,
2118 .pm = pm_ptr(&cqspi_dev_pm_ops),
2119 .of_match_table = cqspi_dt_ids,
2120 },
2121 };
2122
2123 module_platform_driver(cqspi_platform_driver);
2124
2125 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2126 MODULE_LICENSE("GPL v2");
2127 MODULE_ALIAS("platform:" CQSPI_NAME);
2128 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2129 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2130 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2131 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2132 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2133