xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision a40236feb62ccbf2b36d288550a483122b3205e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_DEVICE_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM			BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 #define CQSPI_DISABLE_RUNTIME_PM	BIT(10)
50 #define CQSPI_NO_INDIRECT_MODE		BIT(11)
51 #define CQSPI_HAS_WR_PROTECT		BIT(12)
52 
53 /* Capabilities */
54 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
55 #define CQSPI_SUPPORTS_QUAD		BIT(1)
56 
57 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
58 
59 enum {
60 	CLK_QSPI_REF = 0,
61 	CLK_QSPI_APB,
62 	CLK_QSPI_AHB,
63 	CLK_QSPI_NUM,
64 };
65 
66 struct cqspi_st;
67 
68 struct cqspi_flash_pdata {
69 	struct cqspi_st	*cqspi;
70 	u32		clk_rate;
71 	u32		read_delay;
72 	u32		tshsl_ns;
73 	u32		tsd2d_ns;
74 	u32		tchsh_ns;
75 	u32		tslch_ns;
76 	u8		cs;
77 };
78 
79 struct cqspi_st {
80 	struct platform_device	*pdev;
81 	struct spi_controller	*host;
82 	struct clk_bulk_data	clks[CLK_QSPI_NUM];
83 	unsigned int		sclk;
84 
85 	void __iomem		*iobase;
86 	void __iomem		*ahb_base;
87 	resource_size_t		ahb_size;
88 	struct completion	transfer_complete;
89 
90 	struct dma_chan		*rx_chan;
91 	struct completion	rx_dma_complete;
92 	dma_addr_t		mmap_phys_base;
93 
94 	int			current_cs;
95 	unsigned long		master_ref_clk_hz;
96 	bool			is_decoded_cs;
97 	u32			fifo_depth;
98 	u32			fifo_width;
99 	u32			num_chipselect;
100 	bool			rclk_en;
101 	u32			trigger_address;
102 	u32			wr_delay;
103 	bool			use_direct_mode;
104 	bool			use_direct_mode_wr;
105 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
106 	bool			use_dma_read;
107 	u32			pd_dev_id;
108 	bool			wr_completion;
109 	bool			slow_sram;
110 	bool			apb_ahb_hazard;
111 
112 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
113 	bool			is_rzn1; /* Flag for Renesas RZ/N1 SoC */
114 	bool			disable_stig_mode;
115 	refcount_t		refcount;
116 	refcount_t		inflight_ops;
117 
118 	const struct cqspi_driver_platdata *ddata;
119 };
120 
121 struct cqspi_driver_platdata {
122 	u32 hwcaps_mask;
123 	u16 quirks;
124 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
125 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
126 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
127 };
128 
129 /* Operation timeout value */
130 #define CQSPI_TIMEOUT_MS			500
131 #define CQSPI_READ_TIMEOUT_MS			10
132 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
133 
134 /* Runtime_pm autosuspend delay */
135 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
136 
137 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
138 #define CQSPI_DUMMY_BYTES_MAX			4
139 #define CQSPI_DUMMY_CLKS_MAX			31
140 
141 #define CQSPI_STIG_DATA_LEN_MAX			8
142 
143 /* Register map */
144 #define CQSPI_REG_CONFIG			0x00
145 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
146 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
147 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
148 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
149 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
150 #define CQSPI_REG_CONFIG_BAUD_LSB		19
151 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
152 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
153 #define CQSPI_REG_CONFIG_IDLE_LSB		31
154 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
155 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
156 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
157 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
158 
159 #define CQSPI_REG_RD_INSTR			0x04
160 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
161 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
162 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
163 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
164 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
165 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
166 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
167 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
168 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
169 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
170 
171 #define CQSPI_REG_WR_INSTR			0x08
172 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
173 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
174 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
175 
176 #define CQSPI_REG_DELAY				0x0C
177 #define CQSPI_REG_DELAY_TSLCH_LSB		0
178 #define CQSPI_REG_DELAY_TCHSH_LSB		8
179 #define CQSPI_REG_DELAY_TSD2D_LSB		16
180 #define CQSPI_REG_DELAY_TSHSL_LSB		24
181 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
182 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
183 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
184 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
185 
186 #define CQSPI_REG_READCAPTURE			0x10
187 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
188 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
189 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
190 
191 #define CQSPI_REG_SIZE				0x14
192 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
193 #define CQSPI_REG_SIZE_PAGE_LSB			4
194 #define CQSPI_REG_SIZE_BLOCK_LSB		16
195 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
196 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
197 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
198 
199 #define CQSPI_REG_SRAMPARTITION			0x18
200 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
201 
202 #define CQSPI_REG_DMA				0x20
203 #define CQSPI_REG_DMA_SINGLE_LSB		0
204 #define CQSPI_REG_DMA_BURST_LSB			8
205 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
206 #define CQSPI_REG_DMA_BURST_MASK		0xFF
207 
208 #define CQSPI_REG_REMAP				0x24
209 #define CQSPI_REG_MODE_BIT			0x28
210 
211 #define CQSPI_REG_SDRAMLEVEL			0x2C
212 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
213 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
214 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
215 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
216 
217 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
218 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
219 
220 #define CQSPI_REG_IRQSTATUS			0x40
221 #define CQSPI_REG_IRQMASK			0x44
222 
223 #define CQSPI_REG_WR_PROT_CTRL			0x58
224 
225 #define CQSPI_REG_INDIRECTRD			0x60
226 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
227 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
228 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
229 
230 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
231 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
232 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
233 
234 #define CQSPI_REG_CMDCTRL			0x90
235 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
236 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
237 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
238 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
239 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
240 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
241 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
242 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
243 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
244 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
245 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
246 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
247 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
248 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
249 
250 #define CQSPI_REG_INDIRECTWR			0x70
251 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
252 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
253 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
254 
255 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
256 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
257 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
258 
259 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
260 
261 #define CQSPI_REG_CMDADDRESS			0x94
262 #define CQSPI_REG_CMDREADDATALOWER		0xA0
263 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
264 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
265 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
266 
267 #define CQSPI_REG_POLLING_STATUS		0xB0
268 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
269 
270 #define CQSPI_REG_OP_EXT_LOWER			0xE0
271 #define CQSPI_REG_OP_EXT_READ_LSB		24
272 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
273 #define CQSPI_REG_OP_EXT_STIG_LSB		0
274 
275 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
276 
277 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
278 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
279 
280 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
281 
282 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
283 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
284 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
285 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
286 
287 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
288 
289 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
290 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
291 
292 /* Interrupt status bits */
293 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
294 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
295 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
296 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
297 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
298 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
299 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
300 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
301 
302 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
303 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
304 					 CQSPI_REG_IRQ_IND_COMP)
305 
306 #define CQSPI_IRQ_MASK_RD_SLOW_SRAM	(CQSPI_REG_IRQ_WATERMARK	| \
307 					 CQSPI_REG_IRQ_IND_COMP)
308 
309 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
310 					 CQSPI_REG_IRQ_WATERMARK	| \
311 					 CQSPI_REG_IRQ_UNDERFLOW)
312 
313 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
314 #define CQSPI_DMA_UNALIGN		0x3
315 
316 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
317 
318 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
319 			      void __iomem *reg, const u32 mask, bool clr,
320 			      bool busywait)
321 {
322 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
323 	u32 val;
324 
325 	if (busywait) {
326 		int ret = readl_relaxed_poll_timeout(reg, val,
327 						     (((clr ? ~val : val) & mask) == mask),
328 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
329 
330 		if (ret != -ETIMEDOUT)
331 			return ret;
332 
333 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
334 	}
335 
336 	return readl_relaxed_poll_timeout(reg, val,
337 					  (((clr ? ~val : val) & mask) == mask),
338 					  10, timeout_us);
339 }
340 
341 static bool cqspi_is_idle(struct cqspi_st *cqspi)
342 {
343 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
344 
345 	return reg & BIT(CQSPI_REG_CONFIG_IDLE_LSB);
346 }
347 
348 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
349 {
350 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
351 
352 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
353 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
354 }
355 
356 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
357 {
358 	u32 dma_status;
359 
360 	dma_status = readl(cqspi->iobase +
361 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
362 	writel(dma_status, cqspi->iobase +
363 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
364 
365 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
366 }
367 
368 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
369 {
370 	struct cqspi_st *cqspi = dev;
371 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
372 	unsigned int irq_status;
373 
374 	/* Read interrupt status */
375 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
376 
377 	/* Clear interrupt */
378 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
379 
380 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status)
381 		irq_status = ddata->get_dma_status(cqspi);
382 	else if (cqspi->slow_sram)
383 		irq_status &= CQSPI_IRQ_MASK_RD_SLOW_SRAM | CQSPI_IRQ_MASK_WR;
384 	else
385 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
386 
387 	if (irq_status)
388 		complete(&cqspi->transfer_complete);
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
394 {
395 	u32 rdreg = 0;
396 
397 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
398 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
399 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
400 
401 	return rdreg;
402 }
403 
404 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
405 {
406 	unsigned int dummy_clk;
407 
408 	if (!op->dummy.nbytes)
409 		return 0;
410 
411 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
412 	if (op->cmd.dtr)
413 		dummy_clk /= 2;
414 
415 	return dummy_clk;
416 }
417 
418 static int cqspi_wait_idle(struct cqspi_st *cqspi)
419 {
420 	const unsigned int poll_idle_retry = 3;
421 	unsigned int count = 0;
422 	unsigned long timeout;
423 
424 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
425 	while (1) {
426 		/*
427 		 * Read few times in succession to ensure the controller
428 		 * is indeed idle, that is, the bit does not transition
429 		 * low again.
430 		 */
431 		if (cqspi_is_idle(cqspi))
432 			count++;
433 		else
434 			count = 0;
435 
436 		if (count >= poll_idle_retry)
437 			return 0;
438 
439 		if (time_after(jiffies, timeout)) {
440 			/* Timeout, in busy mode. */
441 			dev_err(&cqspi->pdev->dev,
442 				"QSPI is still busy after %dms timeout.\n",
443 				CQSPI_TIMEOUT_MS);
444 			return -ETIMEDOUT;
445 		}
446 
447 		cpu_relax();
448 	}
449 }
450 
451 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
452 {
453 	void __iomem *reg_base = cqspi->iobase;
454 	int ret;
455 
456 	/* Write the CMDCTRL without start execution. */
457 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
458 	/* Start execute */
459 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
460 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
461 
462 	/* Polling for completion. */
463 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
464 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
465 	if (ret) {
466 		dev_err(&cqspi->pdev->dev,
467 			"Flash command execution timed out.\n");
468 		return ret;
469 	}
470 
471 	/* Polling QSPI idle status. */
472 	return cqspi_wait_idle(cqspi);
473 }
474 
475 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
476 				  const struct spi_mem_op *op,
477 				  unsigned int shift)
478 {
479 	struct cqspi_st *cqspi = f_pdata->cqspi;
480 	void __iomem *reg_base = cqspi->iobase;
481 	unsigned int reg;
482 	u8 ext;
483 
484 	if (op->cmd.nbytes != 2)
485 		return -EINVAL;
486 
487 	/* Opcode extension is the LSB. */
488 	ext = op->cmd.opcode & 0xff;
489 
490 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
491 	reg &= ~(0xff << shift);
492 	reg |= ext << shift;
493 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
494 
495 	return 0;
496 }
497 
498 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
499 			    const struct spi_mem_op *op, unsigned int shift)
500 {
501 	struct cqspi_st *cqspi = f_pdata->cqspi;
502 	void __iomem *reg_base = cqspi->iobase;
503 	unsigned int reg;
504 	int ret;
505 
506 	reg = readl(reg_base + CQSPI_REG_CONFIG);
507 
508 	/*
509 	 * We enable dual byte opcode here. The callers have to set up the
510 	 * extension opcode based on which type of operation it is.
511 	 */
512 	if (op->cmd.dtr) {
513 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
514 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
515 
516 		/* Set up command opcode extension. */
517 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
518 		if (ret)
519 			return ret;
520 	} else {
521 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
522 		/* Shortcut if DTR is already disabled. */
523 		if ((reg & mask) == 0)
524 			return 0;
525 		reg &= ~mask;
526 	}
527 
528 	writel(reg, reg_base + CQSPI_REG_CONFIG);
529 
530 	return cqspi_wait_idle(cqspi);
531 }
532 
533 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
534 			      const struct spi_mem_op *op)
535 {
536 	struct cqspi_st *cqspi = f_pdata->cqspi;
537 	void __iomem *reg_base = cqspi->iobase;
538 	u8 *rxbuf = op->data.buf.in;
539 	u8 opcode;
540 	size_t n_rx = op->data.nbytes;
541 	unsigned int rdreg;
542 	unsigned int reg;
543 	unsigned int dummy_clk;
544 	size_t read_len;
545 	int status;
546 
547 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
548 	if (status)
549 		return status;
550 
551 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
552 		dev_err(&cqspi->pdev->dev,
553 			"Invalid input argument, len %zu rxbuf 0x%p\n",
554 			n_rx, rxbuf);
555 		return -EINVAL;
556 	}
557 
558 	if (op->cmd.dtr)
559 		opcode = op->cmd.opcode >> 8;
560 	else
561 		opcode = op->cmd.opcode;
562 
563 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
564 
565 	rdreg = cqspi_calc_rdreg(op);
566 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
567 
568 	dummy_clk = cqspi_calc_dummy(op);
569 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
570 		return -EOPNOTSUPP;
571 
572 	if (dummy_clk)
573 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
574 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
575 
576 	reg |= BIT(CQSPI_REG_CMDCTRL_RD_EN_LSB);
577 
578 	/* 0 means 1 byte. */
579 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
580 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
581 
582 	/* setup ADDR BIT field */
583 	if (op->addr.nbytes) {
584 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
585 		reg |= ((op->addr.nbytes - 1) &
586 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
587 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
588 
589 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
590 	}
591 
592 	status = cqspi_exec_flash_cmd(cqspi, reg);
593 	if (status)
594 		return status;
595 
596 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
597 
598 	/* Put the read value into rx_buf */
599 	read_len = (n_rx > 4) ? 4 : n_rx;
600 	memcpy(rxbuf, &reg, read_len);
601 	rxbuf += read_len;
602 
603 	if (n_rx > 4) {
604 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
605 
606 		read_len = n_rx - read_len;
607 		memcpy(rxbuf, &reg, read_len);
608 	}
609 
610 	/* Reset CMD_CTRL Reg once command read completes */
611 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
612 
613 	return 0;
614 }
615 
616 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
617 			       const struct spi_mem_op *op)
618 {
619 	struct cqspi_st *cqspi = f_pdata->cqspi;
620 	void __iomem *reg_base = cqspi->iobase;
621 	u8 opcode;
622 	const u8 *txbuf = op->data.buf.out;
623 	size_t n_tx = op->data.nbytes;
624 	unsigned int reg;
625 	unsigned int data;
626 	size_t write_len;
627 	int ret;
628 
629 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
630 	if (ret)
631 		return ret;
632 
633 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
634 		dev_err(&cqspi->pdev->dev,
635 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
636 			n_tx, txbuf);
637 		return -EINVAL;
638 	}
639 
640 	reg = cqspi_calc_rdreg(op);
641 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
642 
643 	if (op->cmd.dtr)
644 		opcode = op->cmd.opcode >> 8;
645 	else
646 		opcode = op->cmd.opcode;
647 
648 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
649 
650 	if (op->addr.nbytes) {
651 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
652 		reg |= ((op->addr.nbytes - 1) &
653 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
654 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
655 
656 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
657 	}
658 
659 	if (n_tx) {
660 		reg |= BIT(CQSPI_REG_CMDCTRL_WR_EN_LSB);
661 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
662 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
663 		data = 0;
664 		write_len = (n_tx > 4) ? 4 : n_tx;
665 		memcpy(&data, txbuf, write_len);
666 		txbuf += write_len;
667 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
668 
669 		if (n_tx > 4) {
670 			data = 0;
671 			write_len = n_tx - 4;
672 			memcpy(&data, txbuf, write_len);
673 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
674 		}
675 	}
676 
677 	ret = cqspi_exec_flash_cmd(cqspi, reg);
678 
679 	/* Reset CMD_CTRL Reg once command write completes */
680 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
681 
682 	return ret;
683 }
684 
685 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
686 			    const struct spi_mem_op *op)
687 {
688 	struct cqspi_st *cqspi = f_pdata->cqspi;
689 	void __iomem *reg_base = cqspi->iobase;
690 	unsigned int dummy_clk = 0;
691 	unsigned int reg;
692 	int ret;
693 	u8 opcode;
694 
695 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
696 	if (ret)
697 		return ret;
698 
699 	if (op->cmd.dtr)
700 		opcode = op->cmd.opcode >> 8;
701 	else
702 		opcode = op->cmd.opcode;
703 
704 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
705 	reg |= cqspi_calc_rdreg(op);
706 
707 	/* Setup dummy clock cycles */
708 	dummy_clk = cqspi_calc_dummy(op);
709 
710 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
711 		return -EOPNOTSUPP;
712 
713 	if (dummy_clk)
714 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
715 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
716 
717 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
718 
719 	/* Set address width */
720 	reg = readl(reg_base + CQSPI_REG_SIZE);
721 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
722 	reg |= (op->addr.nbytes - 1);
723 	writel(reg, reg_base + CQSPI_REG_SIZE);
724 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
725 	return 0;
726 }
727 
728 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
729 				       u8 *rxbuf, loff_t from_addr,
730 				       const size_t n_rx)
731 {
732 	struct cqspi_st *cqspi = f_pdata->cqspi;
733 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
734 	struct device *dev = &cqspi->pdev->dev;
735 	void __iomem *reg_base = cqspi->iobase;
736 	void __iomem *ahb_base = cqspi->ahb_base;
737 	unsigned int remaining = n_rx;
738 	unsigned int mod_bytes = n_rx % 4;
739 	unsigned int bytes_to_read = 0;
740 	u8 *rxbuf_end = rxbuf + n_rx;
741 	int ret = 0;
742 
743 	if (!refcount_read(&cqspi->refcount))
744 		return -ENODEV;
745 
746 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
747 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
748 
749 	/* Clear all interrupts. */
750 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
751 
752 	/*
753 	 * On SoCFPGA platform reading the SRAM is slow due to
754 	 * hardware limitation and causing read interrupt storm to CPU,
755 	 * so enabling only watermark interrupt to disable all read
756 	 * interrupts later as we want to run "bytes to read" loop with
757 	 * all the read interrupts disabled for max performance.
758 	 */
759 
760 	if (use_irq && cqspi->slow_sram)
761 		writel(CQSPI_IRQ_MASK_RD_SLOW_SRAM, reg_base + CQSPI_REG_IRQMASK);
762 	else if (use_irq)
763 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
764 	else
765 		writel(0, reg_base + CQSPI_REG_IRQMASK);
766 
767 	reinit_completion(&cqspi->transfer_complete);
768 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
769 	       reg_base + CQSPI_REG_INDIRECTRD);
770 	readl(reg_base + CQSPI_REG_INDIRECTRD); /* Flush posted write. */
771 
772 	while (remaining > 0) {
773 		ret = 0;
774 		if (use_irq &&
775 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
776 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
777 			ret = -ETIMEDOUT;
778 
779 		/*
780 		 * Prevent lost interrupt and race condition by reinitializing early.
781 		 * A spurious wakeup and another wait cycle can occur here,
782 		 * which is preferable to waiting until timeout if interrupt is lost.
783 		 */
784 		if (use_irq)
785 			reinit_completion(&cqspi->transfer_complete);
786 
787 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
788 
789 		if (ret && bytes_to_read == 0) {
790 			dev_err(dev, "Indirect read timeout, no bytes\n");
791 			goto failrd;
792 		}
793 
794 		while (bytes_to_read != 0) {
795 			unsigned int word_remain = round_down(remaining, 4);
796 
797 			bytes_to_read *= cqspi->fifo_width;
798 			bytes_to_read = bytes_to_read > remaining ?
799 					remaining : bytes_to_read;
800 			bytes_to_read = round_down(bytes_to_read, 4);
801 			/* Read 4 byte word chunks then single bytes */
802 			if (bytes_to_read) {
803 				ioread32_rep(ahb_base, rxbuf,
804 					     (bytes_to_read / 4));
805 			} else if (!word_remain && mod_bytes) {
806 				unsigned int temp = ioread32(ahb_base);
807 
808 				bytes_to_read = mod_bytes;
809 				memcpy(rxbuf, &temp, min((unsigned int)
810 							 (rxbuf_end - rxbuf),
811 							 bytes_to_read));
812 			}
813 			rxbuf += bytes_to_read;
814 			remaining -= bytes_to_read;
815 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
816 		}
817 	}
818 
819 	/* Check indirect done status */
820 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
821 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
822 	if (ret) {
823 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
824 		goto failrd;
825 	}
826 
827 	/* Disable interrupt */
828 	writel(0, reg_base + CQSPI_REG_IRQMASK);
829 
830 	/* Clear indirect completion status */
831 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
832 
833 	return 0;
834 
835 failrd:
836 	/* Disable interrupt */
837 	writel(0, reg_base + CQSPI_REG_IRQMASK);
838 
839 	/* Cancel the indirect read */
840 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
841 	       reg_base + CQSPI_REG_INDIRECTRD);
842 	return ret;
843 }
844 
845 static void cqspi_device_reset(struct cqspi_st *cqspi)
846 {
847 	u32 reg;
848 
849 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
850 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
851 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
852 	/*
853 	 * NOTE: Delay timing implementation is derived from
854 	 * spi_nor_hw_reset()
855 	 */
856 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
857 	usleep_range(1, 5);
858 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
859 	usleep_range(100, 150);
860 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
861 	usleep_range(1000, 1200);
862 }
863 
864 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
865 {
866 	void __iomem *reg_base = cqspi->iobase;
867 	unsigned int reg;
868 
869 	reg = readl(reg_base + CQSPI_REG_CONFIG);
870 
871 	if (enable)
872 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
873 	else
874 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
875 
876 	writel(reg, reg_base + CQSPI_REG_CONFIG);
877 }
878 
879 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
880 					  u_char *rxbuf, loff_t from_addr,
881 					  size_t n_rx)
882 {
883 	struct cqspi_st *cqspi = f_pdata->cqspi;
884 	struct device *dev = &cqspi->pdev->dev;
885 	void __iomem *reg_base = cqspi->iobase;
886 	u32 reg, bytes_to_dma;
887 	loff_t addr = from_addr;
888 	void *buf = rxbuf;
889 	dma_addr_t dma_addr;
890 	u8 bytes_rem;
891 	int ret = 0;
892 
893 	bytes_rem = n_rx % 4;
894 	bytes_to_dma = (n_rx - bytes_rem);
895 
896 	if (!bytes_to_dma)
897 		goto nondmard;
898 
899 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
900 	if (ret)
901 		return ret;
902 
903 	cqspi_controller_enable(cqspi, 0);
904 
905 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
906 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
907 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
908 
909 	cqspi_controller_enable(cqspi, 1);
910 
911 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
912 	if (dma_mapping_error(dev, dma_addr)) {
913 		dev_err(dev, "dma mapping failed\n");
914 		return -ENOMEM;
915 	}
916 
917 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
918 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
919 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
920 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
921 
922 	/* Clear all interrupts. */
923 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
924 
925 	/* Enable DMA done interrupt */
926 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
927 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
928 
929 	/* Default DMA periph configuration */
930 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
931 
932 	/* Configure DMA Dst address */
933 	writel(lower_32_bits(dma_addr),
934 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
935 	writel(upper_32_bits(dma_addr),
936 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
937 
938 	/* Configure DMA Src address */
939 	writel(cqspi->trigger_address, reg_base +
940 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
941 
942 	/* Set DMA destination size */
943 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
944 
945 	/* Set DMA destination control */
946 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
947 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
948 
949 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
950 	       reg_base + CQSPI_REG_INDIRECTRD);
951 
952 	reinit_completion(&cqspi->transfer_complete);
953 
954 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
955 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
956 		ret = -ETIMEDOUT;
957 		goto failrd;
958 	}
959 
960 	/* Disable DMA interrupt */
961 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
962 
963 	/* Clear indirect completion status */
964 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
965 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
966 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
967 
968 	cqspi_controller_enable(cqspi, 0);
969 
970 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
971 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
972 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
973 
974 	cqspi_controller_enable(cqspi, 1);
975 
976 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
977 					PM_OSPI_MUX_SEL_LINEAR);
978 	if (ret)
979 		return ret;
980 
981 nondmard:
982 	if (bytes_rem) {
983 		addr += bytes_to_dma;
984 		buf += bytes_to_dma;
985 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
986 						  bytes_rem);
987 		if (ret)
988 			return ret;
989 	}
990 
991 	return 0;
992 
993 failrd:
994 	/* Disable DMA interrupt */
995 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
996 
997 	/* Cancel the indirect read */
998 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
999 	       reg_base + CQSPI_REG_INDIRECTRD);
1000 
1001 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1002 
1003 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1004 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1005 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1006 
1007 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1008 
1009 	return ret;
1010 }
1011 
1012 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1013 			     const struct spi_mem_op *op)
1014 {
1015 	unsigned int reg;
1016 	int ret;
1017 	struct cqspi_st *cqspi = f_pdata->cqspi;
1018 	void __iomem *reg_base = cqspi->iobase;
1019 	u8 opcode;
1020 
1021 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1022 	if (ret)
1023 		return ret;
1024 
1025 	if (op->cmd.dtr)
1026 		opcode = op->cmd.opcode >> 8;
1027 	else
1028 		opcode = op->cmd.opcode;
1029 
1030 	/* Set opcode. */
1031 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1032 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1033 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1034 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1035 	reg = cqspi_calc_rdreg(op);
1036 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1037 
1038 	/*
1039 	 * SPI NAND flashes require the address of the status register to be
1040 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1041 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1042 	 * command in DTR mode.
1043 	 *
1044 	 * But this controller does not support address phase in the Read SR
1045 	 * command when doing auto-HW polling. So, disable write completion
1046 	 * polling on the controller's side. spinand and spi-nor will take
1047 	 * care of polling the status register.
1048 	 */
1049 	if (cqspi->wr_completion) {
1050 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1051 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1052 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1053 		/*
1054 		 * DAC mode require auto polling as flash needs to be polled
1055 		 * for write completion in case of bubble in SPI transaction
1056 		 * due to slow CPU/DMA master.
1057 		 */
1058 		cqspi->use_direct_mode_wr = false;
1059 	}
1060 
1061 	reg = readl(reg_base + CQSPI_REG_SIZE);
1062 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1063 	reg |= (op->addr.nbytes - 1);
1064 	writel(reg, reg_base + CQSPI_REG_SIZE);
1065 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
1066 	return 0;
1067 }
1068 
1069 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1070 					loff_t to_addr, const u8 *txbuf,
1071 					const size_t n_tx)
1072 {
1073 	struct cqspi_st *cqspi = f_pdata->cqspi;
1074 	struct device *dev = &cqspi->pdev->dev;
1075 	void __iomem *reg_base = cqspi->iobase;
1076 	unsigned int remaining = n_tx;
1077 	unsigned int write_bytes;
1078 	int ret;
1079 
1080 	if (!refcount_read(&cqspi->refcount))
1081 		return -ENODEV;
1082 
1083 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1084 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1085 
1086 	/* Clear all interrupts. */
1087 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1088 
1089 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1090 
1091 	reinit_completion(&cqspi->transfer_complete);
1092 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1093 	       reg_base + CQSPI_REG_INDIRECTWR);
1094 	readl(reg_base + CQSPI_REG_INDIRECTWR); /* Flush posted write. */
1095 
1096 	/*
1097 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1098 	 * Controller programming sequence, couple of cycles of
1099 	 * QSPI_REF_CLK delay is required for the above bit to
1100 	 * be internally synchronized by the QSPI module. Provide 5
1101 	 * cycles of delay.
1102 	 */
1103 	if (cqspi->wr_delay)
1104 		ndelay(cqspi->wr_delay);
1105 
1106 	/*
1107 	 * If a hazard exists between the APB and AHB interfaces, perform a
1108 	 * dummy readback from the controller to ensure synchronization.
1109 	 */
1110 	if (cqspi->apb_ahb_hazard)
1111 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1112 
1113 	while (remaining > 0) {
1114 		size_t write_words, mod_bytes;
1115 
1116 		write_bytes = remaining;
1117 		write_words = write_bytes / 4;
1118 		mod_bytes = write_bytes % 4;
1119 		/* Write 4 bytes at a time then single bytes. */
1120 		if (write_words) {
1121 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1122 			txbuf += (write_words * 4);
1123 		}
1124 		if (mod_bytes) {
1125 			unsigned int temp = 0xFFFFFFFF;
1126 
1127 			memcpy(&temp, txbuf, mod_bytes);
1128 			iowrite32(temp, cqspi->ahb_base);
1129 			txbuf += mod_bytes;
1130 		}
1131 
1132 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1133 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1134 			dev_err(dev, "Indirect write timeout\n");
1135 			ret = -ETIMEDOUT;
1136 			goto failwr;
1137 		}
1138 
1139 		remaining -= write_bytes;
1140 
1141 		if (remaining > 0)
1142 			reinit_completion(&cqspi->transfer_complete);
1143 	}
1144 
1145 	/* Check indirect done status */
1146 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1147 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1148 	if (ret) {
1149 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1150 		goto failwr;
1151 	}
1152 
1153 	/* Disable interrupt. */
1154 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1155 
1156 	/* Clear indirect completion status */
1157 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1158 
1159 	cqspi_wait_idle(cqspi);
1160 
1161 	return 0;
1162 
1163 failwr:
1164 	/* Disable interrupt. */
1165 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1166 
1167 	/* Cancel the indirect write */
1168 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1169 	       reg_base + CQSPI_REG_INDIRECTWR);
1170 	return ret;
1171 }
1172 
1173 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1174 {
1175 	struct cqspi_st *cqspi = f_pdata->cqspi;
1176 	void __iomem *reg_base = cqspi->iobase;
1177 	unsigned int chip_select = f_pdata->cs;
1178 	unsigned int reg;
1179 
1180 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1181 	if (cqspi->is_decoded_cs) {
1182 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1183 	} else {
1184 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1185 
1186 		/* Convert CS if without decoder.
1187 		 * CS0 to 4b'1110
1188 		 * CS1 to 4b'1101
1189 		 * CS2 to 4b'1011
1190 		 * CS3 to 4b'0111
1191 		 */
1192 		chip_select = 0xF & ~BIT(chip_select);
1193 	}
1194 
1195 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1196 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1197 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1198 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1199 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1200 }
1201 
1202 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1203 					   const unsigned int ns_val)
1204 {
1205 	unsigned int ticks;
1206 
1207 	ticks = ref_clk_hz / 1000;	/* kHz */
1208 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1209 
1210 	return ticks;
1211 }
1212 
1213 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1214 {
1215 	struct cqspi_st *cqspi = f_pdata->cqspi;
1216 	void __iomem *iobase = cqspi->iobase;
1217 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1218 	unsigned int tshsl, tchsh, tslch, tsd2d;
1219 	unsigned int reg;
1220 	unsigned int tsclk;
1221 
1222 	/* calculate the number of ref ticks for one sclk tick */
1223 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1224 
1225 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1226 	/* this particular value must be at least one sclk */
1227 	if (tshsl < tsclk)
1228 		tshsl = tsclk;
1229 
1230 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1231 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1232 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1233 
1234 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1235 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1236 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1237 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1238 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1239 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1240 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1241 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1242 	writel(reg, iobase + CQSPI_REG_DELAY);
1243 }
1244 
1245 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1246 {
1247 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1248 	void __iomem *reg_base = cqspi->iobase;
1249 	u32 reg, div;
1250 
1251 	/* Recalculate the baudrate divisor based on QSPI specification. */
1252 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1253 
1254 	/* Maximum baud divisor */
1255 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1256 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1257 		dev_warn(&cqspi->pdev->dev,
1258 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1259 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1260 	}
1261 
1262 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1263 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1264 	reg |= div << CQSPI_REG_CONFIG_BAUD_LSB;
1265 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1266 }
1267 
1268 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1269 				   const bool bypass,
1270 				   const unsigned int delay)
1271 {
1272 	void __iomem *reg_base = cqspi->iobase;
1273 	unsigned int reg;
1274 
1275 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1276 
1277 	if (bypass)
1278 		reg |= BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1279 	else
1280 		reg &= ~BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1281 
1282 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1283 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1284 
1285 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1286 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1287 
1288 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1289 }
1290 
1291 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1292 			    unsigned long sclk)
1293 {
1294 	struct cqspi_st *cqspi = f_pdata->cqspi;
1295 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1296 	int switch_ck = (cqspi->sclk != sclk);
1297 
1298 	if (switch_cs || switch_ck)
1299 		cqspi_controller_enable(cqspi, 0);
1300 
1301 	/* Switch chip select. */
1302 	if (switch_cs) {
1303 		cqspi->current_cs = f_pdata->cs;
1304 		cqspi_chipselect(f_pdata);
1305 	}
1306 
1307 	/* Setup baudrate divisor and delays */
1308 	if (switch_ck) {
1309 		cqspi->sclk = sclk;
1310 		cqspi_config_baudrate_div(cqspi);
1311 		cqspi_delay(f_pdata);
1312 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1313 				       f_pdata->read_delay);
1314 	}
1315 
1316 	if (switch_cs || switch_ck)
1317 		cqspi_controller_enable(cqspi, 1);
1318 }
1319 
1320 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1321 			   const struct spi_mem_op *op)
1322 {
1323 	struct cqspi_st *cqspi = f_pdata->cqspi;
1324 	loff_t to = op->addr.val;
1325 	size_t len = op->data.nbytes;
1326 	const u_char *buf = op->data.buf.out;
1327 	int ret;
1328 
1329 	ret = cqspi_write_setup(f_pdata, op);
1330 	if (ret)
1331 		return ret;
1332 
1333 	/*
1334 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1335 	 * address (all 0s) with the read status register command in DTR mode.
1336 	 * But this controller does not support sending dummy address bytes to
1337 	 * the flash when it is polling the write completion register in DTR
1338 	 * mode. So, we can not use direct mode when in DTR mode for writing
1339 	 * data.
1340 	 */
1341 	if ((!op->cmd.dtr && cqspi->use_direct_mode &&
1342 	     cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) ||
1343 	    (cqspi->ddata && cqspi->ddata->quirks & CQSPI_NO_INDIRECT_MODE)) {
1344 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1345 		return cqspi_wait_idle(cqspi);
1346 	}
1347 
1348 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1349 }
1350 
1351 static void cqspi_rx_dma_callback(void *param)
1352 {
1353 	struct cqspi_st *cqspi = param;
1354 
1355 	complete(&cqspi->rx_dma_complete);
1356 }
1357 
1358 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1359 				     u_char *buf, loff_t from, size_t len)
1360 {
1361 	struct cqspi_st *cqspi = f_pdata->cqspi;
1362 	struct device *dev = &cqspi->pdev->dev;
1363 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1364 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1365 	int ret = 0;
1366 	struct dma_async_tx_descriptor *tx;
1367 	dma_cookie_t cookie;
1368 	dma_addr_t dma_dst;
1369 	struct device *ddev;
1370 
1371 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1372 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1373 		return 0;
1374 	}
1375 
1376 	ddev = cqspi->rx_chan->device->dev;
1377 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1378 	if (dma_mapping_error(ddev, dma_dst)) {
1379 		dev_err(dev, "dma mapping failed\n");
1380 		return -ENOMEM;
1381 	}
1382 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1383 				       len, flags);
1384 	if (!tx) {
1385 		dev_err(dev, "device_prep_dma_memcpy error\n");
1386 		ret = -EIO;
1387 		goto err_unmap;
1388 	}
1389 
1390 	tx->callback = cqspi_rx_dma_callback;
1391 	tx->callback_param = cqspi;
1392 	cookie = tx->tx_submit(tx);
1393 	reinit_completion(&cqspi->rx_dma_complete);
1394 
1395 	ret = dma_submit_error(cookie);
1396 	if (ret) {
1397 		dev_err(dev, "dma_submit_error %d\n", cookie);
1398 		ret = -EIO;
1399 		goto err_unmap;
1400 	}
1401 
1402 	dma_async_issue_pending(cqspi->rx_chan);
1403 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1404 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1405 		dmaengine_terminate_sync(cqspi->rx_chan);
1406 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1407 		ret = -ETIMEDOUT;
1408 		goto err_unmap;
1409 	}
1410 
1411 err_unmap:
1412 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1413 
1414 	return ret;
1415 }
1416 
1417 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1418 			  const struct spi_mem_op *op)
1419 {
1420 	struct cqspi_st *cqspi = f_pdata->cqspi;
1421 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1422 	loff_t from = op->addr.val;
1423 	size_t len = op->data.nbytes;
1424 	u_char *buf = op->data.buf.in;
1425 	u64 dma_align = (u64)(uintptr_t)buf;
1426 	int ret;
1427 
1428 	ret = cqspi_read_setup(f_pdata, op);
1429 	if (ret)
1430 		return ret;
1431 
1432 	if ((cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size)) ||
1433 	    (cqspi->ddata && cqspi->ddata->quirks & CQSPI_NO_INDIRECT_MODE))
1434 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1435 
1436 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1437 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1438 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1439 
1440 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1441 }
1442 
1443 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1444 {
1445 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1446 	struct cqspi_flash_pdata *f_pdata;
1447 
1448 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1449 	cqspi_configure(f_pdata, op->max_freq);
1450 
1451 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1452 	/*
1453 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1454 	 * which is unsupported on some flash devices during register
1455 	 * reads, prefer STIG mode for such small reads.
1456 	 */
1457 		if (!op->addr.nbytes ||
1458 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1459 		     !cqspi->disable_stig_mode))
1460 			return cqspi_command_read(f_pdata, op);
1461 
1462 		return cqspi_read(f_pdata, op);
1463 	}
1464 
1465 	if (!op->addr.nbytes || !op->data.buf.out)
1466 		return cqspi_command_write(f_pdata, op);
1467 
1468 	return cqspi_write(f_pdata, op);
1469 }
1470 
1471 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1472 {
1473 	int ret;
1474 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1475 	struct device *dev = &cqspi->pdev->dev;
1476 	const struct cqspi_driver_platdata *ddata = of_device_get_match_data(dev);
1477 
1478 	if (refcount_read(&cqspi->inflight_ops) == 0)
1479 		return -ENODEV;
1480 
1481 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1482 		ret = pm_runtime_resume_and_get(dev);
1483 		if (ret) {
1484 			dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1485 			return ret;
1486 		}
1487 	}
1488 
1489 	if (!refcount_read(&cqspi->refcount))
1490 		return -EBUSY;
1491 
1492 	refcount_inc(&cqspi->inflight_ops);
1493 
1494 	if (!refcount_read(&cqspi->refcount)) {
1495 		if (refcount_read(&cqspi->inflight_ops))
1496 			refcount_dec(&cqspi->inflight_ops);
1497 		return -EBUSY;
1498 	}
1499 
1500 	ret = cqspi_mem_process(mem, op);
1501 
1502 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
1503 		pm_runtime_put_autosuspend(dev);
1504 
1505 	if (ret)
1506 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1507 
1508 	if (refcount_read(&cqspi->inflight_ops) > 1)
1509 		refcount_dec(&cqspi->inflight_ops);
1510 
1511 	return ret;
1512 }
1513 
1514 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1515 				  const struct spi_mem_op *op)
1516 {
1517 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1518 	bool all_true, all_false;
1519 
1520 	/*
1521 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1522 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1523 	 */
1524 	all_true = op->cmd.dtr &&
1525 		   (!op->addr.nbytes || op->addr.dtr) &&
1526 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1527 		   (!op->data.nbytes || op->data.dtr);
1528 
1529 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1530 		    !op->data.dtr;
1531 
1532 	if (all_true) {
1533 		/* Right now we only support 8-8-8 DTR mode. */
1534 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1535 			return false;
1536 		if (op->addr.nbytes && op->addr.buswidth != 8)
1537 			return false;
1538 		if (op->data.nbytes && op->data.buswidth != 8)
1539 			return false;
1540 
1541 		/* A single opcode is supported, it will be repeated */
1542 		if ((op->cmd.opcode >> 8) != (op->cmd.opcode & 0xFF))
1543 			return false;
1544 
1545 		if (cqspi->is_rzn1)
1546 			return false;
1547 	} else if (!all_false) {
1548 		/* Mixed DTR modes are not supported. */
1549 		return false;
1550 	}
1551 
1552 	return spi_mem_default_supports_op(mem, op);
1553 }
1554 
1555 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1556 				    struct cqspi_flash_pdata *f_pdata,
1557 				    struct device_node *np)
1558 {
1559 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1560 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1561 		return -ENXIO;
1562 	}
1563 
1564 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1565 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1566 		return -ENXIO;
1567 	}
1568 
1569 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1570 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1571 		return -ENXIO;
1572 	}
1573 
1574 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1575 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1576 		return -ENXIO;
1577 	}
1578 
1579 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1580 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1581 		return -ENXIO;
1582 	}
1583 
1584 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1585 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1586 		return -ENXIO;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1593 {
1594 	struct device *dev = &cqspi->pdev->dev;
1595 	struct device_node *np = dev->of_node;
1596 	u32 id[2];
1597 
1598 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1599 
1600 	if (!(cqspi->ddata && cqspi->ddata->quirks & CQSPI_NO_INDIRECT_MODE)) {
1601 		if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1602 			/* Zero signals FIFO depth should be runtime detected. */
1603 			cqspi->fifo_depth = 0;
1604 		}
1605 
1606 		if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width))
1607 			cqspi->fifo_width = 4;
1608 
1609 		if (of_property_read_u32(np, "cdns,trigger-address",
1610 					 &cqspi->trigger_address)) {
1611 			dev_err(dev, "couldn't determine trigger-address\n");
1612 			return -ENXIO;
1613 		}
1614 	}
1615 
1616 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1617 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1618 
1619 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1620 
1621 	if (!of_property_read_u32_array(np, "power-domains", id,
1622 					ARRAY_SIZE(id)))
1623 		cqspi->pd_dev_id = id[1];
1624 
1625 	return 0;
1626 }
1627 
1628 static void cqspi_controller_init(struct cqspi_st *cqspi)
1629 {
1630 	u32 reg;
1631 
1632 	/* Configure the remap address register, no remap */
1633 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1634 
1635 	/* Disable all interrupts. */
1636 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1637 
1638 	if (!(cqspi->ddata && cqspi->ddata->quirks & CQSPI_NO_INDIRECT_MODE)) {
1639 		/* Configure the SRAM split to 1:1 . */
1640 		writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1641 		/* Load indirect trigger address. */
1642 		writel(cqspi->trigger_address,
1643 		       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1644 
1645 		/* Program read watermark -- 1/2 of the FIFO. */
1646 		writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1647 		       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1648 		/* Program write watermark -- 1/8 of the FIFO. */
1649 		writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1650 		       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1651 	}
1652 
1653 	/* Disable write protection at controller level */
1654 	if (cqspi->ddata && cqspi->ddata->quirks & CQSPI_HAS_WR_PROTECT)
1655 		writel(0, cqspi->iobase + CQSPI_REG_WR_PROT_CTRL);
1656 
1657 	/* Disable direct access controller */
1658 	if (!cqspi->use_direct_mode) {
1659 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1660 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1661 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1662 	}
1663 
1664 	/* Enable DMA interface */
1665 	if (cqspi->use_dma_read) {
1666 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1667 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1668 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1669 	}
1670 }
1671 
1672 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1673 {
1674 	struct device *dev = &cqspi->pdev->dev;
1675 	u32 reg, fifo_depth;
1676 
1677 	if (cqspi->ddata && cqspi->ddata->quirks & CQSPI_NO_INDIRECT_MODE)
1678 		return;
1679 
1680 	/*
1681 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1682 	 * the FIFO depth.
1683 	 */
1684 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1685 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1686 	fifo_depth = reg + 1;
1687 
1688 	/* FIFO depth of zero means no value from devicetree was provided. */
1689 	if (cqspi->fifo_depth == 0) {
1690 		cqspi->fifo_depth = fifo_depth;
1691 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1692 	} else if (fifo_depth != cqspi->fifo_depth) {
1693 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1694 			 fifo_depth, cqspi->fifo_depth);
1695 	}
1696 }
1697 
1698 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1699 {
1700 	dma_cap_mask_t mask;
1701 
1702 	dma_cap_zero(mask);
1703 	dma_cap_set(DMA_MEMCPY, mask);
1704 
1705 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1706 	if (IS_ERR(cqspi->rx_chan)) {
1707 		int ret = PTR_ERR(cqspi->rx_chan);
1708 
1709 		cqspi->rx_chan = NULL;
1710 		if (ret == -ENODEV) {
1711 			/* DMA support is not mandatory */
1712 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1713 			return 0;
1714 		}
1715 
1716 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1717 	}
1718 	init_completion(&cqspi->rx_dma_complete);
1719 
1720 	return 0;
1721 }
1722 
1723 static const char *cqspi_get_name(struct spi_mem *mem)
1724 {
1725 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1726 	struct device *dev = &cqspi->pdev->dev;
1727 
1728 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1729 			      spi_get_chipselect(mem->spi, 0));
1730 }
1731 
1732 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1733 	.exec_op = cqspi_exec_mem_op,
1734 	.get_name = cqspi_get_name,
1735 	.supports_op = cqspi_supports_mem_op,
1736 };
1737 
1738 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1739 	.dtr = true,
1740 	.per_op_freq = true,
1741 };
1742 
1743 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1744 {
1745 	struct platform_device *pdev = cqspi->pdev;
1746 	struct device *dev = &pdev->dev;
1747 	struct cqspi_flash_pdata *f_pdata;
1748 	int ret, cs, max_cs = -1;
1749 
1750 	/* Get flash device data */
1751 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1752 		ret = of_property_read_u32(np, "reg", &cs);
1753 		if (ret) {
1754 			dev_err(dev, "Couldn't determine chip select.\n");
1755 			return ret;
1756 		}
1757 
1758 		if (cs >= cqspi->num_chipselect) {
1759 			dev_err(dev, "Chip select %d out of range.\n", cs);
1760 			return -EINVAL;
1761 		}
1762 
1763 		max_cs = max_t(int, cs, max_cs);
1764 
1765 		f_pdata = &cqspi->f_pdata[cs];
1766 		f_pdata->cqspi = cqspi;
1767 		f_pdata->cs = cs;
1768 
1769 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1770 		if (ret)
1771 			return ret;
1772 	}
1773 
1774 	if (max_cs < 0) {
1775 		dev_err(dev, "No flash device declared\n");
1776 		return -ENODEV;
1777 	}
1778 
1779 	cqspi->num_chipselect = max_cs + 1;
1780 	return 0;
1781 }
1782 
1783 static int cqspi_probe(struct platform_device *pdev)
1784 {
1785 	const struct cqspi_driver_platdata *ddata;
1786 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1787 	struct device *dev = &pdev->dev;
1788 	struct spi_controller *host;
1789 	struct resource *res_ahb;
1790 	struct cqspi_st *cqspi;
1791 	int ret, irq;
1792 
1793 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1794 	if (!host)
1795 		return -ENOMEM;
1796 
1797 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1798 	host->mem_ops = &cqspi_mem_ops;
1799 	host->mem_caps = &cqspi_mem_caps;
1800 
1801 	cqspi = spi_controller_get_devdata(host);
1802 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi"))
1803 		cqspi->is_jh7110 = true;
1804 	if (of_device_is_compatible(pdev->dev.of_node, "renesas,rzn1-qspi"))
1805 		cqspi->is_rzn1 = true;
1806 
1807 	cqspi->pdev = pdev;
1808 	cqspi->host = host;
1809 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1810 	platform_set_drvdata(pdev, cqspi);
1811 
1812 	/* Obtain configuration from OF. */
1813 	ret = cqspi_of_get_pdata(cqspi);
1814 	if (ret) {
1815 		dev_err(dev, "Cannot get mandatory OF data.\n");
1816 		return -ENODEV;
1817 	}
1818 
1819 	ret = cqspi_setup_flash(cqspi);
1820 	if (ret) {
1821 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1822 		return ret;
1823 	}
1824 
1825 	/* Obtain QSPI clocks. */
1826 	ret = devm_clk_bulk_get_optional(dev, CLK_QSPI_NUM, cqspi->clks);
1827 	if (ret)
1828 		return dev_err_probe(dev, ret, "Failed to get clocks\n");
1829 
1830 	if (!cqspi->clks[CLK_QSPI_REF].clk) {
1831 		dev_err(dev, "Cannot claim mandatory QSPI ref clock.\n");
1832 		return -ENODEV;
1833 	}
1834 
1835 	/* Obtain and remap controller address. */
1836 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1837 	if (IS_ERR(cqspi->iobase)) {
1838 		dev_err(dev, "Cannot remap controller address.\n");
1839 		ret = PTR_ERR(cqspi->iobase);
1840 		return ret;
1841 	}
1842 
1843 	/* Obtain and remap AHB address. */
1844 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1845 	if (IS_ERR(cqspi->ahb_base)) {
1846 		dev_err(dev, "Cannot remap AHB address.\n");
1847 		ret = PTR_ERR(cqspi->ahb_base);
1848 		return ret;
1849 	}
1850 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1851 	cqspi->ahb_size = resource_size(res_ahb);
1852 
1853 	init_completion(&cqspi->transfer_complete);
1854 
1855 	/* Obtain IRQ line. */
1856 	irq = platform_get_irq(pdev, 0);
1857 	if (irq < 0)
1858 		return -ENXIO;
1859 
1860 	ret = pm_runtime_set_active(dev);
1861 	if (ret)
1862 		return ret;
1863 
1864 	ret = clk_bulk_prepare_enable(CLK_QSPI_NUM, cqspi->clks);
1865 	if (ret) {
1866 		dev_err(dev, "Cannot enable QSPI clocks.\n");
1867 		goto disable_rpm;
1868 	}
1869 
1870 	/* Obtain QSPI reset control */
1871 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1872 	if (IS_ERR(rstc)) {
1873 		ret = PTR_ERR(rstc);
1874 		dev_err(dev, "Cannot get QSPI reset.\n");
1875 		goto disable_clks;
1876 	}
1877 
1878 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1879 	if (IS_ERR(rstc_ocp)) {
1880 		ret = PTR_ERR(rstc_ocp);
1881 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1882 		goto disable_clks;
1883 	}
1884 
1885 	if (cqspi->is_jh7110) {
1886 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1887 		if (IS_ERR(rstc_ref)) {
1888 			ret = PTR_ERR(rstc_ref);
1889 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1890 			goto disable_clks;
1891 		}
1892 		reset_control_assert(rstc_ref);
1893 		reset_control_deassert(rstc_ref);
1894 	}
1895 
1896 	reset_control_assert(rstc);
1897 	reset_control_deassert(rstc);
1898 
1899 	reset_control_assert(rstc_ocp);
1900 	reset_control_deassert(rstc_ocp);
1901 
1902 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clks[CLK_QSPI_REF].clk);
1903 	if (!cqspi->is_rzn1) {
1904 		host->max_speed_hz = cqspi->master_ref_clk_hz;
1905 	} else {
1906 		host->max_speed_hz = cqspi->master_ref_clk_hz / 2;
1907 		host->min_speed_hz = cqspi->master_ref_clk_hz / 32;
1908 	}
1909 
1910 	/* write completion is supported by default */
1911 	cqspi->wr_completion = true;
1912 
1913 	if (ddata) {
1914 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1915 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1916 						cqspi->master_ref_clk_hz);
1917 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1918 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1919 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1920 			host->mode_bits |= SPI_TX_QUAD;
1921 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1922 			cqspi->use_direct_mode = true;
1923 			cqspi->use_direct_mode_wr = true;
1924 		}
1925 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1926 			cqspi->use_dma_read = true;
1927 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1928 			cqspi->wr_completion = false;
1929 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1930 			cqspi->slow_sram = true;
1931 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1932 			cqspi->apb_ahb_hazard = true;
1933 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1934 			cqspi->disable_stig_mode = true;
1935 
1936 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1937 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1938 			if (ret)
1939 				goto disable_clks;
1940 		}
1941 	}
1942 
1943 	refcount_set(&cqspi->refcount, 1);
1944 	refcount_set(&cqspi->inflight_ops, 1);
1945 
1946 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1947 			       pdev->name, cqspi);
1948 	if (ret) {
1949 		dev_err(dev, "Cannot request IRQ.\n");
1950 		goto disable_clks;
1951 	}
1952 
1953 	cqspi_wait_idle(cqspi);
1954 	cqspi_controller_enable(cqspi, 0);
1955 	cqspi_controller_detect_fifo_depth(cqspi);
1956 	cqspi_controller_init(cqspi);
1957 	cqspi_controller_enable(cqspi, 1);
1958 	cqspi->current_cs = -1;
1959 	cqspi->sclk = 0;
1960 
1961 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1962 		pm_runtime_enable(dev);
1963 		pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1964 		pm_runtime_use_autosuspend(dev);
1965 		pm_runtime_get_noresume(dev);
1966 	}
1967 
1968 	host->num_chipselect = cqspi->num_chipselect;
1969 
1970 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1971 		cqspi_device_reset(cqspi);
1972 
1973 	if (cqspi->use_direct_mode && !cqspi->is_rzn1) {
1974 		ret = cqspi_request_mmap_dma(cqspi);
1975 		if (ret == -EPROBE_DEFER) {
1976 			dev_err_probe(&pdev->dev, ret, "Failed to request mmap DMA\n");
1977 			goto disable_controller;
1978 		}
1979 	}
1980 
1981 	ret = spi_register_controller(host);
1982 	if (ret) {
1983 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1984 		goto release_dma_chan;
1985 	}
1986 
1987 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
1988 		pm_runtime_put_autosuspend(dev);
1989 
1990 	return 0;
1991 
1992 release_dma_chan:
1993 	if (cqspi->rx_chan)
1994 		dma_release_channel(cqspi->rx_chan);
1995 disable_controller:
1996 	cqspi_controller_enable(cqspi, 0);
1997 disable_clks:
1998 	if (pm_runtime_get_sync(&pdev->dev) >= 0)
1999 		clk_bulk_disable_unprepare(CLK_QSPI_NUM, cqspi->clks);
2000 disable_rpm:
2001 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2002 		pm_runtime_disable(dev);
2003 
2004 	return ret;
2005 }
2006 
2007 static void cqspi_remove(struct platform_device *pdev)
2008 {
2009 	const struct cqspi_driver_platdata *ddata;
2010 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2011 	struct device *dev = &pdev->dev;
2012 	int ret = 0;
2013 
2014 	ddata = of_device_get_match_data(dev);
2015 
2016 	refcount_set(&cqspi->refcount, 0);
2017 
2018 	if (!refcount_dec_and_test(&cqspi->inflight_ops))
2019 		cqspi_wait_idle(cqspi);
2020 
2021 	spi_unregister_controller(cqspi->host);
2022 
2023 	if (cqspi->rx_chan)
2024 		dma_release_channel(cqspi->rx_chan);
2025 
2026 	cqspi_controller_enable(cqspi, 0);
2027 
2028 
2029 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2030 		ret = pm_runtime_get_sync(&pdev->dev);
2031 
2032 	if (ret >= 0)
2033 		clk_bulk_disable_unprepare(CLK_QSPI_NUM, cqspi->clks);
2034 
2035 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2036 		pm_runtime_put_sync(&pdev->dev);
2037 		pm_runtime_disable(&pdev->dev);
2038 	}
2039 }
2040 
2041 static int cqspi_runtime_suspend(struct device *dev)
2042 {
2043 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2044 
2045 	cqspi_controller_enable(cqspi, 0);
2046 	clk_bulk_disable_unprepare(CLK_QSPI_NUM, cqspi->clks);
2047 	return 0;
2048 }
2049 
2050 static int cqspi_runtime_resume(struct device *dev)
2051 {
2052 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2053 	int ret;
2054 
2055 	ret = clk_bulk_prepare_enable(CLK_QSPI_NUM, cqspi->clks);
2056 	if (ret)
2057 		return ret;
2058 
2059 	cqspi_wait_idle(cqspi);
2060 	cqspi_controller_enable(cqspi, 0);
2061 	cqspi_controller_init(cqspi);
2062 	cqspi_controller_enable(cqspi, 1);
2063 
2064 	cqspi->current_cs = -1;
2065 	cqspi->sclk = 0;
2066 	return 0;
2067 }
2068 
2069 static int cqspi_suspend(struct device *dev)
2070 {
2071 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2072 	int ret;
2073 
2074 	ret = spi_controller_suspend(cqspi->host);
2075 	if (ret)
2076 		return ret;
2077 
2078 	return pm_runtime_force_suspend(dev);
2079 }
2080 
2081 static int cqspi_resume(struct device *dev)
2082 {
2083 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2084 	int ret;
2085 
2086 	ret = pm_runtime_force_resume(dev);
2087 	if (ret) {
2088 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2089 		return ret;
2090 	}
2091 
2092 	return spi_controller_resume(cqspi->host);
2093 }
2094 
2095 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2096 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2097 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2098 };
2099 
2100 static const struct cqspi_driver_platdata cdns_qspi = {
2101 	.quirks = CQSPI_DISABLE_DAC_MODE,
2102 };
2103 
2104 static const struct cqspi_driver_platdata k2g_qspi = {
2105 	.quirks = CQSPI_NEEDS_WR_DELAY,
2106 };
2107 
2108 static const struct cqspi_driver_platdata am654_ospi = {
2109 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2110 	.quirks = CQSPI_NEEDS_WR_DELAY,
2111 };
2112 
2113 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2114 	.quirks = CQSPI_DISABLE_DAC_MODE,
2115 };
2116 
2117 static const struct cqspi_driver_platdata socfpga_qspi = {
2118 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2119 		  CQSPI_SLOW_SRAM | CQSPI_DISABLE_STIG_MODE |
2120 		  CQSPI_DISABLE_RUNTIME_PM,
2121 };
2122 
2123 static const struct cqspi_driver_platdata versal_ospi = {
2124 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2125 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA |
2126 		  CQSPI_DMA_SET_MASK,
2127 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2128 	.get_dma_status = cqspi_get_versal_dma_status,
2129 };
2130 
2131 static const struct cqspi_driver_platdata versal2_ospi = {
2132 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2133 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA |
2134 		  CQSPI_DMA_SET_MASK | CQSPI_SUPPORT_DEVICE_RESET,
2135 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2136 	.get_dma_status = cqspi_get_versal_dma_status,
2137 };
2138 
2139 static const struct cqspi_driver_platdata jh7110_qspi = {
2140 	.quirks = CQSPI_DISABLE_DAC_MODE,
2141 };
2142 
2143 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2144 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2145 };
2146 
2147 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2148 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2149 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2150 		  CQSPI_RD_NO_IRQ,
2151 };
2152 
2153 static const struct cqspi_driver_platdata renesas_rzn1_qspi = {
2154 	.hwcaps_mask = CQSPI_SUPPORTS_QUAD,
2155 	.quirks = CQSPI_NO_SUPPORT_WR_COMPLETION | CQSPI_RD_NO_IRQ |
2156 		  CQSPI_HAS_WR_PROTECT | CQSPI_NO_INDIRECT_MODE,
2157 };
2158 
2159 static const struct of_device_id cqspi_dt_ids[] = {
2160 	{
2161 		.compatible = "cdns,qspi-nor",
2162 		.data = &cdns_qspi,
2163 	},
2164 	{
2165 		.compatible = "ti,k2g-qspi",
2166 		.data = &k2g_qspi,
2167 	},
2168 	{
2169 		.compatible = "ti,am654-ospi",
2170 		.data = &am654_ospi,
2171 	},
2172 	{
2173 		.compatible = "intel,lgm-qspi",
2174 		.data = &intel_lgm_qspi,
2175 	},
2176 	{
2177 		.compatible = "xlnx,versal-ospi-1.0",
2178 		.data = &versal_ospi,
2179 	},
2180 	{
2181 		.compatible = "intel,socfpga-qspi",
2182 		.data = &socfpga_qspi,
2183 	},
2184 	{
2185 		.compatible = "starfive,jh7110-qspi",
2186 		.data = &jh7110_qspi,
2187 	},
2188 	{
2189 		.compatible = "amd,pensando-elba-qspi",
2190 		.data = &pensando_cdns_qspi,
2191 	},
2192 	{
2193 		.compatible = "mobileye,eyeq5-ospi",
2194 		.data = &mobileye_eyeq5_ospi,
2195 	},
2196 	{
2197 		.compatible = "amd,versal2-ospi",
2198 		.data = &versal2_ospi,
2199 	},
2200 	{
2201 		.compatible = "renesas,rzn1-qspi",
2202 		.data = &renesas_rzn1_qspi,
2203 	},
2204 	{ /* end of table */ }
2205 };
2206 
2207 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2208 
2209 static struct platform_driver cqspi_platform_driver = {
2210 	.probe = cqspi_probe,
2211 	.remove = cqspi_remove,
2212 	.driver = {
2213 		.name = CQSPI_NAME,
2214 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2215 		.of_match_table = cqspi_dt_ids,
2216 	},
2217 };
2218 
2219 module_platform_driver(cqspi_platform_driver);
2220 
2221 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2222 MODULE_LICENSE("GPL v2");
2223 MODULE_ALIAS("platform:" CQSPI_NAME);
2224 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2225 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2226 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2227 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2228 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2229