1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32
33 #include "brcmnand.h"
34
35 /*
36 * This flag controls if WP stays on between erase/write commands to mitigate
37 * flash corruption due to power glitches. Values:
38 * 0: NAND_WP is not used or not available
39 * 1: NAND_WP is set by default, cleared for erase/write operations
40 * 2: NAND_WP is always cleared
41 */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44
45 /***********************************************************************
46 * Definitions
47 ***********************************************************************/
48
49 #define DRV_NAME "brcmnand"
50
51 #define CMD_NULL 0x00
52 #define CMD_PAGE_READ 0x01
53 #define CMD_SPARE_AREA_READ 0x02
54 #define CMD_STATUS_READ 0x03
55 #define CMD_PROGRAM_PAGE 0x04
56 #define CMD_PROGRAM_SPARE_AREA 0x05
57 #define CMD_COPY_BACK 0x06
58 #define CMD_DEVICE_ID_READ 0x07
59 #define CMD_BLOCK_ERASE 0x08
60 #define CMD_FLASH_RESET 0x09
61 #define CMD_BLOCKS_LOCK 0x0a
62 #define CMD_BLOCKS_LOCK_DOWN 0x0b
63 #define CMD_BLOCKS_UNLOCK 0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
65 #define CMD_PARAMETER_READ 0x0e
66 #define CMD_PARAMETER_CHANGE_COL 0x0f
67 #define CMD_LOW_LEVEL_OP 0x10
68
69 struct brcm_nand_dma_desc {
70 u32 next_desc;
71 u32 next_desc_ext;
72 u32 cmd_irq;
73 u32 dram_addr;
74 u32 dram_addr_ext;
75 u32 tfr_len;
76 u32 total_len;
77 u32 flash_addr;
78 u32 flash_addr_ext;
79 u32 cs;
80 u32 pad2[5];
81 u32 status_valid;
82 } __packed;
83
84 /* Bitfields for brcm_nand_dma_desc::status_valid */
85 #define FLASH_DMA_ECC_ERROR (1 << 8)
86 #define FLASH_DMA_CORR_ERROR (1 << 9)
87
88 /* Bitfields for DMA_MODE */
89 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
90 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */
91 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
92 FLASH_DMA_MODE_MODE)
93
94 /* 512B flash cache in the NAND controller HW */
95 #define FC_SHIFT 9U
96 #define FC_BYTES 512U
97 #define FC_WORDS (FC_BYTES >> 2)
98
99 #define BRCMNAND_MIN_PAGESIZE 512
100 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
101 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
102
103 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
104 #define NAND_POLL_STATUS_TIMEOUT_MS 100
105
106 #define EDU_CMD_WRITE 0x00
107 #define EDU_CMD_READ 0x01
108 #define EDU_STATUS_ACTIVE BIT(0)
109 #define EDU_ERR_STATUS_ERRACK BIT(0)
110 #define EDU_DONE_MASK GENMASK(1, 0)
111
112 #define EDU_CONFIG_MODE_NAND BIT(0)
113 #define EDU_CONFIG_SWAP_BYTE BIT(1)
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
116 #else
117 #define EDU_CONFIG_SWAP_CFG 0
118 #endif
119
120 /* edu registers */
121 enum edu_reg {
122 EDU_CONFIG = 0,
123 EDU_DRAM_ADDR,
124 EDU_EXT_ADDR,
125 EDU_LENGTH,
126 EDU_CMD,
127 EDU_STOP,
128 EDU_STATUS,
129 EDU_DONE,
130 EDU_ERR_STATUS,
131 };
132
133 static const u16 edu_regs[] = {
134 [EDU_CONFIG] = 0x00,
135 [EDU_DRAM_ADDR] = 0x04,
136 [EDU_EXT_ADDR] = 0x08,
137 [EDU_LENGTH] = 0x0c,
138 [EDU_CMD] = 0x10,
139 [EDU_STOP] = 0x14,
140 [EDU_STATUS] = 0x18,
141 [EDU_DONE] = 0x1c,
142 [EDU_ERR_STATUS] = 0x20,
143 };
144
145 /* flash_dma registers */
146 enum flash_dma_reg {
147 FLASH_DMA_REVISION = 0,
148 FLASH_DMA_FIRST_DESC,
149 FLASH_DMA_FIRST_DESC_EXT,
150 FLASH_DMA_CTRL,
151 FLASH_DMA_MODE,
152 FLASH_DMA_STATUS,
153 FLASH_DMA_INTERRUPT_DESC,
154 FLASH_DMA_INTERRUPT_DESC_EXT,
155 FLASH_DMA_ERROR_STATUS,
156 FLASH_DMA_CURRENT_DESC,
157 FLASH_DMA_CURRENT_DESC_EXT,
158 };
159
160 /* flash_dma registers v0*/
161 static const u16 flash_dma_regs_v0[] = {
162 [FLASH_DMA_REVISION] = 0x00,
163 [FLASH_DMA_FIRST_DESC] = 0x04,
164 [FLASH_DMA_CTRL] = 0x08,
165 [FLASH_DMA_MODE] = 0x0c,
166 [FLASH_DMA_STATUS] = 0x10,
167 [FLASH_DMA_INTERRUPT_DESC] = 0x14,
168 [FLASH_DMA_ERROR_STATUS] = 0x18,
169 [FLASH_DMA_CURRENT_DESC] = 0x1c,
170 };
171
172 /* flash_dma registers v1*/
173 static const u16 flash_dma_regs_v1[] = {
174 [FLASH_DMA_REVISION] = 0x00,
175 [FLASH_DMA_FIRST_DESC] = 0x04,
176 [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
177 [FLASH_DMA_CTRL] = 0x0c,
178 [FLASH_DMA_MODE] = 0x10,
179 [FLASH_DMA_STATUS] = 0x14,
180 [FLASH_DMA_INTERRUPT_DESC] = 0x18,
181 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
182 [FLASH_DMA_ERROR_STATUS] = 0x20,
183 [FLASH_DMA_CURRENT_DESC] = 0x24,
184 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
185 };
186
187 /* flash_dma registers v4 */
188 static const u16 flash_dma_regs_v4[] = {
189 [FLASH_DMA_REVISION] = 0x00,
190 [FLASH_DMA_FIRST_DESC] = 0x08,
191 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
192 [FLASH_DMA_CTRL] = 0x10,
193 [FLASH_DMA_MODE] = 0x14,
194 [FLASH_DMA_STATUS] = 0x18,
195 [FLASH_DMA_INTERRUPT_DESC] = 0x20,
196 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
197 [FLASH_DMA_ERROR_STATUS] = 0x28,
198 [FLASH_DMA_CURRENT_DESC] = 0x30,
199 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
200 };
201
202 /* Controller feature flags */
203 enum {
204 BRCMNAND_HAS_1K_SECTORS = BIT(0),
205 BRCMNAND_HAS_PREFETCH = BIT(1),
206 BRCMNAND_HAS_CACHE_MODE = BIT(2),
207 BRCMNAND_HAS_WP = BIT(3),
208 };
209
210 struct brcmnand_host;
211
212 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213
214 struct brcmnand_controller {
215 struct device *dev;
216 struct nand_controller controller;
217 void __iomem *nand_base;
218 void __iomem *nand_fc; /* flash cache */
219 void __iomem *flash_dma_base;
220 int irq;
221 unsigned int dma_irq;
222 int nand_version;
223
224 /* Some SoCs provide custom interrupt status register(s) */
225 struct brcmnand_soc *soc;
226
227 /* Some SoCs have a gateable clock for the controller */
228 struct clk *clk;
229
230 int cmd_pending;
231 bool dma_pending;
232 bool edu_pending;
233 struct completion done;
234 struct completion dma_done;
235 struct completion edu_done;
236
237 /* List of NAND hosts (one for each chip-select) */
238 struct list_head host_list;
239
240 /* EDU info, per-transaction */
241 const u16 *edu_offsets;
242 void __iomem *edu_base;
243 int edu_irq;
244 int edu_count;
245 u64 edu_dram_addr;
246 u32 edu_ext_addr;
247 u32 edu_cmd;
248 u32 edu_config;
249 int sas; /* spare area size, per flash cache */
250 int sector_size_1k;
251 u8 *oob;
252
253 /* flash_dma reg */
254 const u16 *flash_dma_offsets;
255 struct brcm_nand_dma_desc *dma_desc;
256 dma_addr_t dma_pa;
257
258 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259 u8 *oob, u32 len, u8 dma_cmd);
260
261 /* in-memory cache of the FLASH_CACHE, used only for some commands */
262 u8 flash_cache[FC_BYTES];
263
264 /* Controller revision details */
265 const u16 *reg_offsets;
266 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
267 const u8 *cs_offsets; /* within each chip-select */
268 const u8 *cs0_offsets; /* within CS0, if different */
269 unsigned int max_block_size;
270 const unsigned int *block_sizes;
271 unsigned int max_page_size;
272 const unsigned int *page_sizes;
273 unsigned int page_size_shift;
274 unsigned int max_oob;
275 u32 ecc_level_shift;
276 u32 features;
277
278 /* for low-power standby/resume only */
279 u32 nand_cs_nand_select;
280 u32 nand_cs_nand_xor;
281 u32 corr_stat_threshold;
282 u32 flash_dma_mode;
283 u32 flash_edu_mode;
284 bool pio_poll_mode;
285 };
286
287 struct brcmnand_cfg {
288 u64 device_size;
289 unsigned int block_size;
290 unsigned int page_size;
291 unsigned int spare_area_size;
292 unsigned int device_width;
293 unsigned int col_adr_bytes;
294 unsigned int blk_adr_bytes;
295 unsigned int ful_adr_bytes;
296 unsigned int sector_size_1k;
297 unsigned int ecc_level;
298 /* use for low-power standby/resume only */
299 u32 acc_control;
300 u32 config;
301 u32 config_ext;
302 u32 timing_1;
303 u32 timing_2;
304 };
305
306 struct brcmnand_host {
307 struct list_head node;
308
309 struct nand_chip chip;
310 struct platform_device *pdev;
311 int cs;
312
313 unsigned int last_cmd;
314 unsigned int last_byte;
315 u64 last_addr;
316 struct brcmnand_cfg hwcfg;
317 struct brcmnand_controller *ctrl;
318 };
319
320 enum brcmnand_reg {
321 BRCMNAND_CMD_START = 0,
322 BRCMNAND_CMD_EXT_ADDRESS,
323 BRCMNAND_CMD_ADDRESS,
324 BRCMNAND_INTFC_STATUS,
325 BRCMNAND_CS_SELECT,
326 BRCMNAND_CS_XOR,
327 BRCMNAND_LL_OP,
328 BRCMNAND_CS0_BASE,
329 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
330 BRCMNAND_CORR_THRESHOLD,
331 BRCMNAND_CORR_THRESHOLD_EXT,
332 BRCMNAND_UNCORR_COUNT,
333 BRCMNAND_CORR_COUNT,
334 BRCMNAND_CORR_EXT_ADDR,
335 BRCMNAND_CORR_ADDR,
336 BRCMNAND_UNCORR_EXT_ADDR,
337 BRCMNAND_UNCORR_ADDR,
338 BRCMNAND_SEMAPHORE,
339 BRCMNAND_ID,
340 BRCMNAND_ID_EXT,
341 BRCMNAND_LL_RDATA,
342 BRCMNAND_OOB_READ_BASE,
343 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
344 BRCMNAND_OOB_WRITE_BASE,
345 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
346 BRCMNAND_FC_BASE,
347 };
348
349 /* BRCMNAND v2.1-v2.2 */
350 static const u16 brcmnand_regs_v21[] = {
351 [BRCMNAND_CMD_START] = 0x04,
352 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
353 [BRCMNAND_CMD_ADDRESS] = 0x0c,
354 [BRCMNAND_INTFC_STATUS] = 0x5c,
355 [BRCMNAND_CS_SELECT] = 0x14,
356 [BRCMNAND_CS_XOR] = 0x18,
357 [BRCMNAND_LL_OP] = 0,
358 [BRCMNAND_CS0_BASE] = 0x40,
359 [BRCMNAND_CS1_BASE] = 0,
360 [BRCMNAND_CORR_THRESHOLD] = 0,
361 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
362 [BRCMNAND_UNCORR_COUNT] = 0,
363 [BRCMNAND_CORR_COUNT] = 0,
364 [BRCMNAND_CORR_EXT_ADDR] = 0x60,
365 [BRCMNAND_CORR_ADDR] = 0x64,
366 [BRCMNAND_UNCORR_EXT_ADDR] = 0x68,
367 [BRCMNAND_UNCORR_ADDR] = 0x6c,
368 [BRCMNAND_SEMAPHORE] = 0x50,
369 [BRCMNAND_ID] = 0x54,
370 [BRCMNAND_ID_EXT] = 0,
371 [BRCMNAND_LL_RDATA] = 0,
372 [BRCMNAND_OOB_READ_BASE] = 0x20,
373 [BRCMNAND_OOB_READ_10_BASE] = 0,
374 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
375 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
376 [BRCMNAND_FC_BASE] = 0x200,
377 };
378
379 /* BRCMNAND v3.3-v4.0 */
380 static const u16 brcmnand_regs_v33[] = {
381 [BRCMNAND_CMD_START] = 0x04,
382 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
383 [BRCMNAND_CMD_ADDRESS] = 0x0c,
384 [BRCMNAND_INTFC_STATUS] = 0x6c,
385 [BRCMNAND_CS_SELECT] = 0x14,
386 [BRCMNAND_CS_XOR] = 0x18,
387 [BRCMNAND_LL_OP] = 0x178,
388 [BRCMNAND_CS0_BASE] = 0x40,
389 [BRCMNAND_CS1_BASE] = 0xd0,
390 [BRCMNAND_CORR_THRESHOLD] = 0x84,
391 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
392 [BRCMNAND_UNCORR_COUNT] = 0,
393 [BRCMNAND_CORR_COUNT] = 0,
394 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
395 [BRCMNAND_CORR_ADDR] = 0x74,
396 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
397 [BRCMNAND_UNCORR_ADDR] = 0x7c,
398 [BRCMNAND_SEMAPHORE] = 0x58,
399 [BRCMNAND_ID] = 0x60,
400 [BRCMNAND_ID_EXT] = 0x64,
401 [BRCMNAND_LL_RDATA] = 0x17c,
402 [BRCMNAND_OOB_READ_BASE] = 0x20,
403 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
404 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
405 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
406 [BRCMNAND_FC_BASE] = 0x200,
407 };
408
409 /* BRCMNAND v5.0 */
410 static const u16 brcmnand_regs_v50[] = {
411 [BRCMNAND_CMD_START] = 0x04,
412 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
413 [BRCMNAND_CMD_ADDRESS] = 0x0c,
414 [BRCMNAND_INTFC_STATUS] = 0x6c,
415 [BRCMNAND_CS_SELECT] = 0x14,
416 [BRCMNAND_CS_XOR] = 0x18,
417 [BRCMNAND_LL_OP] = 0x178,
418 [BRCMNAND_CS0_BASE] = 0x40,
419 [BRCMNAND_CS1_BASE] = 0xd0,
420 [BRCMNAND_CORR_THRESHOLD] = 0x84,
421 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
422 [BRCMNAND_UNCORR_COUNT] = 0,
423 [BRCMNAND_CORR_COUNT] = 0,
424 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
425 [BRCMNAND_CORR_ADDR] = 0x74,
426 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
427 [BRCMNAND_UNCORR_ADDR] = 0x7c,
428 [BRCMNAND_SEMAPHORE] = 0x58,
429 [BRCMNAND_ID] = 0x60,
430 [BRCMNAND_ID_EXT] = 0x64,
431 [BRCMNAND_LL_RDATA] = 0x17c,
432 [BRCMNAND_OOB_READ_BASE] = 0x20,
433 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
434 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
435 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
436 [BRCMNAND_FC_BASE] = 0x200,
437 };
438
439 /* BRCMNAND v6.0 - v7.1 */
440 static const u16 brcmnand_regs_v60[] = {
441 [BRCMNAND_CMD_START] = 0x04,
442 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
443 [BRCMNAND_CMD_ADDRESS] = 0x0c,
444 [BRCMNAND_INTFC_STATUS] = 0x14,
445 [BRCMNAND_CS_SELECT] = 0x18,
446 [BRCMNAND_CS_XOR] = 0x1c,
447 [BRCMNAND_LL_OP] = 0x20,
448 [BRCMNAND_CS0_BASE] = 0x50,
449 [BRCMNAND_CS1_BASE] = 0,
450 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
451 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
452 [BRCMNAND_UNCORR_COUNT] = 0xfc,
453 [BRCMNAND_CORR_COUNT] = 0x100,
454 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
455 [BRCMNAND_CORR_ADDR] = 0x110,
456 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
457 [BRCMNAND_UNCORR_ADDR] = 0x118,
458 [BRCMNAND_SEMAPHORE] = 0x150,
459 [BRCMNAND_ID] = 0x194,
460 [BRCMNAND_ID_EXT] = 0x198,
461 [BRCMNAND_LL_RDATA] = 0x19c,
462 [BRCMNAND_OOB_READ_BASE] = 0x200,
463 [BRCMNAND_OOB_READ_10_BASE] = 0,
464 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
465 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
466 [BRCMNAND_FC_BASE] = 0x400,
467 };
468
469 /* BRCMNAND v7.1 */
470 static const u16 brcmnand_regs_v71[] = {
471 [BRCMNAND_CMD_START] = 0x04,
472 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
473 [BRCMNAND_CMD_ADDRESS] = 0x0c,
474 [BRCMNAND_INTFC_STATUS] = 0x14,
475 [BRCMNAND_CS_SELECT] = 0x18,
476 [BRCMNAND_CS_XOR] = 0x1c,
477 [BRCMNAND_LL_OP] = 0x20,
478 [BRCMNAND_CS0_BASE] = 0x50,
479 [BRCMNAND_CS1_BASE] = 0,
480 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
481 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
482 [BRCMNAND_UNCORR_COUNT] = 0xfc,
483 [BRCMNAND_CORR_COUNT] = 0x100,
484 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
485 [BRCMNAND_CORR_ADDR] = 0x110,
486 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
487 [BRCMNAND_UNCORR_ADDR] = 0x118,
488 [BRCMNAND_SEMAPHORE] = 0x150,
489 [BRCMNAND_ID] = 0x194,
490 [BRCMNAND_ID_EXT] = 0x198,
491 [BRCMNAND_LL_RDATA] = 0x19c,
492 [BRCMNAND_OOB_READ_BASE] = 0x200,
493 [BRCMNAND_OOB_READ_10_BASE] = 0,
494 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
495 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
496 [BRCMNAND_FC_BASE] = 0x400,
497 };
498
499 /* BRCMNAND v7.2 */
500 static const u16 brcmnand_regs_v72[] = {
501 [BRCMNAND_CMD_START] = 0x04,
502 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
503 [BRCMNAND_CMD_ADDRESS] = 0x0c,
504 [BRCMNAND_INTFC_STATUS] = 0x14,
505 [BRCMNAND_CS_SELECT] = 0x18,
506 [BRCMNAND_CS_XOR] = 0x1c,
507 [BRCMNAND_LL_OP] = 0x20,
508 [BRCMNAND_CS0_BASE] = 0x50,
509 [BRCMNAND_CS1_BASE] = 0,
510 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
511 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
512 [BRCMNAND_UNCORR_COUNT] = 0xfc,
513 [BRCMNAND_CORR_COUNT] = 0x100,
514 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
515 [BRCMNAND_CORR_ADDR] = 0x110,
516 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
517 [BRCMNAND_UNCORR_ADDR] = 0x118,
518 [BRCMNAND_SEMAPHORE] = 0x150,
519 [BRCMNAND_ID] = 0x194,
520 [BRCMNAND_ID_EXT] = 0x198,
521 [BRCMNAND_LL_RDATA] = 0x19c,
522 [BRCMNAND_OOB_READ_BASE] = 0x200,
523 [BRCMNAND_OOB_READ_10_BASE] = 0,
524 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
525 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
526 [BRCMNAND_FC_BASE] = 0x600,
527 };
528
529 enum brcmnand_cs_reg {
530 BRCMNAND_CS_CFG_EXT = 0,
531 BRCMNAND_CS_CFG,
532 BRCMNAND_CS_ACC_CONTROL,
533 BRCMNAND_CS_TIMING1,
534 BRCMNAND_CS_TIMING2,
535 };
536
537 /* Per chip-select offsets for v7.1 */
538 static const u8 brcmnand_cs_offsets_v71[] = {
539 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
540 [BRCMNAND_CS_CFG_EXT] = 0x04,
541 [BRCMNAND_CS_CFG] = 0x08,
542 [BRCMNAND_CS_TIMING1] = 0x0c,
543 [BRCMNAND_CS_TIMING2] = 0x10,
544 };
545
546 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547 static const u8 brcmnand_cs_offsets[] = {
548 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
549 [BRCMNAND_CS_CFG_EXT] = 0x04,
550 [BRCMNAND_CS_CFG] = 0x04,
551 [BRCMNAND_CS_TIMING1] = 0x08,
552 [BRCMNAND_CS_TIMING2] = 0x0c,
553 };
554
555 /* Per chip-select offset for <= v5.0 on CS0 only */
556 static const u8 brcmnand_cs_offsets_cs0[] = {
557 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
558 [BRCMNAND_CS_CFG_EXT] = 0x08,
559 [BRCMNAND_CS_CFG] = 0x08,
560 [BRCMNAND_CS_TIMING1] = 0x10,
561 [BRCMNAND_CS_TIMING2] = 0x14,
562 };
563
564 /*
565 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566 * one config register, but once the bitfields overflowed, newer controllers
567 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568 */
569 enum {
570 CFG_BLK_ADR_BYTES_SHIFT = 8,
571 CFG_COL_ADR_BYTES_SHIFT = 12,
572 CFG_FUL_ADR_BYTES_SHIFT = 16,
573 CFG_BUS_WIDTH_SHIFT = 23,
574 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
575 CFG_DEVICE_SIZE_SHIFT = 24,
576
577 /* Only for v2.1 */
578 CFG_PAGE_SIZE_SHIFT_v2_1 = 30,
579
580 /* Only for pre-v7.1 (with no CFG_EXT register) */
581 CFG_PAGE_SIZE_SHIFT = 20,
582 CFG_BLK_SIZE_SHIFT = 28,
583
584 /* Only for v7.1+ (with CFG_EXT register) */
585 CFG_EXT_PAGE_SIZE_SHIFT = 0,
586 CFG_EXT_BLK_SIZE_SHIFT = 4,
587 };
588
589 /* BRCMNAND_INTFC_STATUS */
590 enum {
591 INTFC_FLASH_STATUS = GENMASK(7, 0),
592
593 INTFC_ERASED = BIT(27),
594 INTFC_OOB_VALID = BIT(28),
595 INTFC_CACHE_VALID = BIT(29),
596 INTFC_FLASH_READY = BIT(30),
597 INTFC_CTLR_READY = BIT(31),
598 };
599
600 /***********************************************************************
601 * NAND ACC CONTROL bitfield
602 *
603 * Some bits have remained constant throughout hardware revision, while
604 * others have shifted around.
605 ***********************************************************************/
606
607 /* Constant for all versions (where supported) */
608 enum {
609 /* See BRCMNAND_HAS_CACHE_MODE */
610 ACC_CONTROL_CACHE_MODE = BIT(22),
611
612 /* See BRCMNAND_HAS_PREFETCH */
613 ACC_CONTROL_PREFETCH = BIT(23),
614
615 ACC_CONTROL_PAGE_HIT = BIT(24),
616 ACC_CONTROL_WR_PREEMPT = BIT(25),
617 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
618 ACC_CONTROL_RD_ERASED = BIT(27),
619 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
620 ACC_CONTROL_WR_ECC = BIT(30),
621 ACC_CONTROL_RD_ECC = BIT(31),
622 };
623
624 #define ACC_CONTROL_ECC_SHIFT 16
625 /* Only for v7.2 */
626 #define ACC_CONTROL_ECC_EXT_SHIFT 13
627
628 static int brcmnand_status(struct brcmnand_host *host);
629
brcmnand_non_mmio_ops(struct brcmnand_controller * ctrl)630 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
631 {
632 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
633 return static_branch_unlikely(&brcmnand_soc_has_ops_key);
634 #else
635 return false;
636 #endif
637 }
638
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)639 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
640 {
641 if (brcmnand_non_mmio_ops(ctrl))
642 return brcmnand_soc_read(ctrl->soc, offs);
643 return brcmnand_readl(ctrl->nand_base + offs);
644 }
645
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)646 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
647 u32 val)
648 {
649 if (brcmnand_non_mmio_ops(ctrl))
650 brcmnand_soc_write(ctrl->soc, val, offs);
651 else
652 brcmnand_writel(val, ctrl->nand_base + offs);
653 }
654
brcmnand_revision_init(struct brcmnand_controller * ctrl)655 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
656 {
657 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
658 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
659 static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
660 static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
661 static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
662 static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
663 static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
664
665 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
666
667 /* Only support v2.1+ */
668 if (ctrl->nand_version < 0x0201) {
669 dev_err(ctrl->dev, "version %#x not supported\n",
670 ctrl->nand_version);
671 return -ENODEV;
672 }
673
674 /* Register offsets */
675 if (ctrl->nand_version >= 0x0702)
676 ctrl->reg_offsets = brcmnand_regs_v72;
677 else if (ctrl->nand_version == 0x0701)
678 ctrl->reg_offsets = brcmnand_regs_v71;
679 else if (ctrl->nand_version >= 0x0600)
680 ctrl->reg_offsets = brcmnand_regs_v60;
681 else if (ctrl->nand_version >= 0x0500)
682 ctrl->reg_offsets = brcmnand_regs_v50;
683 else if (ctrl->nand_version >= 0x0303)
684 ctrl->reg_offsets = brcmnand_regs_v33;
685 else if (ctrl->nand_version >= 0x0201)
686 ctrl->reg_offsets = brcmnand_regs_v21;
687
688 /* Chip-select stride */
689 if (ctrl->nand_version >= 0x0701)
690 ctrl->reg_spacing = 0x14;
691 else
692 ctrl->reg_spacing = 0x10;
693
694 /* Per chip-select registers */
695 if (ctrl->nand_version >= 0x0701) {
696 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
697 } else {
698 ctrl->cs_offsets = brcmnand_cs_offsets;
699
700 /* v3.3-5.0 have a different CS0 offset layout */
701 if (ctrl->nand_version >= 0x0303 &&
702 ctrl->nand_version <= 0x0500)
703 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
704 }
705
706 /* Page / block sizes */
707 if (ctrl->nand_version >= 0x0701) {
708 /* >= v7.1 use nice power-of-2 values! */
709 ctrl->max_page_size = 16 * 1024;
710 ctrl->max_block_size = 2 * 1024 * 1024;
711 } else {
712 if (ctrl->nand_version >= 0x0304)
713 ctrl->page_sizes = page_sizes_v3_4;
714 else if (ctrl->nand_version >= 0x0202)
715 ctrl->page_sizes = page_sizes_v2_2;
716 else
717 ctrl->page_sizes = page_sizes_v2_1;
718
719 if (ctrl->nand_version >= 0x0202)
720 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
721 else
722 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
723
724 if (ctrl->nand_version >= 0x0600)
725 ctrl->block_sizes = block_sizes_v6;
726 else if (ctrl->nand_version >= 0x0400)
727 ctrl->block_sizes = block_sizes_v4;
728 else if (ctrl->nand_version >= 0x0202)
729 ctrl->block_sizes = block_sizes_v2_2;
730 else
731 ctrl->block_sizes = block_sizes_v2_1;
732
733 if (ctrl->nand_version < 0x0400) {
734 if (ctrl->nand_version < 0x0202)
735 ctrl->max_page_size = 2048;
736 else
737 ctrl->max_page_size = 4096;
738 ctrl->max_block_size = 512 * 1024;
739 }
740 }
741
742 /* Maximum spare area sector size (per 512B) */
743 if (ctrl->nand_version == 0x0702)
744 ctrl->max_oob = 128;
745 else if (ctrl->nand_version >= 0x0600)
746 ctrl->max_oob = 64;
747 else if (ctrl->nand_version >= 0x0500)
748 ctrl->max_oob = 32;
749 else
750 ctrl->max_oob = 16;
751
752 /* v6.0 and newer (except v6.1) have prefetch support */
753 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
754 ctrl->features |= BRCMNAND_HAS_PREFETCH;
755
756 /*
757 * v6.x has cache mode, but it's implemented differently. Ignore it for
758 * now.
759 */
760 if (ctrl->nand_version >= 0x0700)
761 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
762
763 if (ctrl->nand_version >= 0x0500)
764 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
765
766 if (ctrl->nand_version >= 0x0700)
767 ctrl->features |= BRCMNAND_HAS_WP;
768 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
769 ctrl->features |= BRCMNAND_HAS_WP;
770
771 /* v7.2 has different ecc level shift in the acc register */
772 if (ctrl->nand_version == 0x0702)
773 ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
774 else
775 ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
776
777 return 0;
778 }
779
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)780 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
781 {
782 /* flash_dma register offsets */
783 if (ctrl->nand_version >= 0x0703)
784 ctrl->flash_dma_offsets = flash_dma_regs_v4;
785 else if (ctrl->nand_version == 0x0602)
786 ctrl->flash_dma_offsets = flash_dma_regs_v0;
787 else
788 ctrl->flash_dma_offsets = flash_dma_regs_v1;
789 }
790
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)791 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
792 enum brcmnand_reg reg)
793 {
794 u16 offs = ctrl->reg_offsets[reg];
795
796 if (offs)
797 return nand_readreg(ctrl, offs);
798 else
799 return 0;
800 }
801
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)802 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
803 enum brcmnand_reg reg, u32 val)
804 {
805 u16 offs = ctrl->reg_offsets[reg];
806
807 if (offs)
808 nand_writereg(ctrl, offs, val);
809 }
810
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)811 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
812 enum brcmnand_reg reg, u32 mask, unsigned
813 int shift, u32 val)
814 {
815 u32 tmp = brcmnand_read_reg(ctrl, reg);
816
817 tmp &= ~mask;
818 tmp |= val << shift;
819 brcmnand_write_reg(ctrl, reg, tmp);
820 }
821
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)822 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
823 {
824 if (brcmnand_non_mmio_ops(ctrl))
825 return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
826 return __raw_readl(ctrl->nand_fc + word * 4);
827 }
828
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)829 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
830 int word, u32 val)
831 {
832 if (brcmnand_non_mmio_ops(ctrl))
833 brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
834 else
835 __raw_writel(val, ctrl->nand_fc + word * 4);
836 }
837
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)838 static inline void edu_writel(struct brcmnand_controller *ctrl,
839 enum edu_reg reg, u32 val)
840 {
841 u16 offs = ctrl->edu_offsets[reg];
842
843 brcmnand_writel(val, ctrl->edu_base + offs);
844 }
845
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)846 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
847 enum edu_reg reg)
848 {
849 u16 offs = ctrl->edu_offsets[reg];
850
851 return brcmnand_readl(ctrl->edu_base + offs);
852 }
853
brcmnand_read_data_bus(struct brcmnand_controller * ctrl,void __iomem * flash_cache,u32 * buffer,int fc_words)854 static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl,
855 void __iomem *flash_cache, u32 *buffer, int fc_words)
856 {
857 struct brcmnand_soc *soc = ctrl->soc;
858 int i;
859
860 if (soc && soc->read_data_bus) {
861 soc->read_data_bus(soc, flash_cache, buffer, fc_words);
862 } else {
863 for (i = 0; i < fc_words; i++)
864 buffer[i] = brcmnand_read_fc(ctrl, i);
865 }
866 }
867
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)868 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
869 {
870
871 /* Clear error addresses */
872 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
873 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
874 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
875 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
876 }
877
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)878 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
879 {
880 u64 err_addr;
881
882 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
883 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
884 BRCMNAND_UNCORR_EXT_ADDR)
885 & 0xffff) << 32);
886
887 return err_addr;
888 }
889
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)890 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
891 {
892 u64 err_addr;
893
894 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
895 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
896 BRCMNAND_CORR_EXT_ADDR)
897 & 0xffff) << 32);
898
899 return err_addr;
900 }
901
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)902 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
903 {
904 struct nand_chip *chip = mtd_to_nand(mtd);
905 struct brcmnand_host *host = nand_get_controller_data(chip);
906 struct brcmnand_controller *ctrl = host->ctrl;
907
908 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
909 (host->cs << 16) | ((addr >> 32) & 0xffff));
910 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
911 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
912 lower_32_bits(addr));
913 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
914 }
915
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)916 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
917 enum brcmnand_cs_reg reg)
918 {
919 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
920 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
921 u8 cs_offs;
922
923 if (cs == 0 && ctrl->cs0_offsets)
924 cs_offs = ctrl->cs0_offsets[reg];
925 else
926 cs_offs = ctrl->cs_offsets[reg];
927
928 if (cs && offs_cs1)
929 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
930
931 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
932 }
933
brcmnand_count_corrected(struct brcmnand_controller * ctrl)934 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
935 {
936 if (ctrl->nand_version < 0x0600)
937 return 1;
938 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
939 }
940
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)941 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
942 {
943 struct brcmnand_controller *ctrl = host->ctrl;
944 unsigned int shift = 0, bits;
945 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
946 int cs = host->cs;
947
948 if (!ctrl->reg_offsets[reg])
949 return;
950
951 if (ctrl->nand_version == 0x0702)
952 bits = 7;
953 else if (ctrl->nand_version >= 0x0600)
954 bits = 6;
955 else if (ctrl->nand_version >= 0x0500)
956 bits = 5;
957 else
958 bits = 4;
959
960 if (ctrl->nand_version >= 0x0702) {
961 if (cs >= 4)
962 reg = BRCMNAND_CORR_THRESHOLD_EXT;
963 shift = (cs % 4) * bits;
964 } else if (ctrl->nand_version >= 0x0600) {
965 if (cs >= 5)
966 reg = BRCMNAND_CORR_THRESHOLD_EXT;
967 shift = (cs % 5) * bits;
968 }
969 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
970 }
971
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)972 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
973 {
974 /* Kludge for the BCMA-based NAND controller which does not actually
975 * shift the command
976 */
977 if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
978 return 0;
979
980 if (ctrl->nand_version < 0x0602)
981 return 24;
982 return 0;
983 }
984
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)985 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
986 {
987 if (ctrl->nand_version == 0x0702)
988 return GENMASK(7, 0);
989 else if (ctrl->nand_version >= 0x0600)
990 return GENMASK(6, 0);
991 else if (ctrl->nand_version >= 0x0303)
992 return GENMASK(5, 0);
993 else
994 return GENMASK(4, 0);
995 }
996
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)997 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
998 {
999 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
1000
1001 mask <<= ACC_CONTROL_ECC_SHIFT;
1002
1003 /* v7.2 includes additional ECC levels */
1004 if (ctrl->nand_version == 0x0702)
1005 mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
1006
1007 return mask;
1008 }
1009
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)1010 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
1011 {
1012 struct brcmnand_controller *ctrl = host->ctrl;
1013 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1014 u32 acc_control = nand_readreg(ctrl, offs);
1015 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1016
1017 if (en) {
1018 acc_control |= ecc_flags; /* enable RD/WR ECC */
1019 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1020 acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1021 } else {
1022 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1023 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1024 }
1025
1026 nand_writereg(ctrl, offs, acc_control);
1027 }
1028
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)1029 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1030 {
1031 if (ctrl->nand_version >= 0x0702)
1032 return 9;
1033 else if (ctrl->nand_version >= 0x0600)
1034 return 7;
1035 else if (ctrl->nand_version >= 0x0500)
1036 return 6;
1037 else
1038 return -1;
1039 }
1040
brcmnand_get_sector_size_1k(struct brcmnand_host * host)1041 static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1042 {
1043 struct brcmnand_controller *ctrl = host->ctrl;
1044 int sector_size_bit = brcmnand_sector_1k_shift(ctrl);
1045 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1046 BRCMNAND_CS_ACC_CONTROL);
1047 u32 acc_control;
1048
1049 if (sector_size_bit < 0)
1050 return false;
1051
1052 acc_control = nand_readreg(ctrl, acc_control_offs);
1053
1054 return ((acc_control & BIT(sector_size_bit)) != 0);
1055 }
1056
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)1057 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1058 {
1059 struct brcmnand_controller *ctrl = host->ctrl;
1060 int shift = brcmnand_sector_1k_shift(ctrl);
1061 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1062 BRCMNAND_CS_ACC_CONTROL);
1063 u32 tmp;
1064
1065 if (shift < 0)
1066 return;
1067
1068 tmp = nand_readreg(ctrl, acc_control_offs);
1069 tmp &= ~(1 << shift);
1070 tmp |= (!!val) << shift;
1071 nand_writereg(ctrl, acc_control_offs, tmp);
1072 }
1073
brcmnand_get_spare_size(struct brcmnand_host * host)1074 static int brcmnand_get_spare_size(struct brcmnand_host *host)
1075 {
1076 struct brcmnand_controller *ctrl = host->ctrl;
1077 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1078 BRCMNAND_CS_ACC_CONTROL);
1079 u32 acc = nand_readreg(ctrl, acc_control_offs);
1080
1081 return (acc & brcmnand_spare_area_mask(ctrl));
1082 }
1083
brcmnand_get_ecc_settings(struct brcmnand_host * host,struct nand_chip * chip)1084 static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip)
1085 {
1086 struct brcmnand_controller *ctrl = host->ctrl;
1087 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1088 BRCMNAND_CS_ACC_CONTROL);
1089 bool sector_size_1k = brcmnand_get_sector_size_1k(host);
1090 int spare_area_size, ecc_level;
1091 u32 acc;
1092
1093 spare_area_size = brcmnand_get_spare_size(host);
1094 acc = nand_readreg(ctrl, acc_control_offs);
1095 ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift;
1096 if (sector_size_1k)
1097 chip->ecc.strength = ecc_level * 2;
1098 else if (spare_area_size == 16 && ecc_level == 15)
1099 chip->ecc.strength = 1; /* hamming */
1100 else
1101 chip->ecc.strength = ecc_level;
1102
1103 if (chip->ecc.size == 0) {
1104 if (sector_size_1k)
1105 chip->ecc.size = 1024;
1106 else
1107 chip->ecc.size = 512;
1108 }
1109 }
1110
1111 /***********************************************************************
1112 * CS_NAND_SELECT
1113 ***********************************************************************/
1114
1115 enum {
1116 CS_SELECT_NAND_WP = BIT(29),
1117 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
1118 };
1119
bcmnand_ctrl_poll_status(struct brcmnand_host * host,u32 mask,u32 expected_val,unsigned long timeout_ms)1120 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1121 u32 mask, u32 expected_val,
1122 unsigned long timeout_ms)
1123 {
1124 struct brcmnand_controller *ctrl = host->ctrl;
1125 unsigned long limit;
1126 u32 val;
1127
1128 if (!timeout_ms)
1129 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1130
1131 limit = jiffies + msecs_to_jiffies(timeout_ms);
1132 do {
1133 if (mask & INTFC_FLASH_STATUS)
1134 brcmnand_status(host);
1135
1136 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1137 if ((val & mask) == expected_val)
1138 return 0;
1139
1140 cpu_relax();
1141 } while (time_after(limit, jiffies));
1142
1143 /*
1144 * do a final check after time out in case the CPU was busy and the driver
1145 * did not get enough time to perform the polling to avoid false alarms
1146 */
1147 if (mask & INTFC_FLASH_STATUS)
1148 brcmnand_status(host);
1149
1150 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1151 if ((val & mask) == expected_val)
1152 return 0;
1153
1154 dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1155 expected_val, val & mask);
1156
1157 return -ETIMEDOUT;
1158 }
1159
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1160 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1161 {
1162 u32 val = en ? CS_SELECT_NAND_WP : 0;
1163
1164 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1165 }
1166
1167 /***********************************************************************
1168 * Flash DMA
1169 ***********************************************************************/
1170
has_flash_dma(struct brcmnand_controller * ctrl)1171 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1172 {
1173 return ctrl->flash_dma_base;
1174 }
1175
has_edu(struct brcmnand_controller * ctrl)1176 static inline bool has_edu(struct brcmnand_controller *ctrl)
1177 {
1178 return ctrl->edu_base;
1179 }
1180
use_dma(struct brcmnand_controller * ctrl)1181 static inline bool use_dma(struct brcmnand_controller *ctrl)
1182 {
1183 return has_flash_dma(ctrl) || has_edu(ctrl);
1184 }
1185
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1186 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1187 {
1188 if (ctrl->pio_poll_mode)
1189 return;
1190
1191 if (has_flash_dma(ctrl)) {
1192 ctrl->flash_dma_base = NULL;
1193 disable_irq(ctrl->dma_irq);
1194 }
1195
1196 disable_irq(ctrl->irq);
1197 ctrl->pio_poll_mode = true;
1198 }
1199
flash_dma_buf_ok(const void * buf)1200 static inline bool flash_dma_buf_ok(const void *buf)
1201 {
1202 return buf && !is_vmalloc_addr(buf) &&
1203 likely(IS_ALIGNED((uintptr_t)buf, 4));
1204 }
1205
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1206 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1207 enum flash_dma_reg dma_reg, u32 val)
1208 {
1209 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1210
1211 brcmnand_writel(val, ctrl->flash_dma_base + offs);
1212 }
1213
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1214 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1215 enum flash_dma_reg dma_reg)
1216 {
1217 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1218
1219 return brcmnand_readl(ctrl->flash_dma_base + offs);
1220 }
1221
1222 /* Low-level operation types: command, address, write, or read */
1223 enum brcmnand_llop_type {
1224 LL_OP_CMD,
1225 LL_OP_ADDR,
1226 LL_OP_WR,
1227 LL_OP_RD,
1228 };
1229
1230 /***********************************************************************
1231 * Internal support functions
1232 ***********************************************************************/
1233
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1234 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1235 struct brcmnand_cfg *cfg)
1236 {
1237 if (ctrl->nand_version <= 0x0701)
1238 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1239 cfg->ecc_level == 15;
1240 else
1241 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1242 cfg->ecc_level == 15) ||
1243 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1244 }
1245
1246 /*
1247 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1248 * the layout/configuration.
1249 * Returns -ERRCODE on failure.
1250 */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1251 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1252 struct mtd_oob_region *oobregion)
1253 {
1254 struct nand_chip *chip = mtd_to_nand(mtd);
1255 struct brcmnand_host *host = nand_get_controller_data(chip);
1256 struct brcmnand_cfg *cfg = &host->hwcfg;
1257 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1258 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1259
1260 if (section >= sectors)
1261 return -ERANGE;
1262
1263 oobregion->offset = (section * sas) + 6;
1264 oobregion->length = 3;
1265
1266 return 0;
1267 }
1268
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1269 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1270 struct mtd_oob_region *oobregion)
1271 {
1272 struct nand_chip *chip = mtd_to_nand(mtd);
1273 struct brcmnand_host *host = nand_get_controller_data(chip);
1274 struct brcmnand_cfg *cfg = &host->hwcfg;
1275 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1276 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1277 u32 next;
1278
1279 if (section > sectors)
1280 return -ERANGE;
1281
1282 next = (section * sas);
1283 if (section < sectors)
1284 next += 6;
1285
1286 if (section) {
1287 oobregion->offset = ((section - 1) * sas) + 9;
1288 } else {
1289 if (cfg->page_size > 512) {
1290 /* Large page NAND uses first 2 bytes for BBI */
1291 oobregion->offset = 2;
1292 } else {
1293 /* Small page NAND uses last byte before ECC for BBI */
1294 oobregion->offset = 0;
1295 next--;
1296 }
1297 }
1298
1299 oobregion->length = next - oobregion->offset;
1300
1301 return 0;
1302 }
1303
1304 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1305 .ecc = brcmnand_hamming_ooblayout_ecc,
1306 .free = brcmnand_hamming_ooblayout_free,
1307 };
1308
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1309 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1310 struct mtd_oob_region *oobregion)
1311 {
1312 struct nand_chip *chip = mtd_to_nand(mtd);
1313 struct brcmnand_host *host = nand_get_controller_data(chip);
1314 struct brcmnand_cfg *cfg = &host->hwcfg;
1315 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1316 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1317
1318 if (section >= sectors)
1319 return -ERANGE;
1320
1321 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1322 oobregion->length = chip->ecc.bytes;
1323
1324 return 0;
1325 }
1326
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1327 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1328 struct mtd_oob_region *oobregion)
1329 {
1330 struct nand_chip *chip = mtd_to_nand(mtd);
1331 struct brcmnand_host *host = nand_get_controller_data(chip);
1332 struct brcmnand_cfg *cfg = &host->hwcfg;
1333 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1334 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1335
1336 if (section >= sectors)
1337 return -ERANGE;
1338
1339 if (sas <= chip->ecc.bytes)
1340 return 0;
1341
1342 oobregion->offset = section * sas;
1343 oobregion->length = sas - chip->ecc.bytes;
1344
1345 if (!section) {
1346 oobregion->offset++;
1347 oobregion->length--;
1348 }
1349
1350 return 0;
1351 }
1352
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1353 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1354 struct mtd_oob_region *oobregion)
1355 {
1356 struct nand_chip *chip = mtd_to_nand(mtd);
1357 struct brcmnand_host *host = nand_get_controller_data(chip);
1358 struct brcmnand_cfg *cfg = &host->hwcfg;
1359 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1360
1361 if (section > 1 || sas - chip->ecc.bytes < 6 ||
1362 (section && sas - chip->ecc.bytes == 6))
1363 return -ERANGE;
1364
1365 if (!section) {
1366 oobregion->offset = 0;
1367 oobregion->length = 5;
1368 } else {
1369 oobregion->offset = 6;
1370 oobregion->length = sas - chip->ecc.bytes - 6;
1371 }
1372
1373 return 0;
1374 }
1375
1376 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1377 .ecc = brcmnand_bch_ooblayout_ecc,
1378 .free = brcmnand_bch_ooblayout_free_lp,
1379 };
1380
1381 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1382 .ecc = brcmnand_bch_ooblayout_ecc,
1383 .free = brcmnand_bch_ooblayout_free_sp,
1384 };
1385
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1386 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1387 {
1388 struct brcmnand_cfg *p = &host->hwcfg;
1389 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1390 struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1391 unsigned int ecc_level = p->ecc_level;
1392 int sas = p->spare_area_size << p->sector_size_1k;
1393 int sectors = p->page_size / (512 << p->sector_size_1k);
1394
1395 if (p->sector_size_1k)
1396 ecc_level <<= 1;
1397
1398 if (is_hamming_ecc(host->ctrl, p)) {
1399 ecc->bytes = 3 * sectors;
1400 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1401 return 0;
1402 }
1403
1404 /*
1405 * CONTROLLER_VERSION:
1406 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1407 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1408 * But we will just be conservative.
1409 */
1410 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1411 if (p->page_size == 512)
1412 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1413 else
1414 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1415
1416 if (ecc->bytes >= sas) {
1417 dev_err(&host->pdev->dev,
1418 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1419 ecc->bytes, sas);
1420 return -EINVAL;
1421 }
1422
1423 return 0;
1424 }
1425
brcmnand_wp(struct mtd_info * mtd,int wp)1426 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1427 {
1428 struct nand_chip *chip = mtd_to_nand(mtd);
1429 struct brcmnand_host *host = nand_get_controller_data(chip);
1430 struct brcmnand_controller *ctrl = host->ctrl;
1431
1432 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1433 static int old_wp = -1;
1434 int ret;
1435
1436 if (old_wp != wp) {
1437 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1438 old_wp = wp;
1439 }
1440
1441 /*
1442 * make sure ctrl/flash ready before and after
1443 * changing state of #WP pin
1444 */
1445 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1446 NAND_STATUS_READY,
1447 NAND_CTRL_RDY |
1448 NAND_STATUS_READY, 0);
1449 if (ret)
1450 return;
1451
1452 brcmnand_set_wp(ctrl, wp);
1453 /* force controller operation to update internal copy of NAND chip status */
1454 brcmnand_status(host);
1455 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1456 ret = bcmnand_ctrl_poll_status(host,
1457 NAND_CTRL_RDY |
1458 NAND_STATUS_READY |
1459 NAND_STATUS_WP,
1460 NAND_CTRL_RDY |
1461 NAND_STATUS_READY |
1462 (wp ? 0 : NAND_STATUS_WP), 0);
1463
1464 if (ret)
1465 dev_err_ratelimited(&host->pdev->dev,
1466 "nand #WP expected %s\n",
1467 wp ? "on" : "off");
1468 }
1469 }
1470
1471 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1472 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1473 {
1474 u16 offset0, offset10, reg_offs;
1475
1476 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1477 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1478
1479 if (offs >= ctrl->max_oob)
1480 return 0x77;
1481
1482 if (offs >= 16 && offset10)
1483 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1484 else
1485 reg_offs = offset0 + (offs & ~0x03);
1486
1487 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1488 }
1489
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1490 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1491 u32 data)
1492 {
1493 u16 offset0, offset10, reg_offs;
1494
1495 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1496 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1497
1498 if (offs >= ctrl->max_oob)
1499 return;
1500
1501 if (offs >= 16 && offset10)
1502 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1503 else
1504 reg_offs = offset0 + (offs & ~0x03);
1505
1506 nand_writereg(ctrl, reg_offs, data);
1507 }
1508
1509 /*
1510 * read_oob_from_regs - read data from OOB registers
1511 * @ctrl: NAND controller
1512 * @i: sub-page sector index
1513 * @oob: buffer to read to
1514 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1515 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1516 */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1517 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1518 int sas, int sector_1k)
1519 {
1520 int tbytes = sas << sector_1k;
1521 int j;
1522
1523 /* Adjust OOB values for 1K sector size */
1524 if (sector_1k && (i & 0x01))
1525 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1526 tbytes = min_t(int, tbytes, ctrl->max_oob);
1527
1528 for (j = 0; j < tbytes; j++)
1529 oob[j] = oob_reg_read(ctrl, j);
1530 return tbytes;
1531 }
1532
1533 /*
1534 * write_oob_to_regs - write data to OOB registers
1535 * @i: sub-page sector index
1536 * @oob: buffer to write from
1537 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1538 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1539 */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1540 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1541 const u8 *oob, int sas, int sector_1k)
1542 {
1543 int tbytes = sas << sector_1k;
1544 int j, k = 0;
1545 u32 last = 0xffffffff;
1546 u8 *plast = (u8 *)&last;
1547
1548 /* Adjust OOB values for 1K sector size */
1549 if (sector_1k && (i & 0x01))
1550 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1551 tbytes = min_t(int, tbytes, ctrl->max_oob);
1552
1553 /*
1554 * tbytes may not be multiple of words. Make sure we don't read out of
1555 * the boundary and stop at last word.
1556 */
1557 for (j = 0; (j + 3) < tbytes; j += 4)
1558 oob_reg_write(ctrl, j,
1559 (oob[j + 0] << 24) |
1560 (oob[j + 1] << 16) |
1561 (oob[j + 2] << 8) |
1562 (oob[j + 3] << 0));
1563
1564 /* handle the remaining bytes */
1565 while (j < tbytes)
1566 plast[k++] = oob[j++];
1567
1568 if (tbytes & 0x3)
1569 oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1570
1571 return tbytes;
1572 }
1573
brcmnand_edu_init(struct brcmnand_controller * ctrl)1574 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1575 {
1576 /* initialize edu */
1577 edu_writel(ctrl, EDU_ERR_STATUS, 0);
1578 edu_readl(ctrl, EDU_ERR_STATUS);
1579 edu_writel(ctrl, EDU_DONE, 0);
1580 edu_writel(ctrl, EDU_DONE, 0);
1581 edu_writel(ctrl, EDU_DONE, 0);
1582 edu_writel(ctrl, EDU_DONE, 0);
1583 edu_readl(ctrl, EDU_DONE);
1584 }
1585
1586 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1587 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1588 {
1589 struct brcmnand_controller *ctrl = data;
1590
1591 if (ctrl->edu_count) {
1592 ctrl->edu_count--;
1593 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1594 udelay(1);
1595 edu_writel(ctrl, EDU_DONE, 0);
1596 edu_readl(ctrl, EDU_DONE);
1597 }
1598
1599 if (ctrl->edu_count) {
1600 ctrl->edu_dram_addr += FC_BYTES;
1601 ctrl->edu_ext_addr += FC_BYTES;
1602
1603 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1604 edu_readl(ctrl, EDU_DRAM_ADDR);
1605 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1606 edu_readl(ctrl, EDU_EXT_ADDR);
1607
1608 if (ctrl->oob) {
1609 if (ctrl->edu_cmd == EDU_CMD_READ) {
1610 ctrl->oob += read_oob_from_regs(ctrl,
1611 ctrl->edu_count + 1,
1612 ctrl->oob, ctrl->sas,
1613 ctrl->sector_size_1k);
1614 } else {
1615 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1616 ctrl->edu_ext_addr);
1617 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1618 ctrl->oob += write_oob_to_regs(ctrl,
1619 ctrl->edu_count,
1620 ctrl->oob, ctrl->sas,
1621 ctrl->sector_size_1k);
1622 }
1623 }
1624
1625 mb(); /* flush previous writes */
1626 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1627 edu_readl(ctrl, EDU_CMD);
1628
1629 return IRQ_HANDLED;
1630 }
1631
1632 complete(&ctrl->edu_done);
1633
1634 return IRQ_HANDLED;
1635 }
1636
brcmnand_ctlrdy_irq(int irq,void * data)1637 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1638 {
1639 struct brcmnand_controller *ctrl = data;
1640
1641 /* Discard all NAND_CTLRDY interrupts during DMA */
1642 if (ctrl->dma_pending)
1643 return IRQ_HANDLED;
1644
1645 /* check if you need to piggy back on the ctrlrdy irq */
1646 if (ctrl->edu_pending) {
1647 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1648 /* Discard interrupts while using dedicated edu irq */
1649 return IRQ_HANDLED;
1650
1651 /* no registered edu irq, call handler */
1652 return brcmnand_edu_irq(irq, data);
1653 }
1654
1655 complete(&ctrl->done);
1656 return IRQ_HANDLED;
1657 }
1658
1659 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1660 static irqreturn_t brcmnand_irq(int irq, void *data)
1661 {
1662 struct brcmnand_controller *ctrl = data;
1663
1664 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1665 return brcmnand_ctlrdy_irq(irq, data);
1666
1667 return IRQ_NONE;
1668 }
1669
brcmnand_dma_irq(int irq,void * data)1670 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1671 {
1672 struct brcmnand_controller *ctrl = data;
1673
1674 complete(&ctrl->dma_done);
1675
1676 return IRQ_HANDLED;
1677 }
1678
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1679 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1680 {
1681 struct brcmnand_controller *ctrl = host->ctrl;
1682 int ret;
1683 u64 cmd_addr;
1684
1685 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1686
1687 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1688
1689 /*
1690 * If we came here through _panic_write and there is a pending
1691 * command, try to wait for it. If it times out, rather than
1692 * hitting BUG_ON, just return so we don't crash while crashing.
1693 */
1694 if (oops_in_progress) {
1695 if (ctrl->cmd_pending &&
1696 bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1697 return;
1698 } else
1699 BUG_ON(ctrl->cmd_pending != 0);
1700 ctrl->cmd_pending = cmd;
1701
1702 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1703 WARN_ON(ret);
1704
1705 mb(); /* flush previous writes */
1706 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1707 cmd << brcmnand_cmd_shift(ctrl));
1708 }
1709
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1710 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1711 {
1712 struct brcmnand_host *host = nand_get_controller_data(chip);
1713 struct brcmnand_controller *ctrl = host->ctrl;
1714 struct mtd_info *mtd = nand_to_mtd(chip);
1715 bool err = false;
1716 int sts;
1717
1718 if (mtd->oops_panic_write || ctrl->irq < 0) {
1719 /* switch to interrupt polling and PIO mode */
1720 disable_ctrl_irqs(ctrl);
1721 sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1722 NAND_CTRL_RDY, 0);
1723 err = sts < 0;
1724 } else {
1725 unsigned long timeo = msecs_to_jiffies(
1726 NAND_POLL_STATUS_TIMEOUT_MS);
1727 /* wait for completion interrupt */
1728 sts = wait_for_completion_timeout(&ctrl->done, timeo);
1729 err = !sts;
1730 }
1731
1732 return err;
1733 }
1734
brcmnand_waitfunc(struct nand_chip * chip)1735 static int brcmnand_waitfunc(struct nand_chip *chip)
1736 {
1737 struct brcmnand_host *host = nand_get_controller_data(chip);
1738 struct brcmnand_controller *ctrl = host->ctrl;
1739 bool err = false;
1740
1741 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1742 if (ctrl->cmd_pending)
1743 err = brcmstb_nand_wait_for_completion(chip);
1744
1745 ctrl->cmd_pending = 0;
1746 if (err) {
1747 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1748 >> brcmnand_cmd_shift(ctrl);
1749
1750 dev_err_ratelimited(ctrl->dev,
1751 "timeout waiting for command %#02x\n", cmd);
1752 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1753 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1754 return -ETIMEDOUT;
1755 }
1756 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1757 INTFC_FLASH_STATUS;
1758 }
1759
brcmnand_status(struct brcmnand_host * host)1760 static int brcmnand_status(struct brcmnand_host *host)
1761 {
1762 struct nand_chip *chip = &host->chip;
1763 struct mtd_info *mtd = nand_to_mtd(chip);
1764
1765 brcmnand_set_cmd_addr(mtd, 0);
1766 brcmnand_send_cmd(host, CMD_STATUS_READ);
1767
1768 return brcmnand_waitfunc(chip);
1769 }
1770
brcmnand_reset(struct brcmnand_host * host)1771 static int brcmnand_reset(struct brcmnand_host *host)
1772 {
1773 struct nand_chip *chip = &host->chip;
1774
1775 brcmnand_send_cmd(host, CMD_FLASH_RESET);
1776
1777 return brcmnand_waitfunc(chip);
1778 }
1779
1780 enum {
1781 LLOP_RE = BIT(16),
1782 LLOP_WE = BIT(17),
1783 LLOP_ALE = BIT(18),
1784 LLOP_CLE = BIT(19),
1785 LLOP_RETURN_IDLE = BIT(31),
1786
1787 LLOP_DATA_MASK = GENMASK(15, 0),
1788 };
1789
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1790 static int brcmnand_low_level_op(struct brcmnand_host *host,
1791 enum brcmnand_llop_type type, u32 data,
1792 bool last_op)
1793 {
1794 struct nand_chip *chip = &host->chip;
1795 struct brcmnand_controller *ctrl = host->ctrl;
1796 u32 tmp;
1797
1798 tmp = data & LLOP_DATA_MASK;
1799 switch (type) {
1800 case LL_OP_CMD:
1801 tmp |= LLOP_WE | LLOP_CLE;
1802 break;
1803 case LL_OP_ADDR:
1804 /* WE | ALE */
1805 tmp |= LLOP_WE | LLOP_ALE;
1806 break;
1807 case LL_OP_WR:
1808 /* WE */
1809 tmp |= LLOP_WE;
1810 break;
1811 case LL_OP_RD:
1812 /* RE */
1813 tmp |= LLOP_RE;
1814 break;
1815 }
1816 if (last_op)
1817 /* RETURN_IDLE */
1818 tmp |= LLOP_RETURN_IDLE;
1819
1820 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1821
1822 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1823 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1824
1825 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1826 return brcmnand_waitfunc(chip);
1827 }
1828
1829 /*
1830 * Kick EDU engine
1831 */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 cmd)1832 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1833 u8 *oob, u32 len, u8 cmd)
1834 {
1835 struct brcmnand_controller *ctrl = host->ctrl;
1836 struct brcmnand_cfg *cfg = &host->hwcfg;
1837 unsigned long timeo = msecs_to_jiffies(200);
1838 int ret = 0;
1839 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1840 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1841 unsigned int trans = len >> FC_SHIFT;
1842 dma_addr_t pa;
1843
1844 dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1845 "read" : "write"), buf, oob);
1846
1847 pa = dma_map_single(ctrl->dev, buf, len, dir);
1848 if (dma_mapping_error(ctrl->dev, pa)) {
1849 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1850 return -ENOMEM;
1851 }
1852
1853 ctrl->edu_pending = true;
1854 ctrl->edu_dram_addr = pa;
1855 ctrl->edu_ext_addr = addr;
1856 ctrl->edu_cmd = edu_cmd;
1857 ctrl->edu_count = trans;
1858 ctrl->sas = cfg->spare_area_size;
1859 ctrl->oob = oob;
1860
1861 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1862 edu_readl(ctrl, EDU_DRAM_ADDR);
1863 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1864 edu_readl(ctrl, EDU_EXT_ADDR);
1865 edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1866 edu_readl(ctrl, EDU_LENGTH);
1867
1868 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1869 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1870 ctrl->edu_ext_addr);
1871 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1872 ctrl->oob += write_oob_to_regs(ctrl,
1873 1,
1874 ctrl->oob, ctrl->sas,
1875 ctrl->sector_size_1k);
1876 }
1877
1878 /* Start edu engine */
1879 mb(); /* flush previous writes */
1880 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1881 edu_readl(ctrl, EDU_CMD);
1882
1883 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1884 dev_err(ctrl->dev,
1885 "timeout waiting for EDU; status %#x, error status %#x\n",
1886 edu_readl(ctrl, EDU_STATUS),
1887 edu_readl(ctrl, EDU_ERR_STATUS));
1888 }
1889
1890 dma_unmap_single(ctrl->dev, pa, len, dir);
1891
1892 /* read last subpage oob */
1893 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1894 ctrl->oob += read_oob_from_regs(ctrl,
1895 1,
1896 ctrl->oob, ctrl->sas,
1897 ctrl->sector_size_1k);
1898 }
1899
1900 /* for program page check NAND status */
1901 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1902 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1903 edu_cmd == EDU_CMD_WRITE) {
1904 dev_info(ctrl->dev, "program failed at %llx\n",
1905 (unsigned long long)addr);
1906 ret = -EIO;
1907 }
1908
1909 /* Make sure the EDU status is clean */
1910 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1911 dev_warn(ctrl->dev, "EDU still active: %#x\n",
1912 edu_readl(ctrl, EDU_STATUS));
1913
1914 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1915 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1916 (unsigned long long)addr);
1917 ret = -EIO;
1918 }
1919
1920 ctrl->edu_pending = false;
1921 brcmnand_edu_init(ctrl);
1922 edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1923 edu_readl(ctrl, EDU_STOP);
1924
1925 if (!ret && edu_cmd == EDU_CMD_READ) {
1926 u64 err_addr = 0;
1927
1928 /*
1929 * check for ECC errors here, subpage ECC errors are
1930 * retained in ECC error address register
1931 */
1932 err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1933 if (!err_addr) {
1934 err_addr = brcmnand_get_correcc_addr(ctrl);
1935 if (err_addr)
1936 ret = -EUCLEAN;
1937 } else
1938 ret = -EBADMSG;
1939 }
1940
1941 return ret;
1942 }
1943
1944 /*
1945 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1946 * following ahead of time:
1947 * - Is this descriptor the beginning or end of a linked list?
1948 * - What is the (DMA) address of the next descriptor in the linked list?
1949 */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1950 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1951 struct brcm_nand_dma_desc *desc, u64 addr,
1952 dma_addr_t buf, u32 len, u8 dma_cmd,
1953 bool begin, bool end,
1954 dma_addr_t next_desc)
1955 {
1956 memset(desc, 0, sizeof(*desc));
1957 /* Descriptors are written in native byte order (wordwise) */
1958 desc->next_desc = lower_32_bits(next_desc);
1959 desc->next_desc_ext = upper_32_bits(next_desc);
1960 desc->cmd_irq = (dma_cmd << 24) |
1961 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1962 (!!begin) | ((!!end) << 1); /* head, tail */
1963 #ifdef CONFIG_CPU_BIG_ENDIAN
1964 desc->cmd_irq |= 0x01 << 12;
1965 #endif
1966 desc->dram_addr = lower_32_bits(buf);
1967 desc->dram_addr_ext = upper_32_bits(buf);
1968 desc->tfr_len = len;
1969 desc->total_len = len;
1970 desc->flash_addr = lower_32_bits(addr);
1971 desc->flash_addr_ext = upper_32_bits(addr);
1972 desc->cs = host->cs;
1973 desc->status_valid = 0x01;
1974 return 0;
1975 }
1976
1977 /*
1978 * Kick the FLASH_DMA engine, with a given DMA descriptor
1979 */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)1980 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1981 {
1982 struct brcmnand_controller *ctrl = host->ctrl;
1983 unsigned long timeo = msecs_to_jiffies(100);
1984
1985 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1986 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1987 if (ctrl->nand_version > 0x0602) {
1988 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1989 upper_32_bits(desc));
1990 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1991 }
1992
1993 /* Start FLASH_DMA engine */
1994 ctrl->dma_pending = true;
1995 mb(); /* flush previous writes */
1996 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1997
1998 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1999 dev_err(ctrl->dev,
2000 "timeout waiting for DMA; status %#x, error status %#x\n",
2001 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2002 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2003 }
2004 ctrl->dma_pending = false;
2005 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2006 }
2007
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 dma_cmd)2008 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2009 u8 *oob, u32 len, u8 dma_cmd)
2010 {
2011 struct brcmnand_controller *ctrl = host->ctrl;
2012 dma_addr_t buf_pa;
2013 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2014
2015 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2016 if (dma_mapping_error(ctrl->dev, buf_pa)) {
2017 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2018 return -ENOMEM;
2019 }
2020
2021 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2022 dma_cmd, true, true, 0);
2023
2024 brcmnand_dma_run(host, ctrl->dma_pa);
2025
2026 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2027
2028 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2029 return -EBADMSG;
2030 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2031 return -EUCLEAN;
2032
2033 return 0;
2034 }
2035
2036 /*
2037 * Assumes proper CS is already set
2038 */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)2039 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2040 u64 addr, unsigned int trans, u32 *buf,
2041 u8 *oob, u64 *err_addr)
2042 {
2043 struct brcmnand_host *host = nand_get_controller_data(chip);
2044 struct brcmnand_controller *ctrl = host->ctrl;
2045 int i, ret = 0;
2046
2047 brcmnand_clear_ecc_addr(ctrl);
2048
2049 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2050 brcmnand_set_cmd_addr(mtd, addr);
2051 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2052 brcmnand_send_cmd(host, CMD_PAGE_READ);
2053 brcmnand_waitfunc(chip);
2054
2055 if (likely(buf)) {
2056 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2057
2058 brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS);
2059 buf += FC_WORDS;
2060
2061 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2062 }
2063
2064 if (oob)
2065 oob += read_oob_from_regs(ctrl, i, oob,
2066 mtd->oobsize / trans,
2067 host->hwcfg.sector_size_1k);
2068
2069 if (ret != -EBADMSG) {
2070 *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2071
2072 if (*err_addr)
2073 ret = -EBADMSG;
2074 }
2075
2076 if (!ret) {
2077 *err_addr = brcmnand_get_correcc_addr(ctrl);
2078
2079 if (*err_addr)
2080 ret = -EUCLEAN;
2081 }
2082 }
2083
2084 return ret;
2085 }
2086
2087 /*
2088 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2089 * error
2090 *
2091 * Because the HW ECC signals an ECC error if an erase paged has even a single
2092 * bitflip, we must check each ECC error to see if it is actually an erased
2093 * page with bitflips, not a truly corrupted page.
2094 *
2095 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2096 * buf will contain raw data.
2097 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2098 * bitflips-per-ECC-sector to the caller.
2099 *
2100 */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2101 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2102 struct nand_chip *chip, void *buf, u64 addr)
2103 {
2104 struct mtd_oob_region ecc;
2105 int i;
2106 int bitflips = 0;
2107 int page = addr >> chip->page_shift;
2108 int ret;
2109 void *ecc_bytes;
2110 void *ecc_chunk;
2111
2112 if (!buf)
2113 buf = nand_get_data_buf(chip);
2114
2115 /* read without ecc for verification */
2116 ret = chip->ecc.read_page_raw(chip, buf, true, page);
2117 if (ret)
2118 return ret;
2119
2120 for (i = 0; i < chip->ecc.steps; i++) {
2121 ecc_chunk = buf + chip->ecc.size * i;
2122
2123 mtd_ooblayout_ecc(mtd, i, &ecc);
2124 ecc_bytes = chip->oob_poi + ecc.offset;
2125
2126 ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2127 ecc_bytes, ecc.length,
2128 NULL, 0,
2129 chip->ecc.strength);
2130 if (ret < 0)
2131 return ret;
2132
2133 bitflips = max(bitflips, ret);
2134 }
2135
2136 return bitflips;
2137 }
2138
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2139 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2140 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2141 {
2142 struct brcmnand_host *host = nand_get_controller_data(chip);
2143 struct brcmnand_controller *ctrl = host->ctrl;
2144 u64 err_addr = 0;
2145 int err;
2146 bool retry = true;
2147 bool edu_err = false;
2148
2149 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2150
2151 try_dmaread:
2152 brcmnand_clear_ecc_addr(ctrl);
2153
2154 if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2155 flash_dma_buf_ok(buf)) {
2156 err = ctrl->dma_trans(host, addr, buf, oob,
2157 trans * FC_BYTES,
2158 CMD_PAGE_READ);
2159
2160 if (err) {
2161 if (mtd_is_bitflip_or_eccerr(err))
2162 err_addr = addr;
2163 else
2164 return -EIO;
2165 }
2166
2167 if (has_edu(ctrl) && err_addr)
2168 edu_err = true;
2169
2170 } else {
2171 if (oob)
2172 memset(oob, 0x99, mtd->oobsize);
2173
2174 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2175 oob, &err_addr);
2176 }
2177
2178 if (mtd_is_eccerr(err)) {
2179 /*
2180 * On controller version and 7.0, 7.1 , DMA read after a
2181 * prior PIO read that reported uncorrectable error,
2182 * the DMA engine captures this error following DMA read
2183 * cleared only on subsequent DMA read, so just retry once
2184 * to clear a possible false error reported for current DMA
2185 * read
2186 */
2187 if ((ctrl->nand_version == 0x0700) ||
2188 (ctrl->nand_version == 0x0701)) {
2189 if (retry) {
2190 retry = false;
2191 goto try_dmaread;
2192 }
2193 }
2194
2195 /*
2196 * Controller version 7.2 has hw encoder to detect erased page
2197 * bitflips, apply sw verification for older controllers only
2198 */
2199 if (ctrl->nand_version < 0x0702) {
2200 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2201 addr);
2202 /* erased page bitflips corrected */
2203 if (err >= 0)
2204 return err;
2205 }
2206
2207 dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n",
2208 (unsigned long long)err_addr);
2209 mtd->ecc_stats.failed++;
2210 /* NAND layer expects zero on ECC errors */
2211 return 0;
2212 }
2213
2214 if (mtd_is_bitflip(err)) {
2215 unsigned int corrected = brcmnand_count_corrected(ctrl);
2216
2217 /* in case of EDU correctable error we read again using PIO */
2218 if (edu_err)
2219 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2220 oob, &err_addr);
2221
2222 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2223 (unsigned long long)err_addr);
2224 mtd->ecc_stats.corrected += corrected;
2225 /* Always exceed the software-imposed threshold */
2226 return max(mtd->bitflip_threshold, corrected);
2227 }
2228
2229 return 0;
2230 }
2231
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2232 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2233 int oob_required, int page)
2234 {
2235 struct mtd_info *mtd = nand_to_mtd(chip);
2236 struct brcmnand_host *host = nand_get_controller_data(chip);
2237 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2238 u64 addr = (u64)page << chip->page_shift;
2239
2240 host->last_addr = addr;
2241
2242 return brcmnand_read(mtd, chip, host->last_addr,
2243 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2244 }
2245
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2246 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2247 int oob_required, int page)
2248 {
2249 struct brcmnand_host *host = nand_get_controller_data(chip);
2250 struct mtd_info *mtd = nand_to_mtd(chip);
2251 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2252 int ret;
2253 u64 addr = (u64)page << chip->page_shift;
2254
2255 host->last_addr = addr;
2256
2257 brcmnand_set_ecc_enabled(host, 0);
2258 ret = brcmnand_read(mtd, chip, host->last_addr,
2259 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2260 brcmnand_set_ecc_enabled(host, 1);
2261 return ret;
2262 }
2263
brcmnand_read_oob(struct nand_chip * chip,int page)2264 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2265 {
2266 struct mtd_info *mtd = nand_to_mtd(chip);
2267
2268 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2269 mtd->writesize >> FC_SHIFT,
2270 NULL, (u8 *)chip->oob_poi);
2271 }
2272
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2273 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2274 {
2275 struct mtd_info *mtd = nand_to_mtd(chip);
2276 struct brcmnand_host *host = nand_get_controller_data(chip);
2277
2278 brcmnand_set_ecc_enabled(host, 0);
2279 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2280 mtd->writesize >> FC_SHIFT,
2281 NULL, (u8 *)chip->oob_poi);
2282 brcmnand_set_ecc_enabled(host, 1);
2283 return 0;
2284 }
2285
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2286 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2287 u64 addr, const u32 *buf, u8 *oob)
2288 {
2289 struct brcmnand_host *host = nand_get_controller_data(chip);
2290 struct brcmnand_controller *ctrl = host->ctrl;
2291 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2292 int status, ret = 0;
2293
2294 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2295
2296 if (unlikely((unsigned long)buf & 0x03)) {
2297 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2298 buf = (u32 *)((unsigned long)buf & ~0x03);
2299 }
2300
2301 brcmnand_wp(mtd, 0);
2302
2303 for (i = 0; i < ctrl->max_oob; i += 4)
2304 oob_reg_write(ctrl, i, 0xffffffff);
2305
2306 if (mtd->oops_panic_write)
2307 /* switch to interrupt polling and PIO mode */
2308 disable_ctrl_irqs(ctrl);
2309
2310 if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2311 if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2312 CMD_PROGRAM_PAGE))
2313
2314 ret = -EIO;
2315
2316 goto out;
2317 }
2318
2319 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2320 /* full address MUST be set before populating FC */
2321 brcmnand_set_cmd_addr(mtd, addr);
2322
2323 if (buf) {
2324 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2325
2326 for (j = 0; j < FC_WORDS; j++, buf++)
2327 brcmnand_write_fc(ctrl, j, *buf);
2328
2329 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2330 } else if (oob) {
2331 for (j = 0; j < FC_WORDS; j++)
2332 brcmnand_write_fc(ctrl, j, 0xffffffff);
2333 }
2334
2335 if (oob) {
2336 oob += write_oob_to_regs(ctrl, i, oob,
2337 mtd->oobsize / trans,
2338 host->hwcfg.sector_size_1k);
2339 }
2340
2341 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2342 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2343 status = brcmnand_waitfunc(chip);
2344
2345 if (status & NAND_STATUS_FAIL) {
2346 dev_info(ctrl->dev, "program failed at %llx\n",
2347 (unsigned long long)addr);
2348 ret = -EIO;
2349 goto out;
2350 }
2351 }
2352 out:
2353 brcmnand_wp(mtd, 1);
2354 return ret;
2355 }
2356
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2357 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2358 int oob_required, int page)
2359 {
2360 struct mtd_info *mtd = nand_to_mtd(chip);
2361 struct brcmnand_host *host = nand_get_controller_data(chip);
2362 void *oob = oob_required ? chip->oob_poi : NULL;
2363 u64 addr = (u64)page << chip->page_shift;
2364
2365 host->last_addr = addr;
2366
2367 return brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2368 }
2369
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2370 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2371 int oob_required, int page)
2372 {
2373 struct mtd_info *mtd = nand_to_mtd(chip);
2374 struct brcmnand_host *host = nand_get_controller_data(chip);
2375 void *oob = oob_required ? chip->oob_poi : NULL;
2376 u64 addr = (u64)page << chip->page_shift;
2377 int ret = 0;
2378
2379 host->last_addr = addr;
2380 brcmnand_set_ecc_enabled(host, 0);
2381 ret = brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2382 brcmnand_set_ecc_enabled(host, 1);
2383
2384 return ret;
2385 }
2386
brcmnand_write_oob(struct nand_chip * chip,int page)2387 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2388 {
2389 return brcmnand_write(nand_to_mtd(chip), chip,
2390 (u64)page << chip->page_shift, NULL,
2391 chip->oob_poi);
2392 }
2393
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2394 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2395 {
2396 struct mtd_info *mtd = nand_to_mtd(chip);
2397 struct brcmnand_host *host = nand_get_controller_data(chip);
2398 int ret;
2399
2400 brcmnand_set_ecc_enabled(host, 0);
2401 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2402 (u8 *)chip->oob_poi);
2403 brcmnand_set_ecc_enabled(host, 1);
2404
2405 return ret;
2406 }
2407
brcmnand_exec_instr(struct brcmnand_host * host,int i,const struct nand_operation * op)2408 static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2409 const struct nand_operation *op)
2410 {
2411 const struct nand_op_instr *instr = &op->instrs[i];
2412 struct brcmnand_controller *ctrl = host->ctrl;
2413 const u8 *out;
2414 bool last_op;
2415 int ret = 0;
2416 u8 *in;
2417
2418 /*
2419 * The controller needs to be aware of the last command in the operation
2420 * (WAITRDY excepted).
2421 */
2422 last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2423 ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR));
2424
2425 switch (instr->type) {
2426 case NAND_OP_CMD_INSTR:
2427 brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2428 break;
2429
2430 case NAND_OP_ADDR_INSTR:
2431 for (i = 0; i < instr->ctx.addr.naddrs; i++)
2432 brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2433 last_op && (i == (instr->ctx.addr.naddrs - 1)));
2434 break;
2435
2436 case NAND_OP_DATA_IN_INSTR:
2437 in = instr->ctx.data.buf.in;
2438 for (i = 0; i < instr->ctx.data.len; i++) {
2439 brcmnand_low_level_op(host, LL_OP_RD, 0,
2440 last_op && (i == (instr->ctx.data.len - 1)));
2441 in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2442 }
2443 break;
2444
2445 case NAND_OP_DATA_OUT_INSTR:
2446 out = instr->ctx.data.buf.out;
2447 for (i = 0; i < instr->ctx.data.len; i++)
2448 brcmnand_low_level_op(host, LL_OP_WR, out[i],
2449 last_op && (i == (instr->ctx.data.len - 1)));
2450 break;
2451
2452 case NAND_OP_WAITRDY_INSTR:
2453 ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2454 break;
2455
2456 default:
2457 dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2458 instr->type);
2459 ret = -EINVAL;
2460 break;
2461 }
2462
2463 return ret;
2464 }
2465
brcmnand_op_is_status(const struct nand_operation * op)2466 static int brcmnand_op_is_status(const struct nand_operation *op)
2467 {
2468 if (op->ninstrs == 2 &&
2469 op->instrs[0].type == NAND_OP_CMD_INSTR &&
2470 op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS &&
2471 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
2472 return 1;
2473
2474 return 0;
2475 }
2476
brcmnand_op_is_reset(const struct nand_operation * op)2477 static int brcmnand_op_is_reset(const struct nand_operation *op)
2478 {
2479 if (op->ninstrs == 2 &&
2480 op->instrs[0].type == NAND_OP_CMD_INSTR &&
2481 op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET &&
2482 op->instrs[1].type == NAND_OP_WAITRDY_INSTR)
2483 return 1;
2484
2485 return 0;
2486 }
2487
brcmnand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2488 static int brcmnand_exec_op(struct nand_chip *chip,
2489 const struct nand_operation *op,
2490 bool check_only)
2491 {
2492 struct brcmnand_host *host = nand_get_controller_data(chip);
2493 struct mtd_info *mtd = nand_to_mtd(chip);
2494 u8 *status;
2495 unsigned int i;
2496 int ret = 0;
2497
2498 if (check_only)
2499 return 0;
2500
2501 if (brcmnand_op_is_status(op)) {
2502 status = op->instrs[1].ctx.data.buf.in;
2503 ret = brcmnand_status(host);
2504 if (ret < 0)
2505 return ret;
2506
2507 *status = ret & 0xFF;
2508
2509 return 0;
2510 } else if (brcmnand_op_is_reset(op)) {
2511 ret = brcmnand_reset(host);
2512 if (ret < 0)
2513 return ret;
2514
2515 brcmnand_wp(mtd, 1);
2516
2517 return 0;
2518 }
2519
2520 if (op->deassert_wp)
2521 brcmnand_wp(mtd, 0);
2522
2523 for (i = 0; i < op->ninstrs; i++) {
2524 ret = brcmnand_exec_instr(host, i, op);
2525 if (ret)
2526 break;
2527 }
2528
2529 if (op->deassert_wp)
2530 brcmnand_wp(mtd, 1);
2531
2532 return ret;
2533 }
2534
2535 /***********************************************************************
2536 * Per-CS setup (1 NAND device)
2537 ***********************************************************************/
2538
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2539 static int brcmnand_set_cfg(struct brcmnand_host *host,
2540 struct brcmnand_cfg *cfg)
2541 {
2542 struct brcmnand_controller *ctrl = host->ctrl;
2543 struct nand_chip *chip = &host->chip;
2544 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2545 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2546 BRCMNAND_CS_CFG_EXT);
2547 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2548 BRCMNAND_CS_ACC_CONTROL);
2549 u8 block_size = 0, page_size = 0, device_size = 0;
2550 u32 tmp;
2551
2552 if (ctrl->block_sizes) {
2553 int i, found;
2554
2555 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2556 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2557 block_size = i;
2558 found = 1;
2559 }
2560 if (!found) {
2561 dev_warn(ctrl->dev, "invalid block size %u\n",
2562 cfg->block_size);
2563 return -EINVAL;
2564 }
2565 } else {
2566 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2567 }
2568
2569 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2570 cfg->block_size > ctrl->max_block_size)) {
2571 dev_warn(ctrl->dev, "invalid block size %u\n",
2572 cfg->block_size);
2573 block_size = 0;
2574 }
2575
2576 if (ctrl->page_sizes) {
2577 int i, found;
2578
2579 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2580 if (ctrl->page_sizes[i] == cfg->page_size) {
2581 page_size = i;
2582 found = 1;
2583 }
2584 if (!found) {
2585 dev_warn(ctrl->dev, "invalid page size %u\n",
2586 cfg->page_size);
2587 return -EINVAL;
2588 }
2589 } else {
2590 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2591 }
2592
2593 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2594 cfg->page_size > ctrl->max_page_size)) {
2595 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2596 return -EINVAL;
2597 }
2598
2599 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2600 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2601 (unsigned long long)cfg->device_size);
2602 return -EINVAL;
2603 }
2604 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2605
2606 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2607 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2608 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2609 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2610 (device_size << CFG_DEVICE_SIZE_SHIFT);
2611 if (cfg_offs == cfg_ext_offs) {
2612 tmp |= (page_size << ctrl->page_size_shift) |
2613 (block_size << CFG_BLK_SIZE_SHIFT);
2614 nand_writereg(ctrl, cfg_offs, tmp);
2615 } else {
2616 nand_writereg(ctrl, cfg_offs, tmp);
2617 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2618 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2619 nand_writereg(ctrl, cfg_ext_offs, tmp);
2620 }
2621
2622 tmp = nand_readreg(ctrl, acc_control_offs);
2623 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2624 tmp &= ~brcmnand_spare_area_mask(ctrl);
2625 if (ctrl->nand_version >= 0x0302) {
2626 tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2627 tmp |= cfg->spare_area_size;
2628 }
2629 nand_writereg(ctrl, acc_control_offs, tmp);
2630
2631 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2632
2633 /* threshold = ceil(BCH-level * 0.75) */
2634 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2635
2636 return 0;
2637 }
2638
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2639 static void brcmnand_print_cfg(struct brcmnand_host *host,
2640 char *buf, struct brcmnand_cfg *cfg)
2641 {
2642 buf += sprintf(buf,
2643 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2644 (unsigned long long)cfg->device_size >> 20,
2645 cfg->block_size >> 10,
2646 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2647 cfg->page_size >= 1024 ? "KiB" : "B",
2648 cfg->spare_area_size, cfg->device_width);
2649
2650 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2651 if (is_hamming_ecc(host->ctrl, cfg))
2652 sprintf(buf, ", Hamming ECC");
2653 else if (cfg->sector_size_1k)
2654 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2655 else
2656 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2657 }
2658
2659 /*
2660 * Minimum number of bytes to address a page. Calculated as:
2661 * roundup(log2(size / page-size) / 8)
2662 *
2663 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2664 * OK because many other things will break if 'size' is irregular...
2665 */
get_blk_adr_bytes(u64 size,u32 writesize)2666 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2667 {
2668 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2669 }
2670
brcmnand_setup_dev(struct brcmnand_host * host)2671 static int brcmnand_setup_dev(struct brcmnand_host *host)
2672 {
2673 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2674 struct nand_chip *chip = &host->chip;
2675 const struct nand_ecc_props *requirements =
2676 nanddev_get_ecc_requirements(&chip->base);
2677 struct nand_memory_organization *memorg =
2678 nanddev_get_memorg(&chip->base);
2679 struct brcmnand_controller *ctrl = host->ctrl;
2680 struct brcmnand_cfg *cfg = &host->hwcfg;
2681 struct device_node *np = nand_get_flash_node(chip);
2682 u32 offs, tmp, oob_sector;
2683 bool use_strap = false;
2684 char msg[128];
2685 int ret;
2686
2687 memset(cfg, 0, sizeof(*cfg));
2688 use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap");
2689
2690 /*
2691 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out
2692 * if both exist.
2693 */
2694 if (chip->ecc.strength && use_strap) {
2695 dev_err(ctrl->dev,
2696 "ECC strap and DT ECC configuration properties are mutually exclusive\n");
2697 return -EINVAL;
2698 }
2699
2700 if (use_strap)
2701 brcmnand_get_ecc_settings(host, chip);
2702
2703 ret = of_property_read_u32(np, "brcm,nand-oob-sector-size",
2704 &oob_sector);
2705 if (ret) {
2706 if (use_strap)
2707 cfg->spare_area_size = brcmnand_get_spare_size(host);
2708 else
2709 /* Use detected size */
2710 cfg->spare_area_size = mtd->oobsize /
2711 (mtd->writesize >> FC_SHIFT);
2712 } else {
2713 cfg->spare_area_size = oob_sector;
2714 }
2715 if (cfg->spare_area_size > ctrl->max_oob)
2716 cfg->spare_area_size = ctrl->max_oob;
2717 /*
2718 * Set mtd and memorg oobsize to be consistent with controller's
2719 * spare_area_size, as the rest is inaccessible.
2720 */
2721 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2722 memorg->oobsize = mtd->oobsize;
2723
2724 cfg->device_size = mtd->size;
2725 cfg->block_size = mtd->erasesize;
2726 cfg->page_size = mtd->writesize;
2727 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2728 cfg->col_adr_bytes = 2;
2729 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2730
2731 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2732 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2733 chip->ecc.engine_type);
2734 return -EINVAL;
2735 }
2736
2737 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2738 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2739 /* Default to Hamming for 1-bit ECC, if unspecified */
2740 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2741 else
2742 /* Otherwise, BCH */
2743 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2744 }
2745
2746 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2747 (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2748 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2749 chip->ecc.strength, chip->ecc.size);
2750 return -EINVAL;
2751 }
2752
2753 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2754 (!chip->ecc.size || !chip->ecc.strength)) {
2755 if (requirements->step_size && requirements->strength) {
2756 /* use detected ECC parameters */
2757 chip->ecc.size = requirements->step_size;
2758 chip->ecc.strength = requirements->strength;
2759 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2760 chip->ecc.size, chip->ecc.strength);
2761 }
2762 }
2763
2764 switch (chip->ecc.size) {
2765 case 512:
2766 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2767 cfg->ecc_level = 15;
2768 else
2769 cfg->ecc_level = chip->ecc.strength;
2770 cfg->sector_size_1k = 0;
2771 break;
2772 case 1024:
2773 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2774 dev_err(ctrl->dev, "1KB sectors not supported\n");
2775 return -EINVAL;
2776 }
2777 if (chip->ecc.strength & 0x1) {
2778 dev_err(ctrl->dev,
2779 "odd ECC not supported with 1KB sectors\n");
2780 return -EINVAL;
2781 }
2782
2783 cfg->ecc_level = chip->ecc.strength >> 1;
2784 cfg->sector_size_1k = 1;
2785 break;
2786 default:
2787 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2788 chip->ecc.size);
2789 return -EINVAL;
2790 }
2791
2792 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2793 if (mtd->writesize > 512)
2794 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2795 else
2796 cfg->ful_adr_bytes += 1;
2797
2798 ret = brcmnand_set_cfg(host, cfg);
2799 if (ret)
2800 return ret;
2801
2802 brcmnand_set_ecc_enabled(host, 1);
2803
2804 brcmnand_print_cfg(host, msg, cfg);
2805 dev_info(ctrl->dev, "detected %s\n", msg);
2806
2807 /* Configure ACC_CONTROL */
2808 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2809 tmp = nand_readreg(ctrl, offs);
2810 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2811 tmp &= ~ACC_CONTROL_RD_ERASED;
2812
2813 /* We need to turn on Read from erased paged protected by ECC */
2814 if (ctrl->nand_version >= 0x0702)
2815 tmp |= ACC_CONTROL_RD_ERASED;
2816 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2817 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2818 tmp &= ~ACC_CONTROL_PREFETCH;
2819
2820 nand_writereg(ctrl, offs, tmp);
2821
2822 return 0;
2823 }
2824
brcmnand_attach_chip(struct nand_chip * chip)2825 static int brcmnand_attach_chip(struct nand_chip *chip)
2826 {
2827 struct mtd_info *mtd = nand_to_mtd(chip);
2828 struct brcmnand_host *host = nand_get_controller_data(chip);
2829 int ret;
2830
2831 chip->options |= NAND_NO_SUBPAGE_WRITE;
2832 /*
2833 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2834 * to/from, and have nand_base pass us a bounce buffer instead, as
2835 * needed.
2836 */
2837 chip->options |= NAND_USES_DMA;
2838
2839 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2840 chip->bbt_options |= NAND_BBT_NO_OOB;
2841
2842 if (brcmnand_setup_dev(host))
2843 return -ENXIO;
2844
2845 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2846
2847 /* only use our internal HW threshold */
2848 mtd->bitflip_threshold = 1;
2849
2850 ret = brcmstb_choose_ecc_layout(host);
2851
2852 /* If OOB is written with ECC enabled it will cause ECC errors */
2853 if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2854 chip->ecc.write_oob = brcmnand_write_oob_raw;
2855 chip->ecc.read_oob = brcmnand_read_oob_raw;
2856 }
2857
2858 return ret;
2859 }
2860
2861 static const struct nand_controller_ops brcmnand_controller_ops = {
2862 .attach_chip = brcmnand_attach_chip,
2863 .exec_op = brcmnand_exec_op,
2864 };
2865
brcmnand_init_cs(struct brcmnand_host * host,const char * const * part_probe_types)2866 static int brcmnand_init_cs(struct brcmnand_host *host,
2867 const char * const *part_probe_types)
2868 {
2869 struct brcmnand_controller *ctrl = host->ctrl;
2870 struct device *dev = ctrl->dev;
2871 struct mtd_info *mtd;
2872 struct nand_chip *chip;
2873 int ret;
2874 u16 cfg_offs;
2875
2876 mtd = nand_to_mtd(&host->chip);
2877 chip = &host->chip;
2878
2879 nand_set_controller_data(chip, host);
2880 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2881 host->cs);
2882 if (!mtd->name)
2883 return -ENOMEM;
2884
2885 mtd->owner = THIS_MODULE;
2886 mtd->dev.parent = dev;
2887
2888 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2889 chip->ecc.read_page = brcmnand_read_page;
2890 chip->ecc.write_page = brcmnand_write_page;
2891 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2892 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2893 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2894 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2895 chip->ecc.read_oob = brcmnand_read_oob;
2896 chip->ecc.write_oob = brcmnand_write_oob;
2897
2898 chip->controller = &ctrl->controller;
2899 ctrl->controller.controller_wp = 1;
2900
2901 /*
2902 * The bootloader might have configured 16bit mode but
2903 * NAND READID command only works in 8bit mode. We force
2904 * 8bit mode here to ensure that NAND READID commands works.
2905 */
2906 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2907 nand_writereg(ctrl, cfg_offs,
2908 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2909
2910 ret = nand_scan(chip, 1);
2911 if (ret)
2912 return ret;
2913
2914 ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2915 if (ret)
2916 nand_cleanup(chip);
2917
2918 return ret;
2919 }
2920
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2921 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2922 int restore)
2923 {
2924 struct brcmnand_controller *ctrl = host->ctrl;
2925 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2926 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2927 BRCMNAND_CS_CFG_EXT);
2928 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2929 BRCMNAND_CS_ACC_CONTROL);
2930 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2931 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2932
2933 if (restore) {
2934 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2935 if (cfg_offs != cfg_ext_offs)
2936 nand_writereg(ctrl, cfg_ext_offs,
2937 host->hwcfg.config_ext);
2938 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2939 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2940 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2941 } else {
2942 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2943 if (cfg_offs != cfg_ext_offs)
2944 host->hwcfg.config_ext =
2945 nand_readreg(ctrl, cfg_ext_offs);
2946 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2947 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2948 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2949 }
2950 }
2951
brcmnand_suspend(struct device * dev)2952 static int brcmnand_suspend(struct device *dev)
2953 {
2954 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2955 struct brcmnand_host *host;
2956
2957 list_for_each_entry(host, &ctrl->host_list, node)
2958 brcmnand_save_restore_cs_config(host, 0);
2959
2960 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2961 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2962 ctrl->corr_stat_threshold =
2963 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2964
2965 if (has_flash_dma(ctrl))
2966 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2967 else if (has_edu(ctrl))
2968 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2969
2970 return 0;
2971 }
2972
brcmnand_resume(struct device * dev)2973 static int brcmnand_resume(struct device *dev)
2974 {
2975 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2976 struct brcmnand_host *host;
2977
2978 if (has_flash_dma(ctrl)) {
2979 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2980 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2981 }
2982
2983 if (has_edu(ctrl)) {
2984 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2985 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2986 edu_readl(ctrl, EDU_CONFIG);
2987 brcmnand_edu_init(ctrl);
2988 }
2989
2990 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2991 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2992 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2993 ctrl->corr_stat_threshold);
2994 if (ctrl->soc) {
2995 /* Clear/re-enable interrupt */
2996 ctrl->soc->ctlrdy_ack(ctrl->soc);
2997 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2998 }
2999
3000 list_for_each_entry(host, &ctrl->host_list, node) {
3001 struct nand_chip *chip = &host->chip;
3002
3003 brcmnand_save_restore_cs_config(host, 1);
3004
3005 /* Reset the chip, required by some chips after power-up */
3006 nand_reset_op(chip);
3007 }
3008
3009 return 0;
3010 }
3011
3012 const struct dev_pm_ops brcmnand_pm_ops = {
3013 .suspend = brcmnand_suspend,
3014 .resume = brcmnand_resume,
3015 };
3016 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
3017
3018 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
3019 { .compatible = "brcm,brcmnand-v2.1" },
3020 { .compatible = "brcm,brcmnand-v2.2" },
3021 { .compatible = "brcm,brcmnand-v4.0" },
3022 { .compatible = "brcm,brcmnand-v5.0" },
3023 { .compatible = "brcm,brcmnand-v6.0" },
3024 { .compatible = "brcm,brcmnand-v6.1" },
3025 { .compatible = "brcm,brcmnand-v6.2" },
3026 { .compatible = "brcm,brcmnand-v7.0" },
3027 { .compatible = "brcm,brcmnand-v7.1" },
3028 { .compatible = "brcm,brcmnand-v7.2" },
3029 { .compatible = "brcm,brcmnand-v7.3" },
3030 {},
3031 };
3032 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
3033
3034 /***********************************************************************
3035 * Platform driver setup (per controller)
3036 ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)3037 static int brcmnand_edu_setup(struct platform_device *pdev)
3038 {
3039 struct device *dev = &pdev->dev;
3040 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3041 struct resource *res;
3042 int ret;
3043
3044 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3045 if (res) {
3046 ctrl->edu_base = devm_ioremap_resource(dev, res);
3047 if (IS_ERR(ctrl->edu_base))
3048 return PTR_ERR(ctrl->edu_base);
3049
3050 ctrl->edu_offsets = edu_regs;
3051
3052 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3053 EDU_CONFIG_SWAP_CFG);
3054 edu_readl(ctrl, EDU_CONFIG);
3055
3056 /* initialize edu */
3057 brcmnand_edu_init(ctrl);
3058
3059 ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3060 if (ctrl->edu_irq < 0) {
3061 dev_warn(dev,
3062 "FLASH EDU enabled, using ctlrdy irq\n");
3063 } else {
3064 ret = devm_request_irq(dev, ctrl->edu_irq,
3065 brcmnand_edu_irq, 0,
3066 "brcmnand-edu", ctrl);
3067 if (ret < 0) {
3068 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3069 ctrl->edu_irq, ret);
3070 return ret;
3071 }
3072
3073 dev_info(dev, "FLASH EDU enabled using irq %u\n",
3074 ctrl->edu_irq);
3075 }
3076 }
3077
3078 return 0;
3079 }
3080
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)3081 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3082 {
3083 struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3084 struct device *dev = &pdev->dev;
3085 struct device_node *dn = dev->of_node, *child;
3086 struct brcmnand_controller *ctrl;
3087 struct brcmnand_host *host;
3088 struct resource *res;
3089 int ret;
3090
3091 if (dn && !of_match_node(brcmnand_of_match, dn))
3092 return -ENODEV;
3093
3094 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3095 if (!ctrl)
3096 return -ENOMEM;
3097
3098 dev_set_drvdata(dev, ctrl);
3099 ctrl->dev = dev;
3100 ctrl->soc = soc;
3101
3102 /* Enable the static key if the soc provides I/O operations indicating
3103 * that a non-memory mapped IO access path must be used
3104 */
3105 if (brcmnand_soc_has_ops(ctrl->soc))
3106 static_branch_enable(&brcmnand_soc_has_ops_key);
3107
3108 init_completion(&ctrl->done);
3109 init_completion(&ctrl->dma_done);
3110 init_completion(&ctrl->edu_done);
3111 nand_controller_init(&ctrl->controller);
3112 ctrl->controller.ops = &brcmnand_controller_ops;
3113 INIT_LIST_HEAD(&ctrl->host_list);
3114
3115 /* NAND register range */
3116 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3117 ctrl->nand_base = devm_ioremap_resource(dev, res);
3118 if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3119 return PTR_ERR(ctrl->nand_base);
3120
3121 /* Enable clock before using NAND registers */
3122 ctrl->clk = devm_clk_get(dev, "nand");
3123 if (!IS_ERR(ctrl->clk)) {
3124 ret = clk_prepare_enable(ctrl->clk);
3125 if (ret)
3126 return ret;
3127 } else {
3128 ret = PTR_ERR(ctrl->clk);
3129 if (ret == -EPROBE_DEFER)
3130 return ret;
3131
3132 ctrl->clk = NULL;
3133 }
3134
3135 /* Initialize NAND revision */
3136 ret = brcmnand_revision_init(ctrl);
3137 if (ret)
3138 goto err;
3139
3140 /*
3141 * Most chips have this cache at a fixed offset within 'nand' block.
3142 * Some must specify this region separately.
3143 */
3144 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3145 if (res) {
3146 ctrl->nand_fc = devm_ioremap_resource(dev, res);
3147 if (IS_ERR(ctrl->nand_fc)) {
3148 ret = PTR_ERR(ctrl->nand_fc);
3149 goto err;
3150 }
3151 } else {
3152 ctrl->nand_fc = ctrl->nand_base +
3153 ctrl->reg_offsets[BRCMNAND_FC_BASE];
3154 }
3155
3156 /* FLASH_DMA */
3157 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3158 if (res) {
3159 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3160 if (IS_ERR(ctrl->flash_dma_base)) {
3161 ret = PTR_ERR(ctrl->flash_dma_base);
3162 goto err;
3163 }
3164
3165 /* initialize the dma version */
3166 brcmnand_flash_dma_revision_init(ctrl);
3167
3168 ret = -EIO;
3169 if (ctrl->nand_version >= 0x0700)
3170 ret = dma_set_mask_and_coherent(&pdev->dev,
3171 DMA_BIT_MASK(40));
3172 if (ret)
3173 ret = dma_set_mask_and_coherent(&pdev->dev,
3174 DMA_BIT_MASK(32));
3175 if (ret)
3176 goto err;
3177
3178 /* linked-list and stop on error */
3179 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3180 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3181
3182 /* Allocate descriptor(s) */
3183 ctrl->dma_desc = dmam_alloc_coherent(dev,
3184 sizeof(*ctrl->dma_desc),
3185 &ctrl->dma_pa, GFP_KERNEL);
3186 if (!ctrl->dma_desc) {
3187 ret = -ENOMEM;
3188 goto err;
3189 }
3190
3191 ctrl->dma_irq = platform_get_irq(pdev, 1);
3192 if ((int)ctrl->dma_irq < 0) {
3193 dev_err(dev, "missing FLASH_DMA IRQ\n");
3194 ret = -ENODEV;
3195 goto err;
3196 }
3197
3198 ret = devm_request_irq(dev, ctrl->dma_irq,
3199 brcmnand_dma_irq, 0, DRV_NAME,
3200 ctrl);
3201 if (ret < 0) {
3202 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3203 ctrl->dma_irq, ret);
3204 goto err;
3205 }
3206
3207 dev_info(dev, "enabling FLASH_DMA\n");
3208 /* set flash dma transfer function to call */
3209 ctrl->dma_trans = brcmnand_dma_trans;
3210 } else {
3211 ret = brcmnand_edu_setup(pdev);
3212 if (ret < 0)
3213 goto err;
3214
3215 if (has_edu(ctrl))
3216 /* set edu transfer function to call */
3217 ctrl->dma_trans = brcmnand_edu_trans;
3218 }
3219
3220 /* Disable automatic device ID config, direct addressing */
3221 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3222 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3223 /* Disable XOR addressing */
3224 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3225
3226 /* Check if the board connects the WP pin */
3227 if (of_property_read_bool(dn, "brcm,wp-not-connected"))
3228 wp_on = 0;
3229
3230 if (ctrl->features & BRCMNAND_HAS_WP) {
3231 /* Permanently disable write protection */
3232 if (wp_on == 2)
3233 brcmnand_set_wp(ctrl, false);
3234 } else {
3235 wp_on = 0;
3236 }
3237
3238 /* IRQ */
3239 ctrl->irq = platform_get_irq_optional(pdev, 0);
3240 if (ctrl->irq > 0) {
3241 /*
3242 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3243 * interesting ways
3244 */
3245 if (soc) {
3246 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3247 DRV_NAME, ctrl);
3248
3249 /* Enable interrupt */
3250 ctrl->soc->ctlrdy_ack(ctrl->soc);
3251 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3252 } else {
3253 /* Use standard interrupt infrastructure */
3254 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3255 DRV_NAME, ctrl);
3256 }
3257 if (ret < 0) {
3258 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3259 ctrl->irq, ret);
3260 goto err;
3261 }
3262 }
3263
3264 for_each_available_child_of_node(dn, child) {
3265 if (of_device_is_compatible(child, "brcm,nandcs")) {
3266
3267 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3268 if (!host) {
3269 of_node_put(child);
3270 ret = -ENOMEM;
3271 goto err;
3272 }
3273 host->pdev = pdev;
3274 host->ctrl = ctrl;
3275
3276 ret = of_property_read_u32(child, "reg", &host->cs);
3277 if (ret) {
3278 dev_err(dev, "can't get chip-select\n");
3279 devm_kfree(dev, host);
3280 continue;
3281 }
3282
3283 nand_set_flash_node(&host->chip, child);
3284
3285 ret = brcmnand_init_cs(host, NULL);
3286 if (ret) {
3287 if (ret == -EPROBE_DEFER) {
3288 of_node_put(child);
3289 goto err;
3290 }
3291 devm_kfree(dev, host);
3292 continue; /* Try all chip-selects */
3293 }
3294
3295 list_add_tail(&host->node, &ctrl->host_list);
3296 }
3297 }
3298
3299 if (!list_empty(&ctrl->host_list))
3300 return 0;
3301
3302 if (!pd) {
3303 ret = -ENODEV;
3304 goto err;
3305 }
3306
3307 /* If we got there we must have been probing via platform data */
3308 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3309 if (!host) {
3310 ret = -ENOMEM;
3311 goto err;
3312 }
3313 host->pdev = pdev;
3314 host->ctrl = ctrl;
3315 host->cs = pd->chip_select;
3316 host->chip.ecc.size = pd->ecc_stepsize;
3317 host->chip.ecc.strength = pd->ecc_strength;
3318
3319 ret = brcmnand_init_cs(host, pd->part_probe_types);
3320 if (ret)
3321 goto err;
3322
3323 list_add_tail(&host->node, &ctrl->host_list);
3324
3325 /* No chip-selects could initialize properly */
3326 if (list_empty(&ctrl->host_list)) {
3327 ret = -ENODEV;
3328 goto err;
3329 }
3330
3331 return 0;
3332
3333 err:
3334 clk_disable_unprepare(ctrl->clk);
3335 return ret;
3336
3337 }
3338 EXPORT_SYMBOL_GPL(brcmnand_probe);
3339
brcmnand_remove(struct platform_device * pdev)3340 void brcmnand_remove(struct platform_device *pdev)
3341 {
3342 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3343 struct brcmnand_host *host;
3344 struct nand_chip *chip;
3345 int ret;
3346
3347 list_for_each_entry(host, &ctrl->host_list, node) {
3348 chip = &host->chip;
3349 ret = mtd_device_unregister(nand_to_mtd(chip));
3350 WARN_ON(ret);
3351 nand_cleanup(chip);
3352 }
3353
3354 clk_disable_unprepare(ctrl->clk);
3355
3356 dev_set_drvdata(&pdev->dev, NULL);
3357 }
3358 EXPORT_SYMBOL_GPL(brcmnand_remove);
3359
3360 MODULE_LICENSE("GPL v2");
3361 MODULE_AUTHOR("Kevin Cernekee");
3362 MODULE_AUTHOR("Brian Norris");
3363 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3364 MODULE_ALIAS("platform:brcmnand");
3365