1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Texas Instruments
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/i2c.h>
11 #include <linux/module.h>
12 #include <linux/platform_data/tda9950.h>
13 #include <linux/irq.h>
14 #include <sound/asoundef.h>
15 #include <sound/hdmi-codec.h>
16
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_edid.h>
20 #include <drm/drm_of.h>
21 #include <drm/drm_print.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_simple_kms_helper.h>
24 #include <drm/i2c/tda998x.h>
25
26 #include <media/cec-notifier.h>
27
28 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
29
30 enum {
31 AUDIO_ROUTE_I2S,
32 AUDIO_ROUTE_SPDIF,
33 AUDIO_ROUTE_NUM
34 };
35
36 struct tda998x_audio_route {
37 u8 ena_aclk;
38 u8 mux_ap;
39 u8 aip_clksel;
40 };
41
42 struct tda998x_audio_settings {
43 const struct tda998x_audio_route *route;
44 struct hdmi_audio_infoframe cea;
45 unsigned int sample_rate;
46 u8 status[5];
47 u8 ena_ap;
48 u8 i2s_format;
49 u8 cts_n;
50 };
51
52 struct tda998x_priv {
53 struct i2c_client *cec;
54 struct i2c_client *hdmi;
55 struct mutex mutex;
56 u16 rev;
57 u8 cec_addr;
58 u8 current_page;
59 bool is_on;
60 bool supports_infoframes;
61 bool sink_has_audio;
62 enum hdmi_quantization_range rgb_quant_range;
63 u8 vip_cntrl_0;
64 u8 vip_cntrl_1;
65 u8 vip_cntrl_2;
66 unsigned long tmds_clock;
67 struct tda998x_audio_settings audio;
68
69 struct platform_device *audio_pdev;
70 struct mutex audio_mutex;
71
72 struct mutex edid_mutex;
73 wait_queue_head_t wq_edid;
74 volatile int wq_edid_wait;
75
76 struct work_struct detect_work;
77 struct timer_list edid_delay_timer;
78 wait_queue_head_t edid_delay_waitq;
79 bool edid_delay_active;
80
81 struct drm_encoder encoder;
82 struct drm_bridge bridge;
83 struct drm_connector connector;
84
85 u8 audio_port_enable[AUDIO_ROUTE_NUM];
86 struct tda9950_glue cec_glue;
87 struct gpio_desc *calib;
88 struct cec_notifier *cec_notify;
89 };
90
91 #define conn_to_tda998x_priv(x) \
92 container_of(x, struct tda998x_priv, connector)
93 #define enc_to_tda998x_priv(x) \
94 container_of(x, struct tda998x_priv, encoder)
95 #define bridge_to_tda998x_priv(x) \
96 container_of(x, struct tda998x_priv, bridge)
97
98 /* The TDA9988 series of devices use a paged register scheme.. to simplify
99 * things we encode the page # in upper bits of the register #. To read/
100 * write a given register, we need to make sure CURPAGE register is set
101 * appropriately. Which implies reads/writes are not atomic. Fun!
102 */
103
104 #define REG(page, addr) (((page) << 8) | (addr))
105 #define REG2ADDR(reg) ((reg) & 0xff)
106 #define REG2PAGE(reg) (((reg) >> 8) & 0xff)
107
108 #define REG_CURPAGE 0xff /* write */
109
110
111 /* Page 00h: General Control */
112 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */
113 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
114 # define MAIN_CNTRL0_SR (1 << 0)
115 # define MAIN_CNTRL0_DECS (1 << 1)
116 # define MAIN_CNTRL0_DEHS (1 << 2)
117 # define MAIN_CNTRL0_CECS (1 << 3)
118 # define MAIN_CNTRL0_CEHS (1 << 4)
119 # define MAIN_CNTRL0_SCALER (1 << 7)
120 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */
121 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */
122 # define SOFTRESET_AUDIO (1 << 0)
123 # define SOFTRESET_I2C_MASTER (1 << 1)
124 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
125 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
126 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
127 # define I2C_MASTER_DIS_MM (1 << 0)
128 # define I2C_MASTER_DIS_FILT (1 << 1)
129 # define I2C_MASTER_APP_STRT_LAT (1 << 2)
130 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
131 # define FEAT_POWERDOWN_PREFILT BIT(0)
132 # define FEAT_POWERDOWN_CSC BIT(1)
133 # define FEAT_POWERDOWN_SPDIF (1 << 3)
134 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
135 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
136 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
137 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
138 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
139 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
140 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
141 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
142 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
143 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
144 # define VIP_CNTRL_0_MIRR_A (1 << 7)
145 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
146 # define VIP_CNTRL_0_MIRR_B (1 << 3)
147 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
148 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
149 # define VIP_CNTRL_1_MIRR_C (1 << 7)
150 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
151 # define VIP_CNTRL_1_MIRR_D (1 << 3)
152 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
153 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
154 # define VIP_CNTRL_2_MIRR_E (1 << 7)
155 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
156 # define VIP_CNTRL_2_MIRR_F (1 << 3)
157 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
158 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
159 # define VIP_CNTRL_3_X_TGL (1 << 0)
160 # define VIP_CNTRL_3_H_TGL (1 << 1)
161 # define VIP_CNTRL_3_V_TGL (1 << 2)
162 # define VIP_CNTRL_3_EMB (1 << 3)
163 # define VIP_CNTRL_3_SYNC_DE (1 << 4)
164 # define VIP_CNTRL_3_SYNC_HS (1 << 5)
165 # define VIP_CNTRL_3_DE_INT (1 << 6)
166 # define VIP_CNTRL_3_EDGE (1 << 7)
167 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
168 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
169 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
170 # define VIP_CNTRL_4_CCIR656 (1 << 4)
171 # define VIP_CNTRL_4_656_ALT (1 << 5)
172 # define VIP_CNTRL_4_TST_656 (1 << 6)
173 # define VIP_CNTRL_4_TST_PAT (1 << 7)
174 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
175 # define VIP_CNTRL_5_CKCASE (1 << 0)
176 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
177 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */
178 # define MUX_AP_SELECT_I2S 0x64
179 # define MUX_AP_SELECT_SPDIF 0x40
180 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
181 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
182 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
183 # define MAT_CONTRL_MAT_BP (1 << 2)
184 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
185 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
186 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
187 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
188 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
189 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
190 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
191 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
192 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
193 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
194 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
195 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
196 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
197 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
198 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
199 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
200 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
201 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
202 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
203 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
204 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
205 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
206 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
207 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
208 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
209 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
210 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
211 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
212 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
213 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
214 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
215 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
216 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
217 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
218 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
219 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
220 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
221 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
222 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
223 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
224 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
225 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
226 # define TBG_CNTRL_0_TOP_TGL (1 << 0)
227 # define TBG_CNTRL_0_TOP_SEL (1 << 1)
228 # define TBG_CNTRL_0_DE_EXT (1 << 2)
229 # define TBG_CNTRL_0_TOP_EXT (1 << 3)
230 # define TBG_CNTRL_0_FRAME_DIS (1 << 5)
231 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
232 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
233 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
234 # define TBG_CNTRL_1_H_TGL (1 << 0)
235 # define TBG_CNTRL_1_V_TGL (1 << 1)
236 # define TBG_CNTRL_1_TGL_EN (1 << 2)
237 # define TBG_CNTRL_1_X_EXT (1 << 3)
238 # define TBG_CNTRL_1_H_EXT (1 << 4)
239 # define TBG_CNTRL_1_V_EXT (1 << 5)
240 # define TBG_CNTRL_1_DWIN_DIS (1 << 6)
241 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
242 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
243 # define HVF_CNTRL_0_SM (1 << 7)
244 # define HVF_CNTRL_0_RWB (1 << 6)
245 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
246 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
247 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
248 # define HVF_CNTRL_1_FOR (1 << 0)
249 # define HVF_CNTRL_1_YUVBLK (1 << 1)
250 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
251 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
252 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
253 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
254 # define RPT_CNTRL_REPEAT(x) ((x) & 15)
255 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
256 # define I2S_FORMAT_PHILIPS (0 << 0)
257 # define I2S_FORMAT_LEFT_J (2 << 0)
258 # define I2S_FORMAT_RIGHT_J (3 << 0)
259 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
260 # define AIP_CLKSEL_AIP_SPDIF (0 << 3)
261 # define AIP_CLKSEL_AIP_I2S (1 << 3)
262 # define AIP_CLKSEL_FS_ACLK (0 << 0)
263 # define AIP_CLKSEL_FS_MCLK (1 << 0)
264 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
265
266 /* Page 02h: PLL settings */
267 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
268 # define PLL_SERIAL_1_SRL_FDN (1 << 0)
269 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
270 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
271 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
272 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
273 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
274 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
275 # define PLL_SERIAL_3_SRL_CCIR (1 << 0)
276 # define PLL_SERIAL_3_SRL_DE (1 << 2)
277 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
278 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
279 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
280 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
281 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
282 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
283 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
284 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
285 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
286 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
287 # define AUDIO_DIV_SERCLK_1 0
288 # define AUDIO_DIV_SERCLK_2 1
289 # define AUDIO_DIV_SERCLK_4 2
290 # define AUDIO_DIV_SERCLK_8 3
291 # define AUDIO_DIV_SERCLK_16 4
292 # define AUDIO_DIV_SERCLK_32 5
293 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
294 # define SEL_CLK_SEL_CLK1 (1 << 0)
295 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
296 # define SEL_CLK_ENA_SC_CLK (1 << 3)
297 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
298
299
300 /* Page 09h: EDID Control */
301 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
302 /* next 127 successive registers are the EDID block */
303 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
304 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
305 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
306 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
307 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
308
309
310 /* Page 10h: information frames and packets */
311 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
312 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
313 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
314 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
315 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
316
317
318 /* Page 11h: audio settings and content info packets */
319 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
320 # define AIP_CNTRL_0_RST_FIFO (1 << 0)
321 # define AIP_CNTRL_0_SWAP (1 << 1)
322 # define AIP_CNTRL_0_LAYOUT (1 << 2)
323 # define AIP_CNTRL_0_ACR_MAN (1 << 5)
324 # define AIP_CNTRL_0_RST_CTS (1 << 6)
325 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */
326 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
327 # define CA_I2S_HBR_CHSTAT (1 << 6)
328 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
329 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
330 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
331 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
332 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
333 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
334 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
335 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */
336 # define CTS_N_K(x) (((x) & 7) << 0)
337 # define CTS_N_M(x) (((x) & 3) << 4)
338 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
339 # define ENC_CNTRL_RST_ENC (1 << 0)
340 # define ENC_CNTRL_RST_SEL (1 << 1)
341 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
342 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
343 # define DIP_FLAGS_ACR (1 << 0)
344 # define DIP_FLAGS_GC (1 << 1)
345 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
346 # define DIP_IF_FLAGS_IF1 (1 << 1)
347 # define DIP_IF_FLAGS_IF2 (1 << 2)
348 # define DIP_IF_FLAGS_IF3 (1 << 3)
349 # define DIP_IF_FLAGS_IF4 (1 << 4)
350 # define DIP_IF_FLAGS_IF5 (1 << 5)
351 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
352
353
354 /* Page 12h: HDCP and OTP */
355 #define REG_TX3 REG(0x12, 0x9a) /* read/write */
356 #define REG_TX4 REG(0x12, 0x9b) /* read/write */
357 # define TX4_PD_RAM (1 << 1)
358 #define REG_TX33 REG(0x12, 0xb8) /* read/write */
359 # define TX33_HDMI (1 << 1)
360
361
362 /* Page 13h: Gamut related metadata packets */
363
364
365
366 /* CEC registers: (not paged)
367 */
368 #define REG_CEC_INTSTATUS 0xee /* read */
369 # define CEC_INTSTATUS_CEC (1 << 0)
370 # define CEC_INTSTATUS_HDMI (1 << 1)
371 #define REG_CEC_CAL_XOSC_CTRL1 0xf2
372 # define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0)
373 #define REG_CEC_DES_FREQ2 0xf5
374 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
375 #define REG_CEC_CLK 0xf6
376 # define CEC_CLK_FRO 0x11
377 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
378 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
379 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
380 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
381 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
382 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
383 #define REG_CEC_RXSHPDINT 0xfd /* read */
384 # define CEC_RXSHPDINT_RXSENS BIT(0)
385 # define CEC_RXSHPDINT_HPD BIT(1)
386 #define REG_CEC_RXSHPDLEV 0xfe /* read */
387 # define CEC_RXSHPDLEV_RXSENS (1 << 0)
388 # define CEC_RXSHPDLEV_HPD (1 << 1)
389
390 #define REG_CEC_ENAMODS 0xff /* read/write */
391 # define CEC_ENAMODS_EN_CEC_CLK (1 << 7)
392 # define CEC_ENAMODS_DIS_FRO (1 << 6)
393 # define CEC_ENAMODS_DIS_CCLK (1 << 5)
394 # define CEC_ENAMODS_EN_RXSENS (1 << 2)
395 # define CEC_ENAMODS_EN_HDMI (1 << 1)
396 # define CEC_ENAMODS_EN_CEC (1 << 0)
397
398
399 /* Device versions: */
400 #define TDA9989N2 0x0101
401 #define TDA19989 0x0201
402 #define TDA19989N2 0x0202
403 #define TDA19988 0x0301
404
405 static void
cec_write(struct tda998x_priv * priv,u16 addr,u8 val)406 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
407 {
408 u8 buf[] = {addr, val};
409 struct i2c_msg msg = {
410 .addr = priv->cec_addr,
411 .len = 2,
412 .buf = buf,
413 };
414 int ret;
415
416 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
417 if (ret < 0)
418 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
419 ret, addr);
420 }
421
422 static u8
cec_read(struct tda998x_priv * priv,u8 addr)423 cec_read(struct tda998x_priv *priv, u8 addr)
424 {
425 u8 val;
426 struct i2c_msg msg[2] = {
427 {
428 .addr = priv->cec_addr,
429 .len = 1,
430 .buf = &addr,
431 }, {
432 .addr = priv->cec_addr,
433 .flags = I2C_M_RD,
434 .len = 1,
435 .buf = &val,
436 },
437 };
438 int ret;
439
440 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
441 if (ret < 0) {
442 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
443 ret, addr);
444 val = 0;
445 }
446
447 return val;
448 }
449
cec_enamods(struct tda998x_priv * priv,u8 mods,bool enable)450 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
451 {
452 int val = cec_read(priv, REG_CEC_ENAMODS);
453
454 if (val < 0)
455 return;
456
457 if (enable)
458 val |= mods;
459 else
460 val &= ~mods;
461
462 cec_write(priv, REG_CEC_ENAMODS, val);
463 }
464
tda998x_cec_set_calibration(struct tda998x_priv * priv,bool enable)465 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
466 {
467 if (enable) {
468 u8 val;
469
470 cec_write(priv, 0xf3, 0xc0);
471 cec_write(priv, 0xf4, 0xd4);
472
473 /* Enable automatic calibration mode */
474 val = cec_read(priv, REG_CEC_DES_FREQ2);
475 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
476 cec_write(priv, REG_CEC_DES_FREQ2, val);
477
478 /* Enable free running oscillator */
479 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
480 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
481
482 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
483 CEC_CAL_XOSC_CTRL1_ENA_CAL);
484 } else {
485 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
486 }
487 }
488
489 /*
490 * Calibration for the internal oscillator: we need to set calibration mode,
491 * and then pulse the IRQ line low for a 10ms ± 1% period.
492 */
tda998x_cec_calibration(struct tda998x_priv * priv)493 static void tda998x_cec_calibration(struct tda998x_priv *priv)
494 {
495 struct gpio_desc *calib = priv->calib;
496
497 mutex_lock(&priv->edid_mutex);
498 if (priv->hdmi->irq > 0)
499 disable_irq(priv->hdmi->irq);
500 gpiod_direction_output(calib, 1);
501 tda998x_cec_set_calibration(priv, true);
502
503 local_irq_disable();
504 gpiod_set_value(calib, 0);
505 mdelay(10);
506 gpiod_set_value(calib, 1);
507 local_irq_enable();
508
509 tda998x_cec_set_calibration(priv, false);
510 gpiod_direction_input(calib);
511 if (priv->hdmi->irq > 0)
512 enable_irq(priv->hdmi->irq);
513 mutex_unlock(&priv->edid_mutex);
514 }
515
tda998x_cec_hook_init(void * data)516 static int tda998x_cec_hook_init(void *data)
517 {
518 struct tda998x_priv *priv = data;
519 struct gpio_desc *calib;
520
521 calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
522 if (IS_ERR(calib)) {
523 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
524 PTR_ERR(calib));
525 return PTR_ERR(calib);
526 }
527
528 priv->calib = calib;
529
530 return 0;
531 }
532
tda998x_cec_hook_exit(void * data)533 static void tda998x_cec_hook_exit(void *data)
534 {
535 struct tda998x_priv *priv = data;
536
537 gpiod_put(priv->calib);
538 priv->calib = NULL;
539 }
540
tda998x_cec_hook_open(void * data)541 static int tda998x_cec_hook_open(void *data)
542 {
543 struct tda998x_priv *priv = data;
544
545 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
546 tda998x_cec_calibration(priv);
547
548 return 0;
549 }
550
tda998x_cec_hook_release(void * data)551 static void tda998x_cec_hook_release(void *data)
552 {
553 struct tda998x_priv *priv = data;
554
555 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
556 }
557
558 static int
set_page(struct tda998x_priv * priv,u16 reg)559 set_page(struct tda998x_priv *priv, u16 reg)
560 {
561 if (REG2PAGE(reg) != priv->current_page) {
562 struct i2c_client *client = priv->hdmi;
563 u8 buf[] = {
564 REG_CURPAGE, REG2PAGE(reg)
565 };
566 int ret = i2c_master_send(client, buf, sizeof(buf));
567 if (ret < 0) {
568 dev_err(&client->dev, "%s %04x err %d\n", __func__,
569 reg, ret);
570 return ret;
571 }
572
573 priv->current_page = REG2PAGE(reg);
574 }
575 return 0;
576 }
577
578 static int
reg_read_range(struct tda998x_priv * priv,u16 reg,char * buf,int cnt)579 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
580 {
581 struct i2c_client *client = priv->hdmi;
582 u8 addr = REG2ADDR(reg);
583 int ret;
584
585 mutex_lock(&priv->mutex);
586 ret = set_page(priv, reg);
587 if (ret < 0)
588 goto out;
589
590 ret = i2c_master_send(client, &addr, sizeof(addr));
591 if (ret < 0)
592 goto fail;
593
594 ret = i2c_master_recv(client, buf, cnt);
595 if (ret < 0)
596 goto fail;
597
598 goto out;
599
600 fail:
601 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
602 out:
603 mutex_unlock(&priv->mutex);
604 return ret;
605 }
606
607 #define MAX_WRITE_RANGE_BUF 32
608
609 static void
reg_write_range(struct tda998x_priv * priv,u16 reg,u8 * p,int cnt)610 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
611 {
612 struct i2c_client *client = priv->hdmi;
613 /* This is the maximum size of the buffer passed in */
614 u8 buf[MAX_WRITE_RANGE_BUF + 1];
615 int ret;
616
617 if (cnt > MAX_WRITE_RANGE_BUF) {
618 dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
619 MAX_WRITE_RANGE_BUF);
620 return;
621 }
622
623 buf[0] = REG2ADDR(reg);
624 memcpy(&buf[1], p, cnt);
625
626 mutex_lock(&priv->mutex);
627 ret = set_page(priv, reg);
628 if (ret < 0)
629 goto out;
630
631 ret = i2c_master_send(client, buf, cnt + 1);
632 if (ret < 0)
633 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
634 out:
635 mutex_unlock(&priv->mutex);
636 }
637
638 static int
reg_read(struct tda998x_priv * priv,u16 reg)639 reg_read(struct tda998x_priv *priv, u16 reg)
640 {
641 u8 val = 0;
642 int ret;
643
644 ret = reg_read_range(priv, reg, &val, sizeof(val));
645 if (ret < 0)
646 return ret;
647 return val;
648 }
649
650 static void
reg_write(struct tda998x_priv * priv,u16 reg,u8 val)651 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
652 {
653 struct i2c_client *client = priv->hdmi;
654 u8 buf[] = {REG2ADDR(reg), val};
655 int ret;
656
657 mutex_lock(&priv->mutex);
658 ret = set_page(priv, reg);
659 if (ret < 0)
660 goto out;
661
662 ret = i2c_master_send(client, buf, sizeof(buf));
663 if (ret < 0)
664 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
665 out:
666 mutex_unlock(&priv->mutex);
667 }
668
669 static void
reg_write16(struct tda998x_priv * priv,u16 reg,u16 val)670 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
671 {
672 struct i2c_client *client = priv->hdmi;
673 u8 buf[] = {REG2ADDR(reg), val >> 8, val};
674 int ret;
675
676 mutex_lock(&priv->mutex);
677 ret = set_page(priv, reg);
678 if (ret < 0)
679 goto out;
680
681 ret = i2c_master_send(client, buf, sizeof(buf));
682 if (ret < 0)
683 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
684 out:
685 mutex_unlock(&priv->mutex);
686 }
687
688 static void
reg_set(struct tda998x_priv * priv,u16 reg,u8 val)689 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
690 {
691 int old_val;
692
693 old_val = reg_read(priv, reg);
694 if (old_val >= 0)
695 reg_write(priv, reg, old_val | val);
696 }
697
698 static void
reg_clear(struct tda998x_priv * priv,u16 reg,u8 val)699 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
700 {
701 int old_val;
702
703 old_val = reg_read(priv, reg);
704 if (old_val >= 0)
705 reg_write(priv, reg, old_val & ~val);
706 }
707
708 static void
tda998x_reset(struct tda998x_priv * priv)709 tda998x_reset(struct tda998x_priv *priv)
710 {
711 /* reset audio and i2c master: */
712 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
713 msleep(50);
714 reg_write(priv, REG_SOFTRESET, 0);
715 msleep(50);
716
717 /* reset transmitter: */
718 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720
721 /* PLL registers common configuration */
722 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
723 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
724 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
725 reg_write(priv, REG_SERIALIZER, 0x00);
726 reg_write(priv, REG_BUFFER_OUT, 0x00);
727 reg_write(priv, REG_PLL_SCG1, 0x00);
728 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
729 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
730 reg_write(priv, REG_PLL_SCGN1, 0xfa);
731 reg_write(priv, REG_PLL_SCGN2, 0x00);
732 reg_write(priv, REG_PLL_SCGR1, 0x5b);
733 reg_write(priv, REG_PLL_SCGR2, 0x00);
734 reg_write(priv, REG_PLL_SCG2, 0x10);
735
736 /* Write the default value MUX register */
737 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
738 }
739
740 /*
741 * The TDA998x has a problem when trying to read the EDID close to a
742 * HPD assertion: it needs a delay of 100ms to avoid timing out while
743 * trying to read EDID data.
744 *
745 * However, tda998x_connector_get_modes() may be called at any moment
746 * after tda998x_connector_detect() indicates that we are connected, so
747 * we need to delay probing modes in tda998x_connector_get_modes() after
748 * we have seen a HPD inactive->active transition. This code implements
749 * that delay.
750 */
tda998x_edid_delay_done(struct timer_list * t)751 static void tda998x_edid_delay_done(struct timer_list *t)
752 {
753 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
754
755 priv->edid_delay_active = false;
756 wake_up(&priv->edid_delay_waitq);
757 schedule_work(&priv->detect_work);
758 }
759
tda998x_edid_delay_start(struct tda998x_priv * priv)760 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
761 {
762 priv->edid_delay_active = true;
763 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
764 }
765
tda998x_edid_delay_wait(struct tda998x_priv * priv)766 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
767 {
768 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
769 }
770
771 /*
772 * We need to run the KMS hotplug event helper outside of our threaded
773 * interrupt routine as this can call back into our get_modes method,
774 * which will want to make use of interrupts.
775 */
tda998x_detect_work(struct work_struct * work)776 static void tda998x_detect_work(struct work_struct *work)
777 {
778 struct tda998x_priv *priv =
779 container_of(work, struct tda998x_priv, detect_work);
780 struct drm_device *dev = priv->connector.dev;
781
782 if (dev)
783 drm_kms_helper_hotplug_event(dev);
784 }
785
786 /*
787 * only 2 interrupts may occur: screen plug/unplug and EDID read
788 */
tda998x_irq_thread(int irq,void * data)789 static irqreturn_t tda998x_irq_thread(int irq, void *data)
790 {
791 struct tda998x_priv *priv = data;
792 u8 sta, cec, lvl, flag0, flag1, flag2;
793 bool handled = false;
794
795 sta = cec_read(priv, REG_CEC_INTSTATUS);
796 if (sta & CEC_INTSTATUS_HDMI) {
797 cec = cec_read(priv, REG_CEC_RXSHPDINT);
798 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
799 flag0 = reg_read(priv, REG_INT_FLAGS_0);
800 flag1 = reg_read(priv, REG_INT_FLAGS_1);
801 flag2 = reg_read(priv, REG_INT_FLAGS_2);
802 DRM_DEBUG_DRIVER(
803 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
804 sta, cec, lvl, flag0, flag1, flag2);
805
806 if (cec & CEC_RXSHPDINT_HPD) {
807 if (lvl & CEC_RXSHPDLEV_HPD) {
808 tda998x_edid_delay_start(priv);
809 } else {
810 schedule_work(&priv->detect_work);
811 cec_notifier_phys_addr_invalidate(
812 priv->cec_notify);
813 }
814
815 handled = true;
816 }
817
818 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
819 priv->wq_edid_wait = 0;
820 wake_up(&priv->wq_edid);
821 handled = true;
822 }
823 }
824
825 return IRQ_RETVAL(handled);
826 }
827
828 static void
tda998x_write_if(struct tda998x_priv * priv,u8 bit,u16 addr,union hdmi_infoframe * frame)829 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
830 union hdmi_infoframe *frame)
831 {
832 u8 buf[MAX_WRITE_RANGE_BUF];
833 ssize_t len;
834
835 len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
836 if (len < 0) {
837 dev_err(&priv->hdmi->dev,
838 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
839 frame->any.type, len);
840 return;
841 }
842
843 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
844 reg_write_range(priv, addr, buf, len);
845 reg_set(priv, REG_DIP_IF_FLAGS, bit);
846 }
847
tda998x_write_aif(struct tda998x_priv * priv,const struct hdmi_audio_infoframe * cea)848 static void tda998x_write_aif(struct tda998x_priv *priv,
849 const struct hdmi_audio_infoframe *cea)
850 {
851 union hdmi_infoframe frame;
852
853 frame.audio = *cea;
854
855 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
856 }
857
858 static void
tda998x_write_avi(struct tda998x_priv * priv,const struct drm_display_mode * mode)859 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
860 {
861 union hdmi_infoframe frame;
862
863 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
864 &priv->connector, mode);
865 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
866 drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
867 priv->rgb_quant_range);
868
869 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
870 }
871
tda998x_write_vsi(struct tda998x_priv * priv,const struct drm_display_mode * mode)872 static void tda998x_write_vsi(struct tda998x_priv *priv,
873 const struct drm_display_mode *mode)
874 {
875 union hdmi_infoframe frame;
876
877 if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
878 &priv->connector,
879 mode))
880 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
881 else
882 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
883 }
884
885 /* Audio support */
886
887 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
888 [AUDIO_ROUTE_I2S] = {
889 .ena_aclk = 1,
890 .mux_ap = MUX_AP_SELECT_I2S,
891 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
892 },
893 [AUDIO_ROUTE_SPDIF] = {
894 .ena_aclk = 0,
895 .mux_ap = MUX_AP_SELECT_SPDIF,
896 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
897 },
898 };
899
900 /* Configure the TDA998x audio data and clock routing. */
tda998x_derive_routing(struct tda998x_priv * priv,struct tda998x_audio_settings * s,unsigned int route)901 static int tda998x_derive_routing(struct tda998x_priv *priv,
902 struct tda998x_audio_settings *s,
903 unsigned int route)
904 {
905 s->route = &tda998x_audio_route[route];
906 s->ena_ap = priv->audio_port_enable[route];
907 if (s->ena_ap == 0) {
908 dev_err(&priv->hdmi->dev, "no audio configuration found\n");
909 return -EINVAL;
910 }
911
912 return 0;
913 }
914
915 /*
916 * The audio clock divisor register controls a divider producing Audio_Clk_Out
917 * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what
918 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
919 *
920 * It seems that Audio_Clk_Out must be the smallest value that is greater
921 * than 128*fs, otherwise audio does not function. There is some suggestion
922 * that 126*fs is a better value.
923 */
tda998x_get_adiv(struct tda998x_priv * priv,unsigned int fs)924 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
925 {
926 unsigned long min_audio_clk = fs * 128;
927 unsigned long ser_clk = priv->tmds_clock * 1000;
928 u8 adiv;
929
930 for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
931 if (ser_clk > min_audio_clk << adiv)
932 break;
933
934 dev_dbg(&priv->hdmi->dev,
935 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
936 ser_clk, fs, min_audio_clk, adiv);
937
938 return adiv;
939 }
940
941 /*
942 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
943 * generate the CTS value. It appears that the "measured time stamp" is
944 * the number of TDMS clock cycles within a number of audio input clock
945 * cycles defined by the k and N parameters defined below, in a similar
946 * way to that which is set out in the CTS generation in the HDMI spec.
947 *
948 * tmdsclk ----> mts -> /m ---> CTS
949 * ^
950 * sclk -> /k -> /N
951 *
952 * CTS = mts / m, where m is 2^M.
953 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
954 * /N is a divider based on the HDMI specified N value.
955 *
956 * This produces the following equation:
957 * CTS = tmds_clock * k * N / (sclk * m)
958 *
959 * When combined with the sink-side equation, and realising that sclk is
960 * bclk_ratio * fs, we end up with:
961 * k = m * bclk_ratio / 128.
962 *
963 * Note: S/PDIF always uses a bclk_ratio of 64.
964 */
tda998x_derive_cts_n(struct tda998x_priv * priv,struct tda998x_audio_settings * settings,unsigned int ratio)965 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
966 struct tda998x_audio_settings *settings,
967 unsigned int ratio)
968 {
969 switch (ratio) {
970 case 16:
971 settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
972 break;
973 case 32:
974 settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
975 break;
976 case 48:
977 settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
978 break;
979 case 64:
980 settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
981 break;
982 case 128:
983 settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
984 break;
985 default:
986 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
987 ratio);
988 return -EINVAL;
989 }
990 return 0;
991 }
992
tda998x_audio_mute(struct tda998x_priv * priv,bool on)993 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
994 {
995 if (on) {
996 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999 } else {
1000 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001 }
1002 }
1003
tda998x_configure_audio(struct tda998x_priv * priv)1004 static void tda998x_configure_audio(struct tda998x_priv *priv)
1005 {
1006 const struct tda998x_audio_settings *settings = &priv->audio;
1007 u8 buf[6], adiv;
1008 u32 n;
1009
1010 /* If audio is not configured, there is nothing to do. */
1011 if (settings->ena_ap == 0)
1012 return;
1013
1014 adiv = tda998x_get_adiv(priv, settings->sample_rate);
1015
1016 /* Enable audio ports */
1017 reg_write(priv, REG_ENA_AP, settings->ena_ap);
1018 reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1019 reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1020 reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1021 reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1022 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1023 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
1024 reg_write(priv, REG_CTS_N, settings->cts_n);
1025 reg_write(priv, REG_AUDIO_DIV, adiv);
1026
1027 /*
1028 * This is the approximate value of N, which happens to be
1029 * the recommended values for non-coherent clocks.
1030 */
1031 n = 128 * settings->sample_rate / 1000;
1032
1033 /* Write the CTS and N values */
1034 buf[0] = 0x44;
1035 buf[1] = 0x42;
1036 buf[2] = 0x01;
1037 buf[3] = n;
1038 buf[4] = n >> 8;
1039 buf[5] = n >> 16;
1040 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1041
1042 /* Reset CTS generator */
1043 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045
1046 /* Write the channel status
1047 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1048 * there is a separate register for each I2S wire.
1049 */
1050 buf[0] = settings->status[0];
1051 buf[1] = settings->status[1];
1052 buf[2] = settings->status[3];
1053 buf[3] = settings->status[4];
1054 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1055
1056 tda998x_audio_mute(priv, true);
1057 msleep(20);
1058 tda998x_audio_mute(priv, false);
1059
1060 tda998x_write_aif(priv, &settings->cea);
1061 }
1062
tda998x_audio_hw_params(struct device * dev,void * data,struct hdmi_codec_daifmt * daifmt,struct hdmi_codec_params * params)1063 static int tda998x_audio_hw_params(struct device *dev, void *data,
1064 struct hdmi_codec_daifmt *daifmt,
1065 struct hdmi_codec_params *params)
1066 {
1067 struct tda998x_priv *priv = dev_get_drvdata(dev);
1068 unsigned int bclk_ratio;
1069 bool spdif = daifmt->fmt == HDMI_SPDIF;
1070 int ret;
1071 struct tda998x_audio_settings audio = {
1072 .sample_rate = params->sample_rate,
1073 .cea = params->cea,
1074 };
1075
1076 memcpy(audio.status, params->iec.status,
1077 min(sizeof(audio.status), sizeof(params->iec.status)));
1078
1079 switch (daifmt->fmt) {
1080 case HDMI_I2S:
1081 audio.i2s_format = I2S_FORMAT_PHILIPS;
1082 break;
1083 case HDMI_LEFT_J:
1084 audio.i2s_format = I2S_FORMAT_LEFT_J;
1085 break;
1086 case HDMI_RIGHT_J:
1087 audio.i2s_format = I2S_FORMAT_RIGHT_J;
1088 break;
1089 case HDMI_SPDIF:
1090 audio.i2s_format = 0;
1091 break;
1092 default:
1093 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1094 return -EINVAL;
1095 }
1096
1097 if (!spdif &&
1098 (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1099 daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1100 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1101 daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1102 daifmt->bit_clk_provider,
1103 daifmt->frame_clk_provider);
1104 return -EINVAL;
1105 }
1106
1107 ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1108 if (ret < 0)
1109 return ret;
1110
1111 bclk_ratio = spdif ? 64 : params->sample_width * 2;
1112 ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1113 if (ret < 0)
1114 return ret;
1115
1116 mutex_lock(&priv->audio_mutex);
1117 priv->audio = audio;
1118 if (priv->supports_infoframes && priv->sink_has_audio)
1119 tda998x_configure_audio(priv);
1120 mutex_unlock(&priv->audio_mutex);
1121
1122 return 0;
1123 }
1124
tda998x_audio_shutdown(struct device * dev,void * data)1125 static void tda998x_audio_shutdown(struct device *dev, void *data)
1126 {
1127 struct tda998x_priv *priv = dev_get_drvdata(dev);
1128
1129 mutex_lock(&priv->audio_mutex);
1130
1131 reg_write(priv, REG_ENA_AP, 0);
1132 priv->audio.ena_ap = 0;
1133
1134 mutex_unlock(&priv->audio_mutex);
1135 }
1136
tda998x_audio_mute_stream(struct device * dev,void * data,bool enable,int direction)1137 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1138 bool enable, int direction)
1139 {
1140 struct tda998x_priv *priv = dev_get_drvdata(dev);
1141
1142 mutex_lock(&priv->audio_mutex);
1143
1144 tda998x_audio_mute(priv, enable);
1145
1146 mutex_unlock(&priv->audio_mutex);
1147 return 0;
1148 }
1149
tda998x_audio_get_eld(struct device * dev,void * data,uint8_t * buf,size_t len)1150 static int tda998x_audio_get_eld(struct device *dev, void *data,
1151 uint8_t *buf, size_t len)
1152 {
1153 struct tda998x_priv *priv = dev_get_drvdata(dev);
1154
1155 mutex_lock(&priv->audio_mutex);
1156 memcpy(buf, priv->connector.eld,
1157 min(sizeof(priv->connector.eld), len));
1158 mutex_unlock(&priv->audio_mutex);
1159
1160 return 0;
1161 }
1162
1163 static const struct hdmi_codec_ops audio_codec_ops = {
1164 .hw_params = tda998x_audio_hw_params,
1165 .audio_shutdown = tda998x_audio_shutdown,
1166 .mute_stream = tda998x_audio_mute_stream,
1167 .get_eld = tda998x_audio_get_eld,
1168 .no_capture_mute = 1,
1169 };
1170
tda998x_audio_codec_init(struct tda998x_priv * priv,struct device * dev)1171 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172 struct device *dev)
1173 {
1174 struct hdmi_codec_pdata codec_data = {
1175 .ops = &audio_codec_ops,
1176 .max_i2s_channels = 2,
1177 .no_i2s_capture = 1,
1178 .no_spdif_capture = 1,
1179 };
1180
1181 if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1182 codec_data.i2s = 1;
1183 if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1184 codec_data.spdif = 1;
1185
1186 priv->audio_pdev = platform_device_register_data(
1187 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1188 &codec_data, sizeof(codec_data));
1189
1190 return PTR_ERR_OR_ZERO(priv->audio_pdev);
1191 }
1192
1193 /* DRM connector functions */
1194
1195 static enum drm_connector_status
tda998x_connector_detect(struct drm_connector * connector,bool force)1196 tda998x_connector_detect(struct drm_connector *connector, bool force)
1197 {
1198 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1199 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1200
1201 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1202 connector_status_disconnected;
1203 }
1204
tda998x_connector_destroy(struct drm_connector * connector)1205 static void tda998x_connector_destroy(struct drm_connector *connector)
1206 {
1207 drm_connector_cleanup(connector);
1208 }
1209
1210 static const struct drm_connector_funcs tda998x_connector_funcs = {
1211 .reset = drm_atomic_helper_connector_reset,
1212 .fill_modes = drm_helper_probe_single_connector_modes,
1213 .detect = tda998x_connector_detect,
1214 .destroy = tda998x_connector_destroy,
1215 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1216 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1217 };
1218
read_edid_block(void * data,u8 * buf,unsigned int blk,size_t length)1219 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1220 {
1221 struct tda998x_priv *priv = data;
1222 u8 offset, segptr;
1223 int ret, i;
1224
1225 offset = (blk & 1) ? 128 : 0;
1226 segptr = blk / 2;
1227
1228 mutex_lock(&priv->edid_mutex);
1229
1230 reg_write(priv, REG_DDC_ADDR, 0xa0);
1231 reg_write(priv, REG_DDC_OFFS, offset);
1232 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1233 reg_write(priv, REG_DDC_SEGM, segptr);
1234
1235 /* enable reading EDID: */
1236 priv->wq_edid_wait = 1;
1237 reg_write(priv, REG_EDID_CTRL, 0x1);
1238
1239 /* flag must be cleared by sw: */
1240 reg_write(priv, REG_EDID_CTRL, 0x0);
1241
1242 /* wait for block read to complete: */
1243 if (priv->hdmi->irq) {
1244 i = wait_event_timeout(priv->wq_edid,
1245 !priv->wq_edid_wait,
1246 msecs_to_jiffies(100));
1247 if (i < 0) {
1248 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1249 ret = i;
1250 goto failed;
1251 }
1252 } else {
1253 for (i = 100; i > 0; i--) {
1254 msleep(1);
1255 ret = reg_read(priv, REG_INT_FLAGS_2);
1256 if (ret < 0)
1257 goto failed;
1258 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1259 break;
1260 }
1261 }
1262
1263 if (i == 0) {
1264 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1265 ret = -ETIMEDOUT;
1266 goto failed;
1267 }
1268
1269 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1270 if (ret != length) {
1271 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1272 blk, ret);
1273 goto failed;
1274 }
1275
1276 ret = 0;
1277
1278 failed:
1279 mutex_unlock(&priv->edid_mutex);
1280 return ret;
1281 }
1282
tda998x_connector_get_modes(struct drm_connector * connector)1283 static int tda998x_connector_get_modes(struct drm_connector *connector)
1284 {
1285 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1286 const struct drm_edid *drm_edid;
1287 int n;
1288
1289 /*
1290 * If we get killed while waiting for the HPD timeout, return
1291 * no modes found: we are not in a restartable path, so we
1292 * can't handle signals gracefully.
1293 */
1294 if (tda998x_edid_delay_wait(priv))
1295 return 0;
1296
1297 if (priv->rev == TDA19988)
1298 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1299
1300 drm_edid = drm_edid_read_custom(connector, read_edid_block, priv);
1301
1302 if (priv->rev == TDA19988)
1303 reg_set(priv, REG_TX4, TX4_PD_RAM);
1304
1305 drm_edid_connector_update(connector, drm_edid);
1306 cec_notifier_set_phys_addr(priv->cec_notify,
1307 connector->display_info.source_physical_address);
1308
1309 if (!drm_edid) {
1310 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1311 return 0;
1312 }
1313
1314 mutex_lock(&priv->audio_mutex);
1315 n = drm_edid_connector_add_modes(connector);
1316 priv->sink_has_audio = connector->display_info.has_audio;
1317 mutex_unlock(&priv->audio_mutex);
1318
1319 drm_edid_free(drm_edid);
1320
1321 return n;
1322 }
1323
1324 static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector * connector)1325 tda998x_connector_best_encoder(struct drm_connector *connector)
1326 {
1327 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1328
1329 return priv->bridge.encoder;
1330 }
1331
1332 static
1333 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1334 .get_modes = tda998x_connector_get_modes,
1335 .best_encoder = tda998x_connector_best_encoder,
1336 };
1337
tda998x_connector_init(struct tda998x_priv * priv,struct drm_device * drm)1338 static int tda998x_connector_init(struct tda998x_priv *priv,
1339 struct drm_device *drm)
1340 {
1341 struct drm_connector *connector = &priv->connector;
1342 int ret;
1343
1344 connector->interlace_allowed = 1;
1345
1346 if (priv->hdmi->irq)
1347 connector->polled = DRM_CONNECTOR_POLL_HPD;
1348 else
1349 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1350 DRM_CONNECTOR_POLL_DISCONNECT;
1351
1352 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1353 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1354 DRM_MODE_CONNECTOR_HDMIA);
1355 if (ret)
1356 return ret;
1357
1358 drm_connector_attach_encoder(&priv->connector,
1359 priv->bridge.encoder);
1360
1361 return 0;
1362 }
1363
1364 /* DRM bridge functions */
1365
tda998x_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)1366 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1367 enum drm_bridge_attach_flags flags)
1368 {
1369 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1370
1371 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1372 DRM_ERROR("Fix bridge driver to make connector optional!");
1373 return -EINVAL;
1374 }
1375
1376 return tda998x_connector_init(priv, bridge->dev);
1377 }
1378
tda998x_bridge_detach(struct drm_bridge * bridge)1379 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1380 {
1381 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1382
1383 drm_connector_cleanup(&priv->connector);
1384 }
1385
tda998x_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1386 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1387 const struct drm_display_info *info,
1388 const struct drm_display_mode *mode)
1389 {
1390 /* TDA19988 dotclock can go up to 165MHz */
1391 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1392
1393 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1394 return MODE_CLOCK_HIGH;
1395 if (mode->htotal >= BIT(13))
1396 return MODE_BAD_HVALUE;
1397 if (mode->vtotal >= BIT(11))
1398 return MODE_BAD_VVALUE;
1399 return MODE_OK;
1400 }
1401
tda998x_bridge_enable(struct drm_bridge * bridge)1402 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1403 {
1404 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1405
1406 if (!priv->is_on) {
1407 /* enable video ports, audio will be enabled later */
1408 reg_write(priv, REG_ENA_VP_0, 0xff);
1409 reg_write(priv, REG_ENA_VP_1, 0xff);
1410 reg_write(priv, REG_ENA_VP_2, 0xff);
1411 /* set muxing after enabling ports: */
1412 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1413 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1414 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1415
1416 priv->is_on = true;
1417 }
1418 }
1419
tda998x_bridge_disable(struct drm_bridge * bridge)1420 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1421 {
1422 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1423
1424 if (priv->is_on) {
1425 /* disable video ports */
1426 reg_write(priv, REG_ENA_VP_0, 0x00);
1427 reg_write(priv, REG_ENA_VP_1, 0x00);
1428 reg_write(priv, REG_ENA_VP_2, 0x00);
1429
1430 priv->is_on = false;
1431 }
1432 }
1433
tda998x_bridge_mode_set(struct drm_bridge * bridge,const struct drm_display_mode * mode,const struct drm_display_mode * adjusted_mode)1434 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1435 const struct drm_display_mode *mode,
1436 const struct drm_display_mode *adjusted_mode)
1437 {
1438 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1439 unsigned long tmds_clock;
1440 u16 ref_pix, ref_line, n_pix, n_line;
1441 u16 hs_pix_s, hs_pix_e;
1442 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1443 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1444 u16 vwin1_line_s, vwin1_line_e;
1445 u16 vwin2_line_s, vwin2_line_e;
1446 u16 de_pix_s, de_pix_e;
1447 u8 reg, div, rep, sel_clk;
1448
1449 /*
1450 * Since we are "computer" like, our source invariably produces
1451 * full-range RGB. If the monitor supports full-range, then use
1452 * it, otherwise reduce to limited-range.
1453 */
1454 priv->rgb_quant_range =
1455 priv->connector.display_info.rgb_quant_range_selectable ?
1456 HDMI_QUANTIZATION_RANGE_FULL :
1457 drm_default_rgb_quant_range(adjusted_mode);
1458
1459 /*
1460 * Internally TDA998x is using ITU-R BT.656 style sync but
1461 * we get VESA style sync. TDA998x is using a reference pixel
1462 * relative to ITU to sync to the input frame and for output
1463 * sync generation. Currently, we are using reference detection
1464 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1465 * which is position of rising VS with coincident rising HS.
1466 *
1467 * Now there is some issues to take care of:
1468 * - HDMI data islands require sync-before-active
1469 * - TDA998x register values must be > 0 to be enabled
1470 * - REFLINE needs an additional offset of +1
1471 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1472 *
1473 * So we add +1 to all horizontal and vertical register values,
1474 * plus an additional +3 for REFPIX as we are using RGB input only.
1475 */
1476 n_pix = mode->htotal;
1477 n_line = mode->vtotal;
1478
1479 hs_pix_e = mode->hsync_end - mode->hdisplay;
1480 hs_pix_s = mode->hsync_start - mode->hdisplay;
1481 de_pix_e = mode->htotal;
1482 de_pix_s = mode->htotal - mode->hdisplay;
1483 ref_pix = 3 + hs_pix_s;
1484
1485 /*
1486 * Attached LCD controllers may generate broken sync. Allow
1487 * those to adjust the position of the rising VS edge by adding
1488 * HSKEW to ref_pix.
1489 */
1490 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1491 ref_pix += adjusted_mode->hskew;
1492
1493 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1494 ref_line = 1 + mode->vsync_start - mode->vdisplay;
1495 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1496 vwin1_line_e = vwin1_line_s + mode->vdisplay;
1497 vs1_pix_s = vs1_pix_e = hs_pix_s;
1498 vs1_line_s = mode->vsync_start - mode->vdisplay;
1499 vs1_line_e = vs1_line_s +
1500 mode->vsync_end - mode->vsync_start;
1501 vwin2_line_s = vwin2_line_e = 0;
1502 vs2_pix_s = vs2_pix_e = 0;
1503 vs2_line_s = vs2_line_e = 0;
1504 } else {
1505 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
1506 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1507 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1508 vs1_pix_s = vs1_pix_e = hs_pix_s;
1509 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
1510 vs1_line_e = vs1_line_s +
1511 (mode->vsync_end - mode->vsync_start)/2;
1512 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1513 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1514 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
1515 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
1516 vs2_line_e = vs2_line_s +
1517 (mode->vsync_end - mode->vsync_start)/2;
1518 }
1519
1520 /*
1521 * Select pixel repeat depending on the double-clock flag
1522 * (which means we have to repeat each pixel once.)
1523 */
1524 rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1525 sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1526 SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1527
1528 /* the TMDS clock is scaled up by the pixel repeat */
1529 tmds_clock = mode->clock * (1 + rep);
1530
1531 /*
1532 * The divisor is power-of-2. The TDA9983B datasheet gives
1533 * this as ranges of Msample/s, which is 10x the TMDS clock:
1534 * 0 - 800 to 1500 Msample/s
1535 * 1 - 400 to 800 Msample/s
1536 * 2 - 200 to 400 Msample/s
1537 * 3 - as 2 above
1538 */
1539 for (div = 0; div < 3; div++)
1540 if (80000 >> div <= tmds_clock)
1541 break;
1542
1543 mutex_lock(&priv->audio_mutex);
1544
1545 priv->tmds_clock = tmds_clock;
1546
1547 /* mute the audio FIFO: */
1548 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1549
1550 /* set HDMI HDCP mode off: */
1551 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1552 reg_clear(priv, REG_TX33, TX33_HDMI);
1553 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1554
1555 /* no pre-filter or interpolator: */
1556 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1557 HVF_CNTRL_0_INTPOL(0));
1558 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1559 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1560 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1561 VIP_CNTRL_4_BLC(0));
1562
1563 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1564 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1565 PLL_SERIAL_3_SRL_DE);
1566 reg_write(priv, REG_SERIALIZER, 0);
1567 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1568
1569 reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1570 reg_write(priv, REG_SEL_CLK, sel_clk);
1571 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1572 PLL_SERIAL_2_SRL_PR(rep));
1573
1574 /* set color matrix according to output rgb quant range */
1575 if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1576 static u8 tda998x_full_to_limited_range[] = {
1577 MAT_CONTRL_MAT_SC(2),
1578 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1579 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1580 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1581 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1582 0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1583 };
1584 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1585 reg_write_range(priv, REG_MAT_CONTRL,
1586 tda998x_full_to_limited_range,
1587 sizeof(tda998x_full_to_limited_range));
1588 } else {
1589 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1590 MAT_CONTRL_MAT_SC(1));
1591 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1592 }
1593
1594 /* set BIAS tmds value: */
1595 reg_write(priv, REG_ANA_GENERAL, 0x09);
1596
1597 /*
1598 * Sync on rising HSYNC/VSYNC
1599 */
1600 reg = VIP_CNTRL_3_SYNC_HS;
1601
1602 /*
1603 * TDA19988 requires high-active sync at input stage,
1604 * so invert low-active sync provided by master encoder here
1605 */
1606 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1607 reg |= VIP_CNTRL_3_H_TGL;
1608 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1609 reg |= VIP_CNTRL_3_V_TGL;
1610 reg_write(priv, REG_VIP_CNTRL_3, reg);
1611
1612 reg_write(priv, REG_VIDFORMAT, 0x00);
1613 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1614 reg_write16(priv, REG_REFLINE_MSB, ref_line);
1615 reg_write16(priv, REG_NPIX_MSB, n_pix);
1616 reg_write16(priv, REG_NLINE_MSB, n_line);
1617 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1618 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1619 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1620 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1621 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1622 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1623 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1624 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1625 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1626 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1627 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1628 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1629 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1630 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1631 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1632 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1633
1634 if (priv->rev == TDA19988) {
1635 /* let incoming pixels fill the active space (if any) */
1636 reg_write(priv, REG_ENABLE_SPACE, 0x00);
1637 }
1638
1639 /*
1640 * Always generate sync polarity relative to input sync and
1641 * revert input stage toggled sync at output stage
1642 */
1643 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1644 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1645 reg |= TBG_CNTRL_1_H_TGL;
1646 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1647 reg |= TBG_CNTRL_1_V_TGL;
1648 reg_write(priv, REG_TBG_CNTRL_1, reg);
1649
1650 /* must be last register set: */
1651 reg_write(priv, REG_TBG_CNTRL_0, 0);
1652
1653 /* CEA-861B section 6 says that:
1654 * CEA version 1 (CEA-861) has no support for infoframes.
1655 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1656 * and optional basic audio.
1657 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1658 * and optional digital audio, with audio infoframes.
1659 *
1660 * Since we only support generation of version 2 AVI infoframes,
1661 * ignore CEA version 2 and below (iow, behave as if we're a
1662 * CEA-861 source.)
1663 */
1664 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1665
1666 if (priv->supports_infoframes) {
1667 /* We need to turn HDMI HDCP stuff on to get audio through */
1668 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1669 reg_write(priv, REG_TBG_CNTRL_1, reg);
1670 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1671 reg_set(priv, REG_TX33, TX33_HDMI);
1672
1673 tda998x_write_avi(priv, adjusted_mode);
1674 tda998x_write_vsi(priv, adjusted_mode);
1675
1676 if (priv->sink_has_audio)
1677 tda998x_configure_audio(priv);
1678 }
1679
1680 mutex_unlock(&priv->audio_mutex);
1681 }
1682
1683 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1684 .attach = tda998x_bridge_attach,
1685 .detach = tda998x_bridge_detach,
1686 .mode_valid = tda998x_bridge_mode_valid,
1687 .disable = tda998x_bridge_disable,
1688 .mode_set = tda998x_bridge_mode_set,
1689 .enable = tda998x_bridge_enable,
1690 };
1691
1692 /* I2C driver functions */
1693
tda998x_get_audio_ports(struct tda998x_priv * priv,struct device_node * np)1694 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1695 struct device_node *np)
1696 {
1697 const u32 *port_data;
1698 u32 size;
1699 int i;
1700
1701 port_data = of_get_property(np, "audio-ports", &size);
1702 if (!port_data)
1703 return 0;
1704
1705 size /= sizeof(u32);
1706 if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1707 dev_err(&priv->hdmi->dev,
1708 "Bad number of elements in audio-ports dt-property\n");
1709 return -EINVAL;
1710 }
1711
1712 size /= 2;
1713
1714 for (i = 0; i < size; i++) {
1715 unsigned int route;
1716 u8 afmt = be32_to_cpup(&port_data[2*i]);
1717 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1718
1719 switch (afmt) {
1720 case AFMT_I2S:
1721 route = AUDIO_ROUTE_I2S;
1722 break;
1723 case AFMT_SPDIF:
1724 route = AUDIO_ROUTE_SPDIF;
1725 break;
1726 default:
1727 dev_err(&priv->hdmi->dev,
1728 "Bad audio format %u\n", afmt);
1729 return -EINVAL;
1730 }
1731
1732 if (!ena_ap) {
1733 dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1734 continue;
1735 }
1736
1737 if (priv->audio_port_enable[route]) {
1738 dev_err(&priv->hdmi->dev,
1739 "%s format already configured\n",
1740 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1741 return -EINVAL;
1742 }
1743
1744 priv->audio_port_enable[route] = ena_ap;
1745 }
1746 return 0;
1747 }
1748
tda998x_set_config(struct tda998x_priv * priv,const struct tda998x_encoder_params * p)1749 static int tda998x_set_config(struct tda998x_priv *priv,
1750 const struct tda998x_encoder_params *p)
1751 {
1752 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1753 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1754 VIP_CNTRL_0_SWAP_B(p->swap_b) |
1755 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1756 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1757 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1758 VIP_CNTRL_1_SWAP_D(p->swap_d) |
1759 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1760 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1761 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1762 VIP_CNTRL_2_SWAP_F(p->swap_f) |
1763 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1764
1765 if (p->audio_params.format != AFMT_UNUSED) {
1766 unsigned int ratio, route;
1767 bool spdif = p->audio_params.format == AFMT_SPDIF;
1768
1769 route = AUDIO_ROUTE_I2S + spdif;
1770
1771 priv->audio.route = &tda998x_audio_route[route];
1772 priv->audio.cea = p->audio_params.cea;
1773 priv->audio.sample_rate = p->audio_params.sample_rate;
1774 memcpy(priv->audio.status, p->audio_params.status,
1775 min(sizeof(priv->audio.status),
1776 sizeof(p->audio_params.status)));
1777 priv->audio.ena_ap = p->audio_params.config;
1778 priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1779
1780 ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1781 return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1782 }
1783
1784 return 0;
1785 }
1786
tda998x_destroy(struct device * dev)1787 static void tda998x_destroy(struct device *dev)
1788 {
1789 struct tda998x_priv *priv = dev_get_drvdata(dev);
1790
1791 drm_bridge_remove(&priv->bridge);
1792
1793 /* disable all IRQs and free the IRQ handler */
1794 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1795 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1796
1797 if (priv->audio_pdev)
1798 platform_device_unregister(priv->audio_pdev);
1799
1800 if (priv->hdmi->irq)
1801 free_irq(priv->hdmi->irq, priv);
1802
1803 del_timer_sync(&priv->edid_delay_timer);
1804 cancel_work_sync(&priv->detect_work);
1805
1806 i2c_unregister_device(priv->cec);
1807
1808 cec_notifier_conn_unregister(priv->cec_notify);
1809 }
1810
tda998x_create(struct device * dev)1811 static int tda998x_create(struct device *dev)
1812 {
1813 struct i2c_client *client = to_i2c_client(dev);
1814 struct device_node *np = client->dev.of_node;
1815 struct i2c_board_info cec_info;
1816 struct tda998x_priv *priv;
1817 u32 video;
1818 int rev_lo, rev_hi, ret;
1819
1820 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1821 if (!priv)
1822 return -ENOMEM;
1823
1824 dev_set_drvdata(dev, priv);
1825
1826 mutex_init(&priv->mutex); /* protect the page access */
1827 mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1828 mutex_init(&priv->edid_mutex);
1829 INIT_LIST_HEAD(&priv->bridge.list);
1830 init_waitqueue_head(&priv->edid_delay_waitq);
1831 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1832 INIT_WORK(&priv->detect_work, tda998x_detect_work);
1833
1834 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1835 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1836 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1837
1838 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1839 priv->cec_addr = 0x34 + (client->addr & 0x03);
1840 priv->current_page = 0xff;
1841 priv->hdmi = client;
1842
1843 /* wake up the device: */
1844 cec_write(priv, REG_CEC_ENAMODS,
1845 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1846
1847 tda998x_reset(priv);
1848
1849 /* read version: */
1850 rev_lo = reg_read(priv, REG_VERSION_LSB);
1851 if (rev_lo < 0) {
1852 dev_err(dev, "failed to read version: %d\n", rev_lo);
1853 return rev_lo;
1854 }
1855
1856 rev_hi = reg_read(priv, REG_VERSION_MSB);
1857 if (rev_hi < 0) {
1858 dev_err(dev, "failed to read version: %d\n", rev_hi);
1859 return rev_hi;
1860 }
1861
1862 priv->rev = rev_lo | rev_hi << 8;
1863
1864 /* mask off feature bits: */
1865 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1866
1867 switch (priv->rev) {
1868 case TDA9989N2:
1869 dev_info(dev, "found TDA9989 n2");
1870 break;
1871 case TDA19989:
1872 dev_info(dev, "found TDA19989");
1873 break;
1874 case TDA19989N2:
1875 dev_info(dev, "found TDA19989 n2");
1876 break;
1877 case TDA19988:
1878 dev_info(dev, "found TDA19988");
1879 break;
1880 default:
1881 dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1882 return -ENXIO;
1883 }
1884
1885 /* after reset, enable DDC: */
1886 reg_write(priv, REG_DDC_DISABLE, 0x00);
1887
1888 /* set clock on DDC channel: */
1889 reg_write(priv, REG_TX3, 39);
1890
1891 /* if necessary, disable multi-master: */
1892 if (priv->rev == TDA19989)
1893 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1894
1895 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1896 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1897
1898 /* ensure interrupts are disabled */
1899 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1900
1901 /* clear pending interrupts */
1902 cec_read(priv, REG_CEC_RXSHPDINT);
1903 reg_read(priv, REG_INT_FLAGS_0);
1904 reg_read(priv, REG_INT_FLAGS_1);
1905 reg_read(priv, REG_INT_FLAGS_2);
1906
1907 /* initialize the optional IRQ */
1908 if (client->irq) {
1909 unsigned long irq_flags;
1910
1911 /* init read EDID waitqueue and HDP work */
1912 init_waitqueue_head(&priv->wq_edid);
1913
1914 irq_flags =
1915 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1916
1917 priv->cec_glue.irq_flags = irq_flags;
1918
1919 irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1920 ret = request_threaded_irq(client->irq, NULL,
1921 tda998x_irq_thread, irq_flags,
1922 "tda998x", priv);
1923 if (ret) {
1924 dev_err(dev, "failed to request IRQ#%u: %d\n",
1925 client->irq, ret);
1926 goto err_irq;
1927 }
1928
1929 /* enable HPD irq */
1930 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1931 }
1932
1933 priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1934 if (!priv->cec_notify) {
1935 ret = -ENOMEM;
1936 goto fail;
1937 }
1938
1939 priv->cec_glue.parent = dev;
1940 priv->cec_glue.data = priv;
1941 priv->cec_glue.init = tda998x_cec_hook_init;
1942 priv->cec_glue.exit = tda998x_cec_hook_exit;
1943 priv->cec_glue.open = tda998x_cec_hook_open;
1944 priv->cec_glue.release = tda998x_cec_hook_release;
1945
1946 /*
1947 * Some TDA998x are actually two I2C devices merged onto one piece
1948 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1949 * with a slightly modified TDA9950 CEC device. The CEC device
1950 * is at the TDA9950 address, with the address pins strapped across
1951 * to the TDA998x address pins. Hence, it always has the same
1952 * offset.
1953 */
1954 memset(&cec_info, 0, sizeof(cec_info));
1955 strscpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1956 cec_info.addr = priv->cec_addr;
1957 cec_info.platform_data = &priv->cec_glue;
1958 cec_info.irq = client->irq;
1959
1960 priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1961 if (IS_ERR(priv->cec)) {
1962 ret = PTR_ERR(priv->cec);
1963 goto fail;
1964 }
1965
1966 /* enable EDID read irq: */
1967 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1968
1969 if (np) {
1970 /* get the device tree parameters */
1971 ret = of_property_read_u32(np, "video-ports", &video);
1972 if (ret == 0) {
1973 priv->vip_cntrl_0 = video >> 16;
1974 priv->vip_cntrl_1 = video >> 8;
1975 priv->vip_cntrl_2 = video;
1976 }
1977
1978 ret = tda998x_get_audio_ports(priv, np);
1979 if (ret)
1980 goto fail;
1981
1982 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1983 priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1984 tda998x_audio_codec_init(priv, &client->dev);
1985 } else if (dev->platform_data) {
1986 ret = tda998x_set_config(priv, dev->platform_data);
1987 if (ret)
1988 goto fail;
1989 }
1990
1991 priv->bridge.funcs = &tda998x_bridge_funcs;
1992 #ifdef CONFIG_OF
1993 priv->bridge.of_node = dev->of_node;
1994 #endif
1995
1996 drm_bridge_add(&priv->bridge);
1997
1998 return 0;
1999
2000 fail:
2001 tda998x_destroy(dev);
2002 err_irq:
2003 return ret;
2004 }
2005
2006 /* DRM encoder functions */
2007
tda998x_encoder_init(struct device * dev,struct drm_device * drm)2008 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2009 {
2010 struct tda998x_priv *priv = dev_get_drvdata(dev);
2011 u32 crtcs = 0;
2012 int ret;
2013
2014 if (dev->of_node)
2015 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2016
2017 /* If no CRTCs were found, fall back to our old behaviour */
2018 if (crtcs == 0) {
2019 dev_warn(dev, "Falling back to first CRTC\n");
2020 crtcs = 1 << 0;
2021 }
2022
2023 priv->encoder.possible_crtcs = crtcs;
2024
2025 ret = drm_simple_encoder_init(drm, &priv->encoder,
2026 DRM_MODE_ENCODER_TMDS);
2027 if (ret)
2028 goto err_encoder;
2029
2030 ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2031 if (ret)
2032 goto err_bridge;
2033
2034 return 0;
2035
2036 err_bridge:
2037 drm_encoder_cleanup(&priv->encoder);
2038 err_encoder:
2039 return ret;
2040 }
2041
tda998x_bind(struct device * dev,struct device * master,void * data)2042 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2043 {
2044 struct drm_device *drm = data;
2045
2046 return tda998x_encoder_init(dev, drm);
2047 }
2048
tda998x_unbind(struct device * dev,struct device * master,void * data)2049 static void tda998x_unbind(struct device *dev, struct device *master,
2050 void *data)
2051 {
2052 struct tda998x_priv *priv = dev_get_drvdata(dev);
2053
2054 drm_encoder_cleanup(&priv->encoder);
2055 }
2056
2057 static const struct component_ops tda998x_ops = {
2058 .bind = tda998x_bind,
2059 .unbind = tda998x_unbind,
2060 };
2061
2062 static int
tda998x_probe(struct i2c_client * client)2063 tda998x_probe(struct i2c_client *client)
2064 {
2065 int ret;
2066
2067 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2068 dev_warn(&client->dev, "adapter does not support I2C\n");
2069 return -EIO;
2070 }
2071
2072 ret = tda998x_create(&client->dev);
2073 if (ret)
2074 return ret;
2075
2076 ret = component_add(&client->dev, &tda998x_ops);
2077 if (ret)
2078 tda998x_destroy(&client->dev);
2079 return ret;
2080 }
2081
tda998x_remove(struct i2c_client * client)2082 static void tda998x_remove(struct i2c_client *client)
2083 {
2084 component_del(&client->dev, &tda998x_ops);
2085 tda998x_destroy(&client->dev);
2086 }
2087
2088 #ifdef CONFIG_OF
2089 static const struct of_device_id tda998x_dt_ids[] = {
2090 { .compatible = "nxp,tda998x", },
2091 { }
2092 };
2093 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2094 #endif
2095
2096 static const struct i2c_device_id tda998x_ids[] = {
2097 { "tda998x", 0 },
2098 { }
2099 };
2100 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2101
2102 static struct i2c_driver tda998x_driver = {
2103 .probe = tda998x_probe,
2104 .remove = tda998x_remove,
2105 .driver = {
2106 .name = "tda998x",
2107 .of_match_table = of_match_ptr(tda998x_dt_ids),
2108 },
2109 .id_table = tda998x_ids,
2110 };
2111
2112 module_i2c_driver(tda998x_driver);
2113
2114 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2115 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2116 MODULE_LICENSE("GPL");
2117