1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14 #include <linux/cleanup.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/platform_device.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
31 #include <linux/of_irq.h>
32 #include <linux/overflow.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35
36 /* SPI register offsets */
37 #define BCM2835_SPI_CS 0x00
38 #define BCM2835_SPI_FIFO 0x04
39 #define BCM2835_SPI_CLK 0x08
40 #define BCM2835_SPI_DLEN 0x0c
41 #define BCM2835_SPI_LTOH 0x10
42 #define BCM2835_SPI_DC 0x14
43
44 /* Bitfields in CS */
45 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
46 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
47 #define BCM2835_SPI_CS_CSPOL2 0x00800000
48 #define BCM2835_SPI_CS_CSPOL1 0x00400000
49 #define BCM2835_SPI_CS_CSPOL0 0x00200000
50 #define BCM2835_SPI_CS_RXF 0x00100000
51 #define BCM2835_SPI_CS_RXR 0x00080000
52 #define BCM2835_SPI_CS_TXD 0x00040000
53 #define BCM2835_SPI_CS_RXD 0x00020000
54 #define BCM2835_SPI_CS_DONE 0x00010000
55 #define BCM2835_SPI_CS_LEN 0x00002000
56 #define BCM2835_SPI_CS_REN 0x00001000
57 #define BCM2835_SPI_CS_ADCS 0x00000800
58 #define BCM2835_SPI_CS_INTR 0x00000400
59 #define BCM2835_SPI_CS_INTD 0x00000200
60 #define BCM2835_SPI_CS_DMAEN 0x00000100
61 #define BCM2835_SPI_CS_TA 0x00000080
62 #define BCM2835_SPI_CS_CSPOL 0x00000040
63 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
64 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
65 #define BCM2835_SPI_CS_CPOL 0x00000008
66 #define BCM2835_SPI_CS_CPHA 0x00000004
67 #define BCM2835_SPI_CS_CS_10 0x00000002
68 #define BCM2835_SPI_CS_CS_01 0x00000001
69
70 #define BCM2835_SPI_FIFO_SIZE 64
71 #define BCM2835_SPI_FIFO_SIZE_3_4 48
72 #define BCM2835_SPI_DMA_MIN_LENGTH 96
73 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
74 | SPI_NO_CS | SPI_3WIRE)
75
76 #define DRV_NAME "spi-bcm2835"
77
78 /* define polling limits */
79 static unsigned int polling_limit_us = 30;
80 module_param(polling_limit_us, uint, 0664);
81 MODULE_PARM_DESC(polling_limit_us,
82 "time in us to run a transfer in polling mode\n");
83
84 /**
85 * struct bcm2835_spi - BCM2835 SPI controller
86 * @regs: base address of register map
87 * @clk: core clock, divided to calculate serial clock
88 * @cs_gpio: chip-select GPIO descriptor
89 * @clk_hz: core clock cached speed
90 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
91 * @tfr: SPI transfer currently processed
92 * @ctlr: SPI controller reverse lookup
93 * @tx_buf: pointer whence next transmitted byte is read
94 * @rx_buf: pointer where next received byte is written
95 * @tx_len: remaining bytes to transmit
96 * @rx_len: remaining bytes to receive
97 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
98 * length is not a multiple of 4 (to overcome hardware limitation)
99 * @rx_prologue: bytes received without DMA if first RX sglist entry's
100 * length is not a multiple of 4 (to overcome hardware limitation)
101 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
103 * unloading the module
104 * @count_transfer_polling: count of how often polling mode is used
105 * @count_transfer_irq: count of how often interrupt mode is used
106 * @count_transfer_irq_after_polling: count of how often we fall back to
107 * interrupt mode after starting in polling mode.
108 * These are counted as well in @count_transfer_polling and
109 * @count_transfer_irq
110 * @count_transfer_dma: count how often dma mode is used
111 * @target: SPI target currently selected
112 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
113 * @tx_dma_active: whether a TX DMA descriptor is in progress
114 * @rx_dma_active: whether a RX DMA descriptor is in progress
115 * (used by bcm2835_spi_dma_tx_done() to handle a race)
116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
117 * (cyclically copies from zero page to TX FIFO)
118 * @fill_tx_addr: bus address of zero page
119 */
120 struct bcm2835_spi {
121 void __iomem *regs;
122 struct clk *clk;
123 struct gpio_desc *cs_gpio;
124 unsigned long clk_hz;
125 int irq;
126 struct spi_transfer *tfr;
127 struct spi_controller *ctlr;
128 const u8 *tx_buf;
129 u8 *rx_buf;
130 int tx_len;
131 int rx_len;
132 int tx_prologue;
133 int rx_prologue;
134 unsigned int tx_spillover;
135
136 struct dentry *debugfs_dir;
137 u64 count_transfer_polling;
138 u64 count_transfer_irq;
139 u64 count_transfer_irq_after_polling;
140 u64 count_transfer_dma;
141
142 struct bcm2835_spidev *target;
143 unsigned int tx_dma_active;
144 unsigned int rx_dma_active;
145 struct dma_async_tx_descriptor *fill_tx_desc;
146 dma_addr_t fill_tx_addr;
147 };
148
149 /**
150 * struct bcm2835_spidev - BCM2835 SPI target
151 * @prepare_cs: precalculated CS register value for ->prepare_message()
152 * (uses target-specific clock polarity and phase settings)
153 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
154 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
155 * @clear_rx_addr: bus address of @clear_rx_cs
156 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
157 * (uses target-specific clock polarity and phase settings)
158 */
159 struct bcm2835_spidev {
160 u32 prepare_cs;
161 struct dma_async_tx_descriptor *clear_rx_desc;
162 dma_addr_t clear_rx_addr;
163 u32 clear_rx_cs ____cacheline_aligned;
164 };
165
166 #if defined(CONFIG_DEBUG_FS)
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)167 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
168 const char *dname)
169 {
170 char name[64];
171 struct dentry *dir;
172
173 /* get full name */
174 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
175
176 /* the base directory */
177 dir = debugfs_create_dir(name, NULL);
178 bs->debugfs_dir = dir;
179
180 /* the counters */
181 debugfs_create_u64("count_transfer_polling", 0444, dir,
182 &bs->count_transfer_polling);
183 debugfs_create_u64("count_transfer_irq", 0444, dir,
184 &bs->count_transfer_irq);
185 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
186 &bs->count_transfer_irq_after_polling);
187 debugfs_create_u64("count_transfer_dma", 0444, dir,
188 &bs->count_transfer_dma);
189 }
190
bcm2835_debugfs_remove(struct bcm2835_spi * bs)191 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
192 {
193 debugfs_remove_recursive(bs->debugfs_dir);
194 bs->debugfs_dir = NULL;
195 }
196 #else
bcm2835_debugfs_create(struct bcm2835_spi * bs,const char * dname)197 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
198 const char *dname)
199 {
200 }
201
bcm2835_debugfs_remove(struct bcm2835_spi * bs)202 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
203 {
204 }
205 #endif /* CONFIG_DEBUG_FS */
206
bcm2835_rd(struct bcm2835_spi * bs,unsigned int reg)207 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
208 {
209 return readl(bs->regs + reg);
210 }
211
bcm2835_wr(struct bcm2835_spi * bs,unsigned int reg,u32 val)212 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
213 {
214 writel(val, bs->regs + reg);
215 }
216
bcm2835_rd_fifo(struct bcm2835_spi * bs)217 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
218 {
219 u8 byte;
220
221 while ((bs->rx_len) &&
222 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
223 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
224 if (bs->rx_buf)
225 *bs->rx_buf++ = byte;
226 bs->rx_len--;
227 }
228 }
229
bcm2835_wr_fifo(struct bcm2835_spi * bs)230 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
231 {
232 u8 byte;
233
234 while ((bs->tx_len) &&
235 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
236 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
237 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
238 bs->tx_len--;
239 }
240 }
241
242 /**
243 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
244 * @bs: BCM2835 SPI controller
245 * @count: bytes to read from RX FIFO
246 *
247 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
248 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
249 * in the CS register is set (such that a read from the FIFO register receives
250 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
251 */
bcm2835_rd_fifo_count(struct bcm2835_spi * bs,int count)252 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
253 {
254 u32 val;
255 int len;
256
257 bs->rx_len -= count;
258
259 do {
260 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
261 len = min(count, 4);
262 memcpy(bs->rx_buf, &val, len);
263 bs->rx_buf += len;
264 count -= 4;
265 } while (count > 0);
266 }
267
268 /**
269 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
270 * @bs: BCM2835 SPI controller
271 * @count: bytes to write to TX FIFO
272 *
273 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
274 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
275 * in the CS register is set (such that a write to the FIFO register transmits
276 * 32-bit instead of just 8-bit).
277 */
bcm2835_wr_fifo_count(struct bcm2835_spi * bs,int count)278 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
279 {
280 u32 val;
281 int len;
282
283 bs->tx_len -= count;
284
285 do {
286 if (bs->tx_buf) {
287 len = min(count, 4);
288 memcpy(&val, bs->tx_buf, len);
289 bs->tx_buf += len;
290 } else {
291 val = 0;
292 }
293 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
294 count -= 4;
295 } while (count > 0);
296 }
297
298 /**
299 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
300 * @bs: BCM2835 SPI controller
301 *
302 * The caller must ensure that the RX FIFO can accommodate as many bytes
303 * as have been written to the TX FIFO: Transmission is halted once the
304 * RX FIFO is full, causing this function to spin forever.
305 */
bcm2835_wait_tx_fifo_empty(struct bcm2835_spi * bs)306 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
307 {
308 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
309 cpu_relax();
310 }
311
312 /**
313 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
314 * @bs: BCM2835 SPI controller
315 * @count: bytes available for reading in RX FIFO
316 */
bcm2835_rd_fifo_blind(struct bcm2835_spi * bs,int count)317 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
318 {
319 u8 val;
320
321 count = min(count, bs->rx_len);
322 bs->rx_len -= count;
323
324 do {
325 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
326 if (bs->rx_buf)
327 *bs->rx_buf++ = val;
328 } while (--count);
329 }
330
331 /**
332 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
333 * @bs: BCM2835 SPI controller
334 * @count: bytes available for writing in TX FIFO
335 */
bcm2835_wr_fifo_blind(struct bcm2835_spi * bs,int count)336 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
337 {
338 u8 val;
339
340 count = min(count, bs->tx_len);
341 bs->tx_len -= count;
342
343 do {
344 val = bs->tx_buf ? *bs->tx_buf++ : 0;
345 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
346 } while (--count);
347 }
348
bcm2835_spi_reset_hw(struct bcm2835_spi * bs)349 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
350 {
351 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
352
353 /* Disable SPI interrupts and transfer */
354 cs &= ~(BCM2835_SPI_CS_INTR |
355 BCM2835_SPI_CS_INTD |
356 BCM2835_SPI_CS_DMAEN |
357 BCM2835_SPI_CS_TA);
358 /*
359 * Transmission sometimes breaks unless the DONE bit is written at the
360 * end of every transfer. The spec says it's a RO bit. Either the
361 * spec is wrong and the bit is actually of type RW1C, or it's a
362 * hardware erratum.
363 */
364 cs |= BCM2835_SPI_CS_DONE;
365 /* and reset RX/TX FIFOS */
366 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
367
368 /* and reset the SPI_HW */
369 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
370 /* as well as DLEN */
371 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
372 }
373
bcm2835_spi_interrupt(int irq,void * dev_id)374 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
375 {
376 struct bcm2835_spi *bs = dev_id;
377 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
378
379 /* Bail out early if interrupts are not enabled */
380 if (!(cs & BCM2835_SPI_CS_INTR))
381 return IRQ_NONE;
382
383 /*
384 * An interrupt is signaled either if DONE is set (TX FIFO empty)
385 * or if RXR is set (RX FIFO >= ¾ full).
386 */
387 if (cs & BCM2835_SPI_CS_RXF)
388 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
389 else if (cs & BCM2835_SPI_CS_RXR)
390 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
391
392 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
393 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
394
395 /* Read as many bytes as possible from FIFO */
396 bcm2835_rd_fifo(bs);
397 /* Write as many bytes as possible to FIFO */
398 bcm2835_wr_fifo(bs);
399
400 if (!bs->rx_len) {
401 /* Transfer complete - reset SPI HW */
402 bcm2835_spi_reset_hw(bs);
403 /* wake up the framework */
404 spi_finalize_current_transfer(bs->ctlr);
405 }
406
407 return IRQ_HANDLED;
408 }
409
bcm2835_spi_transfer_one_irq(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs,bool fifo_empty)410 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
411 struct spi_device *spi,
412 struct spi_transfer *tfr,
413 u32 cs, bool fifo_empty)
414 {
415 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
416
417 /* update usage statistics */
418 bs->count_transfer_irq++;
419
420 /*
421 * Enable HW block, but with interrupts still disabled.
422 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
423 */
424 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
425
426 /* fill TX FIFO as much as possible */
427 if (fifo_empty)
428 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
429 bcm2835_wr_fifo(bs);
430
431 /* enable interrupts */
432 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
433 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
434
435 /* signal that we need to wait for completion */
436 return 1;
437 }
438
439 /**
440 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
441 * @ctlr: SPI host controller
442 * @tfr: SPI transfer
443 * @bs: BCM2835 SPI controller
444 * @cs: CS register
445 *
446 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
447 * Only the final write access is permitted to transmit less than 4 bytes, the
448 * SPI controller deduces its intended size from the DLEN register.
449 *
450 * If a TX or RX sglist contains multiple entries, one per page, and the first
451 * entry starts in the middle of a page, that first entry's length may not be
452 * a multiple of 4. Subsequent entries are fine because they span an entire
453 * page, hence do have a length that's a multiple of 4.
454 *
455 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
456 * because they are contiguous in physical memory and therefore not split on
457 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
458 * buffers.
459 *
460 * The DMA engine is incapable of combining sglist entries into a continuous
461 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
462 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
463 * entry is rounded up by throwing away received bytes.
464 *
465 * Overcome this limitation by transferring the first few bytes without DMA:
466 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
467 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
468 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
469 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
470 *
471 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
472 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
473 * Caution, the additional 4 bytes spill over to the second TX sglist entry
474 * if the length of the first is *exactly* 1.
475 *
476 * At most 6 bytes are written and at most 3 bytes read. Do we know the
477 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
478 *
479 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
480 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
481 * the width but also garbles the FIFO's contents. The prologue must therefore
482 * be transmitted in 32-bit width to ensure that the following DMA transfer can
483 * pick up the residue in the RX FIFO in ungarbled form.
484 */
bcm2835_spi_transfer_prologue(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,u32 cs)485 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
486 struct spi_transfer *tfr,
487 struct bcm2835_spi *bs,
488 u32 cs)
489 {
490 int tx_remaining;
491
492 bs->tfr = tfr;
493 bs->tx_prologue = 0;
494 bs->rx_prologue = 0;
495 bs->tx_spillover = false;
496
497 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
498 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
499
500 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
501 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
502
503 if (bs->rx_prologue > bs->tx_prologue) {
504 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
505 bs->tx_prologue = bs->rx_prologue;
506 } else {
507 bs->tx_prologue += 4;
508 bs->tx_spillover =
509 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
510 }
511 }
512 }
513
514 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
515 if (!bs->tx_prologue)
516 return;
517
518 /* Write and read RX prologue. Adjust first entry in RX sglist. */
519 if (bs->rx_prologue) {
520 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
521 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
522 | BCM2835_SPI_CS_DMAEN);
523 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
524 bcm2835_wait_tx_fifo_empty(bs);
525 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
526 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
527 | BCM2835_SPI_CS_CLEAR_TX
528 | BCM2835_SPI_CS_DONE);
529
530 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
531 sg_dma_address(&tfr->rx_sg.sgl[0]),
532 bs->rx_prologue, DMA_FROM_DEVICE);
533
534 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
535 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
536 }
537
538 if (!bs->tx_buf)
539 return;
540
541 /*
542 * Write remaining TX prologue. Adjust first entry in TX sglist.
543 * Also adjust second entry if prologue spills over to it.
544 */
545 tx_remaining = bs->tx_prologue - bs->rx_prologue;
546 if (tx_remaining) {
547 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
548 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
549 | BCM2835_SPI_CS_DMAEN);
550 bcm2835_wr_fifo_count(bs, tx_remaining);
551 bcm2835_wait_tx_fifo_empty(bs);
552 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
553 | BCM2835_SPI_CS_DONE);
554 }
555
556 if (likely(!bs->tx_spillover)) {
557 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
558 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
559 } else {
560 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
561 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
562 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
563 }
564 }
565
566 /**
567 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
568 * @bs: BCM2835 SPI controller
569 *
570 * Undo changes which were made to an SPI transfer's sglist when transmitting
571 * the prologue. This is necessary to ensure the same memory ranges are
572 * unmapped that were originally mapped.
573 */
bcm2835_spi_undo_prologue(struct bcm2835_spi * bs)574 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
575 {
576 struct spi_transfer *tfr = bs->tfr;
577
578 if (!bs->tx_prologue)
579 return;
580
581 if (bs->rx_prologue) {
582 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
583 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
584 }
585
586 if (!bs->tx_buf)
587 goto out;
588
589 if (likely(!bs->tx_spillover)) {
590 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
591 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
592 } else {
593 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
594 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
595 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
596 }
597 out:
598 bs->tx_prologue = 0;
599 }
600
601 /**
602 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
603 * @data: SPI host controller
604 *
605 * Used for bidirectional and RX-only transfers.
606 */
bcm2835_spi_dma_rx_done(void * data)607 static void bcm2835_spi_dma_rx_done(void *data)
608 {
609 struct spi_controller *ctlr = data;
610 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
611
612 /* terminate tx-dma as we do not have an irq for it
613 * because when the rx dma will terminate and this callback
614 * is called the tx-dma must have finished - can't get to this
615 * situation otherwise...
616 */
617 dmaengine_terminate_async(ctlr->dma_tx);
618 bs->tx_dma_active = false;
619 bs->rx_dma_active = false;
620 bcm2835_spi_undo_prologue(bs);
621
622 /* reset fifo and HW */
623 bcm2835_spi_reset_hw(bs);
624
625 /* and mark as completed */;
626 spi_finalize_current_transfer(ctlr);
627 }
628
629 /**
630 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
631 * @data: SPI host controller
632 *
633 * Used for TX-only transfers.
634 */
bcm2835_spi_dma_tx_done(void * data)635 static void bcm2835_spi_dma_tx_done(void *data)
636 {
637 struct spi_controller *ctlr = data;
638 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
639
640 /* busy-wait for TX FIFO to empty */
641 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
642 bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
643
644 bs->tx_dma_active = false;
645 smp_wmb();
646
647 /*
648 * In case of a very short transfer, RX DMA may not have been
649 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
650 * to terminate it immediately after issuing.
651 */
652 if (cmpxchg(&bs->rx_dma_active, true, false))
653 dmaengine_terminate_async(ctlr->dma_rx);
654
655 bcm2835_spi_undo_prologue(bs);
656 bcm2835_spi_reset_hw(bs);
657 spi_finalize_current_transfer(ctlr);
658 }
659
660 /**
661 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
662 * @ctlr: SPI host controller
663 * @tfr: SPI transfer
664 * @bs: BCM2835 SPI controller
665 * @target: BCM2835 SPI target
666 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
667 *
668 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
669 * Return 0 on success or a negative error number.
670 */
bcm2835_spi_prepare_sg(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spi * bs,struct bcm2835_spidev * target,bool is_tx)671 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
672 struct spi_transfer *tfr,
673 struct bcm2835_spi *bs,
674 struct bcm2835_spidev *target,
675 bool is_tx)
676 {
677 struct dma_chan *chan;
678 struct scatterlist *sgl;
679 unsigned int nents;
680 enum dma_transfer_direction dir;
681 unsigned long flags;
682
683 struct dma_async_tx_descriptor *desc;
684 dma_cookie_t cookie;
685
686 if (is_tx) {
687 dir = DMA_MEM_TO_DEV;
688 chan = ctlr->dma_tx;
689 nents = tfr->tx_sg.nents;
690 sgl = tfr->tx_sg.sgl;
691 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
692 } else {
693 dir = DMA_DEV_TO_MEM;
694 chan = ctlr->dma_rx;
695 nents = tfr->rx_sg.nents;
696 sgl = tfr->rx_sg.sgl;
697 flags = DMA_PREP_INTERRUPT;
698 }
699 /* prepare the channel */
700 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
701 if (!desc)
702 return -EINVAL;
703
704 /*
705 * Completion is signaled by the RX channel for bidirectional and
706 * RX-only transfers; else by the TX channel for TX-only transfers.
707 */
708 if (!is_tx) {
709 desc->callback = bcm2835_spi_dma_rx_done;
710 desc->callback_param = ctlr;
711 } else if (!tfr->rx_buf) {
712 desc->callback = bcm2835_spi_dma_tx_done;
713 desc->callback_param = ctlr;
714 bs->target = target;
715 }
716
717 /* submit it to DMA-engine */
718 cookie = dmaengine_submit(desc);
719
720 return dma_submit_error(cookie);
721 }
722
723 /**
724 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
725 * @ctlr: SPI host controller
726 * @tfr: SPI transfer
727 * @target: BCM2835 SPI target
728 * @cs: CS register
729 *
730 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
731 * the TX and RX DMA channel to copy between memory and FIFO register.
732 *
733 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
734 * memory is pointless. However not reading the RX FIFO isn't an option either
735 * because transmission is halted once it's full. As a workaround, cyclically
736 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
737 *
738 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
739 * this is called only once, on target registration. A DMA descriptor to write
740 * this value is preallocated in bcm2835_dma_init(). All that's left to do
741 * when performing a TX-only transfer is to submit this descriptor to the RX
742 * DMA channel. Latency is thereby minimized. The descriptor does not
743 * generate any interrupts while running. It must be terminated once the
744 * TX DMA channel is done.
745 *
746 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
747 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
748 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
749 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
750 * reduction in bus traffic and thus energy consumption is achieved.
751 *
752 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
753 * copying from the zero page. The DMA descriptor to do this is preallocated
754 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
755 * done and can then be reused.
756 *
757 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
758 * page and utilizes the DMA controller's ability to synthesize zeroes instead
759 * of copying them from memory. This reduces traffic on the memory bus. The
760 * feature is not available on so-called "lite" channels, but normally TX DMA
761 * is backed by a full-featured channel.
762 *
763 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
764 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
765 * has been counted down to zero (hardware erratum). Thus, when the transfer
766 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
767 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
768 * performed at the end of an RX-only transfer.
769 */
bcm2835_spi_transfer_one_dma(struct spi_controller * ctlr,struct spi_transfer * tfr,struct bcm2835_spidev * target,u32 cs)770 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
771 struct spi_transfer *tfr,
772 struct bcm2835_spidev *target,
773 u32 cs)
774 {
775 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
776 dma_cookie_t cookie;
777 int ret;
778
779 /* update usage statistics */
780 bs->count_transfer_dma++;
781
782 /*
783 * Transfer first few bytes without DMA if length of first TX or RX
784 * sglist entry is not a multiple of 4 bytes (hardware limitation).
785 */
786 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
787
788 /* setup tx-DMA */
789 if (bs->tx_buf) {
790 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
791 } else {
792 cookie = dmaengine_submit(bs->fill_tx_desc);
793 ret = dma_submit_error(cookie);
794 }
795 if (ret)
796 goto err_reset_hw;
797
798 /* set the DMA length */
799 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
800
801 /* start the HW */
802 bcm2835_wr(bs, BCM2835_SPI_CS,
803 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
804
805 bs->tx_dma_active = true;
806 smp_wmb();
807
808 /* start TX early */
809 dma_async_issue_pending(ctlr->dma_tx);
810
811 /* setup rx-DMA late - to run transfers while
812 * mapping of the rx buffers still takes place
813 * this saves 10us or more.
814 */
815 if (bs->rx_buf) {
816 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
817 } else {
818 cookie = dmaengine_submit(target->clear_rx_desc);
819 ret = dma_submit_error(cookie);
820 }
821 if (ret) {
822 /* need to reset on errors */
823 dmaengine_terminate_sync(ctlr->dma_tx);
824 bs->tx_dma_active = false;
825 goto err_reset_hw;
826 }
827
828 /* start rx dma late */
829 dma_async_issue_pending(ctlr->dma_rx);
830 bs->rx_dma_active = true;
831 smp_mb();
832
833 /*
834 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
835 * may run before RX DMA is issued. Terminate RX DMA if so.
836 */
837 if (!bs->rx_buf && !bs->tx_dma_active &&
838 cmpxchg(&bs->rx_dma_active, true, false)) {
839 dmaengine_terminate_async(ctlr->dma_rx);
840 bcm2835_spi_reset_hw(bs);
841 }
842
843 /* wait for wakeup in framework */
844 return 1;
845
846 err_reset_hw:
847 bcm2835_spi_reset_hw(bs);
848 bcm2835_spi_undo_prologue(bs);
849 return ret;
850 }
851
bcm2835_spi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)852 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
853 struct spi_device *spi,
854 struct spi_transfer *tfr)
855 {
856 /* we start DMA efforts only on bigger transfers */
857 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
858 return false;
859
860 /* return OK */
861 return true;
862 }
863
bcm2835_dma_release(struct spi_controller * ctlr,struct bcm2835_spi * bs)864 static void bcm2835_dma_release(struct spi_controller *ctlr,
865 struct bcm2835_spi *bs)
866 {
867 if (ctlr->dma_tx) {
868 dmaengine_terminate_sync(ctlr->dma_tx);
869
870 if (bs->fill_tx_desc)
871 dmaengine_desc_free(bs->fill_tx_desc);
872
873 if (bs->fill_tx_addr)
874 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
875 bs->fill_tx_addr, sizeof(u32),
876 DMA_TO_DEVICE,
877 DMA_ATTR_SKIP_CPU_SYNC);
878
879 dma_release_channel(ctlr->dma_tx);
880 ctlr->dma_tx = NULL;
881 }
882
883 if (ctlr->dma_rx) {
884 dmaengine_terminate_sync(ctlr->dma_rx);
885 dma_release_channel(ctlr->dma_rx);
886 ctlr->dma_rx = NULL;
887 }
888 }
889
bcm2835_dma_init(struct spi_controller * ctlr,struct device * dev,struct bcm2835_spi * bs)890 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
891 struct bcm2835_spi *bs)
892 {
893 struct dma_slave_config slave_config;
894 const __be32 *addr;
895 dma_addr_t dma_reg_base;
896 int ret;
897
898 /* base address in dma-space */
899 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
900 if (!addr) {
901 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
902 /* Fall back to interrupt mode */
903 return 0;
904 }
905 dma_reg_base = be32_to_cpup(addr);
906
907 /* get tx/rx dma */
908 ctlr->dma_tx = dma_request_chan(dev, "tx");
909 if (IS_ERR(ctlr->dma_tx)) {
910 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
911 "no tx-dma configuration found - not using dma mode\n");
912 ctlr->dma_tx = NULL;
913 goto err;
914 }
915 ctlr->dma_rx = dma_request_chan(dev, "rx");
916 if (IS_ERR(ctlr->dma_rx)) {
917 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
918 "no rx-dma configuration found - not using dma mode\n");
919 ctlr->dma_rx = NULL;
920 goto err_release;
921 }
922
923 /*
924 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
925 * or, in case of an RX-only transfer, cyclically copies from the zero
926 * page to the FIFO using a preallocated, reusable descriptor.
927 */
928 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
929 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
930
931 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
932 if (ret)
933 goto err_config;
934
935 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
936 ZERO_PAGE(0), 0, sizeof(u32),
937 DMA_TO_DEVICE,
938 DMA_ATTR_SKIP_CPU_SYNC);
939 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
940 dev_err(dev, "cannot map zero page - not using DMA mode\n");
941 bs->fill_tx_addr = 0;
942 ret = -ENOMEM;
943 goto err_release;
944 }
945
946 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
947 bs->fill_tx_addr,
948 sizeof(u32), 0,
949 DMA_MEM_TO_DEV, 0);
950 if (!bs->fill_tx_desc) {
951 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
952 ret = -ENOMEM;
953 goto err_release;
954 }
955
956 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
957 if (ret) {
958 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
959 goto err_release;
960 }
961
962 /*
963 * The RX DMA channel is used bidirectionally: It either reads the
964 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
965 * precalculated value to the CS register to clear the RX FIFO.
966 */
967 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
968 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
969 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
970 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
971
972 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
973 if (ret)
974 goto err_config;
975
976 /* all went well, so set can_dma */
977 ctlr->can_dma = bcm2835_spi_can_dma;
978
979 return 0;
980
981 err_config:
982 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
983 ret);
984 err_release:
985 bcm2835_dma_release(ctlr, bs);
986 err:
987 /*
988 * Only report error for deferred probing, otherwise fall back to
989 * interrupt mode
990 */
991 if (ret != -EPROBE_DEFER)
992 ret = 0;
993
994 return ret;
995 }
996
bcm2835_spi_transfer_one_poll(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr,u32 cs)997 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
998 struct spi_device *spi,
999 struct spi_transfer *tfr,
1000 u32 cs)
1001 {
1002 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1003 unsigned long timeout;
1004
1005 /* update usage statistics */
1006 bs->count_transfer_polling++;
1007
1008 /* enable HW block without interrupts */
1009 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1010
1011 /* fill in the fifo before timeout calculations
1012 * if we are interrupted here, then the data is
1013 * getting transferred by the HW while we are interrupted
1014 */
1015 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1016
1017 /* set the timeout to at least 2 jiffies */
1018 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1019
1020 /* loop until finished the transfer */
1021 while (bs->rx_len) {
1022 /* fill in tx fifo with remaining data */
1023 bcm2835_wr_fifo(bs);
1024
1025 /* read from fifo as much as possible */
1026 bcm2835_rd_fifo(bs);
1027
1028 /* if there is still data pending to read
1029 * then check the timeout
1030 */
1031 if (bs->rx_len && time_after(jiffies, timeout)) {
1032 dev_dbg_ratelimited(&spi->dev,
1033 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1034 jiffies - timeout,
1035 bs->tx_len, bs->rx_len);
1036 /* fall back to interrupt mode */
1037
1038 /* update usage statistics */
1039 bs->count_transfer_irq_after_polling++;
1040
1041 return bcm2835_spi_transfer_one_irq(ctlr, spi,
1042 tfr, cs, false);
1043 }
1044 }
1045
1046 /* Transfer complete - reset SPI HW */
1047 bcm2835_spi_reset_hw(bs);
1048 /* and return without waiting for completion */
1049 return 0;
1050 }
1051
bcm2835_spi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * tfr)1052 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1053 struct spi_device *spi,
1054 struct spi_transfer *tfr)
1055 {
1056 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1057 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1058 unsigned long spi_hz, cdiv;
1059 unsigned long hz_per_byte, byte_limit;
1060 u32 cs = target->prepare_cs;
1061
1062 /* set clock */
1063 spi_hz = tfr->speed_hz;
1064
1065 if (spi_hz >= bs->clk_hz / 2) {
1066 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1067 } else if (spi_hz) {
1068 /* CDIV must be a multiple of two */
1069 cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1070 cdiv += (cdiv % 2);
1071
1072 if (cdiv >= 65536)
1073 cdiv = 0; /* 0 is the slowest we can go */
1074 } else {
1075 cdiv = 0; /* 0 is the slowest we can go */
1076 }
1077 tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1078 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1079
1080 /* handle all the 3-wire mode */
1081 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1082 cs |= BCM2835_SPI_CS_REN;
1083
1084 /* set transmit buffers and length */
1085 bs->tx_buf = tfr->tx_buf;
1086 bs->rx_buf = tfr->rx_buf;
1087 bs->tx_len = tfr->len;
1088 bs->rx_len = tfr->len;
1089
1090 /* Calculate the estimated time in us the transfer runs. Note that
1091 * there is 1 idle clocks cycles after each byte getting transferred
1092 * so we have 9 cycles/byte. This is used to find the number of Hz
1093 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1094 * per 300,000 Hz of bus clock.
1095 */
1096 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1097 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1098
1099 /* run in polling mode for short transfers */
1100 if (tfr->len < byte_limit)
1101 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1102
1103 /* run in dma mode if conditions are right
1104 * Note that unlike poll or interrupt mode DMA mode does not have
1105 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1106 */
1107 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1108 return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1109
1110 /* run in interrupt-mode */
1111 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1112 }
1113
bcm2835_spi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)1114 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1115 struct spi_message *msg)
1116 {
1117 struct spi_device *spi = msg->spi;
1118 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1119 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1120
1121 /*
1122 * Set up clock polarity before spi_transfer_one_message() asserts
1123 * chip select to avoid a gratuitous clock signal edge.
1124 */
1125 bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1126
1127 return 0;
1128 }
1129
bcm2835_spi_handle_err(struct spi_controller * ctlr,struct spi_message * msg)1130 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1131 struct spi_message *msg)
1132 {
1133 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1134
1135 /* if an error occurred and we have an active dma, then terminate */
1136 if (ctlr->dma_tx) {
1137 dmaengine_terminate_sync(ctlr->dma_tx);
1138 bs->tx_dma_active = false;
1139 }
1140 if (ctlr->dma_rx) {
1141 dmaengine_terminate_sync(ctlr->dma_rx);
1142 bs->rx_dma_active = false;
1143 }
1144 bcm2835_spi_undo_prologue(bs);
1145
1146 /* and reset */
1147 bcm2835_spi_reset_hw(bs);
1148 }
1149
bcm2835_spi_cleanup(struct spi_device * spi)1150 static void bcm2835_spi_cleanup(struct spi_device *spi)
1151 {
1152 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1153 struct spi_controller *ctlr = spi->controller;
1154 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1155
1156 if (target->clear_rx_desc)
1157 dmaengine_desc_free(target->clear_rx_desc);
1158
1159 if (target->clear_rx_addr)
1160 dma_unmap_single(ctlr->dma_rx->device->dev,
1161 target->clear_rx_addr,
1162 sizeof(u32),
1163 DMA_TO_DEVICE);
1164
1165 gpiod_put(bs->cs_gpio);
1166 spi_set_csgpiod(spi, 0, NULL);
1167
1168 kfree(target);
1169 }
1170
bcm2835_spi_setup_dma(struct spi_controller * ctlr,struct spi_device * spi,struct bcm2835_spi * bs,struct bcm2835_spidev * target)1171 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1172 struct spi_device *spi,
1173 struct bcm2835_spi *bs,
1174 struct bcm2835_spidev *target)
1175 {
1176 int ret;
1177
1178 if (!ctlr->dma_rx)
1179 return 0;
1180
1181 target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1182 &target->clear_rx_cs,
1183 sizeof(u32),
1184 DMA_TO_DEVICE);
1185 if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1186 dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1187 target->clear_rx_addr = 0;
1188 return -ENOMEM;
1189 }
1190
1191 target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1192 target->clear_rx_addr,
1193 sizeof(u32), 0,
1194 DMA_MEM_TO_DEV, 0);
1195 if (!target->clear_rx_desc) {
1196 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1197 return -ENOMEM;
1198 }
1199
1200 ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1201 if (ret) {
1202 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1203 return ret;
1204 }
1205
1206 return 0;
1207 }
1208
bcm2835_spi_max_transfer_size(struct spi_device * spi)1209 static size_t bcm2835_spi_max_transfer_size(struct spi_device *spi)
1210 {
1211 /*
1212 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1213 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1214 * aligned) if the limit is exceeded.
1215 */
1216 if (spi->controller->can_dma)
1217 return 65532;
1218
1219 return SIZE_MAX;
1220 }
1221
bcm2835_spi_setup(struct spi_device * spi)1222 static int bcm2835_spi_setup(struct spi_device *spi)
1223 {
1224 struct spi_controller *ctlr = spi->controller;
1225 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1226 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1227 struct gpiod_lookup_table *lookup __free(kfree) = NULL;
1228 int ret;
1229 u32 cs;
1230
1231 if (!target) {
1232 target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1233 GFP_KERNEL);
1234 if (!target)
1235 return -ENOMEM;
1236
1237 spi_set_ctldata(spi, target);
1238
1239 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1240 if (ret)
1241 goto err_cleanup;
1242 }
1243
1244 /*
1245 * Precalculate SPI target's CS register value for ->prepare_message():
1246 * The driver always uses software-controlled GPIO chip select, hence
1247 * set the hardware-controlled native chip select to an invalid value
1248 * to prevent it from interfering.
1249 */
1250 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1251 if (spi->mode & SPI_CPOL)
1252 cs |= BCM2835_SPI_CS_CPOL;
1253 if (spi->mode & SPI_CPHA)
1254 cs |= BCM2835_SPI_CS_CPHA;
1255 target->prepare_cs = cs;
1256
1257 /*
1258 * Precalculate SPI target's CS register value to clear RX FIFO
1259 * in case of a TX-only DMA transfer.
1260 */
1261 if (ctlr->dma_rx) {
1262 target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1263 BCM2835_SPI_CS_DMAEN |
1264 BCM2835_SPI_CS_CLEAR_RX;
1265 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1266 target->clear_rx_addr,
1267 sizeof(u32),
1268 DMA_TO_DEVICE);
1269 }
1270
1271 /*
1272 * sanity checking the native-chipselects
1273 */
1274 if (spi->mode & SPI_NO_CS)
1275 return 0;
1276 /*
1277 * The SPI core has successfully requested the CS GPIO line from the
1278 * device tree, so we are done.
1279 */
1280 if (spi_get_csgpiod(spi, 0))
1281 return 0;
1282 if (spi_get_chipselect(spi, 0) > 1) {
1283 /* error in the case of native CS requested with CS > 1
1284 * officially there is a CS2, but it is not documented
1285 * which GPIO is connected with that...
1286 */
1287 dev_err(&spi->dev,
1288 "setup: only two native chip-selects are supported\n");
1289 ret = -EINVAL;
1290 goto err_cleanup;
1291 }
1292
1293 /*
1294 * TODO: The code below is a slightly better alternative to the utter
1295 * abuse of the GPIO API that I found here before. It creates a
1296 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297 * descriptor and then releases the lookup table.
1298 *
1299 * More on the problem that it addresses:
1300 * https://www.spinics.net/lists/linux-gpio/msg36218.html
1301 */
1302 lookup = kzalloc(struct_size(lookup, table, 2), GFP_KERNEL);
1303 if (!lookup) {
1304 ret = -ENOMEM;
1305 goto err_cleanup;
1306 }
1307
1308 lookup->dev_id = dev_name(&spi->dev);
1309 lookup->table[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310 8 - (spi_get_chipselect(spi, 0)),
1311 "cs", GPIO_LOOKUP_FLAGS_DEFAULT);
1312
1313 gpiod_add_lookup_table(lookup);
1314
1315 bs->cs_gpio = gpiod_get(&spi->dev, "cs", GPIOD_OUT_LOW);
1316 gpiod_remove_lookup_table(lookup);
1317 if (IS_ERR(bs->cs_gpio)) {
1318 ret = PTR_ERR(bs->cs_gpio);
1319 goto err_cleanup;
1320 }
1321
1322 spi_set_csgpiod(spi, 0, bs->cs_gpio);
1323
1324 /* and set up the "mode" and level */
1325 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1326 spi_get_chipselect(spi, 0));
1327
1328 return 0;
1329
1330 err_cleanup:
1331 bcm2835_spi_cleanup(spi);
1332 return ret;
1333 }
1334
bcm2835_spi_probe(struct platform_device * pdev)1335 static int bcm2835_spi_probe(struct platform_device *pdev)
1336 {
1337 struct spi_controller *ctlr;
1338 struct bcm2835_spi *bs;
1339 int err;
1340
1341 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1342 if (!ctlr)
1343 return -ENOMEM;
1344
1345 platform_set_drvdata(pdev, ctlr);
1346
1347 ctlr->use_gpio_descriptors = true;
1348 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1349 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1350 ctlr->num_chipselect = 3;
1351 ctlr->max_transfer_size = bcm2835_spi_max_transfer_size;
1352 ctlr->setup = bcm2835_spi_setup;
1353 ctlr->cleanup = bcm2835_spi_cleanup;
1354 ctlr->transfer_one = bcm2835_spi_transfer_one;
1355 ctlr->handle_err = bcm2835_spi_handle_err;
1356 ctlr->prepare_message = bcm2835_spi_prepare_message;
1357 ctlr->dev.of_node = pdev->dev.of_node;
1358
1359 bs = spi_controller_get_devdata(ctlr);
1360 bs->ctlr = ctlr;
1361
1362 bs->regs = devm_platform_ioremap_resource(pdev, 0);
1363 if (IS_ERR(bs->regs))
1364 return PTR_ERR(bs->regs);
1365
1366 bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1367 if (IS_ERR(bs->clk))
1368 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1369 "could not get clk\n");
1370
1371 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1372
1373 bs->irq = platform_get_irq(pdev, 0);
1374 if (bs->irq < 0)
1375 return bs->irq;
1376
1377 bs->clk_hz = clk_get_rate(bs->clk);
1378
1379 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1380 if (err)
1381 return err;
1382
1383 /* initialise the hardware with the default polarities */
1384 bcm2835_wr(bs, BCM2835_SPI_CS,
1385 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1386
1387 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1388 IRQF_SHARED, dev_name(&pdev->dev), bs);
1389 if (err) {
1390 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1391 goto out_dma_release;
1392 }
1393
1394 err = spi_register_controller(ctlr);
1395 if (err) {
1396 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1397 err);
1398 goto out_dma_release;
1399 }
1400
1401 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1402
1403 return 0;
1404
1405 out_dma_release:
1406 bcm2835_dma_release(ctlr, bs);
1407 return err;
1408 }
1409
bcm2835_spi_remove(struct platform_device * pdev)1410 static void bcm2835_spi_remove(struct platform_device *pdev)
1411 {
1412 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1413 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1414
1415 bcm2835_debugfs_remove(bs);
1416
1417 spi_unregister_controller(ctlr);
1418
1419 bcm2835_dma_release(ctlr, bs);
1420
1421 /* Clear FIFOs, and disable the HW block */
1422 bcm2835_wr(bs, BCM2835_SPI_CS,
1423 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1424 }
1425
1426 static const struct of_device_id bcm2835_spi_match[] = {
1427 { .compatible = "brcm,bcm2835-spi", },
1428 {}
1429 };
1430 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1431
1432 static struct platform_driver bcm2835_spi_driver = {
1433 .driver = {
1434 .name = DRV_NAME,
1435 .of_match_table = bcm2835_spi_match,
1436 },
1437 .probe = bcm2835_spi_probe,
1438 .remove_new = bcm2835_spi_remove,
1439 .shutdown = bcm2835_spi_remove,
1440 };
1441 module_platform_driver(bcm2835_spi_driver);
1442
1443 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1444 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1445 MODULE_LICENSE("GPL");
1446