1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ADXL355 3-Axis Digital Accelerometer IIO core driver
4 *
5 * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6 *
7 * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8 */
9
10 #include <linux/bits.h>
11 #include <linux/bitfield.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/trigger.h>
15 #include <linux/iio/triggered_buffer.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/limits.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/property.h>
22 #include <linux/regmap.h>
23 #include <linux/units.h>
24
25 #include <linux/unaligned.h>
26
27 #include "adxl355.h"
28
29 /* ADXL355 Register Definitions */
30 #define ADXL355_DEVID_AD_REG 0x00
31 #define ADXL355_DEVID_MST_REG 0x01
32 #define ADXL355_PARTID_REG 0x02
33 #define ADXL355_STATUS_REG 0x04
34 #define ADXL355_FIFO_ENTRIES_REG 0x05
35 #define ADXL355_TEMP2_REG 0x06
36 #define ADXL355_XDATA3_REG 0x08
37 #define ADXL355_YDATA3_REG 0x0B
38 #define ADXL355_ZDATA3_REG 0x0E
39 #define ADXL355_FIFO_DATA_REG 0x11
40 #define ADXL355_OFFSET_X_H_REG 0x1E
41 #define ADXL355_OFFSET_Y_H_REG 0x20
42 #define ADXL355_OFFSET_Z_H_REG 0x22
43 #define ADXL355_ACT_EN_REG 0x24
44 #define ADXL355_ACT_THRESH_H_REG 0x25
45 #define ADXL355_ACT_THRESH_L_REG 0x26
46 #define ADXL355_ACT_COUNT_REG 0x27
47 #define ADXL355_FILTER_REG 0x28
48 #define ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
49 #define ADXL355_FILTER_HPF_MSK GENMASK(6, 4)
50 #define ADXL355_FIFO_SAMPLES_REG 0x29
51 #define ADXL355_INT_MAP_REG 0x2A
52 #define ADXL355_SYNC_REG 0x2B
53 #define ADXL355_RANGE_REG 0x2C
54 #define ADXL355_POWER_CTL_REG 0x2D
55 #define ADXL355_POWER_CTL_MODE_MSK GENMASK(1, 0)
56 #define ADXL355_POWER_CTL_DRDY_MSK BIT(2)
57 #define ADXL355_SELF_TEST_REG 0x2E
58 #define ADXL355_RESET_REG 0x2F
59
60 #define ADXL355_DEVID_AD_VAL 0xAD
61 #define ADXL355_DEVID_MST_VAL 0x1D
62 #define ADXL355_PARTID_VAL 0xED
63 #define ADXL359_PARTID_VAL 0xE9
64 #define ADXL355_RESET_CODE 0x52
65
66 static const struct regmap_range adxl355_read_reg_range[] = {
67 regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
68 regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
69 };
70
71 const struct regmap_access_table adxl355_readable_regs_tbl = {
72 .yes_ranges = adxl355_read_reg_range,
73 .n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
74 };
75 EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, "IIO_ADXL355");
76
77 static const struct regmap_range adxl355_write_reg_range[] = {
78 regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
79 };
80
81 const struct regmap_access_table adxl355_writeable_regs_tbl = {
82 .yes_ranges = adxl355_write_reg_range,
83 .n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
84 };
85 EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, "IIO_ADXL355");
86
87 const struct adxl355_chip_info adxl35x_chip_info[] = {
88 [ADXL355] = {
89 .name = "adxl355",
90 .part_id = ADXL355_PARTID_VAL,
91 /*
92 * At +/- 2g with 20-bit resolution, scale is given in datasheet
93 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
94 */
95 .accel_scale = {
96 .integer = 0,
97 .decimal = 38245,
98 },
99 /*
100 * The datasheet defines an intercept of 1885 LSB at 25 degC
101 * and a slope of -9.05 LSB/C. The following formula can be used
102 * to find the temperature:
103 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
104 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
105 * Hence using some rearranging we get the scale as -110.497238
106 * and offset as -2111.25.
107 */
108 .temp_offset = {
109 .integer = -2111,
110 .decimal = 250000,
111 },
112 },
113 [ADXL359] = {
114 .name = "adxl359",
115 .part_id = ADXL359_PARTID_VAL,
116 /*
117 * At +/- 10g with 20-bit resolution, scale is given in datasheet
118 * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2.
119 */
120 .accel_scale = {
121 .integer = 0,
122 .decimal = 191229,
123 },
124 /*
125 * The datasheet defines an intercept of 1852 LSB at 25 degC
126 * and a slope of -9.05 LSB/C. The following formula can be used
127 * to find the temperature:
128 * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow
129 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
130 * Hence using some rearranging we get the scale as -110.497238
131 * and offset as -2079.25.
132 */
133 .temp_offset = {
134 .integer = -2079,
135 .decimal = 250000,
136 },
137 },
138 };
139 EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, "IIO_ADXL355");
140
141 enum adxl355_op_mode {
142 ADXL355_MEASUREMENT,
143 ADXL355_STANDBY,
144 ADXL355_TEMP_OFF,
145 };
146
147 enum adxl355_odr {
148 ADXL355_ODR_4000HZ,
149 ADXL355_ODR_2000HZ,
150 ADXL355_ODR_1000HZ,
151 ADXL355_ODR_500HZ,
152 ADXL355_ODR_250HZ,
153 ADXL355_ODR_125HZ,
154 ADXL355_ODR_62_5HZ,
155 ADXL355_ODR_31_25HZ,
156 ADXL355_ODR_15_625HZ,
157 ADXL355_ODR_7_813HZ,
158 ADXL355_ODR_3_906HZ,
159 };
160
161 enum adxl355_hpf_3db {
162 ADXL355_HPF_OFF,
163 ADXL355_HPF_24_7,
164 ADXL355_HPF_6_2084,
165 ADXL355_HPF_1_5545,
166 ADXL355_HPF_0_3862,
167 ADXL355_HPF_0_0954,
168 ADXL355_HPF_0_0238,
169 };
170
171 static const int adxl355_odr_table[][2] = {
172 [0] = {4000, 0},
173 [1] = {2000, 0},
174 [2] = {1000, 0},
175 [3] = {500, 0},
176 [4] = {250, 0},
177 [5] = {125, 0},
178 [6] = {62, 500000},
179 [7] = {31, 250000},
180 [8] = {15, 625000},
181 [9] = {7, 813000},
182 [10] = {3, 906000},
183 };
184
185 static const int adxl355_hpf_3db_multipliers[] = {
186 0,
187 247000,
188 62084,
189 15545,
190 3862,
191 954,
192 238,
193 };
194
195 enum adxl355_chans {
196 chan_x, chan_y, chan_z,
197 };
198
199 struct adxl355_chan_info {
200 u8 data_reg;
201 u8 offset_reg;
202 };
203
204 static const struct adxl355_chan_info adxl355_chans[] = {
205 [chan_x] = {
206 .data_reg = ADXL355_XDATA3_REG,
207 .offset_reg = ADXL355_OFFSET_X_H_REG
208 },
209 [chan_y] = {
210 .data_reg = ADXL355_YDATA3_REG,
211 .offset_reg = ADXL355_OFFSET_Y_H_REG
212 },
213 [chan_z] = {
214 .data_reg = ADXL355_ZDATA3_REG,
215 .offset_reg = ADXL355_OFFSET_Z_H_REG
216 },
217 };
218
219 struct adxl355_data {
220 const struct adxl355_chip_info *chip_info;
221 struct regmap *regmap;
222 struct device *dev;
223 struct mutex lock; /* lock to protect op_mode */
224 enum adxl355_op_mode op_mode;
225 enum adxl355_odr odr;
226 enum adxl355_hpf_3db hpf_3db;
227 int calibbias[3];
228 int adxl355_hpf_3db_table[7][2];
229 struct iio_trigger *dready_trig;
230 union {
231 u8 transf_buf[3];
232 struct {
233 u8 buf[14];
234 s64 ts;
235 } buffer;
236 } __aligned(IIO_DMA_MINALIGN);
237 };
238
adxl355_set_op_mode(struct adxl355_data * data,enum adxl355_op_mode op_mode)239 static int adxl355_set_op_mode(struct adxl355_data *data,
240 enum adxl355_op_mode op_mode)
241 {
242 int ret;
243
244 if (data->op_mode == op_mode)
245 return 0;
246
247 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
248 ADXL355_POWER_CTL_MODE_MSK, op_mode);
249 if (ret)
250 return ret;
251
252 data->op_mode = op_mode;
253
254 return ret;
255 }
256
adxl355_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)257 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
258 bool state)
259 {
260 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
261 struct adxl355_data *data = iio_priv(indio_dev);
262 int ret;
263
264 mutex_lock(&data->lock);
265 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
266 ADXL355_POWER_CTL_DRDY_MSK,
267 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
268 state ? 0 : 1));
269 mutex_unlock(&data->lock);
270
271 return ret;
272 }
273
adxl355_fill_3db_frequency_table(struct adxl355_data * data)274 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
275 {
276 u32 multiplier;
277 u64 div, rem;
278 u64 odr;
279 int i;
280
281 odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
282 adxl355_odr_table[data->odr][1];
283
284 for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
285 multiplier = adxl355_hpf_3db_multipliers[i];
286 div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
287 TERA * 100, &rem);
288
289 data->adxl355_hpf_3db_table[i][0] = div;
290 data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
291 }
292 }
293
adxl355_setup(struct adxl355_data * data)294 static int adxl355_setup(struct adxl355_data *data)
295 {
296 unsigned int regval;
297 int ret;
298
299 ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, ®val);
300 if (ret)
301 return ret;
302
303 if (regval != ADXL355_DEVID_AD_VAL) {
304 dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
305 return -ENODEV;
306 }
307
308 ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, ®val);
309 if (ret)
310 return ret;
311
312 if (regval != ADXL355_DEVID_MST_VAL) {
313 dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
314 return -ENODEV;
315 }
316
317 ret = regmap_read(data->regmap, ADXL355_PARTID_REG, ®val);
318 if (ret)
319 return ret;
320
321 if (regval != ADXL355_PARTID_VAL)
322 dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval);
323
324 /*
325 * Perform a software reset to make sure the device is in a consistent
326 * state after start-up.
327 */
328 ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE);
329 if (ret)
330 return ret;
331
332 ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
333 ADXL355_POWER_CTL_DRDY_MSK,
334 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
335 if (ret)
336 return ret;
337
338 adxl355_fill_3db_frequency_table(data);
339
340 return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
341 }
342
adxl355_get_temp_data(struct adxl355_data * data,u8 addr)343 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
344 {
345 return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
346 }
347
adxl355_read_axis(struct adxl355_data * data,u8 addr)348 static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
349 {
350 int ret;
351
352 ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
353 ARRAY_SIZE(data->transf_buf));
354 if (ret)
355 return ret;
356
357 return get_unaligned_be24(data->transf_buf);
358 }
359
adxl355_find_match(const int (* freq_tbl)[2],const int n,const int val,const int val2)360 static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
361 const int val, const int val2)
362 {
363 int i;
364
365 for (i = 0; i < n; i++) {
366 if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
367 return i;
368 }
369
370 return -EINVAL;
371 }
372
adxl355_set_odr(struct adxl355_data * data,enum adxl355_odr odr)373 static int adxl355_set_odr(struct adxl355_data *data,
374 enum adxl355_odr odr)
375 {
376 int ret;
377
378 mutex_lock(&data->lock);
379
380 if (data->odr == odr) {
381 mutex_unlock(&data->lock);
382 return 0;
383 }
384
385 ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
386 if (ret)
387 goto err_unlock;
388
389 ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
390 ADXL355_FILTER_ODR_MSK,
391 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
392 if (ret)
393 goto err_set_opmode;
394
395 data->odr = odr;
396 adxl355_fill_3db_frequency_table(data);
397
398 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
399 if (ret)
400 goto err_set_opmode;
401
402 mutex_unlock(&data->lock);
403 return 0;
404
405 err_set_opmode:
406 adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
407 err_unlock:
408 mutex_unlock(&data->lock);
409 return ret;
410 }
411
adxl355_set_hpf_3db(struct adxl355_data * data,enum adxl355_hpf_3db hpf)412 static int adxl355_set_hpf_3db(struct adxl355_data *data,
413 enum adxl355_hpf_3db hpf)
414 {
415 int ret;
416
417 mutex_lock(&data->lock);
418
419 if (data->hpf_3db == hpf) {
420 mutex_unlock(&data->lock);
421 return 0;
422 }
423
424 ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
425 if (ret)
426 goto err_unlock;
427
428 ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
429 ADXL355_FILTER_HPF_MSK,
430 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
431 if (ret)
432 goto err_set_opmode;
433
434 data->hpf_3db = hpf;
435
436 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
437 if (ret)
438 goto err_set_opmode;
439
440 mutex_unlock(&data->lock);
441 return 0;
442
443 err_set_opmode:
444 adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
445 err_unlock:
446 mutex_unlock(&data->lock);
447 return ret;
448 }
449
adxl355_set_calibbias(struct adxl355_data * data,enum adxl355_chans chan,int calibbias)450 static int adxl355_set_calibbias(struct adxl355_data *data,
451 enum adxl355_chans chan, int calibbias)
452 {
453 int ret;
454
455 mutex_lock(&data->lock);
456
457 ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
458 if (ret)
459 goto err_unlock;
460
461 put_unaligned_be16(calibbias, data->transf_buf);
462 ret = regmap_bulk_write(data->regmap,
463 adxl355_chans[chan].offset_reg,
464 data->transf_buf, 2);
465 if (ret)
466 goto err_set_opmode;
467
468 data->calibbias[chan] = calibbias;
469
470 ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
471 if (ret)
472 goto err_set_opmode;
473
474 mutex_unlock(&data->lock);
475 return 0;
476
477 err_set_opmode:
478 adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
479 err_unlock:
480 mutex_unlock(&data->lock);
481 return ret;
482 }
483
adxl355_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)484 static int adxl355_read_raw(struct iio_dev *indio_dev,
485 struct iio_chan_spec const *chan,
486 int *val, int *val2, long mask)
487 {
488 struct adxl355_data *data = iio_priv(indio_dev);
489 int ret;
490
491 switch (mask) {
492 case IIO_CHAN_INFO_RAW:
493 switch (chan->type) {
494 case IIO_TEMP:
495 ret = adxl355_get_temp_data(data, chan->address);
496 if (ret < 0)
497 return ret;
498 *val = get_unaligned_be16(data->transf_buf);
499
500 return IIO_VAL_INT;
501 case IIO_ACCEL:
502 ret = adxl355_read_axis(data, adxl355_chans[
503 chan->address].data_reg);
504 if (ret < 0)
505 return ret;
506 *val = sign_extend32(ret >> chan->scan_type.shift,
507 chan->scan_type.realbits - 1);
508 return IIO_VAL_INT;
509 default:
510 return -EINVAL;
511 }
512
513 case IIO_CHAN_INFO_SCALE:
514 switch (chan->type) {
515 case IIO_TEMP:
516 /*
517 * Temperature scale is -110.497238.
518 * See the detailed explanation in adxl35x_chip_info
519 * definition above.
520 */
521 *val = -110;
522 *val2 = 497238;
523 return IIO_VAL_INT_PLUS_MICRO;
524 case IIO_ACCEL:
525 *val = data->chip_info->accel_scale.integer;
526 *val2 = data->chip_info->accel_scale.decimal;
527 return IIO_VAL_INT_PLUS_NANO;
528 default:
529 return -EINVAL;
530 }
531 case IIO_CHAN_INFO_OFFSET:
532 *val = data->chip_info->temp_offset.integer;
533 *val2 = data->chip_info->temp_offset.decimal;
534 return IIO_VAL_INT_PLUS_MICRO;
535 case IIO_CHAN_INFO_CALIBBIAS:
536 *val = sign_extend32(data->calibbias[chan->address], 15);
537 return IIO_VAL_INT;
538 case IIO_CHAN_INFO_SAMP_FREQ:
539 *val = adxl355_odr_table[data->odr][0];
540 *val2 = adxl355_odr_table[data->odr][1];
541 return IIO_VAL_INT_PLUS_MICRO;
542 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
543 *val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
544 *val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
545 return IIO_VAL_INT_PLUS_MICRO;
546 default:
547 return -EINVAL;
548 }
549 }
550
adxl355_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)551 static int adxl355_write_raw(struct iio_dev *indio_dev,
552 struct iio_chan_spec const *chan,
553 int val, int val2, long mask)
554 {
555 struct adxl355_data *data = iio_priv(indio_dev);
556 int odr_idx, hpf_idx, calibbias;
557
558 switch (mask) {
559 case IIO_CHAN_INFO_SAMP_FREQ:
560 odr_idx = adxl355_find_match(adxl355_odr_table,
561 ARRAY_SIZE(adxl355_odr_table),
562 val, val2);
563 if (odr_idx < 0)
564 return odr_idx;
565
566 return adxl355_set_odr(data, odr_idx);
567 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
568 hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
569 ARRAY_SIZE(data->adxl355_hpf_3db_table),
570 val, val2);
571 if (hpf_idx < 0)
572 return hpf_idx;
573
574 return adxl355_set_hpf_3db(data, hpf_idx);
575 case IIO_CHAN_INFO_CALIBBIAS:
576 calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
577
578 return adxl355_set_calibbias(data, chan->address, calibbias);
579 default:
580 return -EINVAL;
581 }
582 }
583
adxl355_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)584 static int adxl355_read_avail(struct iio_dev *indio_dev,
585 struct iio_chan_spec const *chan,
586 const int **vals, int *type, int *length,
587 long mask)
588 {
589 struct adxl355_data *data = iio_priv(indio_dev);
590
591 switch (mask) {
592 case IIO_CHAN_INFO_SAMP_FREQ:
593 *vals = (const int *)adxl355_odr_table;
594 *type = IIO_VAL_INT_PLUS_MICRO;
595 /* Values are stored in a 2D matrix */
596 *length = ARRAY_SIZE(adxl355_odr_table) * 2;
597
598 return IIO_AVAIL_LIST;
599 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
600 *vals = (const int *)data->adxl355_hpf_3db_table;
601 *type = IIO_VAL_INT_PLUS_MICRO;
602 /* Values are stored in a 2D matrix */
603 *length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
604
605 return IIO_AVAIL_LIST;
606 default:
607 return -EINVAL;
608 }
609 }
610
611 static const unsigned long adxl355_avail_scan_masks[] = {
612 GENMASK(3, 0),
613 0
614 };
615
616 static const struct iio_info adxl355_info = {
617 .read_raw = adxl355_read_raw,
618 .write_raw = adxl355_write_raw,
619 .read_avail = &adxl355_read_avail,
620 };
621
622 static const struct iio_trigger_ops adxl355_trigger_ops = {
623 .set_trigger_state = &adxl355_data_rdy_trigger_set_state,
624 .validate_device = &iio_trigger_validate_own_device,
625 };
626
adxl355_trigger_handler(int irq,void * p)627 static irqreturn_t adxl355_trigger_handler(int irq, void *p)
628 {
629 struct iio_poll_func *pf = p;
630 struct iio_dev *indio_dev = pf->indio_dev;
631 struct adxl355_data *data = iio_priv(indio_dev);
632 int ret;
633
634 mutex_lock(&data->lock);
635
636 /*
637 * data->buffer is used both for triggered buffer support
638 * and read/write_raw(), hence, it has to be zeroed here before usage.
639 */
640 data->buffer.buf[0] = 0;
641
642 /*
643 * The acceleration data is 24 bits and big endian. It has to be saved
644 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
645 * The buf array is 14 bytes as it includes 3x4=12 bytes for
646 * acceleration data of x, y, and z axis. It also includes 2 bytes for
647 * temperature data.
648 */
649 ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
650 &data->buffer.buf[1], 3);
651 if (ret)
652 goto out_unlock_notify;
653
654 ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
655 &data->buffer.buf[5], 3);
656 if (ret)
657 goto out_unlock_notify;
658
659 ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
660 &data->buffer.buf[9], 3);
661 if (ret)
662 goto out_unlock_notify;
663
664 ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
665 &data->buffer.buf[12], 2);
666 if (ret)
667 goto out_unlock_notify;
668
669 iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
670 pf->timestamp);
671
672 out_unlock_notify:
673 mutex_unlock(&data->lock);
674 iio_trigger_notify_done(indio_dev->trig);
675
676 return IRQ_HANDLED;
677 }
678
679 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) { \
680 .type = IIO_ACCEL, \
681 .address = reg, \
682 .modified = 1, \
683 .channel2 = IIO_MOD_##axis, \
684 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
685 BIT(IIO_CHAN_INFO_CALIBBIAS), \
686 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
687 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
688 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
689 .info_mask_shared_by_type_available = \
690 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
691 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
692 .scan_index = index, \
693 .scan_type = { \
694 .sign = 's', \
695 .realbits = 20, \
696 .storagebits = 32, \
697 .shift = 4, \
698 .endianness = IIO_BE, \
699 } \
700 }
701
702 static const struct iio_chan_spec adxl355_channels[] = {
703 ADXL355_ACCEL_CHANNEL(0, chan_x, X),
704 ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
705 ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
706 {
707 .type = IIO_TEMP,
708 .address = ADXL355_TEMP2_REG,
709 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
710 BIT(IIO_CHAN_INFO_SCALE) |
711 BIT(IIO_CHAN_INFO_OFFSET),
712 .scan_index = 3,
713 .scan_type = {
714 .sign = 's',
715 .realbits = 12,
716 .storagebits = 16,
717 .endianness = IIO_BE,
718 },
719 },
720 IIO_CHAN_SOFT_TIMESTAMP(4),
721 };
722
adxl355_probe_trigger(struct iio_dev * indio_dev,int irq)723 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
724 {
725 struct adxl355_data *data = iio_priv(indio_dev);
726 int ret;
727
728 data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
729 indio_dev->name,
730 iio_device_id(indio_dev));
731 if (!data->dready_trig)
732 return -ENOMEM;
733
734 data->dready_trig->ops = &adxl355_trigger_ops;
735 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
736
737 ret = devm_request_irq(data->dev, irq,
738 &iio_trigger_generic_data_rdy_poll,
739 IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
740 if (ret)
741 return dev_err_probe(data->dev, ret, "request irq %d failed\n",
742 irq);
743
744 ret = devm_iio_trigger_register(data->dev, data->dready_trig);
745 if (ret) {
746 dev_err(data->dev, "iio trigger register failed\n");
747 return ret;
748 }
749
750 indio_dev->trig = iio_trigger_get(data->dready_trig);
751
752 return 0;
753 }
754
adxl355_core_probe(struct device * dev,struct regmap * regmap,const struct adxl355_chip_info * chip_info)755 int adxl355_core_probe(struct device *dev, struct regmap *regmap,
756 const struct adxl355_chip_info *chip_info)
757 {
758 struct adxl355_data *data;
759 struct iio_dev *indio_dev;
760 int ret;
761 int irq;
762
763 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
764 if (!indio_dev)
765 return -ENOMEM;
766
767 data = iio_priv(indio_dev);
768 data->regmap = regmap;
769 data->dev = dev;
770 data->op_mode = ADXL355_STANDBY;
771 data->chip_info = chip_info;
772 mutex_init(&data->lock);
773
774 indio_dev->name = chip_info->name;
775 indio_dev->info = &adxl355_info;
776 indio_dev->modes = INDIO_DIRECT_MODE;
777 indio_dev->channels = adxl355_channels;
778 indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
779 indio_dev->available_scan_masks = adxl355_avail_scan_masks;
780
781 ret = adxl355_setup(data);
782 if (ret) {
783 dev_err(dev, "ADXL355 setup failed\n");
784 return ret;
785 }
786
787 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
788 &iio_pollfunc_store_time,
789 &adxl355_trigger_handler, NULL);
790 if (ret) {
791 dev_err(dev, "iio triggered buffer setup failed\n");
792 return ret;
793 }
794
795 irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY");
796 if (irq > 0) {
797 ret = adxl355_probe_trigger(indio_dev, irq);
798 if (ret)
799 return ret;
800 }
801
802 return devm_iio_device_register(dev, indio_dev);
803 }
804 EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, "IIO_ADXL355");
805
806 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
807 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
808 MODULE_LICENSE("GPL v2");
809