xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision dd03dd60e8cdd5ef0f0cbc18276c45009bcc51f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <kunit/visibility.h>
13 #include <linux/cleanup.h>
14 #include <linux/ctype.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/math.h>
18 #include <linux/minmax.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 
25 #include <linux/firmware/cirrus/cs_dsp.h>
26 #include <linux/firmware/cirrus/wmfw.h>
27 
28 #include "cs_dsp.h"
29 
30 /*
31  * When the KUnit test is running the error-case tests will cause a lot
32  * of messages. Rate-limit to prevent overflowing the kernel log buffer
33  * during KUnit test runs.
34  */
35 #if IS_ENABLED(CONFIG_FW_CS_DSP_KUNIT_TEST)
36 bool cs_dsp_suppress_err_messages;
37 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_err_messages);
38 
39 bool cs_dsp_suppress_warn_messages;
40 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_warn_messages);
41 
42 bool cs_dsp_suppress_info_messages;
43 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_info_messages);
44 
45 #define cs_dsp_err(_dsp, fmt, ...) \
46 	do { \
47 		if (!cs_dsp_suppress_err_messages) \
48 			dev_err_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
49 	} while (false)
50 #define cs_dsp_warn(_dsp, fmt, ...) \
51 	do { \
52 		if (!cs_dsp_suppress_warn_messages) \
53 			dev_warn_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
54 	} while (false)
55 #define cs_dsp_info(_dsp, fmt, ...) \
56 	do { \
57 		if (!cs_dsp_suppress_info_messages) \
58 			dev_info_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
59 	} while (false)
60 #define cs_dsp_dbg(_dsp, fmt, ...) \
61 	dev_dbg_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
62 #else
63 #define cs_dsp_err(_dsp, fmt, ...) \
64 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
65 #define cs_dsp_warn(_dsp, fmt, ...) \
66 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
67 #define cs_dsp_info(_dsp, fmt, ...) \
68 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
69 #define cs_dsp_dbg(_dsp, fmt, ...) \
70 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
71 #endif
72 
73 #define ADSP1_CONTROL_1                   0x00
74 #define ADSP1_CONTROL_2                   0x02
75 #define ADSP1_CONTROL_3                   0x03
76 #define ADSP1_CONTROL_4                   0x04
77 #define ADSP1_CONTROL_5                   0x06
78 #define ADSP1_CONTROL_6                   0x07
79 #define ADSP1_CONTROL_7                   0x08
80 #define ADSP1_CONTROL_8                   0x09
81 #define ADSP1_CONTROL_9                   0x0A
82 #define ADSP1_CONTROL_10                  0x0B
83 #define ADSP1_CONTROL_11                  0x0C
84 #define ADSP1_CONTROL_12                  0x0D
85 #define ADSP1_CONTROL_13                  0x0F
86 #define ADSP1_CONTROL_14                  0x10
87 #define ADSP1_CONTROL_15                  0x11
88 #define ADSP1_CONTROL_16                  0x12
89 #define ADSP1_CONTROL_17                  0x13
90 #define ADSP1_CONTROL_18                  0x14
91 #define ADSP1_CONTROL_19                  0x16
92 #define ADSP1_CONTROL_20                  0x17
93 #define ADSP1_CONTROL_21                  0x18
94 #define ADSP1_CONTROL_22                  0x1A
95 #define ADSP1_CONTROL_23                  0x1B
96 #define ADSP1_CONTROL_24                  0x1C
97 #define ADSP1_CONTROL_25                  0x1E
98 #define ADSP1_CONTROL_26                  0x20
99 #define ADSP1_CONTROL_27                  0x21
100 #define ADSP1_CONTROL_28                  0x22
101 #define ADSP1_CONTROL_29                  0x23
102 #define ADSP1_CONTROL_30                  0x24
103 #define ADSP1_CONTROL_31                  0x26
104 
105 /*
106  * ADSP1 Control 19
107  */
108 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
109 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
110 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
111 
112 /*
113  * ADSP1 Control 30
114  */
115 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
116 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
117 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
118 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
119 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
120 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
121 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
122 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
123 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
124 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
125 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
126 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
127 #define ADSP1_START                       0x0001  /* DSP1_START */
128 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
129 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
130 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
131 
132 /*
133  * ADSP1 Control 31
134  */
135 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
136 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
137 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
138 
139 #define ADSP2_CONTROL                     0x0
140 #define ADSP2_CLOCKING                    0x1
141 #define ADSP2V2_CLOCKING                  0x2
142 #define ADSP2_STATUS1                     0x4
143 #define ADSP2_WDMA_CONFIG_1               0x30
144 #define ADSP2_WDMA_CONFIG_2               0x31
145 #define ADSP2V2_WDMA_CONFIG_2             0x32
146 #define ADSP2_RDMA_CONFIG_1               0x34
147 
148 #define ADSP2_SCRATCH0                    0x40
149 #define ADSP2_SCRATCH1                    0x41
150 #define ADSP2_SCRATCH2                    0x42
151 #define ADSP2_SCRATCH3                    0x43
152 
153 #define ADSP2V2_SCRATCH0_1                0x40
154 #define ADSP2V2_SCRATCH2_3                0x42
155 
156 /*
157  * ADSP2 Control
158  */
159 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
160 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
161 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
162 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
163 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
164 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
165 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
166 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
167 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
168 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
169 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
170 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
171 #define ADSP2_START                       0x0001  /* DSP1_START */
172 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
173 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
174 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
175 
176 /*
177  * ADSP2 clocking
178  */
179 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
180 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
181 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
182 
183 /*
184  * ADSP2V2 clocking
185  */
186 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
187 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
188 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
189 
190 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
191 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
192 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
193 
194 /*
195  * ADSP2 Status 1
196  */
197 #define ADSP2_RAM_RDY                     0x0001
198 #define ADSP2_RAM_RDY_MASK                0x0001
199 #define ADSP2_RAM_RDY_SHIFT                    0
200 #define ADSP2_RAM_RDY_WIDTH                    1
201 
202 /*
203  * ADSP2 Lock support
204  */
205 #define ADSP2_LOCK_CODE_0                    0x5555
206 #define ADSP2_LOCK_CODE_1                    0xAAAA
207 
208 #define ADSP2_WATCHDOG                       0x0A
209 #define ADSP2_BUS_ERR_ADDR                   0x52
210 #define ADSP2_REGION_LOCK_STATUS             0x64
211 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
212 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
213 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
214 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
215 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
216 #define ADSP2_LOCK_REGION_CTRL               0x7A
217 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
218 
219 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
220 #define ADSP2_ADDR_ERR_MASK                  0x4000
221 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
222 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
223 #define ADSP2_CTRL_ERR_EINT                  0x0001
224 
225 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
226 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
227 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
228 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
229 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
230 
231 #define ADSP2_LOCK_REGION_SHIFT              16
232 
233 /*
234  * Event control messages
235  */
236 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
237 
238 /*
239  * HALO system info
240  */
241 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
242 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
243 
244 /*
245  * HALO core
246  */
247 #define HALO_SCRATCH1                        0x005c0
248 #define HALO_SCRATCH2                        0x005c8
249 #define HALO_SCRATCH3                        0x005d0
250 #define HALO_SCRATCH4                        0x005d8
251 #define HALO_CCM_CORE_CONTROL                0x41000
252 #define HALO_CORE_SOFT_RESET                 0x00010
253 #define HALO_WDT_CONTROL                     0x47000
254 
255 /*
256  * HALO MPU banks
257  */
258 #define HALO_MPU_XMEM_ACCESS_0               0x43000
259 #define HALO_MPU_YMEM_ACCESS_0               0x43004
260 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
261 #define HALO_MPU_XREG_ACCESS_0               0x4300C
262 #define HALO_MPU_YREG_ACCESS_0               0x43014
263 #define HALO_MPU_XMEM_ACCESS_1               0x43018
264 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
265 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
266 #define HALO_MPU_XREG_ACCESS_1               0x43024
267 #define HALO_MPU_YREG_ACCESS_1               0x4302C
268 #define HALO_MPU_XMEM_ACCESS_2               0x43030
269 #define HALO_MPU_YMEM_ACCESS_2               0x43034
270 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
271 #define HALO_MPU_XREG_ACCESS_2               0x4303C
272 #define HALO_MPU_YREG_ACCESS_2               0x43044
273 #define HALO_MPU_XMEM_ACCESS_3               0x43048
274 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
275 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
276 #define HALO_MPU_XREG_ACCESS_3               0x43054
277 #define HALO_MPU_YREG_ACCESS_3               0x4305C
278 #define HALO_MPU_XM_VIO_ADDR                 0x43100
279 #define HALO_MPU_XM_VIO_STATUS               0x43104
280 #define HALO_MPU_YM_VIO_ADDR                 0x43108
281 #define HALO_MPU_YM_VIO_STATUS               0x4310C
282 #define HALO_MPU_PM_VIO_ADDR                 0x43110
283 #define HALO_MPU_PM_VIO_STATUS               0x43114
284 #define HALO_MPU_LOCK_CONFIG                 0x43140
285 
286 /*
287  * HALO_AHBM_WINDOW_DEBUG_1
288  */
289 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
290 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
291 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
292 
293 /*
294  * HALO_CCM_CORE_CONTROL
295  */
296 #define HALO_CORE_RESET                     0x00000200
297 #define HALO_CORE_EN                        0x00000001
298 
299 /*
300  * HALO_CORE_SOFT_RESET
301  */
302 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
303 
304 /*
305  * HALO_WDT_CONTROL
306  */
307 #define HALO_WDT_EN_MASK                    0x00000001
308 
309 /*
310  * HALO_MPU_?M_VIO_STATUS
311  */
312 #define HALO_MPU_VIO_STS_MASK               0x007e0000
313 #define HALO_MPU_VIO_STS_SHIFT                      17
314 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
315 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
316 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
317 
318 /*
319  * Write Sequence
320  */
321 #define WSEQ_OP_MAX_WORDS	3
322 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
323 
324 struct cs_dsp_ops {
325 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
326 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
327 				    const char * const file,
328 				    unsigned int pos,
329 				    const struct firmware *firmware);
330 	int (*setup_algs)(struct cs_dsp *dsp);
331 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
332 				      unsigned int offset);
333 
334 	void (*show_fw_status)(struct cs_dsp *dsp);
335 	void (*stop_watchdog)(struct cs_dsp *dsp);
336 
337 	int (*enable_memory)(struct cs_dsp *dsp);
338 	void (*disable_memory)(struct cs_dsp *dsp);
339 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
340 
341 	int (*enable_core)(struct cs_dsp *dsp);
342 	void (*disable_core)(struct cs_dsp *dsp);
343 
344 	int (*start_core)(struct cs_dsp *dsp);
345 	void (*stop_core)(struct cs_dsp *dsp);
346 };
347 
348 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
349 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
350 static const struct cs_dsp_ops cs_dsp_halo_ops;
351 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
352 
353 struct cs_dsp_alg_region_list_item {
354 	struct list_head list;
355 	struct cs_dsp_alg_region alg_region;
356 };
357 
358 /**
359  * cs_dsp_mem_region_name() - Return a name string for a memory type
360  * @type: the memory type to match
361  *
362  * Return: A const string identifying the memory region.
363  */
364 const char *cs_dsp_mem_region_name(unsigned int type)
365 {
366 	switch (type) {
367 	case WMFW_ADSP1_PM:
368 		return "PM";
369 	case WMFW_HALO_PM_PACKED:
370 		return "PM_PACKED";
371 	case WMFW_ADSP1_DM:
372 		return "DM";
373 	case WMFW_ADSP2_XM:
374 		return "XM";
375 	case WMFW_HALO_XM_PACKED:
376 		return "XM_PACKED";
377 	case WMFW_ADSP2_YM:
378 		return "YM";
379 	case WMFW_HALO_YM_PACKED:
380 		return "YM_PACKED";
381 	case WMFW_ADSP1_ZM:
382 		return "ZM";
383 	default:
384 		return NULL;
385 	}
386 }
387 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
388 
389 #ifdef CONFIG_DEBUG_FS
390 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
391 {
392 	kfree(dsp->wmfw_file_name);
393 	dsp->wmfw_file_name = kstrdup(s, GFP_KERNEL);
394 }
395 
396 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
397 {
398 	kfree(dsp->bin_file_name);
399 	dsp->bin_file_name = kstrdup(s, GFP_KERNEL);
400 }
401 
402 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
403 {
404 	kfree(dsp->wmfw_file_name);
405 	kfree(dsp->bin_file_name);
406 	dsp->wmfw_file_name = NULL;
407 	dsp->bin_file_name = NULL;
408 }
409 
410 static ssize_t cs_dsp_debugfs_string_read(struct cs_dsp *dsp,
411 					  char __user *user_buf,
412 					  size_t count, loff_t *ppos,
413 					  const char **pstr)
414 {
415 	const char *str;
416 	ssize_t ret = 0;
417 
418 	scoped_guard(mutex, &dsp->pwr_lock) {
419 		if (*pstr) {
420 			str = kasprintf(GFP_KERNEL, "%s\n", *pstr);
421 			if (str) {
422 				ret = simple_read_from_buffer(user_buf, count,
423 							      ppos, str, strlen(str));
424 				kfree(str);
425 			} else {
426 				ret = -ENOMEM;
427 			}
428 		}
429 	}
430 
431 	return ret;
432 }
433 
434 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
435 					char __user *user_buf,
436 					size_t count, loff_t *ppos)
437 {
438 	struct cs_dsp *dsp = file->private_data;
439 
440 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
441 					  &dsp->wmfw_file_name);
442 }
443 
444 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
445 				       char __user *user_buf,
446 				       size_t count, loff_t *ppos)
447 {
448 	struct cs_dsp *dsp = file->private_data;
449 
450 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
451 					  &dsp->bin_file_name);
452 }
453 
454 static const struct {
455 	const char *name;
456 	const struct file_operations fops;
457 } cs_dsp_debugfs_fops[] = {
458 	{
459 		.name = "wmfw_file_name",
460 		.fops = {
461 			.open = simple_open,
462 			.read = cs_dsp_debugfs_wmfw_read,
463 		},
464 	},
465 	{
466 		.name = "bin_file_name",
467 		.fops = {
468 			.open = simple_open,
469 			.read = cs_dsp_debugfs_bin_read,
470 		},
471 	},
472 };
473 
474 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
475 				 unsigned int off);
476 
477 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
478 {
479 	struct cs_dsp *dsp = s->private;
480 	struct cs_dsp_coeff_ctl *ctl;
481 	unsigned int reg;
482 
483 	guard(mutex)(&dsp->pwr_lock);
484 
485 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
486 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
487 		seq_printf(s, "%22.*s: %#8x %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
488 			   ctl->subname_len, ctl->subname, ctl->len,
489 			   cs_dsp_mem_region_name(ctl->alg_region.type),
490 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
491 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
492 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
493 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
494 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
495 			   ctl->enabled ? "enabled" : "disabled",
496 			   ctl->set ? "dirty" : "clean");
497 	}
498 
499 	return 0;
500 }
501 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
502 
503 /**
504  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
505  * @dsp: pointer to DSP structure
506  * @debugfs_root: pointer to debugfs directory in which to create this DSP
507  *                representation
508  */
509 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
510 {
511 	struct dentry *root = NULL;
512 	int i;
513 
514 	root = debugfs_create_dir(dsp->name, debugfs_root);
515 
516 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
517 	debugfs_create_bool("running", 0444, root, &dsp->running);
518 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
519 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
520 
521 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
522 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
523 				    dsp, &cs_dsp_debugfs_fops[i].fops);
524 
525 	debugfs_create_file("controls", 0444, root, dsp,
526 			    &cs_dsp_debugfs_read_controls_fops);
527 
528 	dsp->debugfs_root = root;
529 }
530 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
531 
532 /**
533  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
534  * @dsp: pointer to DSP structure
535  */
536 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
537 {
538 	cs_dsp_debugfs_clear(dsp);
539 	debugfs_remove_recursive(dsp->debugfs_root);
540 	dsp->debugfs_root = ERR_PTR(-ENODEV);
541 }
542 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
543 #else
544 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
545 {
546 }
547 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
548 
549 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
550 {
551 }
552 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
553 
554 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
555 						const char *s)
556 {
557 }
558 
559 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
560 					       const char *s)
561 {
562 }
563 
564 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
565 {
566 }
567 #endif
568 
569 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
570 						      int type)
571 {
572 	int i;
573 
574 	for (i = 0; i < dsp->num_mems; i++)
575 		if (dsp->mem[i].type == type)
576 			return &dsp->mem[i];
577 
578 	return NULL;
579 }
580 
581 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
582 					 unsigned int offset)
583 {
584 	switch (mem->type) {
585 	case WMFW_ADSP1_PM:
586 		return mem->base + (offset * 3);
587 	case WMFW_ADSP1_DM:
588 	case WMFW_ADSP2_XM:
589 	case WMFW_ADSP2_YM:
590 	case WMFW_ADSP1_ZM:
591 		return mem->base + (offset * 2);
592 	default:
593 		WARN(1, "Unknown memory region type");
594 		return offset;
595 	}
596 }
597 
598 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
599 					      unsigned int offset)
600 {
601 	switch (mem->type) {
602 	case WMFW_ADSP2_XM:
603 	case WMFW_ADSP2_YM:
604 		return mem->base + (offset * 4);
605 	case WMFW_HALO_XM_PACKED:
606 	case WMFW_HALO_YM_PACKED:
607 		return (mem->base + (offset * 3)) & ~0x3;
608 	case WMFW_HALO_PM_PACKED:
609 		return mem->base + (offset * 5);
610 	default:
611 		WARN(1, "Unknown memory region type");
612 		return offset;
613 	}
614 }
615 
616 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
617 				  int noffs, unsigned int *offs)
618 {
619 	unsigned int i;
620 	int ret;
621 
622 	for (i = 0; i < noffs; ++i) {
623 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
624 		if (ret) {
625 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
626 			return;
627 		}
628 	}
629 }
630 
631 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
632 {
633 	unsigned int offs[] = {
634 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
635 	};
636 
637 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
638 
639 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
640 		   offs[0], offs[1], offs[2], offs[3]);
641 }
642 
643 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
644 {
645 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
646 
647 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
648 
649 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
650 		   offs[0] & 0xFFFF, offs[0] >> 16,
651 		   offs[1] & 0xFFFF, offs[1] >> 16);
652 }
653 
654 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
655 {
656 	unsigned int offs[] = {
657 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
658 	};
659 
660 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
661 
662 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
663 		   offs[0], offs[1], offs[2], offs[3]);
664 }
665 
666 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
667 				 unsigned int off)
668 {
669 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
670 	struct cs_dsp *dsp = ctl->dsp;
671 	const struct cs_dsp_region *mem;
672 
673 	mem = cs_dsp_find_region(dsp, alg_region->type);
674 	if (!mem) {
675 		cs_dsp_err(dsp, "No base for region %x\n",
676 			   alg_region->type);
677 		return -EINVAL;
678 	}
679 
680 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
681 
682 	return 0;
683 }
684 
685 /**
686  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
687  * @ctl: pointer to acked coefficient control
688  * @event_id: the value to write to the given acked control
689  *
690  * Once the value has been written to the control the function shall block
691  * until the running firmware acknowledges the write or timeout is exceeded.
692  *
693  * Must be called with pwr_lock held.
694  *
695  * Return: Zero for success, a negative number on error.
696  */
697 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
698 {
699 	struct cs_dsp *dsp = ctl->dsp;
700 	__be32 val = cpu_to_be32(event_id);
701 	unsigned int reg;
702 	int i, ret;
703 
704 	lockdep_assert_held(&dsp->pwr_lock);
705 
706 	if (!dsp->running)
707 		return -EPERM;
708 
709 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
710 	if (ret)
711 		return ret;
712 
713 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
714 		   event_id, ctl->alg_region.alg,
715 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
716 
717 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
718 	if (ret) {
719 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
720 		return ret;
721 	}
722 
723 	/*
724 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
725 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
726 	 * to ack instantly so we do the first 1ms delay before reading the
727 	 * control to avoid a pointless bus transaction
728 	 */
729 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
730 		switch (i) {
731 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
732 			usleep_range(1000, 2000);
733 			i++;
734 			break;
735 		default:
736 			usleep_range(10000, 20000);
737 			i += 10;
738 			break;
739 		}
740 
741 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
742 		if (ret) {
743 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
744 			return ret;
745 		}
746 
747 		if (val == 0) {
748 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
749 			return 0;
750 		}
751 	}
752 
753 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
754 		    reg, ctl->alg_region.alg,
755 		    cs_dsp_mem_region_name(ctl->alg_region.type),
756 		    ctl->offset);
757 
758 	return -ETIMEDOUT;
759 }
760 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
761 
762 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
763 				       unsigned int off, const void *buf, size_t len)
764 {
765 	struct cs_dsp *dsp = ctl->dsp;
766 	void *scratch;
767 	int ret;
768 	unsigned int reg;
769 
770 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
771 	if (ret)
772 		return ret;
773 
774 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
775 	if (!scratch)
776 		return -ENOMEM;
777 
778 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
779 			       len);
780 	if (ret) {
781 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
782 			   len, reg, ret);
783 		kfree(scratch);
784 		return ret;
785 	}
786 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
787 
788 	kfree(scratch);
789 
790 	return 0;
791 }
792 
793 /**
794  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
795  * @ctl: pointer to coefficient control
796  * @off: word offset at which data should be written
797  * @buf: the buffer to write to the given control
798  * @len: the length of the buffer in bytes
799  *
800  * Must be called with pwr_lock held.
801  *
802  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
803  */
804 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
805 			    unsigned int off, const void *buf, size_t len)
806 {
807 	int ret = 0;
808 
809 	if (!ctl)
810 		return -ENOENT;
811 
812 	lockdep_assert_held(&ctl->dsp->pwr_lock);
813 
814 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
815 		return -EPERM;
816 
817 	if (len + off * sizeof(u32) > ctl->len)
818 		return -EINVAL;
819 
820 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
821 		ret = -EPERM;
822 	} else if (buf != ctl->cache) {
823 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
824 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
825 		else
826 			return 0;
827 	}
828 
829 	ctl->set = 1;
830 	if (ctl->enabled && ctl->dsp->running)
831 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
832 
833 	if (ret < 0)
834 		return ret;
835 
836 	return 1;
837 }
838 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
839 
840 /**
841  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
842  * @ctl: pointer to coefficient control
843  * @off: word offset at which data should be written
844  * @buf: the buffer to write to the given control
845  * @len: the length of the buffer in bytes
846  *
847  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
848  *
849  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
850  */
851 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
852 				     unsigned int off, const void *buf, size_t len)
853 {
854 	struct cs_dsp *dsp = ctl->dsp;
855 	int ret;
856 
857 	lockdep_assert_not_held(&dsp->pwr_lock);
858 
859 	mutex_lock(&dsp->pwr_lock);
860 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
861 	mutex_unlock(&dsp->pwr_lock);
862 
863 	return ret;
864 }
865 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
866 
867 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
868 				      unsigned int off, void *buf, size_t len)
869 {
870 	struct cs_dsp *dsp = ctl->dsp;
871 	void *scratch;
872 	int ret;
873 	unsigned int reg;
874 
875 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
876 	if (ret)
877 		return ret;
878 
879 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
880 	if (!scratch)
881 		return -ENOMEM;
882 
883 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
884 	if (ret) {
885 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
886 			   len, reg, ret);
887 		kfree(scratch);
888 		return ret;
889 	}
890 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
891 
892 	memcpy(buf, scratch, len);
893 	kfree(scratch);
894 
895 	return 0;
896 }
897 
898 /**
899  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
900  * @ctl: pointer to coefficient control
901  * @off: word offset at which data should be read
902  * @buf: the buffer to store to the given control
903  * @len: the length of the buffer in bytes
904  *
905  * Must be called with pwr_lock held.
906  *
907  * Return: Zero for success, a negative number on error.
908  */
909 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
910 			   unsigned int off, void *buf, size_t len)
911 {
912 	int ret = 0;
913 
914 	if (!ctl)
915 		return -ENOENT;
916 
917 	lockdep_assert_held(&ctl->dsp->pwr_lock);
918 
919 	if (len + off * sizeof(u32) > ctl->len)
920 		return -EINVAL;
921 
922 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
923 		if (ctl->enabled && ctl->dsp->running)
924 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
925 		else
926 			return -EPERM;
927 	} else {
928 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
929 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
930 
931 		if (buf != ctl->cache)
932 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
933 	}
934 
935 	return ret;
936 }
937 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
938 
939 /**
940  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
941  * @ctl: pointer to coefficient control
942  * @off: word offset at which data should be read
943  * @buf: the buffer to store to the given control
944  * @len: the length of the buffer in bytes
945  *
946  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
947  *
948  * Return: Zero for success, a negative number on error.
949  */
950 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
951 				    unsigned int off, void *buf, size_t len)
952 {
953 	struct cs_dsp *dsp = ctl->dsp;
954 	int ret;
955 
956 	lockdep_assert_not_held(&dsp->pwr_lock);
957 
958 	mutex_lock(&dsp->pwr_lock);
959 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
960 	mutex_unlock(&dsp->pwr_lock);
961 
962 	return ret;
963 }
964 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
965 
966 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
967 {
968 	struct cs_dsp_coeff_ctl *ctl;
969 	int ret;
970 
971 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
972 		if (!ctl->enabled || ctl->set)
973 			continue;
974 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
975 			continue;
976 
977 		/*
978 		 * For readable controls populate the cache from the DSP memory.
979 		 * For non-readable controls the cache was zero-filled when
980 		 * created so we don't need to do anything.
981 		 */
982 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
983 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
984 			if (ret < 0)
985 				return ret;
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
993 {
994 	struct cs_dsp_coeff_ctl *ctl;
995 	int ret;
996 
997 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
998 		if (!ctl->enabled)
999 			continue;
1000 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
1001 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
1002 							  ctl->len);
1003 			if (ret < 0)
1004 				return ret;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1012 					 unsigned int event)
1013 {
1014 	struct cs_dsp_coeff_ctl *ctl;
1015 	int ret;
1016 
1017 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1018 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1019 			continue;
1020 
1021 		if (!ctl->enabled)
1022 			continue;
1023 
1024 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1025 		if (ret)
1026 			cs_dsp_warn(dsp,
1027 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1028 				    event, ctl->alg_region.alg, ret);
1029 	}
1030 }
1031 
1032 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1033 {
1034 	kvfree(ctl->cache);
1035 	kfree(ctl->subname);
1036 	kfree(ctl);
1037 }
1038 
1039 static int cs_dsp_create_control(struct cs_dsp *dsp,
1040 				 const struct cs_dsp_alg_region *alg_region,
1041 				 unsigned int offset, unsigned int len,
1042 				 const char *subname, unsigned int subname_len,
1043 				 unsigned int flags, unsigned int type)
1044 {
1045 	struct cs_dsp_coeff_ctl *ctl;
1046 	int ret;
1047 
1048 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1049 		if (ctl->fw_name == dsp->fw_name &&
1050 		    ctl->alg_region.alg == alg_region->alg &&
1051 		    ctl->alg_region.type == alg_region->type) {
1052 			if ((!subname && !ctl->subname) ||
1053 			    (subname && (ctl->subname_len == subname_len) &&
1054 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1055 				if (!ctl->enabled)
1056 					ctl->enabled = 1;
1057 				return 0;
1058 			}
1059 		}
1060 	}
1061 
1062 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1063 	if (!ctl)
1064 		return -ENOMEM;
1065 
1066 	ctl->fw_name = dsp->fw_name;
1067 	ctl->alg_region = *alg_region;
1068 	if (subname && dsp->wmfw_ver >= 2) {
1069 		ctl->subname_len = subname_len;
1070 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1071 		if (!ctl->subname) {
1072 			ret = -ENOMEM;
1073 			goto err_ctl;
1074 		}
1075 	}
1076 	ctl->enabled = 1;
1077 	ctl->set = 0;
1078 	ctl->dsp = dsp;
1079 
1080 	ctl->flags = flags;
1081 	ctl->type = type;
1082 	ctl->offset = offset;
1083 	ctl->len = len;
1084 	ctl->cache = kvzalloc(ctl->len, GFP_KERNEL);
1085 	if (!ctl->cache) {
1086 		ret = -ENOMEM;
1087 		goto err_ctl_subname;
1088 	}
1089 
1090 	list_add(&ctl->list, &dsp->ctl_list);
1091 
1092 	if (dsp->client_ops->control_add) {
1093 		ret = dsp->client_ops->control_add(ctl);
1094 		if (ret)
1095 			goto err_list_del;
1096 	}
1097 
1098 	return 0;
1099 
1100 err_list_del:
1101 	list_del(&ctl->list);
1102 	kvfree(ctl->cache);
1103 err_ctl_subname:
1104 	kfree(ctl->subname);
1105 err_ctl:
1106 	kfree(ctl);
1107 
1108 	return ret;
1109 }
1110 
1111 struct cs_dsp_coeff_parsed_alg {
1112 	int id;
1113 	const u8 *name;
1114 	int name_len;
1115 	int ncoeff;
1116 };
1117 
1118 struct cs_dsp_coeff_parsed_coeff {
1119 	int offset;
1120 	int mem_type;
1121 	const u8 *name;
1122 	int name_len;
1123 	unsigned int ctl_type;
1124 	int flags;
1125 	int len;
1126 };
1127 
1128 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1129 				     const u8 **str)
1130 {
1131 	int length, total_field_len;
1132 
1133 	/* String fields are at least one __le32 */
1134 	if (sizeof(__le32) > avail) {
1135 		*pos = NULL;
1136 		return 0;
1137 	}
1138 
1139 	switch (bytes) {
1140 	case 1:
1141 		length = **pos;
1142 		break;
1143 	case 2:
1144 		length = le16_to_cpu(*((__le16 *)*pos));
1145 		break;
1146 	default:
1147 		return 0;
1148 	}
1149 
1150 	total_field_len = ((length + bytes) + 3) & ~0x03;
1151 	if ((unsigned int)total_field_len > avail) {
1152 		*pos = NULL;
1153 		return 0;
1154 	}
1155 
1156 	if (str)
1157 		*str = *pos + bytes;
1158 
1159 	*pos += total_field_len;
1160 
1161 	return length;
1162 }
1163 
1164 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1165 {
1166 	int val = 0;
1167 
1168 	switch (bytes) {
1169 	case 2:
1170 		val = le16_to_cpu(*((__le16 *)*pos));
1171 		break;
1172 	case 4:
1173 		val = le32_to_cpu(*((__le32 *)*pos));
1174 		break;
1175 	default:
1176 		break;
1177 	}
1178 
1179 	*pos += bytes;
1180 
1181 	return val;
1182 }
1183 
1184 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1185 				  const struct wmfw_region *region,
1186 				  struct cs_dsp_coeff_parsed_alg *blk)
1187 {
1188 	const struct wmfw_adsp_alg_data *raw;
1189 	unsigned int data_len = le32_to_cpu(region->len);
1190 	unsigned int pos;
1191 	const u8 *tmp;
1192 
1193 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1194 
1195 	switch (dsp->wmfw_ver) {
1196 	case 0:
1197 	case 1:
1198 		if (sizeof(*raw) > data_len)
1199 			return -EOVERFLOW;
1200 
1201 		blk->id = le32_to_cpu(raw->id);
1202 		blk->name = raw->name;
1203 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1204 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1205 
1206 		pos = sizeof(*raw);
1207 		break;
1208 	default:
1209 		if (sizeof(raw->id) > data_len)
1210 			return -EOVERFLOW;
1211 
1212 		tmp = region->data;
1213 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1214 		pos = tmp - region->data;
1215 
1216 		tmp = &region->data[pos];
1217 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1218 							  &blk->name);
1219 		if (!tmp)
1220 			return -EOVERFLOW;
1221 
1222 		pos = tmp - region->data;
1223 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1224 		if (!tmp)
1225 			return -EOVERFLOW;
1226 
1227 		pos = tmp - region->data;
1228 		if (sizeof(raw->ncoeff) > (data_len - pos))
1229 			return -EOVERFLOW;
1230 
1231 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1232 		pos += sizeof(raw->ncoeff);
1233 		break;
1234 	}
1235 
1236 	if ((int)blk->ncoeff < 0)
1237 		return -EOVERFLOW;
1238 
1239 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1240 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1241 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1242 
1243 	return pos;
1244 }
1245 
1246 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1247 				    const struct wmfw_region *region,
1248 				    unsigned int pos,
1249 				    struct cs_dsp_coeff_parsed_coeff *blk)
1250 {
1251 	const struct wmfw_adsp_coeff_data *raw;
1252 	unsigned int data_len = le32_to_cpu(region->len);
1253 	unsigned int blk_len, blk_end_pos;
1254 	const u8 *tmp;
1255 
1256 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1257 	if (sizeof(raw->hdr) > (data_len - pos))
1258 		return -EOVERFLOW;
1259 
1260 	blk_len = le32_to_cpu(raw->hdr.size);
1261 	if (blk_len > S32_MAX)
1262 		return -EOVERFLOW;
1263 
1264 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1265 		return -EOVERFLOW;
1266 
1267 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1268 
1269 	blk->offset = le16_to_cpu(raw->hdr.offset);
1270 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1271 
1272 	switch (dsp->wmfw_ver) {
1273 	case 0:
1274 	case 1:
1275 		if (sizeof(*raw) > (data_len - pos))
1276 			return -EOVERFLOW;
1277 
1278 		blk->name = raw->name;
1279 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1280 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1281 		blk->flags = le16_to_cpu(raw->flags);
1282 		blk->len = le32_to_cpu(raw->len);
1283 		break;
1284 	default:
1285 		pos += sizeof(raw->hdr);
1286 		tmp = &region->data[pos];
1287 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1288 							  &blk->name);
1289 		if (!tmp)
1290 			return -EOVERFLOW;
1291 
1292 		pos = tmp - region->data;
1293 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1294 		if (!tmp)
1295 			return -EOVERFLOW;
1296 
1297 		pos = tmp - region->data;
1298 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1299 		if (!tmp)
1300 			return -EOVERFLOW;
1301 
1302 		pos = tmp - region->data;
1303 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1304 		    (data_len - pos))
1305 			return -EOVERFLOW;
1306 
1307 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1308 		pos += sizeof(raw->ctl_type);
1309 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1310 		pos += sizeof(raw->flags);
1311 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1312 		break;
1313 	}
1314 
1315 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1316 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1317 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1318 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1319 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1320 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1321 
1322 	return blk_end_pos;
1323 }
1324 
1325 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1326 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1327 				    unsigned int f_required,
1328 				    unsigned int f_illegal)
1329 {
1330 	if ((coeff_blk->flags & f_illegal) ||
1331 	    ((coeff_blk->flags & f_required) != f_required)) {
1332 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1333 			   coeff_blk->flags, coeff_blk->ctl_type);
1334 		return -EINVAL;
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1341 			      const struct wmfw_region *region)
1342 {
1343 	struct cs_dsp_alg_region alg_region = {};
1344 	struct cs_dsp_coeff_parsed_alg alg_blk;
1345 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1346 	int i, pos, ret;
1347 
1348 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1349 	if (pos < 0)
1350 		return pos;
1351 
1352 	for (i = 0; i < alg_blk.ncoeff; i++) {
1353 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1354 		if (pos < 0)
1355 			return pos;
1356 
1357 		switch (coeff_blk.ctl_type) {
1358 		case WMFW_CTL_TYPE_BYTES:
1359 			break;
1360 		case WMFW_CTL_TYPE_ACKED:
1361 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1362 				continue;	/* ignore */
1363 
1364 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1365 						       WMFW_CTL_FLAG_VOLATILE |
1366 						       WMFW_CTL_FLAG_WRITEABLE |
1367 						       WMFW_CTL_FLAG_READABLE,
1368 						       0);
1369 			if (ret)
1370 				return -EINVAL;
1371 			break;
1372 		case WMFW_CTL_TYPE_HOSTEVENT:
1373 		case WMFW_CTL_TYPE_FWEVENT:
1374 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1375 						       WMFW_CTL_FLAG_SYS |
1376 						       WMFW_CTL_FLAG_VOLATILE |
1377 						       WMFW_CTL_FLAG_WRITEABLE |
1378 						       WMFW_CTL_FLAG_READABLE,
1379 						       0);
1380 			if (ret)
1381 				return -EINVAL;
1382 			break;
1383 		case WMFW_CTL_TYPE_HOST_BUFFER:
1384 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1385 						       WMFW_CTL_FLAG_SYS |
1386 						       WMFW_CTL_FLAG_VOLATILE |
1387 						       WMFW_CTL_FLAG_READABLE,
1388 						       0);
1389 			if (ret)
1390 				return -EINVAL;
1391 			break;
1392 		default:
1393 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1394 				   coeff_blk.ctl_type);
1395 			return -EINVAL;
1396 		}
1397 
1398 		alg_region.type = coeff_blk.mem_type;
1399 		alg_region.alg = alg_blk.id;
1400 
1401 		ret = cs_dsp_create_control(dsp, &alg_region,
1402 					    coeff_blk.offset,
1403 					    coeff_blk.len,
1404 					    coeff_blk.name,
1405 					    coeff_blk.name_len,
1406 					    coeff_blk.flags,
1407 					    coeff_blk.ctl_type);
1408 		if (ret < 0)
1409 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1410 				   coeff_blk.name_len, coeff_blk.name, ret);
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1417 					     const char * const file,
1418 					     unsigned int pos,
1419 					     const struct firmware *firmware)
1420 {
1421 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1422 
1423 	adsp1_sizes = (void *)&firmware->data[pos];
1424 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1425 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1426 		return 0;
1427 	}
1428 
1429 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1430 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1431 		   le32_to_cpu(adsp1_sizes->zm));
1432 
1433 	return pos + sizeof(*adsp1_sizes);
1434 }
1435 
1436 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1437 					     const char * const file,
1438 					     unsigned int pos,
1439 					     const struct firmware *firmware)
1440 {
1441 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1442 
1443 	adsp2_sizes = (void *)&firmware->data[pos];
1444 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1445 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1446 		return 0;
1447 	}
1448 
1449 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1450 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1451 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1452 
1453 	return pos + sizeof(*adsp2_sizes);
1454 }
1455 
1456 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1457 {
1458 	switch (version) {
1459 	case 0:
1460 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1461 		return true;
1462 	case 1:
1463 	case 2:
1464 		return true;
1465 	default:
1466 		return false;
1467 	}
1468 }
1469 
1470 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1471 {
1472 	switch (version) {
1473 	case 3:
1474 		return true;
1475 	default:
1476 		return false;
1477 	}
1478 }
1479 
1480 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1481 		       const char *file)
1482 {
1483 	LIST_HEAD(buf_list);
1484 	struct regmap *regmap = dsp->regmap;
1485 	unsigned int pos = 0;
1486 	const struct wmfw_header *header;
1487 	const struct wmfw_footer *footer;
1488 	const struct wmfw_region *region;
1489 	const struct cs_dsp_region *mem;
1490 	const char *region_name;
1491 	u8 *buf = NULL;
1492 	size_t buf_len = 0;
1493 	size_t region_len;
1494 	unsigned int reg;
1495 	int regions = 0;
1496 	int ret, offset, type;
1497 
1498 	if (!firmware)
1499 		return 0;
1500 
1501 	ret = -EINVAL;
1502 
1503 	if (sizeof(*header) >= firmware->size) {
1504 		ret = -EOVERFLOW;
1505 		goto out_fw;
1506 	}
1507 
1508 	header = (void *)&firmware->data[0];
1509 
1510 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1511 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1512 		goto out_fw;
1513 	}
1514 
1515 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1516 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1517 			   file, header->ver);
1518 		goto out_fw;
1519 	}
1520 
1521 	dsp->wmfw_ver = header->ver;
1522 
1523 	if (header->core != dsp->type) {
1524 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1525 			   file, header->core, dsp->type);
1526 		goto out_fw;
1527 	}
1528 
1529 	pos = sizeof(*header);
1530 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1531 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1532 		ret = -EOVERFLOW;
1533 		goto out_fw;
1534 	}
1535 
1536 	footer = (void *)&firmware->data[pos];
1537 	pos += sizeof(*footer);
1538 
1539 	if (le32_to_cpu(header->len) != pos) {
1540 		ret = -EOVERFLOW;
1541 		goto out_fw;
1542 	}
1543 
1544 	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1545 		    le64_to_cpu(footer->timestamp));
1546 
1547 	while (pos < firmware->size) {
1548 		/* Is there enough data for a complete block header? */
1549 		if (sizeof(*region) > firmware->size - pos) {
1550 			ret = -EOVERFLOW;
1551 			goto out_fw;
1552 		}
1553 
1554 		region = (void *)&(firmware->data[pos]);
1555 
1556 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1557 			ret = -EOVERFLOW;
1558 			goto out_fw;
1559 		}
1560 
1561 		region_name = "Unknown";
1562 		reg = 0;
1563 		offset = le32_to_cpu(region->offset) & 0xffffff;
1564 		type = be32_to_cpu(region->type) & 0xff;
1565 
1566 		switch (type) {
1567 		case WMFW_INFO_TEXT:
1568 		case WMFW_NAME_TEXT:
1569 			region_name = "Info/Name";
1570 			cs_dsp_info(dsp, "%s: %.*s\n", file,
1571 				    min(le32_to_cpu(region->len), 100), region->data);
1572 			break;
1573 		case WMFW_ALGORITHM_DATA:
1574 			region_name = "Algorithm";
1575 			ret = cs_dsp_parse_coeff(dsp, region);
1576 			if (ret != 0)
1577 				goto out_fw;
1578 			break;
1579 		case WMFW_ABSOLUTE:
1580 			region_name = "Absolute";
1581 			reg = offset;
1582 			break;
1583 		case WMFW_ADSP1_PM:
1584 		case WMFW_ADSP1_DM:
1585 		case WMFW_ADSP2_XM:
1586 		case WMFW_ADSP2_YM:
1587 		case WMFW_ADSP1_ZM:
1588 		case WMFW_HALO_PM_PACKED:
1589 		case WMFW_HALO_XM_PACKED:
1590 		case WMFW_HALO_YM_PACKED:
1591 			mem = cs_dsp_find_region(dsp, type);
1592 			if (!mem) {
1593 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1594 				ret = -EINVAL;
1595 				goto out_fw;
1596 			}
1597 
1598 			region_name = cs_dsp_mem_region_name(type);
1599 			reg = dsp->ops->region_to_reg(mem, offset);
1600 			break;
1601 		default:
1602 			cs_dsp_warn(dsp,
1603 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1604 				    file, regions, type, pos, pos);
1605 			break;
1606 		}
1607 
1608 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1609 			   regions, le32_to_cpu(region->len), offset,
1610 			   region_name);
1611 
1612 		if (reg) {
1613 			region_len = le32_to_cpu(region->len);
1614 			if (region_len > buf_len) {
1615 				buf_len = round_up(region_len, PAGE_SIZE);
1616 				kfree(buf);
1617 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
1618 				if (!buf) {
1619 					ret = -ENOMEM;
1620 					goto out_fw;
1621 				}
1622 			}
1623 
1624 			memcpy(buf, region->data, region_len);
1625 			ret = regmap_raw_write(regmap, reg, buf, region_len);
1626 			if (ret != 0) {
1627 				cs_dsp_err(dsp,
1628 					   "%s.%d: Failed to write %zu bytes at %d in %s: %d\n",
1629 					   file, regions, region_len, offset, region_name, ret);
1630 				goto out_fw;
1631 			}
1632 		}
1633 
1634 		pos += le32_to_cpu(region->len) + sizeof(*region);
1635 		regions++;
1636 	}
1637 
1638 	if (pos > firmware->size)
1639 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1640 			    file, regions, pos - firmware->size);
1641 
1642 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1643 
1644 	ret = 0;
1645 out_fw:
1646 	kfree(buf);
1647 
1648 	if (ret == -EOVERFLOW)
1649 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1650 
1651 	return ret;
1652 }
1653 
1654 /**
1655  * cs_dsp_get_ctl() - Finds a matching coefficient control
1656  * @dsp: pointer to DSP structure
1657  * @name: pointer to string to match with a control's subname
1658  * @type: the algorithm type to match
1659  * @alg: the algorithm id to match
1660  *
1661  * Find cs_dsp_coeff_ctl with input name as its subname
1662  *
1663  * Return: pointer to the control on success, NULL if not found
1664  */
1665 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1666 					unsigned int alg)
1667 {
1668 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1669 
1670 	lockdep_assert_held(&dsp->pwr_lock);
1671 
1672 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1673 		if (!pos->subname)
1674 			continue;
1675 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1676 		    pos->fw_name == dsp->fw_name &&
1677 		    pos->alg_region.alg == alg &&
1678 		    pos->alg_region.type == type) {
1679 			rslt = pos;
1680 			break;
1681 		}
1682 	}
1683 
1684 	return rslt;
1685 }
1686 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1687 
1688 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1689 				  const struct cs_dsp_alg_region *alg_region)
1690 {
1691 	struct cs_dsp_coeff_ctl *ctl;
1692 
1693 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1694 		if (ctl->fw_name == dsp->fw_name &&
1695 		    alg_region->alg == ctl->alg_region.alg &&
1696 		    alg_region->type == ctl->alg_region.type) {
1697 			ctl->alg_region.base = alg_region->base;
1698 		}
1699 	}
1700 }
1701 
1702 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1703 			      const struct cs_dsp_region *mem,
1704 			      unsigned int pos, unsigned int len)
1705 {
1706 	void *alg;
1707 	unsigned int reg;
1708 	int ret;
1709 	__be32 val;
1710 
1711 	if (n_algs == 0) {
1712 		cs_dsp_err(dsp, "No algorithms\n");
1713 		return ERR_PTR(-EINVAL);
1714 	}
1715 
1716 	if (n_algs > 1024) {
1717 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1718 		return ERR_PTR(-EINVAL);
1719 	}
1720 
1721 	/* Read the terminator first to validate the length */
1722 	reg = dsp->ops->region_to_reg(mem, pos + len);
1723 
1724 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1725 	if (ret != 0) {
1726 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1727 			   ret);
1728 		return ERR_PTR(ret);
1729 	}
1730 
1731 	if (be32_to_cpu(val) != 0xbedead)
1732 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1733 			    reg, be32_to_cpu(val));
1734 
1735 	/* Convert length from DSP words to bytes */
1736 	len *= sizeof(u32);
1737 
1738 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1739 	if (!alg)
1740 		return ERR_PTR(-ENOMEM);
1741 
1742 	reg = dsp->ops->region_to_reg(mem, pos);
1743 
1744 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1745 	if (ret != 0) {
1746 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1747 		kfree(alg);
1748 		return ERR_PTR(ret);
1749 	}
1750 
1751 	return alg;
1752 }
1753 
1754 /**
1755  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1756  * @dsp: pointer to DSP structure
1757  * @type: the algorithm type to match
1758  * @id: the algorithm id to match
1759  *
1760  * Return: Pointer to matching algorithm region, or NULL if not found.
1761  */
1762 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1763 						 int type, unsigned int id)
1764 {
1765 	struct cs_dsp_alg_region_list_item *item;
1766 
1767 	lockdep_assert_held(&dsp->pwr_lock);
1768 
1769 	list_for_each_entry(item, &dsp->alg_regions, list) {
1770 		if (id == item->alg_region.alg && type == item->alg_region.type)
1771 			return &item->alg_region;
1772 	}
1773 
1774 	return NULL;
1775 }
1776 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1777 
1778 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1779 						      int type, __be32 id,
1780 						      __be32 ver, __be32 base)
1781 {
1782 	struct cs_dsp_alg_region_list_item *item;
1783 
1784 	item = kzalloc(sizeof(*item), GFP_KERNEL);
1785 	if (!item)
1786 		return ERR_PTR(-ENOMEM);
1787 
1788 	item->alg_region.type = type;
1789 	item->alg_region.alg = be32_to_cpu(id);
1790 	item->alg_region.ver = be32_to_cpu(ver);
1791 	item->alg_region.base = be32_to_cpu(base);
1792 
1793 	list_add_tail(&item->list, &dsp->alg_regions);
1794 
1795 	if (dsp->wmfw_ver > 0)
1796 		cs_dsp_ctl_fixup_base(dsp, &item->alg_region);
1797 
1798 	return &item->alg_region;
1799 }
1800 
1801 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1802 {
1803 	struct cs_dsp_alg_region_list_item *item;
1804 
1805 	while (!list_empty(&dsp->alg_regions)) {
1806 		item = list_first_entry(&dsp->alg_regions,
1807 					struct cs_dsp_alg_region_list_item,
1808 					list);
1809 		list_del(&item->list);
1810 		kfree(item);
1811 	}
1812 }
1813 
1814 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1815 					struct wmfw_id_hdr *fw, int nalgs)
1816 {
1817 	dsp->fw_id = be32_to_cpu(fw->id);
1818 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1819 
1820 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1821 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1822 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1823 		    nalgs);
1824 }
1825 
1826 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1827 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1828 {
1829 	dsp->fw_id = be32_to_cpu(fw->id);
1830 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1831 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1832 
1833 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1834 		    dsp->fw_id, dsp->fw_vendor_id,
1835 		    (dsp->fw_id_version & 0xff0000) >> 16,
1836 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1837 		    nalgs);
1838 }
1839 
1840 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1841 				 int nregions, const int *type, __be32 *base)
1842 {
1843 	struct cs_dsp_alg_region *alg_region;
1844 	int i;
1845 
1846 	for (i = 0; i < nregions; i++) {
1847 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1848 		if (IS_ERR(alg_region))
1849 			return PTR_ERR(alg_region);
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1856 {
1857 	struct wmfw_adsp1_id_hdr adsp1_id;
1858 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1859 	struct cs_dsp_alg_region *alg_region;
1860 	const struct cs_dsp_region *mem;
1861 	unsigned int pos, len;
1862 	size_t n_algs;
1863 	int i, ret;
1864 
1865 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1866 	if (WARN_ON(!mem))
1867 		return -EINVAL;
1868 
1869 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1870 			      sizeof(adsp1_id));
1871 	if (ret != 0) {
1872 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1873 			   ret);
1874 		return ret;
1875 	}
1876 
1877 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1878 
1879 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1880 
1881 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1882 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1883 					  adsp1_id.zm);
1884 	if (IS_ERR(alg_region))
1885 		return PTR_ERR(alg_region);
1886 
1887 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1888 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1889 					  adsp1_id.dm);
1890 	if (IS_ERR(alg_region))
1891 		return PTR_ERR(alg_region);
1892 
1893 	/* Calculate offset and length in DSP words */
1894 	pos = sizeof(adsp1_id) / sizeof(u32);
1895 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1896 
1897 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1898 	if (IS_ERR(adsp1_alg))
1899 		return PTR_ERR(adsp1_alg);
1900 
1901 	for (i = 0; i < n_algs; i++) {
1902 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1903 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1904 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1905 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1906 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1907 			    be32_to_cpu(adsp1_alg[i].dm),
1908 			    be32_to_cpu(adsp1_alg[i].zm));
1909 
1910 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1911 						  adsp1_alg[i].alg.id,
1912 						  adsp1_alg[i].alg.ver,
1913 						  adsp1_alg[i].dm);
1914 		if (IS_ERR(alg_region)) {
1915 			ret = PTR_ERR(alg_region);
1916 			goto out;
1917 		}
1918 		if (dsp->wmfw_ver == 0) {
1919 			if (i + 1 < n_algs) {
1920 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1921 				len -= be32_to_cpu(adsp1_alg[i].dm);
1922 				len *= 4;
1923 				cs_dsp_create_control(dsp, alg_region, 0,
1924 						      len, NULL, 0, 0,
1925 						      WMFW_CTL_TYPE_BYTES);
1926 			} else {
1927 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1928 					    be32_to_cpu(adsp1_alg[i].alg.id));
1929 			}
1930 		}
1931 
1932 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1933 						  adsp1_alg[i].alg.id,
1934 						  adsp1_alg[i].alg.ver,
1935 						  adsp1_alg[i].zm);
1936 		if (IS_ERR(alg_region)) {
1937 			ret = PTR_ERR(alg_region);
1938 			goto out;
1939 		}
1940 		if (dsp->wmfw_ver == 0) {
1941 			if (i + 1 < n_algs) {
1942 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1943 				len -= be32_to_cpu(adsp1_alg[i].zm);
1944 				len *= 4;
1945 				cs_dsp_create_control(dsp, alg_region, 0,
1946 						      len, NULL, 0, 0,
1947 						      WMFW_CTL_TYPE_BYTES);
1948 			} else {
1949 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1950 					    be32_to_cpu(adsp1_alg[i].alg.id));
1951 			}
1952 		}
1953 	}
1954 
1955 out:
1956 	kfree(adsp1_alg);
1957 	return ret;
1958 }
1959 
1960 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1961 {
1962 	struct wmfw_adsp2_id_hdr adsp2_id;
1963 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1964 	struct cs_dsp_alg_region *alg_region;
1965 	const struct cs_dsp_region *mem;
1966 	unsigned int pos, len;
1967 	size_t n_algs;
1968 	int i, ret;
1969 
1970 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1971 	if (WARN_ON(!mem))
1972 		return -EINVAL;
1973 
1974 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1975 			      sizeof(adsp2_id));
1976 	if (ret != 0) {
1977 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1978 			   ret);
1979 		return ret;
1980 	}
1981 
1982 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1983 
1984 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1985 
1986 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1987 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1988 					  adsp2_id.xm);
1989 	if (IS_ERR(alg_region))
1990 		return PTR_ERR(alg_region);
1991 
1992 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1993 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1994 					  adsp2_id.ym);
1995 	if (IS_ERR(alg_region))
1996 		return PTR_ERR(alg_region);
1997 
1998 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1999 					  adsp2_id.fw.id, adsp2_id.fw.ver,
2000 					  adsp2_id.zm);
2001 	if (IS_ERR(alg_region))
2002 		return PTR_ERR(alg_region);
2003 
2004 	/* Calculate offset and length in DSP words */
2005 	pos = sizeof(adsp2_id) / sizeof(u32);
2006 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2007 
2008 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2009 	if (IS_ERR(adsp2_alg))
2010 		return PTR_ERR(adsp2_alg);
2011 
2012 	for (i = 0; i < n_algs; i++) {
2013 		cs_dsp_dbg(dsp,
2014 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2015 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2016 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2017 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2018 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2019 			   be32_to_cpu(adsp2_alg[i].xm),
2020 			   be32_to_cpu(adsp2_alg[i].ym),
2021 			   be32_to_cpu(adsp2_alg[i].zm));
2022 
2023 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2024 						  adsp2_alg[i].alg.id,
2025 						  adsp2_alg[i].alg.ver,
2026 						  adsp2_alg[i].xm);
2027 		if (IS_ERR(alg_region)) {
2028 			ret = PTR_ERR(alg_region);
2029 			goto out;
2030 		}
2031 		if (dsp->wmfw_ver == 0) {
2032 			if (i + 1 < n_algs) {
2033 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2034 				len -= be32_to_cpu(adsp2_alg[i].xm);
2035 				len *= 4;
2036 				cs_dsp_create_control(dsp, alg_region, 0,
2037 						      len, NULL, 0, 0,
2038 						      WMFW_CTL_TYPE_BYTES);
2039 			} else {
2040 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2041 					    be32_to_cpu(adsp2_alg[i].alg.id));
2042 			}
2043 		}
2044 
2045 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2046 						  adsp2_alg[i].alg.id,
2047 						  adsp2_alg[i].alg.ver,
2048 						  adsp2_alg[i].ym);
2049 		if (IS_ERR(alg_region)) {
2050 			ret = PTR_ERR(alg_region);
2051 			goto out;
2052 		}
2053 		if (dsp->wmfw_ver == 0) {
2054 			if (i + 1 < n_algs) {
2055 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2056 				len -= be32_to_cpu(adsp2_alg[i].ym);
2057 				len *= 4;
2058 				cs_dsp_create_control(dsp, alg_region, 0,
2059 						      len, NULL, 0, 0,
2060 						      WMFW_CTL_TYPE_BYTES);
2061 			} else {
2062 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2063 					    be32_to_cpu(adsp2_alg[i].alg.id));
2064 			}
2065 		}
2066 
2067 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2068 						  adsp2_alg[i].alg.id,
2069 						  adsp2_alg[i].alg.ver,
2070 						  adsp2_alg[i].zm);
2071 		if (IS_ERR(alg_region)) {
2072 			ret = PTR_ERR(alg_region);
2073 			goto out;
2074 		}
2075 		if (dsp->wmfw_ver == 0) {
2076 			if (i + 1 < n_algs) {
2077 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2078 				len -= be32_to_cpu(adsp2_alg[i].zm);
2079 				len *= 4;
2080 				cs_dsp_create_control(dsp, alg_region, 0,
2081 						      len, NULL, 0, 0,
2082 						      WMFW_CTL_TYPE_BYTES);
2083 			} else {
2084 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2085 					    be32_to_cpu(adsp2_alg[i].alg.id));
2086 			}
2087 		}
2088 	}
2089 
2090 out:
2091 	kfree(adsp2_alg);
2092 	return ret;
2093 }
2094 
2095 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2096 				      __be32 xm_base, __be32 ym_base)
2097 {
2098 	static const int types[] = {
2099 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2100 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2101 	};
2102 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2103 
2104 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2105 }
2106 
2107 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2108 {
2109 	struct wmfw_halo_id_hdr halo_id;
2110 	struct wmfw_halo_alg_hdr *halo_alg;
2111 	const struct cs_dsp_region *mem;
2112 	unsigned int pos, len;
2113 	size_t n_algs;
2114 	int i, ret;
2115 
2116 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2117 	if (WARN_ON(!mem))
2118 		return -EINVAL;
2119 
2120 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2121 			      sizeof(halo_id));
2122 	if (ret != 0) {
2123 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2124 			   ret);
2125 		return ret;
2126 	}
2127 
2128 	n_algs = be32_to_cpu(halo_id.n_algs);
2129 
2130 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2131 
2132 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2133 					 halo_id.xm_base, halo_id.ym_base);
2134 	if (ret)
2135 		return ret;
2136 
2137 	/* Calculate offset and length in DSP words */
2138 	pos = sizeof(halo_id) / sizeof(u32);
2139 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2140 
2141 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2142 	if (IS_ERR(halo_alg))
2143 		return PTR_ERR(halo_alg);
2144 
2145 	for (i = 0; i < n_algs; i++) {
2146 		cs_dsp_dbg(dsp,
2147 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2148 			   i, be32_to_cpu(halo_alg[i].alg.id),
2149 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2150 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2151 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2152 			   be32_to_cpu(halo_alg[i].xm_base),
2153 			   be32_to_cpu(halo_alg[i].ym_base));
2154 
2155 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2156 						 halo_alg[i].alg.ver,
2157 						 halo_alg[i].xm_base,
2158 						 halo_alg[i].ym_base);
2159 		if (ret)
2160 			goto out;
2161 	}
2162 
2163 out:
2164 	kfree(halo_alg);
2165 	return ret;
2166 }
2167 
2168 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2169 			     const char *file)
2170 {
2171 	LIST_HEAD(buf_list);
2172 	struct regmap *regmap = dsp->regmap;
2173 	struct wmfw_coeff_hdr *hdr;
2174 	struct wmfw_coeff_item *blk;
2175 	const struct cs_dsp_region *mem;
2176 	struct cs_dsp_alg_region *alg_region;
2177 	const char *region_name;
2178 	int ret, pos, blocks, type, version;
2179 	unsigned int offset, reg;
2180 	u8 *buf = NULL;
2181 	size_t buf_len = 0;
2182 	size_t region_len;
2183 
2184 	if (!firmware)
2185 		return 0;
2186 
2187 	ret = -EINVAL;
2188 
2189 	if (sizeof(*hdr) >= firmware->size) {
2190 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2191 			   file, firmware->size);
2192 		goto out_fw;
2193 	}
2194 
2195 	hdr = (void *)&firmware->data[0];
2196 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2197 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2198 		goto out_fw;
2199 	}
2200 
2201 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2202 	case 1:
2203 	case 2:
2204 	case 3:
2205 		break;
2206 	default:
2207 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2208 			   file, be32_to_cpu(hdr->rev) & 0xff);
2209 		ret = -EINVAL;
2210 		goto out_fw;
2211 	}
2212 
2213 	cs_dsp_info(dsp, "%s (v%d): v%d.%d.%d\n", file,
2214 		    be32_to_cpu(hdr->rev) & 0xff,
2215 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2216 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2217 		    le32_to_cpu(hdr->ver) & 0xff);
2218 
2219 	pos = le32_to_cpu(hdr->len);
2220 
2221 	blocks = 0;
2222 	while (pos < firmware->size) {
2223 		/* Is there enough data for a complete block header? */
2224 		if (sizeof(*blk) > firmware->size - pos) {
2225 			ret = -EOVERFLOW;
2226 			goto out_fw;
2227 		}
2228 
2229 		blk = (void *)(&firmware->data[pos]);
2230 
2231 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2232 			ret = -EOVERFLOW;
2233 			goto out_fw;
2234 		}
2235 
2236 		type = le16_to_cpu(blk->type);
2237 		offset = le16_to_cpu(blk->offset);
2238 		version = le32_to_cpu(blk->ver) >> 8;
2239 
2240 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2241 			   file, blocks, le32_to_cpu(blk->id),
2242 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2243 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2244 			   le32_to_cpu(blk->ver) & 0xff);
2245 		cs_dsp_dbg(dsp, "%s.%d: %d bytes off:%#x off32:%#x in %#x\n",
2246 			   file, blocks, le32_to_cpu(blk->len), offset,
2247 			   le32_to_cpu(blk->offset32), type);
2248 
2249 		reg = 0;
2250 		region_name = "Unknown";
2251 		switch (type) {
2252 		case (WMFW_NAME_TEXT << 8):
2253 			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2254 				    min(le32_to_cpu(blk->len), 100), blk->data);
2255 			break;
2256 		case (WMFW_INFO_TEXT << 8):
2257 		case (WMFW_METADATA << 8):
2258 			break;
2259 		case (WMFW_ABSOLUTE << 8):
2260 			/*
2261 			 * Old files may use this for global
2262 			 * coefficients.
2263 			 */
2264 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2265 			    offset == 0) {
2266 				region_name = "global coefficients";
2267 				mem = cs_dsp_find_region(dsp, type);
2268 				if (!mem) {
2269 					cs_dsp_err(dsp, "No ZM\n");
2270 					break;
2271 				}
2272 				reg = dsp->ops->region_to_reg(mem, 0);
2273 
2274 			} else {
2275 				region_name = "register";
2276 				reg = offset;
2277 			}
2278 			break;
2279 
2280 		case WMFW_ADSP2_XM_LONG:
2281 		case WMFW_ADSP2_YM_LONG:
2282 		case WMFW_HALO_XM_PACKED_LONG:
2283 		case WMFW_HALO_YM_PACKED_LONG:
2284 			offset = le32_to_cpu(blk->offset32);
2285 			type &= 0xff; /* strip extended block type flags */
2286 			fallthrough;
2287 		case WMFW_ADSP1_DM:
2288 		case WMFW_ADSP1_ZM:
2289 		case WMFW_ADSP2_XM:
2290 		case WMFW_ADSP2_YM:
2291 		case WMFW_HALO_XM_PACKED:
2292 		case WMFW_HALO_YM_PACKED:
2293 		case WMFW_HALO_PM_PACKED:
2294 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2295 				   file, blocks, le32_to_cpu(blk->len),
2296 				   type, le32_to_cpu(blk->id));
2297 
2298 			region_name = cs_dsp_mem_region_name(type);
2299 			mem = cs_dsp_find_region(dsp, type);
2300 			if (!mem) {
2301 				cs_dsp_err(dsp, "No base for region %x\n", type);
2302 				break;
2303 			}
2304 
2305 			alg_region = cs_dsp_find_alg_region(dsp, type,
2306 							    le32_to_cpu(blk->id));
2307 			if (alg_region) {
2308 				if (version != alg_region->ver)
2309 					cs_dsp_warn(dsp,
2310 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2311 						   (version >> 16) & 0xFF,
2312 						   (version >> 8) & 0xFF,
2313 						   version & 0xFF,
2314 						   (alg_region->ver >> 16) & 0xFF,
2315 						   (alg_region->ver >> 8) & 0xFF,
2316 						   alg_region->ver & 0xFF);
2317 
2318 				reg = alg_region->base;
2319 				reg = dsp->ops->region_to_reg(mem, reg);
2320 				reg += offset;
2321 			} else {
2322 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2323 					   region_name, le32_to_cpu(blk->id));
2324 			}
2325 			break;
2326 
2327 		default:
2328 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2329 				   file, blocks, type, pos);
2330 			break;
2331 		}
2332 
2333 		if (reg) {
2334 			region_len = le32_to_cpu(blk->len);
2335 			if (region_len > buf_len) {
2336 				buf_len = round_up(region_len, PAGE_SIZE);
2337 				kfree(buf);
2338 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
2339 				if (!buf) {
2340 					ret = -ENOMEM;
2341 					goto out_fw;
2342 				}
2343 			}
2344 
2345 			memcpy(buf, blk->data, region_len);
2346 
2347 			cs_dsp_dbg(dsp, "%s.%d: Writing %zu bytes at %x\n",
2348 				   file, blocks, region_len, reg);
2349 			ret = regmap_raw_write(regmap, reg, buf, region_len);
2350 			if (ret != 0) {
2351 				cs_dsp_err(dsp,
2352 					   "%s.%d: Failed to write to %x in %s: %d\n",
2353 					   file, blocks, reg, region_name, ret);
2354 			}
2355 		}
2356 
2357 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2358 		blocks++;
2359 	}
2360 
2361 	if (pos > firmware->size)
2362 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2363 			    file, blocks, pos - firmware->size);
2364 
2365 	cs_dsp_debugfs_save_binname(dsp, file);
2366 
2367 	ret = 0;
2368 out_fw:
2369 	kfree(buf);
2370 
2371 	if (ret == -EOVERFLOW)
2372 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2373 
2374 	return ret;
2375 }
2376 
2377 static int cs_dsp_create_name(struct cs_dsp *dsp)
2378 {
2379 	if (!dsp->name) {
2380 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2381 					   dsp->num);
2382 		if (!dsp->name)
2383 			return -ENOMEM;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static const struct cs_dsp_client_ops cs_dsp_default_client_ops = {
2390 };
2391 
2392 static int cs_dsp_common_init(struct cs_dsp *dsp)
2393 {
2394 	int ret;
2395 
2396 	ret = cs_dsp_create_name(dsp);
2397 	if (ret)
2398 		return ret;
2399 
2400 	INIT_LIST_HEAD(&dsp->alg_regions);
2401 	INIT_LIST_HEAD(&dsp->ctl_list);
2402 
2403 	mutex_init(&dsp->pwr_lock);
2404 
2405 	if (!dsp->client_ops)
2406 		dsp->client_ops = &cs_dsp_default_client_ops;
2407 
2408 #ifdef CONFIG_DEBUG_FS
2409 	/* Ensure this is invalid if client never provides a debugfs root */
2410 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2411 #endif
2412 
2413 	return 0;
2414 }
2415 
2416 /**
2417  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2418  * @dsp: pointer to DSP structure
2419  *
2420  * Return: Zero for success, a negative number on error.
2421  */
2422 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2423 {
2424 	dsp->ops = &cs_dsp_adsp1_ops;
2425 
2426 	return cs_dsp_common_init(dsp);
2427 }
2428 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2429 
2430 /**
2431  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2432  * @dsp: pointer to DSP structure
2433  * @wmfw_firmware: the firmware to be sent
2434  * @wmfw_filename: file name of firmware to be sent
2435  * @coeff_firmware: the coefficient data to be sent
2436  * @coeff_filename: file name of coefficient to data be sent
2437  * @fw_name: the user-friendly firmware name
2438  *
2439  * Return: Zero for success, a negative number on error.
2440  */
2441 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2442 			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2443 			  const struct firmware *coeff_firmware, const char *coeff_filename,
2444 			  const char *fw_name)
2445 {
2446 	unsigned int val;
2447 	int ret;
2448 
2449 	mutex_lock(&dsp->pwr_lock);
2450 
2451 	dsp->fw_name = fw_name;
2452 
2453 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2454 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2455 
2456 	/*
2457 	 * For simplicity set the DSP clock rate to be the
2458 	 * SYSCLK rate rather than making it configurable.
2459 	 */
2460 	if (dsp->sysclk_reg) {
2461 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2462 		if (ret != 0) {
2463 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2464 			goto err_mutex;
2465 		}
2466 
2467 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2468 
2469 		ret = regmap_update_bits(dsp->regmap,
2470 					 dsp->base + ADSP1_CONTROL_31,
2471 					 ADSP1_CLK_SEL_MASK, val);
2472 		if (ret != 0) {
2473 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2474 			goto err_mutex;
2475 		}
2476 	}
2477 
2478 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2479 	if (ret != 0)
2480 		goto err_ena;
2481 
2482 	ret = cs_dsp_adsp1_setup_algs(dsp);
2483 	if (ret != 0)
2484 		goto err_ena;
2485 
2486 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2487 	if (ret != 0)
2488 		goto err_ena;
2489 
2490 	/* Initialize caches for enabled and unset controls */
2491 	ret = cs_dsp_coeff_init_control_caches(dsp);
2492 	if (ret != 0)
2493 		goto err_ena;
2494 
2495 	/* Sync set controls */
2496 	ret = cs_dsp_coeff_sync_controls(dsp);
2497 	if (ret != 0)
2498 		goto err_ena;
2499 
2500 	dsp->booted = true;
2501 
2502 	/* Start the core running */
2503 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2504 			   ADSP1_CORE_ENA | ADSP1_START,
2505 			   ADSP1_CORE_ENA | ADSP1_START);
2506 
2507 	dsp->running = true;
2508 
2509 	mutex_unlock(&dsp->pwr_lock);
2510 
2511 	return 0;
2512 
2513 err_ena:
2514 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2515 			   ADSP1_SYS_ENA, 0);
2516 err_mutex:
2517 	mutex_unlock(&dsp->pwr_lock);
2518 	return ret;
2519 }
2520 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2521 
2522 /**
2523  * cs_dsp_adsp1_power_down() - Halts the DSP
2524  * @dsp: pointer to DSP structure
2525  */
2526 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2527 {
2528 	struct cs_dsp_coeff_ctl *ctl;
2529 
2530 	mutex_lock(&dsp->pwr_lock);
2531 
2532 	dsp->running = false;
2533 	dsp->booted = false;
2534 
2535 	/* Halt the core */
2536 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2537 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2538 
2539 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2540 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2541 
2542 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2543 			   ADSP1_SYS_ENA, 0);
2544 
2545 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2546 		ctl->enabled = 0;
2547 
2548 	cs_dsp_free_alg_regions(dsp);
2549 
2550 	mutex_unlock(&dsp->pwr_lock);
2551 }
2552 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2553 
2554 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2555 {
2556 	unsigned int val;
2557 	int ret, count;
2558 
2559 	/* Wait for the RAM to start, should be near instantaneous */
2560 	for (count = 0; count < 10; ++count) {
2561 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2562 		if (ret != 0)
2563 			return ret;
2564 
2565 		if (val & ADSP2_RAM_RDY)
2566 			break;
2567 
2568 		usleep_range(250, 500);
2569 	}
2570 
2571 	if (!(val & ADSP2_RAM_RDY)) {
2572 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2573 		return -EBUSY;
2574 	}
2575 
2576 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2577 
2578 	return 0;
2579 }
2580 
2581 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2582 {
2583 	int ret;
2584 
2585 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2586 				 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2587 	if (ret != 0)
2588 		return ret;
2589 
2590 	return cs_dsp_adsp2v2_enable_core(dsp);
2591 }
2592 
2593 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2594 {
2595 	struct regmap *regmap = dsp->regmap;
2596 	unsigned int code0, code1, lock_reg;
2597 
2598 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2599 		return 0;
2600 
2601 	lock_regions &= CS_ADSP2_REGION_ALL;
2602 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2603 
2604 	while (lock_regions) {
2605 		code0 = code1 = 0;
2606 		if (lock_regions & BIT(0)) {
2607 			code0 = ADSP2_LOCK_CODE_0;
2608 			code1 = ADSP2_LOCK_CODE_1;
2609 		}
2610 		if (lock_regions & BIT(1)) {
2611 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2612 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2613 		}
2614 		regmap_write(regmap, lock_reg, code0);
2615 		regmap_write(regmap, lock_reg, code1);
2616 		lock_regions >>= 2;
2617 		lock_reg += 2;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2624 {
2625 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2626 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2627 }
2628 
2629 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2630 {
2631 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2632 			   ADSP2_MEM_ENA, 0);
2633 }
2634 
2635 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2636 {
2637 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2638 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2639 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2640 
2641 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2642 			   ADSP2_SYS_ENA, 0);
2643 }
2644 
2645 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2646 {
2647 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2648 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2649 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2650 }
2651 
2652 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2653 {
2654 	struct reg_sequence config[] = {
2655 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2656 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2657 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2658 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2659 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2660 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2661 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2662 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2663 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2664 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2665 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2666 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2667 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2668 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2669 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2670 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2671 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2672 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2673 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2674 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2675 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2676 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2677 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2678 	};
2679 
2680 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2681 }
2682 
2683 /**
2684  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2685  * @dsp: pointer to DSP structure
2686  * @freq: clock rate to set
2687  *
2688  * This is only for use on ADSP2 cores.
2689  *
2690  * Return: Zero for success, a negative number on error.
2691  */
2692 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2693 {
2694 	int ret;
2695 
2696 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2697 				 ADSP2_CLK_SEL_MASK,
2698 				 freq << ADSP2_CLK_SEL_SHIFT);
2699 	if (ret)
2700 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2701 
2702 	return ret;
2703 }
2704 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2705 
2706 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2707 {
2708 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2709 			   ADSP2_WDT_ENA_MASK, 0);
2710 }
2711 
2712 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2713 {
2714 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2715 			   HALO_WDT_EN_MASK, 0);
2716 }
2717 
2718 /**
2719  * cs_dsp_power_up() - Downloads firmware to the DSP
2720  * @dsp: pointer to DSP structure
2721  * @wmfw_firmware: the firmware to be sent
2722  * @wmfw_filename: file name of firmware to be sent
2723  * @coeff_firmware: the coefficient data to be sent
2724  * @coeff_filename: file name of coefficient to data be sent
2725  * @fw_name: the user-friendly firmware name
2726  *
2727  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2728  * and downloads the firmware but does not start the firmware running. The
2729  * cs_dsp booted flag will be set once completed and if the core has a low-power
2730  * memory retention mode it will be put into this state after the firmware is
2731  * downloaded.
2732  *
2733  * Return: Zero for success, a negative number on error.
2734  */
2735 int cs_dsp_power_up(struct cs_dsp *dsp,
2736 		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2737 		    const struct firmware *coeff_firmware, const char *coeff_filename,
2738 		    const char *fw_name)
2739 {
2740 	int ret;
2741 
2742 	mutex_lock(&dsp->pwr_lock);
2743 
2744 	dsp->fw_name = fw_name;
2745 
2746 	if (dsp->ops->enable_memory) {
2747 		ret = dsp->ops->enable_memory(dsp);
2748 		if (ret != 0)
2749 			goto err_mutex;
2750 	}
2751 
2752 	if (dsp->ops->enable_core) {
2753 		ret = dsp->ops->enable_core(dsp);
2754 		if (ret != 0)
2755 			goto err_mem;
2756 	}
2757 
2758 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2759 	if (ret != 0)
2760 		goto err_ena;
2761 
2762 	ret = dsp->ops->setup_algs(dsp);
2763 	if (ret != 0)
2764 		goto err_ena;
2765 
2766 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2767 	if (ret != 0)
2768 		goto err_ena;
2769 
2770 	/* Initialize caches for enabled and unset controls */
2771 	ret = cs_dsp_coeff_init_control_caches(dsp);
2772 	if (ret != 0)
2773 		goto err_ena;
2774 
2775 	if (dsp->ops->disable_core)
2776 		dsp->ops->disable_core(dsp);
2777 
2778 	dsp->booted = true;
2779 
2780 	mutex_unlock(&dsp->pwr_lock);
2781 
2782 	return 0;
2783 err_ena:
2784 	if (dsp->ops->disable_core)
2785 		dsp->ops->disable_core(dsp);
2786 err_mem:
2787 	if (dsp->ops->disable_memory)
2788 		dsp->ops->disable_memory(dsp);
2789 err_mutex:
2790 	mutex_unlock(&dsp->pwr_lock);
2791 
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2795 
2796 /**
2797  * cs_dsp_power_down() - Powers-down the DSP
2798  * @dsp: pointer to DSP structure
2799  *
2800  * cs_dsp_stop() must have been called before this function. The core will be
2801  * fully powered down and so the memory will not be retained.
2802  */
2803 void cs_dsp_power_down(struct cs_dsp *dsp)
2804 {
2805 	struct cs_dsp_coeff_ctl *ctl;
2806 
2807 	mutex_lock(&dsp->pwr_lock);
2808 
2809 	cs_dsp_debugfs_clear(dsp);
2810 
2811 	dsp->fw_id = 0;
2812 	dsp->fw_id_version = 0;
2813 
2814 	dsp->booted = false;
2815 
2816 	if (dsp->ops->disable_memory)
2817 		dsp->ops->disable_memory(dsp);
2818 
2819 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2820 		ctl->enabled = 0;
2821 
2822 	cs_dsp_free_alg_regions(dsp);
2823 
2824 	mutex_unlock(&dsp->pwr_lock);
2825 
2826 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2827 }
2828 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2829 
2830 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2831 {
2832 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2833 				  ADSP2_CORE_ENA | ADSP2_START,
2834 				  ADSP2_CORE_ENA | ADSP2_START);
2835 }
2836 
2837 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2838 {
2839 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2840 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2841 }
2842 
2843 /**
2844  * cs_dsp_run() - Starts the firmware running
2845  * @dsp: pointer to DSP structure
2846  *
2847  * cs_dsp_power_up() must have previously been called successfully.
2848  *
2849  * Return: Zero for success, a negative number on error.
2850  */
2851 int cs_dsp_run(struct cs_dsp *dsp)
2852 {
2853 	int ret;
2854 
2855 	mutex_lock(&dsp->pwr_lock);
2856 
2857 	if (!dsp->booted) {
2858 		ret = -EIO;
2859 		goto err;
2860 	}
2861 
2862 	if (dsp->ops->enable_core) {
2863 		ret = dsp->ops->enable_core(dsp);
2864 		if (ret != 0)
2865 			goto err;
2866 	}
2867 
2868 	if (dsp->client_ops->pre_run) {
2869 		ret = dsp->client_ops->pre_run(dsp);
2870 		if (ret)
2871 			goto err;
2872 	}
2873 
2874 	/* Sync set controls */
2875 	ret = cs_dsp_coeff_sync_controls(dsp);
2876 	if (ret != 0)
2877 		goto err;
2878 
2879 	if (dsp->ops->lock_memory) {
2880 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2881 		if (ret != 0) {
2882 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2883 			goto err;
2884 		}
2885 	}
2886 
2887 	if (dsp->ops->start_core) {
2888 		ret = dsp->ops->start_core(dsp);
2889 		if (ret != 0)
2890 			goto err;
2891 	}
2892 
2893 	dsp->running = true;
2894 
2895 	if (dsp->client_ops->post_run) {
2896 		ret = dsp->client_ops->post_run(dsp);
2897 		if (ret)
2898 			goto err;
2899 	}
2900 
2901 	mutex_unlock(&dsp->pwr_lock);
2902 
2903 	return 0;
2904 
2905 err:
2906 	if (dsp->ops->stop_core)
2907 		dsp->ops->stop_core(dsp);
2908 	if (dsp->ops->disable_core)
2909 		dsp->ops->disable_core(dsp);
2910 	mutex_unlock(&dsp->pwr_lock);
2911 
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2915 
2916 /**
2917  * cs_dsp_stop() - Stops the firmware
2918  * @dsp: pointer to DSP structure
2919  *
2920  * Memory will not be disabled so firmware will remain loaded.
2921  */
2922 void cs_dsp_stop(struct cs_dsp *dsp)
2923 {
2924 	/* Tell the firmware to cleanup */
2925 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2926 
2927 	if (dsp->ops->stop_watchdog)
2928 		dsp->ops->stop_watchdog(dsp);
2929 
2930 	/* Log firmware state, it can be useful for analysis */
2931 	if (dsp->ops->show_fw_status)
2932 		dsp->ops->show_fw_status(dsp);
2933 
2934 	mutex_lock(&dsp->pwr_lock);
2935 
2936 	if (dsp->client_ops->pre_stop)
2937 		dsp->client_ops->pre_stop(dsp);
2938 
2939 	dsp->running = false;
2940 
2941 	if (dsp->ops->stop_core)
2942 		dsp->ops->stop_core(dsp);
2943 	if (dsp->ops->disable_core)
2944 		dsp->ops->disable_core(dsp);
2945 
2946 	if (dsp->client_ops->post_stop)
2947 		dsp->client_ops->post_stop(dsp);
2948 
2949 	mutex_unlock(&dsp->pwr_lock);
2950 
2951 	cs_dsp_dbg(dsp, "Execution stopped\n");
2952 }
2953 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2954 
2955 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2956 {
2957 	int ret;
2958 
2959 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2960 				 HALO_CORE_RESET | HALO_CORE_EN,
2961 				 HALO_CORE_RESET | HALO_CORE_EN);
2962 	if (ret)
2963 		return ret;
2964 
2965 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2966 				  HALO_CORE_RESET, 0);
2967 }
2968 
2969 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2970 {
2971 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2972 			   HALO_CORE_EN, 0);
2973 
2974 	/* reset halo core with CORE_SOFT_RESET */
2975 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2976 			   HALO_CORE_SOFT_RESET_MASK, 1);
2977 }
2978 
2979 /**
2980  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2981  * @dsp: pointer to DSP structure
2982  *
2983  * Return: Zero for success, a negative number on error.
2984  */
2985 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2986 {
2987 	int ret;
2988 
2989 	switch (dsp->rev) {
2990 	case 0:
2991 		/*
2992 		 * Disable the DSP memory by default when in reset for a small
2993 		 * power saving.
2994 		 */
2995 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2996 					 ADSP2_MEM_ENA, 0);
2997 		if (ret) {
2998 			cs_dsp_err(dsp,
2999 				   "Failed to clear memory retention: %d\n", ret);
3000 			return ret;
3001 		}
3002 
3003 		dsp->ops = &cs_dsp_adsp2_ops[0];
3004 		break;
3005 	case 1:
3006 		dsp->ops = &cs_dsp_adsp2_ops[1];
3007 		break;
3008 	default:
3009 		dsp->ops = &cs_dsp_adsp2_ops[2];
3010 		break;
3011 	}
3012 
3013 	return cs_dsp_common_init(dsp);
3014 }
3015 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
3016 
3017 /**
3018  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
3019  * @dsp: pointer to DSP structure
3020  *
3021  * Return: Zero for success, a negative number on error.
3022  */
3023 int cs_dsp_halo_init(struct cs_dsp *dsp)
3024 {
3025 	if (dsp->no_core_startstop)
3026 		dsp->ops = &cs_dsp_halo_ao_ops;
3027 	else
3028 		dsp->ops = &cs_dsp_halo_ops;
3029 
3030 	return cs_dsp_common_init(dsp);
3031 }
3032 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3033 
3034 /**
3035  * cs_dsp_remove() - Clean a cs_dsp before deletion
3036  * @dsp: pointer to DSP structure
3037  */
3038 void cs_dsp_remove(struct cs_dsp *dsp)
3039 {
3040 	struct cs_dsp_coeff_ctl *ctl;
3041 
3042 	while (!list_empty(&dsp->ctl_list)) {
3043 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3044 
3045 		if (dsp->client_ops->control_remove)
3046 			dsp->client_ops->control_remove(ctl);
3047 
3048 		list_del(&ctl->list);
3049 		cs_dsp_free_ctl_blk(ctl);
3050 	}
3051 }
3052 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3053 
3054 /**
3055  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3056  * @dsp: pointer to DSP structure
3057  * @mem_type: the type of DSP memory containing the data to be read
3058  * @mem_addr: the address of the data within the memory region
3059  * @num_words: the length of the data to read
3060  * @data: a buffer to store the fetched data
3061  *
3062  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3063  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3064  * cs_dsp_remove_padding()
3065  *
3066  * Return: Zero for success, a negative number on error.
3067  */
3068 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3069 			       unsigned int num_words, __be32 *data)
3070 {
3071 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3072 	unsigned int reg;
3073 	int ret;
3074 
3075 	lockdep_assert_held(&dsp->pwr_lock);
3076 
3077 	if (!mem)
3078 		return -EINVAL;
3079 
3080 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3081 
3082 	ret = regmap_raw_read(dsp->regmap, reg, data,
3083 			      sizeof(*data) * num_words);
3084 	if (ret < 0)
3085 		return ret;
3086 
3087 	return 0;
3088 }
3089 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3090 
3091 /**
3092  * cs_dsp_read_data_word() - Reads a word from DSP memory
3093  * @dsp: pointer to DSP structure
3094  * @mem_type: the type of DSP memory containing the data to be read
3095  * @mem_addr: the address of the data within the memory region
3096  * @data: a buffer to store the fetched data
3097  *
3098  * Return: Zero for success, a negative number on error.
3099  */
3100 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3101 {
3102 	__be32 raw;
3103 	int ret;
3104 
3105 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3106 	if (ret < 0)
3107 		return ret;
3108 
3109 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3110 
3111 	return 0;
3112 }
3113 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3114 
3115 /**
3116  * cs_dsp_write_data_word() - Writes a word to DSP memory
3117  * @dsp: pointer to DSP structure
3118  * @mem_type: the type of DSP memory containing the data to be written
3119  * @mem_addr: the address of the data within the memory region
3120  * @data: the data to be written
3121  *
3122  * Return: Zero for success, a negative number on error.
3123  */
3124 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3125 {
3126 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3127 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3128 	unsigned int reg;
3129 
3130 	lockdep_assert_held(&dsp->pwr_lock);
3131 
3132 	if (!mem)
3133 		return -EINVAL;
3134 
3135 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3136 
3137 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3138 }
3139 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3140 
3141 /**
3142  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3143  * @buf: buffer containing DSP words read from DSP memory
3144  * @nwords: number of words to convert
3145  *
3146  * DSP words from the register map have pad bytes and the data bytes
3147  * are in swapped order. This swaps to the native endian order and
3148  * strips the pad bytes.
3149  */
3150 void cs_dsp_remove_padding(u32 *buf, int nwords)
3151 {
3152 	const __be32 *pack_in = (__be32 *)buf;
3153 	u8 *pack_out = (u8 *)buf;
3154 	int i;
3155 
3156 	for (i = 0; i < nwords; i++) {
3157 		u32 word = be32_to_cpu(*pack_in++);
3158 		*pack_out++ = (u8)word;
3159 		*pack_out++ = (u8)(word >> 8);
3160 		*pack_out++ = (u8)(word >> 16);
3161 	}
3162 }
3163 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3164 
3165 /**
3166  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3167  * @dsp: pointer to DSP structure
3168  *
3169  * The firmware and DSP state will be logged for future analysis.
3170  */
3171 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3172 {
3173 	unsigned int val;
3174 	struct regmap *regmap = dsp->regmap;
3175 	int ret = 0;
3176 
3177 	mutex_lock(&dsp->pwr_lock);
3178 
3179 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3180 	if (ret) {
3181 		cs_dsp_err(dsp,
3182 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3183 		goto error;
3184 	}
3185 
3186 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3187 		cs_dsp_err(dsp, "watchdog timeout error\n");
3188 		dsp->ops->stop_watchdog(dsp);
3189 		if (dsp->client_ops->watchdog_expired)
3190 			dsp->client_ops->watchdog_expired(dsp);
3191 	}
3192 
3193 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3194 		if (val & ADSP2_ADDR_ERR_MASK)
3195 			cs_dsp_err(dsp, "bus error: address error\n");
3196 		else
3197 			cs_dsp_err(dsp, "bus error: region lock error\n");
3198 
3199 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3200 		if (ret) {
3201 			cs_dsp_err(dsp,
3202 				   "Failed to read Bus Err Addr register: %d\n",
3203 				   ret);
3204 			goto error;
3205 		}
3206 
3207 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3208 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3209 
3210 		ret = regmap_read(regmap,
3211 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3212 				  &val);
3213 		if (ret) {
3214 			cs_dsp_err(dsp,
3215 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3216 				   ret);
3217 			goto error;
3218 		}
3219 
3220 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3221 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3222 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3223 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3224 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3225 	}
3226 
3227 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3228 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3229 
3230 error:
3231 	mutex_unlock(&dsp->pwr_lock);
3232 }
3233 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3234 
3235 /**
3236  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3237  * @dsp: pointer to DSP structure
3238  *
3239  * The firmware and DSP state will be logged for future analysis.
3240  */
3241 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3242 {
3243 	struct regmap *regmap = dsp->regmap;
3244 	unsigned int fault[6];
3245 	struct reg_sequence clear[] = {
3246 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3247 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3248 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3249 	};
3250 	int ret;
3251 
3252 	mutex_lock(&dsp->pwr_lock);
3253 
3254 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3255 			  fault);
3256 	if (ret) {
3257 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3258 		goto exit_unlock;
3259 	}
3260 
3261 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3262 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3263 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3264 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3265 
3266 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3267 			  fault);
3268 	if (ret) {
3269 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3270 		goto exit_unlock;
3271 	}
3272 
3273 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3274 
3275 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3276 			       fault, ARRAY_SIZE(fault));
3277 	if (ret) {
3278 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3279 		goto exit_unlock;
3280 	}
3281 
3282 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3283 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3284 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3285 
3286 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3287 	if (ret)
3288 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3289 
3290 exit_unlock:
3291 	mutex_unlock(&dsp->pwr_lock);
3292 }
3293 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3294 
3295 /**
3296  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3297  * @dsp: pointer to DSP structure
3298  *
3299  * This is logged for future analysis.
3300  */
3301 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3302 {
3303 	mutex_lock(&dsp->pwr_lock);
3304 
3305 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3306 
3307 	dsp->ops->stop_watchdog(dsp);
3308 	if (dsp->client_ops->watchdog_expired)
3309 		dsp->client_ops->watchdog_expired(dsp);
3310 
3311 	mutex_unlock(&dsp->pwr_lock);
3312 }
3313 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3314 
3315 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3316 	.validate_version = cs_dsp_validate_version,
3317 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3318 	.region_to_reg = cs_dsp_region_to_reg,
3319 };
3320 
3321 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3322 	{
3323 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3324 		.validate_version = cs_dsp_validate_version,
3325 		.setup_algs = cs_dsp_adsp2_setup_algs,
3326 		.region_to_reg = cs_dsp_region_to_reg,
3327 
3328 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3329 
3330 		.enable_memory = cs_dsp_adsp2_enable_memory,
3331 		.disable_memory = cs_dsp_adsp2_disable_memory,
3332 
3333 		.enable_core = cs_dsp_adsp2_enable_core,
3334 		.disable_core = cs_dsp_adsp2_disable_core,
3335 
3336 		.start_core = cs_dsp_adsp2_start_core,
3337 		.stop_core = cs_dsp_adsp2_stop_core,
3338 
3339 	},
3340 	{
3341 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3342 		.validate_version = cs_dsp_validate_version,
3343 		.setup_algs = cs_dsp_adsp2_setup_algs,
3344 		.region_to_reg = cs_dsp_region_to_reg,
3345 
3346 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3347 
3348 		.enable_memory = cs_dsp_adsp2_enable_memory,
3349 		.disable_memory = cs_dsp_adsp2_disable_memory,
3350 		.lock_memory = cs_dsp_adsp2_lock,
3351 
3352 		.enable_core = cs_dsp_adsp2v2_enable_core,
3353 		.disable_core = cs_dsp_adsp2v2_disable_core,
3354 
3355 		.start_core = cs_dsp_adsp2_start_core,
3356 		.stop_core = cs_dsp_adsp2_stop_core,
3357 	},
3358 	{
3359 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3360 		.validate_version = cs_dsp_validate_version,
3361 		.setup_algs = cs_dsp_adsp2_setup_algs,
3362 		.region_to_reg = cs_dsp_region_to_reg,
3363 
3364 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3365 		.stop_watchdog = cs_dsp_stop_watchdog,
3366 
3367 		.enable_memory = cs_dsp_adsp2_enable_memory,
3368 		.disable_memory = cs_dsp_adsp2_disable_memory,
3369 		.lock_memory = cs_dsp_adsp2_lock,
3370 
3371 		.enable_core = cs_dsp_adsp2v2_enable_core,
3372 		.disable_core = cs_dsp_adsp2v2_disable_core,
3373 
3374 		.start_core = cs_dsp_adsp2_start_core,
3375 		.stop_core = cs_dsp_adsp2_stop_core,
3376 	},
3377 };
3378 
3379 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3380 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3381 	.validate_version = cs_dsp_halo_validate_version,
3382 	.setup_algs = cs_dsp_halo_setup_algs,
3383 	.region_to_reg = cs_dsp_halo_region_to_reg,
3384 
3385 	.show_fw_status = cs_dsp_halo_show_fw_status,
3386 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3387 
3388 	.lock_memory = cs_dsp_halo_configure_mpu,
3389 
3390 	.start_core = cs_dsp_halo_start_core,
3391 	.stop_core = cs_dsp_halo_stop_core,
3392 };
3393 
3394 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3395 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3396 	.validate_version = cs_dsp_halo_validate_version,
3397 	.setup_algs = cs_dsp_halo_setup_algs,
3398 	.region_to_reg = cs_dsp_halo_region_to_reg,
3399 	.show_fw_status = cs_dsp_halo_show_fw_status,
3400 };
3401 
3402 /**
3403  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3404  * @ch: Pointer to the chunk structure
3405  * @nbits: Number of bits to write
3406  * @val: Value to write
3407  *
3408  * This function sequentially writes values into the format required for DSP
3409  * memory, it handles both inserting of the padding bytes and converting to
3410  * big endian. Note that data is only committed to the chunk when a whole DSP
3411  * words worth of data is available.
3412  *
3413  * Return: Zero for success, a negative number on error.
3414  */
3415 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3416 {
3417 	int nwrite, i;
3418 
3419 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3420 
3421 	ch->cache <<= nwrite;
3422 	ch->cache |= val >> (nbits - nwrite);
3423 	ch->cachebits += nwrite;
3424 	nbits -= nwrite;
3425 
3426 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3427 		if (cs_dsp_chunk_end(ch))
3428 			return -ENOSPC;
3429 
3430 		ch->cache &= 0xFFFFFF;
3431 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3432 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3433 
3434 		ch->bytes += sizeof(ch->cache);
3435 		ch->cachebits = 0;
3436 	}
3437 
3438 	if (nbits)
3439 		return cs_dsp_chunk_write(ch, nbits, val);
3440 
3441 	return 0;
3442 }
3443 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3444 
3445 /**
3446  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3447  * @ch: Pointer to the chunk structure
3448  *
3449  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3450  * be written out it is possible that some data will remain in the cache, this
3451  * function will pad that data with zeros upto a whole DSP word and write out.
3452  *
3453  * Return: Zero for success, a negative number on error.
3454  */
3455 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3456 {
3457 	if (!ch->cachebits)
3458 		return 0;
3459 
3460 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3461 }
3462 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3463 
3464 /**
3465  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3466  * @ch: Pointer to the chunk structure
3467  * @nbits: Number of bits to read
3468  *
3469  * This function sequentially reads values from a DSP memory formatted buffer,
3470  * it handles both removing of the padding bytes and converting from big endian.
3471  *
3472  * Return: A negative number is returned on error, otherwise the read value.
3473  */
3474 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3475 {
3476 	int nread, i;
3477 	u32 result;
3478 
3479 	if (!ch->cachebits) {
3480 		if (cs_dsp_chunk_end(ch))
3481 			return -ENOSPC;
3482 
3483 		ch->cache = 0;
3484 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3485 
3486 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3487 			ch->cache |= *ch->data++;
3488 
3489 		ch->bytes += sizeof(ch->cache);
3490 	}
3491 
3492 	nread = min(ch->cachebits, nbits);
3493 	nbits -= nread;
3494 
3495 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3496 	ch->cache <<= nread;
3497 	ch->cachebits -= nread;
3498 
3499 	if (nbits)
3500 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3501 
3502 	return result;
3503 }
3504 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3505 
3506 
3507 struct cs_dsp_wseq_op {
3508 	struct list_head list;
3509 	u32 address;
3510 	u32 data;
3511 	u16 offset;
3512 	u8 operation;
3513 };
3514 
3515 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3516 {
3517 	struct cs_dsp_wseq_op *op, *op_tmp;
3518 
3519 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3520 		list_del(&op->list);
3521 		devm_kfree(dsp->dev, op);
3522 	}
3523 }
3524 
3525 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3526 {
3527 	struct cs_dsp_wseq_op *op = NULL;
3528 	struct cs_dsp_chunk chunk;
3529 	u8 *words;
3530 	int ret;
3531 
3532 	if (!wseq->ctl) {
3533 		cs_dsp_err(dsp, "No control for write sequence\n");
3534 		return -EINVAL;
3535 	}
3536 
3537 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3538 	if (!words)
3539 		return -ENOMEM;
3540 
3541 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3542 	if (ret) {
3543 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3544 		goto err_free;
3545 	}
3546 
3547 	INIT_LIST_HEAD(&wseq->ops);
3548 
3549 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3550 
3551 	while (!cs_dsp_chunk_end(&chunk)) {
3552 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3553 		if (!op) {
3554 			ret = -ENOMEM;
3555 			goto err_free;
3556 		}
3557 
3558 		op->offset = cs_dsp_chunk_bytes(&chunk);
3559 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3560 
3561 		switch (op->operation) {
3562 		case CS_DSP_WSEQ_END:
3563 			op->data = WSEQ_END_OF_SCRIPT;
3564 			break;
3565 		case CS_DSP_WSEQ_UNLOCK:
3566 			op->data = cs_dsp_chunk_read(&chunk, 16);
3567 			break;
3568 		case CS_DSP_WSEQ_ADDR8:
3569 			op->address = cs_dsp_chunk_read(&chunk, 8);
3570 			op->data = cs_dsp_chunk_read(&chunk, 32);
3571 			break;
3572 		case CS_DSP_WSEQ_H16:
3573 		case CS_DSP_WSEQ_L16:
3574 			op->address = cs_dsp_chunk_read(&chunk, 24);
3575 			op->data = cs_dsp_chunk_read(&chunk, 16);
3576 			break;
3577 		case CS_DSP_WSEQ_FULL:
3578 			op->address = cs_dsp_chunk_read(&chunk, 32);
3579 			op->data = cs_dsp_chunk_read(&chunk, 32);
3580 			break;
3581 		default:
3582 			ret = -EINVAL;
3583 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3584 			devm_kfree(dsp->dev, op);
3585 			goto err_free;
3586 		}
3587 
3588 		list_add_tail(&op->list, &wseq->ops);
3589 
3590 		if (op->operation == CS_DSP_WSEQ_END)
3591 			break;
3592 	}
3593 
3594 	if (op && op->operation != CS_DSP_WSEQ_END) {
3595 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3596 		ret = -ENOENT;
3597 	}
3598 
3599 err_free:
3600 	kfree(words);
3601 
3602 	return ret;
3603 }
3604 
3605 /**
3606  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3607  * @dsp: Pointer to DSP structure
3608  * @wseqs: List of write sequences to initialize
3609  * @num_wseqs: Number of write sequences to initialize
3610  *
3611  * Return: Zero for success, a negative number on error.
3612  */
3613 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3614 {
3615 	int i, ret;
3616 
3617 	lockdep_assert_held(&dsp->pwr_lock);
3618 
3619 	for (i = 0; i < num_wseqs; i++) {
3620 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3621 		if (ret) {
3622 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3623 			return ret;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 }
3629 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3630 
3631 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3632 						  struct list_head *wseq_ops)
3633 {
3634 	struct cs_dsp_wseq_op *op;
3635 
3636 	list_for_each_entry(op, wseq_ops, list) {
3637 		if (op->operation == op_code && op->address == addr)
3638 			return op;
3639 	}
3640 
3641 	return NULL;
3642 }
3643 
3644 /**
3645  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3646  * @dsp: Pointer to a DSP structure
3647  * @wseq: Write sequence to write to
3648  * @addr: Address of the register to be written to
3649  * @data: Data to be written
3650  * @op_code: The type of operation of the new entry
3651  * @update: If true, searches for the first entry in the write sequence with
3652  * the same address and op_code, and replaces it. If false, creates a new entry
3653  * at the tail
3654  *
3655  * This function formats register address and value pairs into the format
3656  * required for write sequence entries, and either updates or adds the
3657  * new entry into the write sequence.
3658  *
3659  * If update is set to true and no matching entry is found, it will add a new entry.
3660  *
3661  * Return: Zero for success, a negative number on error.
3662  */
3663 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3664 		      u32 addr, u32 data, u8 op_code, bool update)
3665 {
3666 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3667 	u32 words[WSEQ_OP_MAX_WORDS];
3668 	struct cs_dsp_chunk chunk;
3669 	int new_op_size, ret;
3670 
3671 	if (update)
3672 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3673 
3674 	/* If entry to update is not found, treat it as a new operation */
3675 	if (!op_new) {
3676 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3677 		if (!op_end) {
3678 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3679 			return -EINVAL;
3680 		}
3681 
3682 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3683 		if (!op_new)
3684 			return -ENOMEM;
3685 
3686 		op_new->operation = op_code;
3687 		op_new->address = addr;
3688 		op_new->offset = op_end->offset;
3689 		update = false;
3690 	}
3691 
3692 	op_new->data = data;
3693 
3694 	chunk = cs_dsp_chunk(words, sizeof(words));
3695 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3696 
3697 	switch (op_code) {
3698 	case CS_DSP_WSEQ_FULL:
3699 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3700 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3701 		break;
3702 	case CS_DSP_WSEQ_L16:
3703 	case CS_DSP_WSEQ_H16:
3704 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3705 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3706 		break;
3707 	default:
3708 		ret = -EINVAL;
3709 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3710 		goto op_new_free;
3711 	}
3712 
3713 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3714 
3715 	if (!update) {
3716 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3717 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3718 			ret = -E2BIG;
3719 			goto op_new_free;
3720 		}
3721 
3722 		op_end->offset += new_op_size;
3723 
3724 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3725 					      &op_end->data, sizeof(u32));
3726 		if (ret)
3727 			goto op_new_free;
3728 
3729 		list_add_tail(&op_new->list, &op_end->list);
3730 	}
3731 
3732 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3733 				      words, new_op_size);
3734 	if (ret)
3735 		goto op_new_free;
3736 
3737 	return 0;
3738 
3739 op_new_free:
3740 	devm_kfree(dsp->dev, op_new);
3741 
3742 	return ret;
3743 }
3744 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3745 
3746 /**
3747  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3748  * @dsp: Pointer to a DSP structure
3749  * @wseq: Write sequence to write to
3750  * @reg_seq: List of address-data pairs
3751  * @num_regs: Number of address-data pairs
3752  * @op_code: The types of operations of the new entries
3753  * @update: If true, searches for the first entry in the write sequence with
3754  * the same address and op_code, and replaces it. If false, creates a new entry
3755  * at the tail
3756  *
3757  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3758  *
3759  * Return: Zero for success, a negative number on error.
3760  */
3761 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3762 			    const struct reg_sequence *reg_seq, int num_regs,
3763 			    u8 op_code, bool update)
3764 {
3765 	int i, ret;
3766 
3767 	for (i = 0; i < num_regs; i++) {
3768 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3769 					reg_seq[i].def, op_code, update);
3770 		if (ret)
3771 			return ret;
3772 	}
3773 
3774 	return 0;
3775 }
3776 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3777 
3778 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3779 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3780 MODULE_LICENSE("GPL v2");
3781