1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Analog devices AD5764, AD5764R, AD5744, AD5744R quad-channel
4 * Digital to Analog Converters driver
5 *
6 * Copyright 2011 Analog Devices Inc.
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spi/spi.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <linux/regulator/consumer.h>
17
18 #include <linux/iio/iio.h>
19 #include <linux/iio/sysfs.h>
20
21 #define AD5764_REG_SF_NOP 0x0
22 #define AD5764_REG_SF_CONFIG 0x1
23 #define AD5764_REG_SF_CLEAR 0x4
24 #define AD5764_REG_SF_LOAD 0x5
25 #define AD5764_REG_DATA(x) ((2 << 3) | (x))
26 #define AD5764_REG_COARSE_GAIN(x) ((3 << 3) | (x))
27 #define AD5764_REG_FINE_GAIN(x) ((4 << 3) | (x))
28 #define AD5764_REG_OFFSET(x) ((5 << 3) | (x))
29
30 #define AD5764_NUM_CHANNELS 4
31
32 /**
33 * struct ad5764_chip_info - chip specific information
34 * @int_vref: Value of the internal reference voltage in uV - 0 if external
35 * reference voltage is used
36 * @channels: channel specification
37 */
38 struct ad5764_chip_info {
39 unsigned long int_vref;
40 const struct iio_chan_spec *channels;
41 };
42
43 /**
44 * struct ad5764_state - driver instance specific data
45 * @spi: spi_device
46 * @chip_info: chip info
47 * @vref_reg: vref supply regulators
48 * @lock: lock to protect the data buffer during SPI ops
49 * @data: spi transfer buffers
50 */
51
52 struct ad5764_state {
53 struct spi_device *spi;
54 const struct ad5764_chip_info *chip_info;
55 struct regulator_bulk_data vref_reg[2];
56 struct mutex lock;
57
58 /*
59 * DMA (thus cache coherency maintenance) may require the
60 * transfer buffers to live in their own cache lines.
61 */
62 union {
63 __be32 d32;
64 u8 d8[4];
65 } data[2] __aligned(IIO_DMA_MINALIGN);
66 };
67
68 enum ad5764_type {
69 ID_AD5744,
70 ID_AD5744R,
71 ID_AD5764,
72 ID_AD5764R,
73 };
74
75 #define AD5764_CHANNEL(_chan, _bits) { \
76 .type = IIO_VOLTAGE, \
77 .indexed = 1, \
78 .output = 1, \
79 .channel = (_chan), \
80 .address = (_chan), \
81 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
82 BIT(IIO_CHAN_INFO_SCALE) | \
83 BIT(IIO_CHAN_INFO_CALIBSCALE) | \
84 BIT(IIO_CHAN_INFO_CALIBBIAS), \
85 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET), \
86 .scan_type = { \
87 .sign = 'u', \
88 .realbits = (_bits), \
89 .storagebits = 16, \
90 .shift = 16 - (_bits), \
91 }, \
92 }
93
94 #define DECLARE_AD5764_CHANNELS(_name, _bits) \
95 const struct iio_chan_spec _name##_channels[] = { \
96 AD5764_CHANNEL(0, (_bits)), \
97 AD5764_CHANNEL(1, (_bits)), \
98 AD5764_CHANNEL(2, (_bits)), \
99 AD5764_CHANNEL(3, (_bits)), \
100 };
101
102 static DECLARE_AD5764_CHANNELS(ad5764, 16);
103 static DECLARE_AD5764_CHANNELS(ad5744, 14);
104
105 static const struct ad5764_chip_info ad5764_chip_infos[] = {
106 [ID_AD5744] = {
107 .int_vref = 0,
108 .channels = ad5744_channels,
109 },
110 [ID_AD5744R] = {
111 .int_vref = 5000000,
112 .channels = ad5744_channels,
113 },
114 [ID_AD5764] = {
115 .int_vref = 0,
116 .channels = ad5764_channels,
117 },
118 [ID_AD5764R] = {
119 .int_vref = 5000000,
120 .channels = ad5764_channels,
121 },
122 };
123
ad5764_write(struct iio_dev * indio_dev,unsigned int reg,unsigned int val)124 static int ad5764_write(struct iio_dev *indio_dev, unsigned int reg,
125 unsigned int val)
126 {
127 struct ad5764_state *st = iio_priv(indio_dev);
128 int ret;
129
130 mutex_lock(&st->lock);
131 st->data[0].d32 = cpu_to_be32((reg << 16) | val);
132
133 ret = spi_write(st->spi, &st->data[0].d8[1], 3);
134 mutex_unlock(&st->lock);
135
136 return ret;
137 }
138
ad5764_read(struct iio_dev * indio_dev,unsigned int reg,unsigned int * val)139 static int ad5764_read(struct iio_dev *indio_dev, unsigned int reg,
140 unsigned int *val)
141 {
142 struct ad5764_state *st = iio_priv(indio_dev);
143 int ret;
144 struct spi_transfer t[] = {
145 {
146 .tx_buf = &st->data[0].d8[1],
147 .len = 3,
148 .cs_change = 1,
149 }, {
150 .rx_buf = &st->data[1].d8[1],
151 .len = 3,
152 },
153 };
154
155 mutex_lock(&st->lock);
156
157 st->data[0].d32 = cpu_to_be32((1 << 23) | (reg << 16));
158
159 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
160 if (ret >= 0)
161 *val = be32_to_cpu(st->data[1].d32) & 0xffff;
162
163 mutex_unlock(&st->lock);
164
165 return ret;
166 }
167
ad5764_chan_info_to_reg(struct iio_chan_spec const * chan,long info)168 static int ad5764_chan_info_to_reg(struct iio_chan_spec const *chan, long info)
169 {
170 switch (info) {
171 case IIO_CHAN_INFO_RAW:
172 return AD5764_REG_DATA(chan->address);
173 case IIO_CHAN_INFO_CALIBBIAS:
174 return AD5764_REG_OFFSET(chan->address);
175 case IIO_CHAN_INFO_CALIBSCALE:
176 return AD5764_REG_FINE_GAIN(chan->address);
177 default:
178 break;
179 }
180
181 return 0;
182 }
183
ad5764_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)184 static int ad5764_write_raw(struct iio_dev *indio_dev,
185 struct iio_chan_spec const *chan, int val, int val2, long info)
186 {
187 const int max_val = (1 << chan->scan_type.realbits);
188 unsigned int reg;
189
190 switch (info) {
191 case IIO_CHAN_INFO_RAW:
192 if (val >= max_val || val < 0)
193 return -EINVAL;
194 val <<= chan->scan_type.shift;
195 break;
196 case IIO_CHAN_INFO_CALIBBIAS:
197 if (val >= 128 || val < -128)
198 return -EINVAL;
199 break;
200 case IIO_CHAN_INFO_CALIBSCALE:
201 if (val >= 32 || val < -32)
202 return -EINVAL;
203 break;
204 default:
205 return -EINVAL;
206 }
207
208 reg = ad5764_chan_info_to_reg(chan, info);
209 return ad5764_write(indio_dev, reg, (u16)val);
210 }
211
ad5764_get_channel_vref(struct ad5764_state * st,unsigned int channel)212 static int ad5764_get_channel_vref(struct ad5764_state *st,
213 unsigned int channel)
214 {
215 if (st->chip_info->int_vref)
216 return st->chip_info->int_vref;
217 else
218 return regulator_get_voltage(st->vref_reg[channel / 2].consumer);
219 }
220
ad5764_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)221 static int ad5764_read_raw(struct iio_dev *indio_dev,
222 struct iio_chan_spec const *chan, int *val, int *val2, long info)
223 {
224 struct ad5764_state *st = iio_priv(indio_dev);
225 unsigned int reg;
226 int vref;
227 int ret;
228
229 switch (info) {
230 case IIO_CHAN_INFO_RAW:
231 reg = AD5764_REG_DATA(chan->address);
232 ret = ad5764_read(indio_dev, reg, val);
233 if (ret < 0)
234 return ret;
235 *val >>= chan->scan_type.shift;
236 return IIO_VAL_INT;
237 case IIO_CHAN_INFO_CALIBBIAS:
238 reg = AD5764_REG_OFFSET(chan->address);
239 ret = ad5764_read(indio_dev, reg, val);
240 if (ret < 0)
241 return ret;
242 *val = sign_extend32(*val, 7);
243 return IIO_VAL_INT;
244 case IIO_CHAN_INFO_CALIBSCALE:
245 reg = AD5764_REG_FINE_GAIN(chan->address);
246 ret = ad5764_read(indio_dev, reg, val);
247 if (ret < 0)
248 return ret;
249 *val = sign_extend32(*val, 5);
250 return IIO_VAL_INT;
251 case IIO_CHAN_INFO_SCALE:
252 /* vout = 4 * vref + ((dac_code / 65536) - 0.5) */
253 vref = ad5764_get_channel_vref(st, chan->channel);
254 if (vref < 0)
255 return vref;
256
257 *val = vref * 4 / 1000;
258 *val2 = chan->scan_type.realbits;
259 return IIO_VAL_FRACTIONAL_LOG2;
260 case IIO_CHAN_INFO_OFFSET:
261 *val = -(1 << chan->scan_type.realbits) / 2;
262 return IIO_VAL_INT;
263 }
264
265 return -EINVAL;
266 }
267
268 static const struct iio_info ad5764_info = {
269 .read_raw = ad5764_read_raw,
270 .write_raw = ad5764_write_raw,
271 };
272
ad5764_probe(struct spi_device * spi)273 static int ad5764_probe(struct spi_device *spi)
274 {
275 enum ad5764_type type = spi_get_device_id(spi)->driver_data;
276 struct iio_dev *indio_dev;
277 struct ad5764_state *st;
278 int ret;
279
280 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
281 if (indio_dev == NULL) {
282 dev_err(&spi->dev, "Failed to allocate iio device\n");
283 return -ENOMEM;
284 }
285
286 st = iio_priv(indio_dev);
287 spi_set_drvdata(spi, indio_dev);
288
289 st->spi = spi;
290 st->chip_info = &ad5764_chip_infos[type];
291
292 indio_dev->name = spi_get_device_id(spi)->name;
293 indio_dev->info = &ad5764_info;
294 indio_dev->modes = INDIO_DIRECT_MODE;
295 indio_dev->num_channels = AD5764_NUM_CHANNELS;
296 indio_dev->channels = st->chip_info->channels;
297
298 mutex_init(&st->lock);
299
300 if (st->chip_info->int_vref == 0) {
301 st->vref_reg[0].supply = "vrefAB";
302 st->vref_reg[1].supply = "vrefCD";
303
304 ret = devm_regulator_bulk_get(&st->spi->dev,
305 ARRAY_SIZE(st->vref_reg), st->vref_reg);
306 if (ret) {
307 dev_err(&spi->dev, "Failed to request vref regulators: %d\n",
308 ret);
309 return ret;
310 }
311
312 ret = regulator_bulk_enable(ARRAY_SIZE(st->vref_reg),
313 st->vref_reg);
314 if (ret) {
315 dev_err(&spi->dev, "Failed to enable vref regulators: %d\n",
316 ret);
317 return ret;
318 }
319 }
320
321 ret = iio_device_register(indio_dev);
322 if (ret) {
323 dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
324 goto error_disable_reg;
325 }
326
327 return 0;
328
329 error_disable_reg:
330 if (st->chip_info->int_vref == 0)
331 regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
332 return ret;
333 }
334
ad5764_remove(struct spi_device * spi)335 static void ad5764_remove(struct spi_device *spi)
336 {
337 struct iio_dev *indio_dev = spi_get_drvdata(spi);
338 struct ad5764_state *st = iio_priv(indio_dev);
339
340 iio_device_unregister(indio_dev);
341
342 if (st->chip_info->int_vref == 0)
343 regulator_bulk_disable(ARRAY_SIZE(st->vref_reg), st->vref_reg);
344 }
345
346 static const struct spi_device_id ad5764_ids[] = {
347 { "ad5744", ID_AD5744 },
348 { "ad5744r", ID_AD5744R },
349 { "ad5764", ID_AD5764 },
350 { "ad5764r", ID_AD5764R },
351 { }
352 };
353 MODULE_DEVICE_TABLE(spi, ad5764_ids);
354
355 static struct spi_driver ad5764_driver = {
356 .driver = {
357 .name = "ad5764",
358 },
359 .probe = ad5764_probe,
360 .remove = ad5764_remove,
361 .id_table = ad5764_ids,
362 };
363 module_spi_driver(ad5764_driver);
364
365 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
366 MODULE_DESCRIPTION("Analog Devices AD5744/AD5744R/AD5764/AD5764R DAC");
367 MODULE_LICENSE("GPL v2");
368