1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
4 *
5 * Copyright (C) 2022, Red Hat, Inc.
6 *
7 */
8 #include <asm/barrier.h>
9 #include <pthread.h>
10 #include <inttypes.h>
11
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "hyperv.h"
15 #include "test_util.h"
16 #include "vmx.h"
17
18 #define WORKER_VCPU_ID_1 2
19 #define WORKER_VCPU_ID_2 65
20
21 #define NTRY 100
22 #define NTEST_PAGES 2
23
24 struct hv_vpset {
25 u64 format;
26 u64 valid_bank_mask;
27 u64 bank_contents[];
28 };
29
30 enum HV_GENERIC_SET_FORMAT {
31 HV_GENERIC_SET_SPARSE_4K,
32 HV_GENERIC_SET_ALL,
33 };
34
35 #define HV_FLUSH_ALL_PROCESSORS BIT(0)
36 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
37 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
38 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
39
40 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
41 struct hv_tlb_flush {
42 u64 address_space;
43 u64 flags;
44 u64 processor_mask;
45 u64 gva_list[];
46 } __packed;
47
48 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
49 struct hv_tlb_flush_ex {
50 u64 address_space;
51 u64 flags;
52 struct hv_vpset hv_vp_set;
53 u64 gva_list[];
54 } __packed;
55
56 /*
57 * Pass the following info to 'workers' and 'sender'
58 * - Hypercall page's GVA
59 * - Hypercall page's GPA
60 * - Test pages GVA
61 * - GVAs of the test pages' PTEs
62 */
63 struct test_data {
64 vm_vaddr_t hcall_gva;
65 vm_paddr_t hcall_gpa;
66 vm_vaddr_t test_pages;
67 vm_vaddr_t test_pages_pte[NTEST_PAGES];
68 };
69
70 /* 'Worker' vCPU code checking the contents of the test page */
worker_guest_code(vm_vaddr_t test_data)71 static void worker_guest_code(vm_vaddr_t test_data)
72 {
73 struct test_data *data = (struct test_data *)test_data;
74 u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
75 void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
76 u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
77 u64 expected, val;
78
79 x2apic_enable();
80 wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
81
82 for (;;) {
83 cpu_relax();
84
85 expected = READ_ONCE(*this_cpu);
86
87 /*
88 * Make sure the value in the test page is read after reading
89 * the expectation for the first time. Pairs with wmb() in
90 * prepare_to_test().
91 */
92 rmb();
93
94 val = READ_ONCE(*(u64 *)data->test_pages);
95
96 /*
97 * Make sure the value in the test page is read after before
98 * reading the expectation for the second time. Pairs with wmb()
99 * post_test().
100 */
101 rmb();
102
103 /*
104 * '0' indicates the sender is between iterations, wait until
105 * the sender is ready for this vCPU to start checking again.
106 */
107 if (!expected)
108 continue;
109
110 /*
111 * Re-read the per-vCPU byte to ensure the sender didn't move
112 * onto a new iteration.
113 */
114 if (expected != READ_ONCE(*this_cpu))
115 continue;
116
117 GUEST_ASSERT(val == expected);
118 }
119 }
120
121 /*
122 * Write per-CPU info indicating what each 'worker' CPU is supposed to see in
123 * test page. '0' means don't check.
124 */
set_expected_val(void * addr,u64 val,int vcpu_id)125 static void set_expected_val(void *addr, u64 val, int vcpu_id)
126 {
127 void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
128
129 *(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
130 }
131
132 /*
133 * Update PTEs swapping two test pages.
134 * TODO: use swap()/xchg() when these are provided.
135 */
swap_two_test_pages(vm_paddr_t pte_gva1,vm_paddr_t pte_gva2)136 static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
137 {
138 uint64_t tmp = *(uint64_t *)pte_gva1;
139
140 *(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
141 *(uint64_t *)pte_gva2 = tmp;
142 }
143
144 /*
145 * TODO: replace the silly NOP loop with a proper udelay() implementation.
146 */
do_delay(void)147 static inline void do_delay(void)
148 {
149 int i;
150
151 for (i = 0; i < 1000000; i++)
152 asm volatile("nop");
153 }
154
155 /*
156 * Prepare to test: 'disable' workers by setting the expectation to '0',
157 * clear hypercall input page and then swap two test pages.
158 */
prepare_to_test(struct test_data * data)159 static inline void prepare_to_test(struct test_data *data)
160 {
161 /* Clear hypercall input page */
162 memset((void *)data->hcall_gva, 0, PAGE_SIZE);
163
164 /* 'Disable' workers */
165 set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
166 set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
167
168 /* Make sure workers are 'disabled' before we swap PTEs. */
169 wmb();
170
171 /* Make sure workers have enough time to notice */
172 do_delay();
173
174 /* Swap test page mappings */
175 swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
176 }
177
178 /*
179 * Finalize the test: check hypercall resule set the expected val for
180 * 'worker' CPUs and give them some time to test.
181 */
post_test(struct test_data * data,u64 exp1,u64 exp2)182 static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
183 {
184 /* Make sure we change the expectation after swapping PTEs */
185 wmb();
186
187 /* Set the expectation for workers, '0' means don't test */
188 set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
189 set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
190
191 /* Make sure workers have enough time to test */
192 do_delay();
193 }
194
195 #define TESTVAL1 0x0101010101010101
196 #define TESTVAL2 0x0202020202020202
197
198 /* Main vCPU doing the test */
sender_guest_code(vm_vaddr_t test_data)199 static void sender_guest_code(vm_vaddr_t test_data)
200 {
201 struct test_data *data = (struct test_data *)test_data;
202 struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
203 struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
204 vm_paddr_t hcall_gpa = data->hcall_gpa;
205 int i, stage = 1;
206
207 wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
208 wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
209
210 /* "Slow" hypercalls */
211
212 GUEST_SYNC(stage++);
213
214 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
215 for (i = 0; i < NTRY; i++) {
216 prepare_to_test(data);
217 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
218 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
219 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
220 hcall_gpa + PAGE_SIZE);
221 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
222 }
223
224 GUEST_SYNC(stage++);
225
226 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
227 for (i = 0; i < NTRY; i++) {
228 prepare_to_test(data);
229 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
230 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
231 flush->gva_list[0] = (u64)data->test_pages;
232 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
233 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
234 hcall_gpa, hcall_gpa + PAGE_SIZE);
235 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
236 }
237
238 GUEST_SYNC(stage++);
239
240 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
241 for (i = 0; i < NTRY; i++) {
242 prepare_to_test(data);
243 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
244 HV_FLUSH_ALL_PROCESSORS;
245 flush->processor_mask = 0;
246 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
247 hcall_gpa + PAGE_SIZE);
248 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
249 }
250
251 GUEST_SYNC(stage++);
252
253 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
254 for (i = 0; i < NTRY; i++) {
255 prepare_to_test(data);
256 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
257 HV_FLUSH_ALL_PROCESSORS;
258 flush->gva_list[0] = (u64)data->test_pages;
259 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
260 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
261 hcall_gpa, hcall_gpa + PAGE_SIZE);
262 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
263 i % 2 ? TESTVAL1 : TESTVAL2);
264 }
265
266 GUEST_SYNC(stage++);
267
268 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
269 for (i = 0; i < NTRY; i++) {
270 prepare_to_test(data);
271 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
272 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
273 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
274 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
275 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
276 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
277 hcall_gpa, hcall_gpa + PAGE_SIZE);
278 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
279 }
280
281 GUEST_SYNC(stage++);
282
283 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
284 for (i = 0; i < NTRY; i++) {
285 prepare_to_test(data);
286 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
287 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
288 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
289 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
290 /* bank_contents and gva_list occupy the same space, thus [1] */
291 flush_ex->gva_list[1] = (u64)data->test_pages;
292 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
293 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
294 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
295 hcall_gpa, hcall_gpa + PAGE_SIZE);
296 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
297 }
298
299 GUEST_SYNC(stage++);
300
301 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
302 for (i = 0; i < NTRY; i++) {
303 prepare_to_test(data);
304 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
305 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
306 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
307 BIT_ULL(WORKER_VCPU_ID_1 / 64);
308 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
309 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
310 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
311 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
312 hcall_gpa, hcall_gpa + PAGE_SIZE);
313 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
314 i % 2 ? TESTVAL1 : TESTVAL2);
315 }
316
317 GUEST_SYNC(stage++);
318
319 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
320 for (i = 0; i < NTRY; i++) {
321 prepare_to_test(data);
322 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
323 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
324 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
325 BIT_ULL(WORKER_VCPU_ID_2 / 64);
326 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
327 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
328 /* bank_contents and gva_list occupy the same space, thus [2] */
329 flush_ex->gva_list[2] = (u64)data->test_pages;
330 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
331 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
332 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
333 hcall_gpa, hcall_gpa + PAGE_SIZE);
334 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
335 i % 2 ? TESTVAL1 : TESTVAL2);
336 }
337
338 GUEST_SYNC(stage++);
339
340 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
341 for (i = 0; i < NTRY; i++) {
342 prepare_to_test(data);
343 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
344 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
345 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
346 hcall_gpa, hcall_gpa + PAGE_SIZE);
347 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
348 i % 2 ? TESTVAL1 : TESTVAL2);
349 }
350
351 GUEST_SYNC(stage++);
352
353 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
354 for (i = 0; i < NTRY; i++) {
355 prepare_to_test(data);
356 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
357 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
358 flush_ex->gva_list[0] = (u64)data->test_pages;
359 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
360 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
361 hcall_gpa, hcall_gpa + PAGE_SIZE);
362 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
363 i % 2 ? TESTVAL1 : TESTVAL2);
364 }
365
366 /* "Fast" hypercalls */
367
368 GUEST_SYNC(stage++);
369
370 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
371 for (i = 0; i < NTRY; i++) {
372 prepare_to_test(data);
373 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
374 hyperv_write_xmm_input(&flush->processor_mask, 1);
375 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
376 HV_HYPERCALL_FAST_BIT, 0x0,
377 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
378 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
379 }
380
381 GUEST_SYNC(stage++);
382
383 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
384 for (i = 0; i < NTRY; i++) {
385 prepare_to_test(data);
386 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
387 flush->gva_list[0] = (u64)data->test_pages;
388 hyperv_write_xmm_input(&flush->processor_mask, 1);
389 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
390 HV_HYPERCALL_FAST_BIT |
391 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
392 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
393 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
394 }
395
396 GUEST_SYNC(stage++);
397
398 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
399 for (i = 0; i < NTRY; i++) {
400 prepare_to_test(data);
401 hyperv_write_xmm_input(&flush->processor_mask, 1);
402 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
403 HV_HYPERCALL_FAST_BIT, 0x0,
404 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
405 HV_FLUSH_ALL_PROCESSORS);
406 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
407 i % 2 ? TESTVAL1 : TESTVAL2);
408 }
409
410 GUEST_SYNC(stage++);
411
412 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
413 for (i = 0; i < NTRY; i++) {
414 prepare_to_test(data);
415 flush->gva_list[0] = (u64)data->test_pages;
416 hyperv_write_xmm_input(&flush->processor_mask, 1);
417 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
418 HV_HYPERCALL_FAST_BIT |
419 (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
420 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
421 HV_FLUSH_ALL_PROCESSORS);
422 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
423 i % 2 ? TESTVAL1 : TESTVAL2);
424 }
425
426 GUEST_SYNC(stage++);
427
428 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
429 for (i = 0; i < NTRY; i++) {
430 prepare_to_test(data);
431 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
432 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
433 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
434 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
435 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
436 HV_HYPERCALL_FAST_BIT |
437 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
438 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
439 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
440 }
441
442 GUEST_SYNC(stage++);
443
444 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
445 for (i = 0; i < NTRY; i++) {
446 prepare_to_test(data);
447 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
448 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
449 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
450 /* bank_contents and gva_list occupy the same space, thus [1] */
451 flush_ex->gva_list[1] = (u64)data->test_pages;
452 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
453 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
454 HV_HYPERCALL_FAST_BIT |
455 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
456 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
457 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
458 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
459 }
460
461 GUEST_SYNC(stage++);
462
463 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
464 for (i = 0; i < NTRY; i++) {
465 prepare_to_test(data);
466 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
467 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
468 BIT_ULL(WORKER_VCPU_ID_1 / 64);
469 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
470 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
471 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
472 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
473 HV_HYPERCALL_FAST_BIT |
474 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
475 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
476 post_test(data, i % 2 ? TESTVAL1 :
477 TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
478 }
479
480 GUEST_SYNC(stage++);
481
482 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
483 for (i = 0; i < NTRY; i++) {
484 prepare_to_test(data);
485 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
486 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
487 BIT_ULL(WORKER_VCPU_ID_2 / 64);
488 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
489 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
490 /* bank_contents and gva_list occupy the same space, thus [2] */
491 flush_ex->gva_list[2] = (u64)data->test_pages;
492 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
493 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
494 HV_HYPERCALL_FAST_BIT |
495 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
496 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
497 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
498 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
499 i % 2 ? TESTVAL1 : TESTVAL2);
500 }
501
502 GUEST_SYNC(stage++);
503
504 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
505 for (i = 0; i < NTRY; i++) {
506 prepare_to_test(data);
507 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
508 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
509 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
510 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
511 HV_HYPERCALL_FAST_BIT,
512 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
513 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
514 i % 2 ? TESTVAL1 : TESTVAL2);
515 }
516
517 GUEST_SYNC(stage++);
518
519 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
520 for (i = 0; i < NTRY; i++) {
521 prepare_to_test(data);
522 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
523 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
524 flush_ex->gva_list[0] = (u64)data->test_pages;
525 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
526 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
527 HV_HYPERCALL_FAST_BIT |
528 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
529 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
530 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
531 i % 2 ? TESTVAL1 : TESTVAL2);
532 }
533
534 GUEST_DONE();
535 }
536
vcpu_thread(void * arg)537 static void *vcpu_thread(void *arg)
538 {
539 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
540 struct ucall uc;
541 int old;
542 int r;
543
544 r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
545 TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
546 vcpu->id, r);
547
548 vcpu_run(vcpu);
549 TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
550
551 switch (get_ucall(vcpu, &uc)) {
552 case UCALL_ABORT:
553 REPORT_GUEST_ASSERT(uc);
554 /* NOT REACHED */
555 default:
556 TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
557 }
558
559 return NULL;
560 }
561
cancel_join_vcpu_thread(pthread_t thread,struct kvm_vcpu * vcpu)562 static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
563 {
564 void *retval;
565 int r;
566
567 r = pthread_cancel(thread);
568 TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
569 vcpu->id, r);
570
571 r = pthread_join(thread, &retval);
572 TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
573 vcpu->id, r);
574 TEST_ASSERT(retval == PTHREAD_CANCELED,
575 "expected retval=%p, got %p", PTHREAD_CANCELED,
576 retval);
577 }
578
main(int argc,char * argv[])579 int main(int argc, char *argv[])
580 {
581 struct kvm_vm *vm;
582 struct kvm_vcpu *vcpu[3];
583 pthread_t threads[2];
584 vm_vaddr_t test_data_page, gva;
585 vm_paddr_t gpa;
586 uint64_t *pte;
587 struct test_data *data;
588 struct ucall uc;
589 int stage = 1, r, i;
590
591 TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TLBFLUSH));
592
593 vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
594
595 /* Test data page */
596 test_data_page = vm_vaddr_alloc_page(vm);
597 data = (struct test_data *)addr_gva2hva(vm, test_data_page);
598
599 /* Hypercall input/output */
600 data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
601 data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
602 memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
603
604 /*
605 * Test pages: the first one is filled with '0x01's, the second with '0x02's
606 * and the test will swap their mappings. The third page keeps the indication
607 * about the current state of mappings.
608 */
609 data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
610 for (i = 0; i < NTEST_PAGES; i++)
611 memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
612 (u8)(i + 1), PAGE_SIZE);
613 set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
614 set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
615
616 /*
617 * Get PTE pointers for test pages and map them inside the guest.
618 * Use separate page for each PTE for simplicity.
619 */
620 gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
621 for (i = 0; i < NTEST_PAGES; i++) {
622 pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
623 gpa = addr_hva2gpa(vm, pte);
624 __virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
625 data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
626 }
627
628 /*
629 * Sender vCPU which performs the test: swaps test pages, sets expectation
630 * for 'workers' and issues TLB flush hypercalls.
631 */
632 vcpu_args_set(vcpu[0], 1, test_data_page);
633 vcpu_set_hv_cpuid(vcpu[0]);
634
635 /* Create worker vCPUs which check the contents of the test pages */
636 vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
637 vcpu_args_set(vcpu[1], 1, test_data_page);
638 vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
639 vcpu_set_hv_cpuid(vcpu[1]);
640
641 vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
642 vcpu_args_set(vcpu[2], 1, test_data_page);
643 vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
644 vcpu_set_hv_cpuid(vcpu[2]);
645
646 r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
647 TEST_ASSERT(!r, "pthread_create() failed");
648
649 r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
650 TEST_ASSERT(!r, "pthread_create() failed");
651
652 while (true) {
653 vcpu_run(vcpu[0]);
654 TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
655
656 switch (get_ucall(vcpu[0], &uc)) {
657 case UCALL_SYNC:
658 TEST_ASSERT(uc.args[1] == stage,
659 "Unexpected stage: %ld (%d expected)",
660 uc.args[1], stage);
661 break;
662 case UCALL_ABORT:
663 REPORT_GUEST_ASSERT(uc);
664 /* NOT REACHED */
665 case UCALL_DONE:
666 goto done;
667 default:
668 TEST_FAIL("Unknown ucall %lu", uc.cmd);
669 }
670
671 stage++;
672 }
673
674 done:
675 cancel_join_vcpu_thread(threads[0], vcpu[1]);
676 cancel_join_vcpu_thread(threads[1], vcpu[2]);
677 kvm_vm_free(vm);
678
679 return 0;
680 }
681