1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DAMON Code for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon-va: " fmt
9
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17
18 #include "../internal.h"
19 #include "ops-common.h"
20
21 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25
26 /*
27 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
28 * count. Caller must put the returned task, unless it is NULL.
29 */
damon_get_task_struct(struct damon_target * t)30 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31 {
32 return get_pid_task(t->pid, PIDTYPE_PID);
33 }
34
35 /*
36 * Get the mm_struct of the given target
37 *
38 * Caller _must_ put the mm_struct after use, unless it is NULL.
39 *
40 * Returns the mm_struct of the target on success, NULL on failure
41 */
damon_get_mm(struct damon_target * t)42 static struct mm_struct *damon_get_mm(struct damon_target *t)
43 {
44 struct task_struct *task;
45 struct mm_struct *mm;
46
47 task = damon_get_task_struct(t);
48 if (!task)
49 return NULL;
50
51 mm = get_task_mm(task);
52 put_task_struct(task);
53 return mm;
54 }
55
56 /*
57 * Functions for the initial monitoring target regions construction
58 */
59
60 /*
61 * Size-evenly split a region into 'nr_pieces' small regions
62 *
63 * Returns 0 on success, or negative error code otherwise.
64 */
damon_va_evenly_split_region(struct damon_target * t,struct damon_region * r,unsigned int nr_pieces)65 static int damon_va_evenly_split_region(struct damon_target *t,
66 struct damon_region *r, unsigned int nr_pieces)
67 {
68 unsigned long sz_orig, sz_piece, orig_end;
69 struct damon_region *n = NULL, *next;
70 unsigned long start;
71 unsigned int i;
72
73 if (!r || !nr_pieces)
74 return -EINVAL;
75
76 if (nr_pieces == 1)
77 return 0;
78
79 orig_end = r->ar.end;
80 sz_orig = damon_sz_region(r);
81 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
82
83 if (!sz_piece)
84 return -EINVAL;
85
86 r->ar.end = r->ar.start + sz_piece;
87 next = damon_next_region(r);
88 for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
89 n = damon_new_region(start, start + sz_piece);
90 if (!n)
91 return -ENOMEM;
92 damon_insert_region(n, r, next, t);
93 r = n;
94 }
95 /* complement last region for possible rounding error */
96 if (n)
97 n->ar.end = orig_end;
98
99 return 0;
100 }
101
sz_range(struct damon_addr_range * r)102 static unsigned long sz_range(struct damon_addr_range *r)
103 {
104 return r->end - r->start;
105 }
106
107 /*
108 * Find three regions separated by two biggest unmapped regions
109 *
110 * vma the head vma of the target address space
111 * regions an array of three address ranges that results will be saved
112 *
113 * This function receives an address space and finds three regions in it which
114 * separated by the two biggest unmapped regions in the space. Please refer to
115 * below comments of '__damon_va_init_regions()' function to know why this is
116 * necessary.
117 *
118 * Returns 0 if success, or negative error code otherwise.
119 */
__damon_va_three_regions(struct mm_struct * mm,struct damon_addr_range regions[3])120 static int __damon_va_three_regions(struct mm_struct *mm,
121 struct damon_addr_range regions[3])
122 {
123 struct damon_addr_range first_gap = {0}, second_gap = {0};
124 VMA_ITERATOR(vmi, mm, 0);
125 struct vm_area_struct *vma, *prev = NULL;
126 unsigned long start;
127
128 /*
129 * Find the two biggest gaps so that first_gap > second_gap > others.
130 * If this is too slow, it can be optimised to examine the maple
131 * tree gaps.
132 */
133 rcu_read_lock();
134 for_each_vma(vmi, vma) {
135 unsigned long gap;
136
137 if (!prev) {
138 start = vma->vm_start;
139 goto next;
140 }
141 gap = vma->vm_start - prev->vm_end;
142
143 if (gap > sz_range(&first_gap)) {
144 second_gap = first_gap;
145 first_gap.start = prev->vm_end;
146 first_gap.end = vma->vm_start;
147 } else if (gap > sz_range(&second_gap)) {
148 second_gap.start = prev->vm_end;
149 second_gap.end = vma->vm_start;
150 }
151 next:
152 prev = vma;
153 }
154 rcu_read_unlock();
155
156 if (!sz_range(&second_gap) || !sz_range(&first_gap))
157 return -EINVAL;
158
159 /* Sort the two biggest gaps by address */
160 if (first_gap.start > second_gap.start)
161 swap(first_gap, second_gap);
162
163 /* Store the result */
164 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
165 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
166 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
167 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
168 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
169 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
170
171 return 0;
172 }
173
174 /*
175 * Get the three regions in the given target (task)
176 *
177 * Returns 0 on success, negative error code otherwise.
178 */
damon_va_three_regions(struct damon_target * t,struct damon_addr_range regions[3])179 static int damon_va_three_regions(struct damon_target *t,
180 struct damon_addr_range regions[3])
181 {
182 struct mm_struct *mm;
183 int rc;
184
185 mm = damon_get_mm(t);
186 if (!mm)
187 return -EINVAL;
188
189 mmap_read_lock(mm);
190 rc = __damon_va_three_regions(mm, regions);
191 mmap_read_unlock(mm);
192
193 mmput(mm);
194 return rc;
195 }
196
197 /*
198 * Initialize the monitoring target regions for the given target (task)
199 *
200 * t the given target
201 *
202 * Because only a number of small portions of the entire address space
203 * is actually mapped to the memory and accessed, monitoring the unmapped
204 * regions is wasteful. That said, because we can deal with small noises,
205 * tracking every mapping is not strictly required but could even incur a high
206 * overhead if the mapping frequently changes or the number of mappings is
207 * high. The adaptive regions adjustment mechanism will further help to deal
208 * with the noise by simply identifying the unmapped areas as a region that
209 * has no access. Moreover, applying the real mappings that would have many
210 * unmapped areas inside will make the adaptive mechanism quite complex. That
211 * said, too huge unmapped areas inside the monitoring target should be removed
212 * to not take the time for the adaptive mechanism.
213 *
214 * For the reason, we convert the complex mappings to three distinct regions
215 * that cover every mapped area of the address space. Also the two gaps
216 * between the three regions are the two biggest unmapped areas in the given
217 * address space. In detail, this function first identifies the start and the
218 * end of the mappings and the two biggest unmapped areas of the address space.
219 * Then, it constructs the three regions as below:
220 *
221 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
222 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
223 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
224 *
225 * As usual memory map of processes is as below, the gap between the heap and
226 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
227 * region and the stack will be two biggest unmapped regions. Because these
228 * gaps are exceptionally huge areas in usual address space, excluding these
229 * two biggest unmapped regions will be sufficient to make a trade-off.
230 *
231 * <heap>
232 * <BIG UNMAPPED REGION 1>
233 * <uppermost mmap()-ed region>
234 * (other mmap()-ed regions and small unmapped regions)
235 * <lowermost mmap()-ed region>
236 * <BIG UNMAPPED REGION 2>
237 * <stack>
238 */
__damon_va_init_regions(struct damon_ctx * ctx,struct damon_target * t)239 static void __damon_va_init_regions(struct damon_ctx *ctx,
240 struct damon_target *t)
241 {
242 struct damon_target *ti;
243 struct damon_region *r;
244 struct damon_addr_range regions[3];
245 unsigned long sz = 0, nr_pieces;
246 int i, tidx = 0;
247
248 if (damon_va_three_regions(t, regions)) {
249 damon_for_each_target(ti, ctx) {
250 if (ti == t)
251 break;
252 tidx++;
253 }
254 pr_debug("Failed to get three regions of %dth target\n", tidx);
255 return;
256 }
257
258 for (i = 0; i < 3; i++)
259 sz += regions[i].end - regions[i].start;
260 if (ctx->attrs.min_nr_regions)
261 sz /= ctx->attrs.min_nr_regions;
262 if (sz < DAMON_MIN_REGION)
263 sz = DAMON_MIN_REGION;
264
265 /* Set the initial three regions of the target */
266 for (i = 0; i < 3; i++) {
267 r = damon_new_region(regions[i].start, regions[i].end);
268 if (!r) {
269 pr_err("%d'th init region creation failed\n", i);
270 return;
271 }
272 damon_add_region(r, t);
273
274 nr_pieces = (regions[i].end - regions[i].start) / sz;
275 damon_va_evenly_split_region(t, r, nr_pieces);
276 }
277 }
278
279 /* Initialize '->regions_list' of every target (task) */
damon_va_init(struct damon_ctx * ctx)280 static void damon_va_init(struct damon_ctx *ctx)
281 {
282 struct damon_target *t;
283
284 damon_for_each_target(t, ctx) {
285 /* the user may set the target regions as they want */
286 if (!damon_nr_regions(t))
287 __damon_va_init_regions(ctx, t);
288 }
289 }
290
291 /*
292 * Update regions for current memory mappings
293 */
damon_va_update(struct damon_ctx * ctx)294 static void damon_va_update(struct damon_ctx *ctx)
295 {
296 struct damon_addr_range three_regions[3];
297 struct damon_target *t;
298
299 damon_for_each_target(t, ctx) {
300 if (damon_va_three_regions(t, three_regions))
301 continue;
302 damon_set_regions(t, three_regions, 3, DAMON_MIN_REGION);
303 }
304 }
305
damon_mkold_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)306 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
307 unsigned long next, struct mm_walk *walk)
308 {
309 pte_t *pte;
310 spinlock_t *ptl;
311
312 ptl = pmd_trans_huge_lock(pmd, walk->vma);
313 if (ptl) {
314 pmd_t pmde = pmdp_get(pmd);
315
316 if (pmd_present(pmde))
317 damon_pmdp_mkold(pmd, walk->vma, addr);
318 spin_unlock(ptl);
319 return 0;
320 }
321
322 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
323 if (!pte)
324 return 0;
325 if (!pte_present(ptep_get(pte)))
326 goto out;
327 damon_ptep_mkold(pte, walk->vma, addr);
328 out:
329 pte_unmap_unlock(pte, ptl);
330 return 0;
331 }
332
333 #ifdef CONFIG_HUGETLB_PAGE
damon_hugetlb_mkold(pte_t * pte,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)334 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
335 struct vm_area_struct *vma, unsigned long addr)
336 {
337 bool referenced = false;
338 pte_t entry = huge_ptep_get(mm, addr, pte);
339 struct folio *folio = pfn_folio(pte_pfn(entry));
340 unsigned long psize = huge_page_size(hstate_vma(vma));
341
342 folio_get(folio);
343
344 if (pte_young(entry)) {
345 referenced = true;
346 entry = pte_mkold(entry);
347 set_huge_pte_at(mm, addr, pte, entry, psize);
348 }
349
350 if (mmu_notifier_clear_young(mm, addr,
351 addr + huge_page_size(hstate_vma(vma))))
352 referenced = true;
353
354 if (referenced)
355 folio_set_young(folio);
356
357 folio_set_idle(folio);
358 folio_put(folio);
359 }
360
damon_mkold_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)361 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362 unsigned long addr, unsigned long end,
363 struct mm_walk *walk)
364 {
365 struct hstate *h = hstate_vma(walk->vma);
366 spinlock_t *ptl;
367 pte_t entry;
368
369 ptl = huge_pte_lock(h, walk->mm, pte);
370 entry = huge_ptep_get(walk->mm, addr, pte);
371 if (!pte_present(entry))
372 goto out;
373
374 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375
376 out:
377 spin_unlock(ptl);
378 return 0;
379 }
380 #else
381 #define damon_mkold_hugetlb_entry NULL
382 #endif /* CONFIG_HUGETLB_PAGE */
383
384 static const struct mm_walk_ops damon_mkold_ops = {
385 .pmd_entry = damon_mkold_pmd_entry,
386 .hugetlb_entry = damon_mkold_hugetlb_entry,
387 .walk_lock = PGWALK_RDLOCK,
388 };
389
damon_va_mkold(struct mm_struct * mm,unsigned long addr)390 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
391 {
392 mmap_read_lock(mm);
393 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
394 mmap_read_unlock(mm);
395 }
396
397 /*
398 * Functions for the access checking of the regions
399 */
400
__damon_va_prepare_access_check(struct mm_struct * mm,struct damon_region * r)401 static void __damon_va_prepare_access_check(struct mm_struct *mm,
402 struct damon_region *r)
403 {
404 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
405
406 damon_va_mkold(mm, r->sampling_addr);
407 }
408
damon_va_prepare_access_checks(struct damon_ctx * ctx)409 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
410 {
411 struct damon_target *t;
412 struct mm_struct *mm;
413 struct damon_region *r;
414
415 damon_for_each_target(t, ctx) {
416 mm = damon_get_mm(t);
417 if (!mm)
418 continue;
419 damon_for_each_region(r, t)
420 __damon_va_prepare_access_check(mm, r);
421 mmput(mm);
422 }
423 }
424
425 struct damon_young_walk_private {
426 /* size of the folio for the access checked virtual memory address */
427 unsigned long *folio_sz;
428 bool young;
429 };
430
damon_young_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)431 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
432 unsigned long next, struct mm_walk *walk)
433 {
434 pte_t *pte;
435 pte_t ptent;
436 spinlock_t *ptl;
437 struct folio *folio;
438 struct damon_young_walk_private *priv = walk->private;
439
440 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
441 ptl = pmd_trans_huge_lock(pmd, walk->vma);
442 if (ptl) {
443 pmd_t pmde = pmdp_get(pmd);
444
445 if (!pmd_present(pmde))
446 goto huge_out;
447 folio = vm_normal_folio_pmd(walk->vma, addr, pmde);
448 if (!folio)
449 goto huge_out;
450 if (pmd_young(pmde) || !folio_test_idle(folio) ||
451 mmu_notifier_test_young(walk->mm,
452 addr))
453 priv->young = true;
454 *priv->folio_sz = HPAGE_PMD_SIZE;
455 huge_out:
456 spin_unlock(ptl);
457 return 0;
458 }
459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
460
461 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
462 if (!pte)
463 return 0;
464 ptent = ptep_get(pte);
465 if (!pte_present(ptent))
466 goto out;
467 folio = vm_normal_folio(walk->vma, addr, ptent);
468 if (!folio)
469 goto out;
470 if (pte_young(ptent) || !folio_test_idle(folio) ||
471 mmu_notifier_test_young(walk->mm, addr))
472 priv->young = true;
473 *priv->folio_sz = folio_size(folio);
474 out:
475 pte_unmap_unlock(pte, ptl);
476 return 0;
477 }
478
479 #ifdef CONFIG_HUGETLB_PAGE
damon_young_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)480 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
481 unsigned long addr, unsigned long end,
482 struct mm_walk *walk)
483 {
484 struct damon_young_walk_private *priv = walk->private;
485 struct hstate *h = hstate_vma(walk->vma);
486 struct folio *folio;
487 spinlock_t *ptl;
488 pte_t entry;
489
490 ptl = huge_pte_lock(h, walk->mm, pte);
491 entry = huge_ptep_get(walk->mm, addr, pte);
492 if (!pte_present(entry))
493 goto out;
494
495 folio = pfn_folio(pte_pfn(entry));
496 folio_get(folio);
497
498 if (pte_young(entry) || !folio_test_idle(folio) ||
499 mmu_notifier_test_young(walk->mm, addr))
500 priv->young = true;
501 *priv->folio_sz = huge_page_size(h);
502
503 folio_put(folio);
504
505 out:
506 spin_unlock(ptl);
507 return 0;
508 }
509 #else
510 #define damon_young_hugetlb_entry NULL
511 #endif /* CONFIG_HUGETLB_PAGE */
512
513 static const struct mm_walk_ops damon_young_ops = {
514 .pmd_entry = damon_young_pmd_entry,
515 .hugetlb_entry = damon_young_hugetlb_entry,
516 .walk_lock = PGWALK_RDLOCK,
517 };
518
damon_va_young(struct mm_struct * mm,unsigned long addr,unsigned long * folio_sz)519 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
520 unsigned long *folio_sz)
521 {
522 struct damon_young_walk_private arg = {
523 .folio_sz = folio_sz,
524 .young = false,
525 };
526
527 mmap_read_lock(mm);
528 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
529 mmap_read_unlock(mm);
530 return arg.young;
531 }
532
533 /*
534 * Check whether the region was accessed after the last preparation
535 *
536 * mm 'mm_struct' for the given virtual address space
537 * r the region to be checked
538 */
__damon_va_check_access(struct mm_struct * mm,struct damon_region * r,bool same_target,struct damon_attrs * attrs)539 static void __damon_va_check_access(struct mm_struct *mm,
540 struct damon_region *r, bool same_target,
541 struct damon_attrs *attrs)
542 {
543 static unsigned long last_addr;
544 static unsigned long last_folio_sz = PAGE_SIZE;
545 static bool last_accessed;
546
547 if (!mm) {
548 damon_update_region_access_rate(r, false, attrs);
549 return;
550 }
551
552 /* If the region is in the last checked page, reuse the result */
553 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
554 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
555 damon_update_region_access_rate(r, last_accessed, attrs);
556 return;
557 }
558
559 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
560 damon_update_region_access_rate(r, last_accessed, attrs);
561
562 last_addr = r->sampling_addr;
563 }
564
damon_va_check_accesses(struct damon_ctx * ctx)565 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
566 {
567 struct damon_target *t;
568 struct mm_struct *mm;
569 struct damon_region *r;
570 unsigned int max_nr_accesses = 0;
571 bool same_target;
572
573 damon_for_each_target(t, ctx) {
574 mm = damon_get_mm(t);
575 same_target = false;
576 damon_for_each_region(r, t) {
577 __damon_va_check_access(mm, r, same_target,
578 &ctx->attrs);
579 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
580 same_target = true;
581 }
582 if (mm)
583 mmput(mm);
584 }
585
586 return max_nr_accesses;
587 }
588
damos_va_filter_young_match(struct damos_filter * filter,struct folio * folio,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pmd_t * pmdp)589 static bool damos_va_filter_young_match(struct damos_filter *filter,
590 struct folio *folio, struct vm_area_struct *vma,
591 unsigned long addr, pte_t *ptep, pmd_t *pmdp)
592 {
593 bool young = false;
594
595 if (ptep)
596 young = pte_young(ptep_get(ptep));
597 else if (pmdp)
598 young = pmd_young(pmdp_get(pmdp));
599
600 young = young || !folio_test_idle(folio) ||
601 mmu_notifier_test_young(vma->vm_mm, addr);
602
603 if (young && ptep)
604 damon_ptep_mkold(ptep, vma, addr);
605 else if (young && pmdp)
606 damon_pmdp_mkold(pmdp, vma, addr);
607
608 return young == filter->matching;
609 }
610
damos_va_filter_out(struct damos * scheme,struct folio * folio,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pmd_t * pmdp)611 static bool damos_va_filter_out(struct damos *scheme, struct folio *folio,
612 struct vm_area_struct *vma, unsigned long addr,
613 pte_t *ptep, pmd_t *pmdp)
614 {
615 struct damos_filter *filter;
616 bool matched;
617
618 if (scheme->core_filters_allowed)
619 return false;
620
621 damos_for_each_ops_filter(filter, scheme) {
622 /*
623 * damos_folio_filter_match checks the young filter by doing an
624 * rmap on the folio to find its page table. However, being the
625 * vaddr scheme, we have direct access to the page tables, so
626 * use that instead.
627 */
628 if (filter->type == DAMOS_FILTER_TYPE_YOUNG)
629 matched = damos_va_filter_young_match(filter, folio,
630 vma, addr, ptep, pmdp);
631 else
632 matched = damos_folio_filter_match(filter, folio);
633
634 if (matched)
635 return !filter->allow;
636 }
637 return scheme->ops_filters_default_reject;
638 }
639
640 struct damos_va_migrate_private {
641 struct list_head *migration_lists;
642 struct damos *scheme;
643 };
644
645 /*
646 * Place the given folio in the migration_list corresponding to where the folio
647 * should be migrated.
648 *
649 * The algorithm used here is similar to weighted_interleave_nid()
650 */
damos_va_migrate_dests_add(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,struct damos_migrate_dests * dests,struct list_head * migration_lists)651 static void damos_va_migrate_dests_add(struct folio *folio,
652 struct vm_area_struct *vma, unsigned long addr,
653 struct damos_migrate_dests *dests,
654 struct list_head *migration_lists)
655 {
656 pgoff_t ilx;
657 int order;
658 unsigned int target;
659 unsigned int weight_total = 0;
660 int i;
661
662 /*
663 * If dests is empty, there is only one migration list corresponding
664 * to s->target_nid.
665 */
666 if (!dests->nr_dests) {
667 i = 0;
668 goto isolate;
669 }
670
671 order = folio_order(folio);
672 ilx = vma->vm_pgoff >> order;
673 ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
674
675 for (i = 0; i < dests->nr_dests; i++)
676 weight_total += dests->weight_arr[i];
677
678 /* If the total weights are somehow 0, don't migrate at all */
679 if (!weight_total)
680 return;
681
682 target = ilx % weight_total;
683 for (i = 0; i < dests->nr_dests; i++) {
684 if (target < dests->weight_arr[i])
685 break;
686 target -= dests->weight_arr[i];
687 }
688
689 /* If the folio is already in the right node, don't do anything */
690 if (folio_nid(folio) == dests->node_id_arr[i])
691 return;
692
693 isolate:
694 if (!folio_isolate_lru(folio))
695 return;
696
697 list_add(&folio->lru, &migration_lists[i]);
698 }
699
damos_va_migrate_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)700 static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr,
701 unsigned long next, struct mm_walk *walk)
702 {
703 struct damos_va_migrate_private *priv = walk->private;
704 struct list_head *migration_lists = priv->migration_lists;
705 struct damos *s = priv->scheme;
706 struct damos_migrate_dests *dests = &s->migrate_dests;
707 struct folio *folio;
708 spinlock_t *ptl;
709 pte_t *start_pte, *pte, ptent;
710 int nr;
711
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 ptl = pmd_trans_huge_lock(pmd, walk->vma);
714 if (ptl) {
715 pmd_t pmde = pmdp_get(pmd);
716
717 if (!pmd_present(pmde))
718 goto huge_out;
719 folio = vm_normal_folio_pmd(walk->vma, addr, pmde);
720 if (!folio)
721 goto huge_out;
722 if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd))
723 goto huge_out;
724 damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
725 migration_lists);
726 huge_out:
727 spin_unlock(ptl);
728 return 0;
729 }
730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
731
732 start_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
733 if (!pte)
734 return 0;
735
736 for (; addr < next; pte += nr, addr += nr * PAGE_SIZE) {
737 nr = 1;
738 ptent = ptep_get(pte);
739
740 if (pte_none(ptent) || !pte_present(ptent))
741 continue;
742 folio = vm_normal_folio(walk->vma, addr, ptent);
743 if (!folio)
744 continue;
745 if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL))
746 return 0;
747 damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
748 migration_lists);
749 nr = folio_nr_pages(folio);
750 }
751 pte_unmap_unlock(start_pte, ptl);
752 return 0;
753 }
754
755 /*
756 * Functions for the target validity check and cleanup
757 */
758
damon_va_target_valid(struct damon_target * t)759 static bool damon_va_target_valid(struct damon_target *t)
760 {
761 struct task_struct *task;
762
763 task = damon_get_task_struct(t);
764 if (task) {
765 put_task_struct(task);
766 return true;
767 }
768
769 return false;
770 }
771
damon_va_cleanup_target(struct damon_target * t)772 static void damon_va_cleanup_target(struct damon_target *t)
773 {
774 put_pid(t->pid);
775 }
776
777 #ifndef CONFIG_ADVISE_SYSCALLS
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)778 static unsigned long damos_madvise(struct damon_target *target,
779 struct damon_region *r, int behavior)
780 {
781 return 0;
782 }
783 #else
damos_madvise(struct damon_target * target,struct damon_region * r,int behavior)784 static unsigned long damos_madvise(struct damon_target *target,
785 struct damon_region *r, int behavior)
786 {
787 struct mm_struct *mm;
788 unsigned long start = PAGE_ALIGN(r->ar.start);
789 unsigned long len = PAGE_ALIGN(damon_sz_region(r));
790 unsigned long applied;
791
792 mm = damon_get_mm(target);
793 if (!mm)
794 return 0;
795
796 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
797 mmput(mm);
798
799 return applied;
800 }
801 #endif /* CONFIG_ADVISE_SYSCALLS */
802
damos_va_migrate(struct damon_target * target,struct damon_region * r,struct damos * s,unsigned long * sz_filter_passed)803 static unsigned long damos_va_migrate(struct damon_target *target,
804 struct damon_region *r, struct damos *s,
805 unsigned long *sz_filter_passed)
806 {
807 LIST_HEAD(folio_list);
808 struct damos_va_migrate_private priv;
809 struct mm_struct *mm;
810 int nr_dests;
811 int nid;
812 bool use_target_nid;
813 unsigned long applied = 0;
814 struct damos_migrate_dests *dests = &s->migrate_dests;
815 struct mm_walk_ops walk_ops = {
816 .pmd_entry = damos_va_migrate_pmd_entry,
817 .pte_entry = NULL,
818 .walk_lock = PGWALK_RDLOCK,
819 };
820
821 use_target_nid = dests->nr_dests == 0;
822 nr_dests = use_target_nid ? 1 : dests->nr_dests;
823 priv.scheme = s;
824 priv.migration_lists = kmalloc_array(nr_dests,
825 sizeof(*priv.migration_lists), GFP_KERNEL);
826 if (!priv.migration_lists)
827 return 0;
828
829 for (int i = 0; i < nr_dests; i++)
830 INIT_LIST_HEAD(&priv.migration_lists[i]);
831
832
833 mm = damon_get_mm(target);
834 if (!mm)
835 goto free_lists;
836
837 mmap_read_lock(mm);
838 walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
839 mmap_read_unlock(mm);
840 mmput(mm);
841
842 for (int i = 0; i < nr_dests; i++) {
843 nid = use_target_nid ? s->target_nid : dests->node_id_arr[i];
844 applied += damon_migrate_pages(&priv.migration_lists[i], nid);
845 cond_resched();
846 }
847
848 free_lists:
849 kfree(priv.migration_lists);
850 return applied * PAGE_SIZE;
851 }
852
853 struct damos_va_stat_private {
854 struct damos *scheme;
855 unsigned long *sz_filter_passed;
856 };
857
damos_va_invalid_folio(struct folio * folio,struct damos * s)858 static inline bool damos_va_invalid_folio(struct folio *folio,
859 struct damos *s)
860 {
861 return !folio || folio == s->last_applied;
862 }
863
damos_va_stat_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)864 static int damos_va_stat_pmd_entry(pmd_t *pmd, unsigned long addr,
865 unsigned long next, struct mm_walk *walk)
866 {
867 struct damos_va_stat_private *priv = walk->private;
868 struct damos *s = priv->scheme;
869 unsigned long *sz_filter_passed = priv->sz_filter_passed;
870 struct vm_area_struct *vma = walk->vma;
871 struct folio *folio;
872 spinlock_t *ptl;
873 pte_t *start_pte, *pte, ptent;
874 int nr;
875
876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
877 ptl = pmd_trans_huge_lock(pmd, vma);
878 if (ptl) {
879 pmd_t pmde = pmdp_get(pmd);
880
881 if (!pmd_present(pmde))
882 goto huge_unlock;
883
884 folio = vm_normal_folio_pmd(vma, addr, pmde);
885
886 if (damos_va_invalid_folio(folio, s))
887 goto huge_unlock;
888
889 if (!damos_va_filter_out(s, folio, vma, addr, NULL, pmd))
890 *sz_filter_passed += folio_size(folio);
891 s->last_applied = folio;
892
893 huge_unlock:
894 spin_unlock(ptl);
895 return 0;
896 }
897 #endif
898 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
899 if (!start_pte)
900 return 0;
901
902 for (; addr < next; pte += nr, addr += nr * PAGE_SIZE) {
903 nr = 1;
904 ptent = ptep_get(pte);
905
906 if (pte_none(ptent) || !pte_present(ptent))
907 continue;
908
909 folio = vm_normal_folio(vma, addr, ptent);
910
911 if (damos_va_invalid_folio(folio, s))
912 continue;
913
914 if (!damos_va_filter_out(s, folio, vma, addr, pte, NULL))
915 *sz_filter_passed += folio_size(folio);
916 nr = folio_nr_pages(folio);
917 s->last_applied = folio;
918 }
919 pte_unmap_unlock(start_pte, ptl);
920 return 0;
921 }
922
damos_va_stat(struct damon_target * target,struct damon_region * r,struct damos * s,unsigned long * sz_filter_passed)923 static unsigned long damos_va_stat(struct damon_target *target,
924 struct damon_region *r, struct damos *s,
925 unsigned long *sz_filter_passed)
926 {
927 struct damos_va_stat_private priv;
928 struct mm_struct *mm;
929 struct mm_walk_ops walk_ops = {
930 .pmd_entry = damos_va_stat_pmd_entry,
931 .walk_lock = PGWALK_RDLOCK,
932 };
933
934 priv.scheme = s;
935 priv.sz_filter_passed = sz_filter_passed;
936
937 if (!damos_ops_has_filter(s))
938 return 0;
939
940 mm = damon_get_mm(target);
941 if (!mm)
942 return 0;
943
944 mmap_read_lock(mm);
945 walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
946 mmap_read_unlock(mm);
947 mmput(mm);
948 return 0;
949 }
950
damon_va_apply_scheme(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * scheme,unsigned long * sz_filter_passed)951 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
952 struct damon_target *t, struct damon_region *r,
953 struct damos *scheme, unsigned long *sz_filter_passed)
954 {
955 int madv_action;
956
957 switch (scheme->action) {
958 case DAMOS_WILLNEED:
959 madv_action = MADV_WILLNEED;
960 break;
961 case DAMOS_COLD:
962 madv_action = MADV_COLD;
963 break;
964 case DAMOS_PAGEOUT:
965 madv_action = MADV_PAGEOUT;
966 break;
967 case DAMOS_HUGEPAGE:
968 madv_action = MADV_HUGEPAGE;
969 break;
970 case DAMOS_NOHUGEPAGE:
971 madv_action = MADV_NOHUGEPAGE;
972 break;
973 case DAMOS_MIGRATE_HOT:
974 case DAMOS_MIGRATE_COLD:
975 return damos_va_migrate(t, r, scheme, sz_filter_passed);
976 case DAMOS_STAT:
977 return damos_va_stat(t, r, scheme, sz_filter_passed);
978 default:
979 /*
980 * DAMOS actions that are not yet supported by 'vaddr'.
981 */
982 return 0;
983 }
984
985 return damos_madvise(t, r, madv_action);
986 }
987
damon_va_scheme_score(struct damon_ctx * context,struct damon_target * t,struct damon_region * r,struct damos * scheme)988 static int damon_va_scheme_score(struct damon_ctx *context,
989 struct damon_target *t, struct damon_region *r,
990 struct damos *scheme)
991 {
992
993 switch (scheme->action) {
994 case DAMOS_PAGEOUT:
995 return damon_cold_score(context, r, scheme);
996 case DAMOS_MIGRATE_HOT:
997 return damon_hot_score(context, r, scheme);
998 case DAMOS_MIGRATE_COLD:
999 return damon_cold_score(context, r, scheme);
1000 default:
1001 break;
1002 }
1003
1004 return DAMOS_MAX_SCORE;
1005 }
1006
damon_va_initcall(void)1007 static int __init damon_va_initcall(void)
1008 {
1009 struct damon_operations ops = {
1010 .id = DAMON_OPS_VADDR,
1011 .init = damon_va_init,
1012 .update = damon_va_update,
1013 .prepare_access_checks = damon_va_prepare_access_checks,
1014 .check_accesses = damon_va_check_accesses,
1015 .target_valid = damon_va_target_valid,
1016 .cleanup_target = damon_va_cleanup_target,
1017 .cleanup = NULL,
1018 .apply_scheme = damon_va_apply_scheme,
1019 .get_scheme_score = damon_va_scheme_score,
1020 };
1021 /* ops for fixed virtual address ranges */
1022 struct damon_operations ops_fvaddr = ops;
1023 int err;
1024
1025 /* Don't set the monitoring target regions for the entire mapping */
1026 ops_fvaddr.id = DAMON_OPS_FVADDR;
1027 ops_fvaddr.init = NULL;
1028 ops_fvaddr.update = NULL;
1029
1030 err = damon_register_ops(&ops);
1031 if (err)
1032 return err;
1033 return damon_register_ops(&ops_fvaddr);
1034 };
1035
1036 subsys_initcall(damon_va_initcall);
1037
1038 #include "tests/vaddr-kunit.h"
1039