1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31
32 #define MAX_CONFLICT_INODES 10
33
34 /* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40 enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43 };
44
45 /*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88 /*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97 enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102 };
103
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117
118 /*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 unsigned int nofs_flag;
144 struct btrfs_inode *inode;
145
146 /*
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
152 */
153 nofs_flag = memalloc_nofs_save();
154 inode = btrfs_iget(objectid, root);
155 memalloc_nofs_restore(nofs_flag);
156
157 return inode;
158 }
159
160 /*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)165 static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct btrfs_log_ctx *ctx)
168 {
169 struct btrfs_fs_info *fs_info = root->fs_info;
170 struct btrfs_root *tree_root = fs_info->tree_root;
171 const bool zoned = btrfs_is_zoned(fs_info);
172 int ret = 0;
173 bool created = false;
174
175 /*
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
178 */
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 mutex_lock(&tree_root->log_mutex);
181 if (!fs_info->log_root_tree) {
182 ret = btrfs_init_log_root_tree(trans, fs_info);
183 if (!ret) {
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 created = true;
186 }
187 }
188 mutex_unlock(&tree_root->log_mutex);
189 if (ret)
190 return ret;
191 }
192
193 mutex_lock(&root->log_mutex);
194
195 again:
196 if (root->log_root) {
197 int index = (root->log_transid + 1) % 2;
198
199 if (btrfs_need_log_full_commit(trans)) {
200 ret = BTRFS_LOG_FORCE_COMMIT;
201 goto out;
202 }
203
204 if (zoned && atomic_read(&root->log_commit[index])) {
205 wait_log_commit(root, root->log_transid - 1);
206 goto again;
207 }
208
209 if (!root->log_start_pid) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
212 } else if (root->log_start_pid != current->pid) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 }
215 } else {
216 /*
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
220 * writing.
221 */
222 if (zoned && !created) {
223 ret = BTRFS_LOG_FORCE_COMMIT;
224 goto out;
225 }
226
227 ret = btrfs_add_log_tree(trans, root);
228 if (ret)
229 goto out;
230
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 root->log_start_pid = current->pid;
234 }
235
236 atomic_inc(&root->log_writers);
237 if (!ctx->logging_new_name) {
238 int index = root->log_transid % 2;
239 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 ctx->log_transid = root->log_transid;
241 }
242
243 out:
244 mutex_unlock(&root->log_mutex);
245 return ret;
246 }
247
248 /*
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
251 * in progress
252 */
join_running_log_trans(struct btrfs_root * root)253 static int join_running_log_trans(struct btrfs_root *root)
254 {
255 const bool zoned = btrfs_is_zoned(root->fs_info);
256 int ret = -ENOENT;
257
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 return ret;
260
261 mutex_lock(&root->log_mutex);
262 again:
263 if (root->log_root) {
264 int index = (root->log_transid + 1) % 2;
265
266 ret = 0;
267 if (zoned && atomic_read(&root->log_commit[index])) {
268 wait_log_commit(root, root->log_transid - 1);
269 goto again;
270 }
271 atomic_inc(&root->log_writers);
272 }
273 mutex_unlock(&root->log_mutex);
274 return ret;
275 }
276
277 /*
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
281 */
btrfs_pin_log_trans(struct btrfs_root * root)282 void btrfs_pin_log_trans(struct btrfs_root *root)
283 {
284 atomic_inc(&root->log_writers);
285 }
286
287 /*
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
290 */
btrfs_end_log_trans(struct btrfs_root * root)291 void btrfs_end_log_trans(struct btrfs_root *root)
292 {
293 if (atomic_dec_and_test(&root->log_writers)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root->log_writer_wait);
296 }
297 }
298
299 /*
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
304 */
305 struct walk_control {
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
308 */
309 int free;
310
311 /* pin only walk, we record which extents on disk belong to the
312 * log trees
313 */
314 int pin;
315
316 /* what stage of the replay code we're currently in */
317 int stage;
318
319 /*
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
323 */
324 bool ignore_cur_inode;
325
326 /* the root we are currently replaying */
327 struct btrfs_root *replay_dest;
328
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle *trans;
331
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
335 * inside it
336 */
337 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 struct walk_control *wc, u64 gen, int level);
339 };
340
341 /*
342 * process_func used to pin down extents, write them or wait on them
343 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)344 static int process_one_buffer(struct btrfs_root *log,
345 struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level)
347 {
348 struct btrfs_fs_info *fs_info = log->fs_info;
349 int ret = 0;
350
351 /*
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
354 */
355 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 struct btrfs_tree_parent_check check = {
357 .level = level,
358 .transid = gen
359 };
360
361 ret = btrfs_read_extent_buffer(eb, &check);
362 if (ret)
363 return ret;
364 }
365
366 if (wc->pin) {
367 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 if (ret)
369 return ret;
370
371 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 btrfs_header_level(eb) == 0)
373 ret = btrfs_exclude_logged_extents(eb);
374 }
375 return ret;
376 }
377
378 /*
379 * Item overwrite used by log replay. The given eb, slot and key all refer to
380 * the source data we are copying out.
381 *
382 * The given root is for the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and will be
384 * released on exit).
385 *
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
389 *
390 * If the key isn't in the destination yet, a new item is inserted.
391 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)392 static int overwrite_item(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root,
394 struct btrfs_path *path,
395 struct extent_buffer *eb, int slot,
396 struct btrfs_key *key)
397 {
398 int ret;
399 u32 item_size;
400 u64 saved_i_size = 0;
401 int save_old_i_size = 0;
402 unsigned long src_ptr;
403 unsigned long dst_ptr;
404 struct extent_buffer *dst_eb;
405 int dst_slot;
406 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
407
408 /*
409 * This is only used during log replay, so the root is always from a
410 * fs/subvolume tree. In case we ever need to support a log root, then
411 * we'll have to clone the leaf in the path, release the path and use
412 * the leaf before writing into the log tree. See the comments at
413 * copy_items() for more details.
414 */
415 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
416
417 item_size = btrfs_item_size(eb, slot);
418 src_ptr = btrfs_item_ptr_offset(eb, slot);
419
420 /* Look for the key in the destination tree. */
421 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
422 if (ret < 0)
423 return ret;
424
425 dst_eb = path->nodes[0];
426 dst_slot = path->slots[0];
427
428 if (ret == 0) {
429 char *src_copy;
430 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
431
432 if (dst_size != item_size)
433 goto insert;
434
435 if (item_size == 0) {
436 btrfs_release_path(path);
437 return 0;
438 }
439 src_copy = kmalloc(item_size, GFP_NOFS);
440 if (!src_copy) {
441 btrfs_release_path(path);
442 return -ENOMEM;
443 }
444
445 read_extent_buffer(eb, src_copy, src_ptr, item_size);
446 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
447 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
448
449 kfree(src_copy);
450 /*
451 * they have the same contents, just return, this saves
452 * us from cowing blocks in the destination tree and doing
453 * extra writes that may not have been done by a previous
454 * sync
455 */
456 if (ret == 0) {
457 btrfs_release_path(path);
458 return 0;
459 }
460
461 /*
462 * We need to load the old nbytes into the inode so when we
463 * replay the extents we've logged we get the right nbytes.
464 */
465 if (inode_item) {
466 struct btrfs_inode_item *item;
467 u64 nbytes;
468 u32 mode;
469
470 item = btrfs_item_ptr(dst_eb, dst_slot,
471 struct btrfs_inode_item);
472 nbytes = btrfs_inode_nbytes(dst_eb, item);
473 item = btrfs_item_ptr(eb, slot,
474 struct btrfs_inode_item);
475 btrfs_set_inode_nbytes(eb, item, nbytes);
476
477 /*
478 * If this is a directory we need to reset the i_size to
479 * 0 so that we can set it up properly when replaying
480 * the rest of the items in this log.
481 */
482 mode = btrfs_inode_mode(eb, item);
483 if (S_ISDIR(mode))
484 btrfs_set_inode_size(eb, item, 0);
485 }
486 } else if (inode_item) {
487 struct btrfs_inode_item *item;
488 u32 mode;
489
490 /*
491 * New inode, set nbytes to 0 so that the nbytes comes out
492 * properly when we replay the extents.
493 */
494 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
495 btrfs_set_inode_nbytes(eb, item, 0);
496
497 /*
498 * If this is a directory we need to reset the i_size to 0 so
499 * that we can set it up properly when replaying the rest of
500 * the items in this log.
501 */
502 mode = btrfs_inode_mode(eb, item);
503 if (S_ISDIR(mode))
504 btrfs_set_inode_size(eb, item, 0);
505 }
506 insert:
507 btrfs_release_path(path);
508 /* try to insert the key into the destination tree */
509 path->skip_release_on_error = 1;
510 ret = btrfs_insert_empty_item(trans, root, path,
511 key, item_size);
512 path->skip_release_on_error = 0;
513
514 dst_eb = path->nodes[0];
515 dst_slot = path->slots[0];
516
517 /* make sure any existing item is the correct size */
518 if (ret == -EEXIST || ret == -EOVERFLOW) {
519 const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
520
521 if (found_size > item_size)
522 btrfs_truncate_item(trans, path, item_size, 1);
523 else if (found_size < item_size)
524 btrfs_extend_item(trans, path, item_size - found_size);
525 } else if (ret) {
526 return ret;
527 }
528 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
529
530 /* don't overwrite an existing inode if the generation number
531 * was logged as zero. This is done when the tree logging code
532 * is just logging an inode to make sure it exists after recovery.
533 *
534 * Also, don't overwrite i_size on directories during replay.
535 * log replay inserts and removes directory items based on the
536 * state of the tree found in the subvolume, and i_size is modified
537 * as it goes
538 */
539 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
540 struct btrfs_inode_item *src_item;
541 struct btrfs_inode_item *dst_item;
542
543 src_item = (struct btrfs_inode_item *)src_ptr;
544 dst_item = (struct btrfs_inode_item *)dst_ptr;
545
546 if (btrfs_inode_generation(eb, src_item) == 0) {
547 const u64 ino_size = btrfs_inode_size(eb, src_item);
548
549 /*
550 * For regular files an ino_size == 0 is used only when
551 * logging that an inode exists, as part of a directory
552 * fsync, and the inode wasn't fsynced before. In this
553 * case don't set the size of the inode in the fs/subvol
554 * tree, otherwise we would be throwing valid data away.
555 */
556 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
557 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
558 ino_size != 0)
559 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
560 goto no_copy;
561 }
562
563 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
564 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
565 save_old_i_size = 1;
566 saved_i_size = btrfs_inode_size(dst_eb, dst_item);
567 }
568 }
569
570 copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size);
571
572 if (save_old_i_size) {
573 struct btrfs_inode_item *dst_item;
574
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
577 }
578
579 /* make sure the generation is filled in */
580 if (key->type == BTRFS_INODE_ITEM_KEY) {
581 struct btrfs_inode_item *dst_item;
582
583 dst_item = (struct btrfs_inode_item *)dst_ptr;
584 if (btrfs_inode_generation(dst_eb, dst_item) == 0)
585 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
586 }
587 no_copy:
588 btrfs_release_path(path);
589 return 0;
590 }
591
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)592 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
593 struct fscrypt_str *name)
594 {
595 char *buf;
596
597 buf = kmalloc(len, GFP_NOFS);
598 if (!buf)
599 return -ENOMEM;
600
601 read_extent_buffer(eb, buf, (unsigned long)start, len);
602 name->name = buf;
603 name->len = len;
604 return 0;
605 }
606
607 /*
608 * simple helper to read an inode off the disk from a given root
609 * This can only be called for subvolume roots and not for the log
610 */
read_one_inode(struct btrfs_root * root,u64 objectid)611 static noinline struct btrfs_inode *read_one_inode(struct btrfs_root *root,
612 u64 objectid)
613 {
614 struct btrfs_inode *inode;
615
616 inode = btrfs_iget_logging(objectid, root);
617 if (IS_ERR(inode))
618 return NULL;
619 return inode;
620 }
621
622 /* replays a single extent in 'eb' at 'slot' with 'key' into the
623 * subvolume 'root'. path is released on entry and should be released
624 * on exit.
625 *
626 * extents in the log tree have not been allocated out of the extent
627 * tree yet. So, this completes the allocation, taking a reference
628 * as required if the extent already exists or creating a new extent
629 * if it isn't in the extent allocation tree yet.
630 *
631 * The extent is inserted into the file, dropping any existing extents
632 * from the file that overlap the new one.
633 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)634 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root,
636 struct btrfs_path *path,
637 struct extent_buffer *eb, int slot,
638 struct btrfs_key *key)
639 {
640 struct btrfs_drop_extents_args drop_args = { 0 };
641 struct btrfs_fs_info *fs_info = root->fs_info;
642 int found_type;
643 u64 extent_end;
644 u64 start = key->offset;
645 u64 nbytes = 0;
646 struct btrfs_file_extent_item *item;
647 struct btrfs_inode *inode = NULL;
648 unsigned long size;
649 int ret = 0;
650
651 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
652 found_type = btrfs_file_extent_type(eb, item);
653
654 if (found_type == BTRFS_FILE_EXTENT_REG ||
655 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
656 nbytes = btrfs_file_extent_num_bytes(eb, item);
657 extent_end = start + nbytes;
658
659 /*
660 * We don't add to the inodes nbytes if we are prealloc or a
661 * hole.
662 */
663 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
664 nbytes = 0;
665 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
666 size = btrfs_file_extent_ram_bytes(eb, item);
667 nbytes = btrfs_file_extent_ram_bytes(eb, item);
668 extent_end = ALIGN(start + size,
669 fs_info->sectorsize);
670 } else {
671 ret = 0;
672 goto out;
673 }
674
675 inode = read_one_inode(root, key->objectid);
676 if (!inode) {
677 ret = -EIO;
678 goto out;
679 }
680
681 /*
682 * first check to see if we already have this extent in the
683 * file. This must be done before the btrfs_drop_extents run
684 * so we don't try to drop this extent.
685 */
686 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0);
687
688 if (ret == 0 &&
689 (found_type == BTRFS_FILE_EXTENT_REG ||
690 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
691 struct btrfs_file_extent_item existing;
692 unsigned long ptr;
693
694 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
695 read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing));
696
697 /*
698 * we already have a pointer to this exact extent,
699 * we don't have to do anything
700 */
701 if (memcmp_extent_buffer(eb, &existing, (unsigned long)item,
702 sizeof(existing)) == 0) {
703 btrfs_release_path(path);
704 goto out;
705 }
706 }
707 btrfs_release_path(path);
708
709 /* drop any overlapping extents */
710 drop_args.start = start;
711 drop_args.end = extent_end;
712 drop_args.drop_cache = true;
713 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
714 if (ret)
715 goto out;
716
717 if (found_type == BTRFS_FILE_EXTENT_REG ||
718 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
719 u64 offset;
720 unsigned long dest_offset;
721 struct btrfs_key ins;
722
723 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
724 btrfs_fs_incompat(fs_info, NO_HOLES))
725 goto update_inode;
726
727 ret = btrfs_insert_empty_item(trans, root, path, key,
728 sizeof(*item));
729 if (ret)
730 goto out;
731 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
732 path->slots[0]);
733 copy_extent_buffer(path->nodes[0], eb, dest_offset,
734 (unsigned long)item, sizeof(*item));
735
736 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
737 ins.type = BTRFS_EXTENT_ITEM_KEY;
738 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
739 offset = key->offset - btrfs_file_extent_offset(eb, item);
740
741 /*
742 * Manually record dirty extent, as here we did a shallow
743 * file extent item copy and skip normal backref update,
744 * but modifying extent tree all by ourselves.
745 * So need to manually record dirty extent for qgroup,
746 * as the owner of the file extent changed from log tree
747 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
748 */
749 ret = btrfs_qgroup_trace_extent(trans,
750 btrfs_file_extent_disk_bytenr(eb, item),
751 btrfs_file_extent_disk_num_bytes(eb, item));
752 if (ret < 0)
753 goto out;
754
755 if (ins.objectid > 0) {
756 u64 csum_start;
757 u64 csum_end;
758 LIST_HEAD(ordered_sums);
759
760 /*
761 * is this extent already allocated in the extent
762 * allocation tree? If so, just add a reference
763 */
764 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
765 ins.offset);
766 if (ret < 0) {
767 goto out;
768 } else if (ret == 0) {
769 struct btrfs_ref ref = {
770 .action = BTRFS_ADD_DELAYED_REF,
771 .bytenr = ins.objectid,
772 .num_bytes = ins.offset,
773 .owning_root = btrfs_root_id(root),
774 .ref_root = btrfs_root_id(root),
775 };
776 btrfs_init_data_ref(&ref, key->objectid, offset,
777 0, false);
778 ret = btrfs_inc_extent_ref(trans, &ref);
779 if (ret)
780 goto out;
781 } else {
782 /*
783 * insert the extent pointer in the extent
784 * allocation tree
785 */
786 ret = btrfs_alloc_logged_file_extent(trans,
787 btrfs_root_id(root),
788 key->objectid, offset, &ins);
789 if (ret)
790 goto out;
791 }
792 btrfs_release_path(path);
793
794 if (btrfs_file_extent_compression(eb, item)) {
795 csum_start = ins.objectid;
796 csum_end = csum_start + ins.offset;
797 } else {
798 csum_start = ins.objectid +
799 btrfs_file_extent_offset(eb, item);
800 csum_end = csum_start +
801 btrfs_file_extent_num_bytes(eb, item);
802 }
803
804 ret = btrfs_lookup_csums_list(root->log_root,
805 csum_start, csum_end - 1,
806 &ordered_sums, false);
807 if (ret < 0)
808 goto out;
809 ret = 0;
810 /*
811 * Now delete all existing cums in the csum root that
812 * cover our range. We do this because we can have an
813 * extent that is completely referenced by one file
814 * extent item and partially referenced by another
815 * file extent item (like after using the clone or
816 * extent_same ioctls). In this case if we end up doing
817 * the replay of the one that partially references the
818 * extent first, and we do not do the csum deletion
819 * below, we can get 2 csum items in the csum tree that
820 * overlap each other. For example, imagine our log has
821 * the two following file extent items:
822 *
823 * key (257 EXTENT_DATA 409600)
824 * extent data disk byte 12845056 nr 102400
825 * extent data offset 20480 nr 20480 ram 102400
826 *
827 * key (257 EXTENT_DATA 819200)
828 * extent data disk byte 12845056 nr 102400
829 * extent data offset 0 nr 102400 ram 102400
830 *
831 * Where the second one fully references the 100K extent
832 * that starts at disk byte 12845056, and the log tree
833 * has a single csum item that covers the entire range
834 * of the extent:
835 *
836 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
837 *
838 * After the first file extent item is replayed, the
839 * csum tree gets the following csum item:
840 *
841 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
842 *
843 * Which covers the 20K sub-range starting at offset 20K
844 * of our extent. Now when we replay the second file
845 * extent item, if we do not delete existing csum items
846 * that cover any of its blocks, we end up getting two
847 * csum items in our csum tree that overlap each other:
848 *
849 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
850 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
851 *
852 * Which is a problem, because after this anyone trying
853 * to lookup up for the checksum of any block of our
854 * extent starting at an offset of 40K or higher, will
855 * end up looking at the second csum item only, which
856 * does not contain the checksum for any block starting
857 * at offset 40K or higher of our extent.
858 */
859 while (!list_empty(&ordered_sums)) {
860 struct btrfs_ordered_sum *sums;
861 struct btrfs_root *csum_root;
862
863 sums = list_entry(ordered_sums.next,
864 struct btrfs_ordered_sum,
865 list);
866 csum_root = btrfs_csum_root(fs_info,
867 sums->logical);
868 if (!ret)
869 ret = btrfs_del_csums(trans, csum_root,
870 sums->logical,
871 sums->len);
872 if (!ret)
873 ret = btrfs_csum_file_blocks(trans,
874 csum_root,
875 sums);
876 list_del(&sums->list);
877 kfree(sums);
878 }
879 if (ret)
880 goto out;
881 } else {
882 btrfs_release_path(path);
883 }
884 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
885 /* inline extents are easy, we just overwrite them */
886 ret = overwrite_item(trans, root, path, eb, slot, key);
887 if (ret)
888 goto out;
889 }
890
891 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
892 if (ret)
893 goto out;
894
895 update_inode:
896 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
897 ret = btrfs_update_inode(trans, inode);
898 out:
899 iput(&inode->vfs_inode);
900 return ret;
901 }
902
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)903 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
904 struct btrfs_inode *dir,
905 struct btrfs_inode *inode,
906 const struct fscrypt_str *name)
907 {
908 int ret;
909
910 ret = btrfs_unlink_inode(trans, dir, inode, name);
911 if (ret)
912 return ret;
913 /*
914 * Whenever we need to check if a name exists or not, we check the
915 * fs/subvolume tree. So after an unlink we must run delayed items, so
916 * that future checks for a name during log replay see that the name
917 * does not exists anymore.
918 */
919 return btrfs_run_delayed_items(trans);
920 }
921
922 /*
923 * when cleaning up conflicts between the directory names in the
924 * subvolume, directory names in the log and directory names in the
925 * inode back references, we may have to unlink inodes from directories.
926 *
927 * This is a helper function to do the unlink of a specific directory
928 * item
929 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)930 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
931 struct btrfs_path *path,
932 struct btrfs_inode *dir,
933 struct btrfs_dir_item *di)
934 {
935 struct btrfs_root *root = dir->root;
936 struct btrfs_inode *inode;
937 struct fscrypt_str name;
938 struct extent_buffer *leaf;
939 struct btrfs_key location;
940 int ret;
941
942 leaf = path->nodes[0];
943
944 btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
946 if (ret)
947 return -ENOMEM;
948
949 btrfs_release_path(path);
950
951 inode = read_one_inode(root, location.objectid);
952 if (!inode) {
953 ret = -EIO;
954 goto out;
955 }
956
957 ret = link_to_fixup_dir(trans, root, path, location.objectid);
958 if (ret)
959 goto out;
960
961 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
962 out:
963 kfree(name.name);
964 iput(&inode->vfs_inode);
965 return ret;
966 }
967
968 /*
969 * See if a given name and sequence number found in an inode back reference are
970 * already in a directory and correctly point to this inode.
971 *
972 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
973 * exists.
974 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)975 static noinline int inode_in_dir(struct btrfs_root *root,
976 struct btrfs_path *path,
977 u64 dirid, u64 objectid, u64 index,
978 struct fscrypt_str *name)
979 {
980 struct btrfs_dir_item *di;
981 struct btrfs_key location;
982 int ret = 0;
983
984 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
985 index, name, 0);
986 if (IS_ERR(di)) {
987 ret = PTR_ERR(di);
988 goto out;
989 } else if (di) {
990 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
991 if (location.objectid != objectid)
992 goto out;
993 } else {
994 goto out;
995 }
996
997 btrfs_release_path(path);
998 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
999 if (IS_ERR(di)) {
1000 ret = PTR_ERR(di);
1001 goto out;
1002 } else if (di) {
1003 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1004 if (location.objectid == objectid)
1005 ret = 1;
1006 }
1007 out:
1008 btrfs_release_path(path);
1009 return ret;
1010 }
1011
1012 /*
1013 * helper function to check a log tree for a named back reference in
1014 * an inode. This is used to decide if a back reference that is
1015 * found in the subvolume conflicts with what we find in the log.
1016 *
1017 * inode backreferences may have multiple refs in a single item,
1018 * during replay we process one reference at a time, and we don't
1019 * want to delete valid links to a file from the subvolume if that
1020 * link is also in the log.
1021 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1022 static noinline int backref_in_log(struct btrfs_root *log,
1023 struct btrfs_key *key,
1024 u64 ref_objectid,
1025 const struct fscrypt_str *name)
1026 {
1027 struct btrfs_path *path;
1028 int ret;
1029
1030 path = btrfs_alloc_path();
1031 if (!path)
1032 return -ENOMEM;
1033
1034 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1035 if (ret < 0) {
1036 goto out;
1037 } else if (ret == 1) {
1038 ret = 0;
1039 goto out;
1040 }
1041
1042 if (key->type == BTRFS_INODE_EXTREF_KEY)
1043 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1044 path->slots[0],
1045 ref_objectid, name);
1046 else
1047 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1048 path->slots[0], name);
1049 out:
1050 btrfs_free_path(path);
1051 return ret;
1052 }
1053
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1054 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 struct btrfs_root *log_root,
1058 struct btrfs_inode *dir,
1059 struct btrfs_inode *inode,
1060 u64 inode_objectid, u64 parent_objectid,
1061 u64 ref_index, struct fscrypt_str *name)
1062 {
1063 int ret;
1064 struct extent_buffer *leaf;
1065 struct btrfs_dir_item *di;
1066 struct btrfs_key search_key;
1067 struct btrfs_inode_extref *extref;
1068
1069 again:
1070 /* Search old style refs */
1071 search_key.objectid = inode_objectid;
1072 search_key.type = BTRFS_INODE_REF_KEY;
1073 search_key.offset = parent_objectid;
1074 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1075 if (ret == 0) {
1076 struct btrfs_inode_ref *victim_ref;
1077 unsigned long ptr;
1078 unsigned long ptr_end;
1079
1080 leaf = path->nodes[0];
1081
1082 /* are we trying to overwrite a back ref for the root directory
1083 * if so, just jump out, we're done
1084 */
1085 if (search_key.objectid == search_key.offset)
1086 return 1;
1087
1088 /* check all the names in this back reference to see
1089 * if they are in the log. if so, we allow them to stay
1090 * otherwise they must be unlinked as a conflict
1091 */
1092 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1093 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1094 while (ptr < ptr_end) {
1095 struct fscrypt_str victim_name;
1096
1097 victim_ref = (struct btrfs_inode_ref *)ptr;
1098 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1099 btrfs_inode_ref_name_len(leaf, victim_ref),
1100 &victim_name);
1101 if (ret)
1102 return ret;
1103
1104 ret = backref_in_log(log_root, &search_key,
1105 parent_objectid, &victim_name);
1106 if (ret < 0) {
1107 kfree(victim_name.name);
1108 return ret;
1109 } else if (!ret) {
1110 inc_nlink(&inode->vfs_inode);
1111 btrfs_release_path(path);
1112
1113 ret = unlink_inode_for_log_replay(trans, dir, inode,
1114 &victim_name);
1115 kfree(victim_name.name);
1116 if (ret)
1117 return ret;
1118 goto again;
1119 }
1120 kfree(victim_name.name);
1121
1122 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1123 }
1124 }
1125 btrfs_release_path(path);
1126
1127 /* Same search but for extended refs */
1128 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1129 inode_objectid, parent_objectid, 0,
1130 0);
1131 if (IS_ERR(extref)) {
1132 return PTR_ERR(extref);
1133 } else if (extref) {
1134 u32 item_size;
1135 u32 cur_offset = 0;
1136 unsigned long base;
1137 struct btrfs_inode *victim_parent;
1138
1139 leaf = path->nodes[0];
1140
1141 item_size = btrfs_item_size(leaf, path->slots[0]);
1142 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1143
1144 while (cur_offset < item_size) {
1145 struct fscrypt_str victim_name;
1146
1147 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1148
1149 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1150 goto next;
1151
1152 ret = read_alloc_one_name(leaf, &extref->name,
1153 btrfs_inode_extref_name_len(leaf, extref),
1154 &victim_name);
1155 if (ret)
1156 return ret;
1157
1158 search_key.objectid = inode_objectid;
1159 search_key.type = BTRFS_INODE_EXTREF_KEY;
1160 search_key.offset = btrfs_extref_hash(parent_objectid,
1161 victim_name.name,
1162 victim_name.len);
1163 ret = backref_in_log(log_root, &search_key,
1164 parent_objectid, &victim_name);
1165 if (ret < 0) {
1166 kfree(victim_name.name);
1167 return ret;
1168 } else if (!ret) {
1169 ret = -ENOENT;
1170 victim_parent = read_one_inode(root,
1171 parent_objectid);
1172 if (victim_parent) {
1173 inc_nlink(&inode->vfs_inode);
1174 btrfs_release_path(path);
1175
1176 ret = unlink_inode_for_log_replay(trans,
1177 victim_parent,
1178 inode, &victim_name);
1179 }
1180 iput(&victim_parent->vfs_inode);
1181 kfree(victim_name.name);
1182 if (ret)
1183 return ret;
1184 goto again;
1185 }
1186 kfree(victim_name.name);
1187 next:
1188 cur_offset += victim_name.len + sizeof(*extref);
1189 }
1190 }
1191 btrfs_release_path(path);
1192
1193 /* look for a conflicting sequence number */
1194 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1195 ref_index, name, 0);
1196 if (IS_ERR(di)) {
1197 return PTR_ERR(di);
1198 } else if (di) {
1199 ret = drop_one_dir_item(trans, path, dir, di);
1200 if (ret)
1201 return ret;
1202 }
1203 btrfs_release_path(path);
1204
1205 /* look for a conflicting name */
1206 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1207 if (IS_ERR(di)) {
1208 return PTR_ERR(di);
1209 } else if (di) {
1210 ret = drop_one_dir_item(trans, path, dir, di);
1211 if (ret)
1212 return ret;
1213 }
1214 btrfs_release_path(path);
1215
1216 return 0;
1217 }
1218
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1219 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1220 struct fscrypt_str *name, u64 *index,
1221 u64 *parent_objectid)
1222 {
1223 struct btrfs_inode_extref *extref;
1224 int ret;
1225
1226 extref = (struct btrfs_inode_extref *)ref_ptr;
1227
1228 ret = read_alloc_one_name(eb, &extref->name,
1229 btrfs_inode_extref_name_len(eb, extref), name);
1230 if (ret)
1231 return ret;
1232
1233 if (index)
1234 *index = btrfs_inode_extref_index(eb, extref);
1235 if (parent_objectid)
1236 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1237
1238 return 0;
1239 }
1240
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1241 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1242 struct fscrypt_str *name, u64 *index)
1243 {
1244 struct btrfs_inode_ref *ref;
1245 int ret;
1246
1247 ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1250 name);
1251 if (ret)
1252 return ret;
1253
1254 if (index)
1255 *index = btrfs_inode_ref_index(eb, ref);
1256
1257 return 0;
1258 }
1259
1260 /*
1261 * Take an inode reference item from the log tree and iterate all names from the
1262 * inode reference item in the subvolume tree with the same key (if it exists).
1263 * For any name that is not in the inode reference item from the log tree, do a
1264 * proper unlink of that name (that is, remove its entry from the inode
1265 * reference item and both dir index keys).
1266 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1267 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root,
1269 struct btrfs_path *path,
1270 struct btrfs_inode *inode,
1271 struct extent_buffer *log_eb,
1272 int log_slot,
1273 struct btrfs_key *key)
1274 {
1275 int ret;
1276 unsigned long ref_ptr;
1277 unsigned long ref_end;
1278 struct extent_buffer *eb;
1279
1280 again:
1281 btrfs_release_path(path);
1282 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1283 if (ret > 0) {
1284 ret = 0;
1285 goto out;
1286 }
1287 if (ret < 0)
1288 goto out;
1289
1290 eb = path->nodes[0];
1291 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1292 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1293 while (ref_ptr < ref_end) {
1294 struct fscrypt_str name;
1295 u64 parent_id;
1296
1297 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1298 ret = extref_get_fields(eb, ref_ptr, &name,
1299 NULL, &parent_id);
1300 } else {
1301 parent_id = key->offset;
1302 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1303 }
1304 if (ret)
1305 goto out;
1306
1307 if (key->type == BTRFS_INODE_EXTREF_KEY)
1308 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1309 parent_id, &name);
1310 else
1311 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1312
1313 if (!ret) {
1314 struct btrfs_inode *dir;
1315
1316 btrfs_release_path(path);
1317 dir = read_one_inode(root, parent_id);
1318 if (!dir) {
1319 ret = -ENOENT;
1320 kfree(name.name);
1321 goto out;
1322 }
1323 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
1324 kfree(name.name);
1325 iput(&dir->vfs_inode);
1326 if (ret)
1327 goto out;
1328 goto again;
1329 }
1330
1331 kfree(name.name);
1332 ref_ptr += name.len;
1333 if (key->type == BTRFS_INODE_EXTREF_KEY)
1334 ref_ptr += sizeof(struct btrfs_inode_extref);
1335 else
1336 ref_ptr += sizeof(struct btrfs_inode_ref);
1337 }
1338 ret = 0;
1339 out:
1340 btrfs_release_path(path);
1341 return ret;
1342 }
1343
1344 /*
1345 * replay one inode back reference item found in the log tree.
1346 * eb, slot and key refer to the buffer and key found in the log tree.
1347 * root is the destination we are replaying into, and path is for temp
1348 * use by this function. (it should be released on return).
1349 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1350 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root,
1352 struct btrfs_root *log,
1353 struct btrfs_path *path,
1354 struct extent_buffer *eb, int slot,
1355 struct btrfs_key *key)
1356 {
1357 struct btrfs_inode *dir = NULL;
1358 struct btrfs_inode *inode = NULL;
1359 unsigned long ref_ptr;
1360 unsigned long ref_end;
1361 struct fscrypt_str name = { 0 };
1362 int ret;
1363 int log_ref_ver = 0;
1364 u64 parent_objectid;
1365 u64 inode_objectid;
1366 u64 ref_index = 0;
1367 int ref_struct_size;
1368
1369 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1370 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1371
1372 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1373 struct btrfs_inode_extref *r;
1374
1375 ref_struct_size = sizeof(struct btrfs_inode_extref);
1376 log_ref_ver = 1;
1377 r = (struct btrfs_inode_extref *)ref_ptr;
1378 parent_objectid = btrfs_inode_extref_parent(eb, r);
1379 } else {
1380 ref_struct_size = sizeof(struct btrfs_inode_ref);
1381 parent_objectid = key->offset;
1382 }
1383 inode_objectid = key->objectid;
1384
1385 /*
1386 * it is possible that we didn't log all the parent directories
1387 * for a given inode. If we don't find the dir, just don't
1388 * copy the back ref in. The link count fixup code will take
1389 * care of the rest
1390 */
1391 dir = read_one_inode(root, parent_objectid);
1392 if (!dir) {
1393 ret = -ENOENT;
1394 goto out;
1395 }
1396
1397 inode = read_one_inode(root, inode_objectid);
1398 if (!inode) {
1399 ret = -EIO;
1400 goto out;
1401 }
1402
1403 while (ref_ptr < ref_end) {
1404 if (log_ref_ver) {
1405 ret = extref_get_fields(eb, ref_ptr, &name,
1406 &ref_index, &parent_objectid);
1407 /*
1408 * parent object can change from one array
1409 * item to another.
1410 */
1411 if (!dir)
1412 dir = read_one_inode(root, parent_objectid);
1413 if (!dir) {
1414 ret = -ENOENT;
1415 goto out;
1416 }
1417 } else {
1418 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1419 }
1420 if (ret)
1421 goto out;
1422
1423 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1424 ref_index, &name);
1425 if (ret < 0) {
1426 goto out;
1427 } else if (ret == 0) {
1428 /*
1429 * look for a conflicting back reference in the
1430 * metadata. if we find one we have to unlink that name
1431 * of the file before we add our new link. Later on, we
1432 * overwrite any existing back reference, and we don't
1433 * want to create dangling pointers in the directory.
1434 */
1435 ret = __add_inode_ref(trans, root, path, log, dir, inode,
1436 inode_objectid, parent_objectid,
1437 ref_index, &name);
1438 if (ret) {
1439 if (ret == 1)
1440 ret = 0;
1441 goto out;
1442 }
1443
1444 /* insert our name */
1445 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1446 if (ret)
1447 goto out;
1448
1449 ret = btrfs_update_inode(trans, inode);
1450 if (ret)
1451 goto out;
1452 }
1453 /* Else, ret == 1, we already have a perfect match, we're done. */
1454
1455 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1456 kfree(name.name);
1457 name.name = NULL;
1458 if (log_ref_ver) {
1459 iput(&dir->vfs_inode);
1460 dir = NULL;
1461 }
1462 }
1463
1464 /*
1465 * Before we overwrite the inode reference item in the subvolume tree
1466 * with the item from the log tree, we must unlink all names from the
1467 * parent directory that are in the subvolume's tree inode reference
1468 * item, otherwise we end up with an inconsistent subvolume tree where
1469 * dir index entries exist for a name but there is no inode reference
1470 * item with the same name.
1471 */
1472 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key);
1473 if (ret)
1474 goto out;
1475
1476 /* finally write the back reference in the inode */
1477 ret = overwrite_item(trans, root, path, eb, slot, key);
1478 out:
1479 btrfs_release_path(path);
1480 kfree(name.name);
1481 if (dir)
1482 iput(&dir->vfs_inode);
1483 if (inode)
1484 iput(&inode->vfs_inode);
1485 return ret;
1486 }
1487
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1488 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1489 {
1490 int ret = 0;
1491 int name_len;
1492 unsigned int nlink = 0;
1493 u32 item_size;
1494 u32 cur_offset = 0;
1495 u64 inode_objectid = btrfs_ino(inode);
1496 u64 offset = 0;
1497 unsigned long ptr;
1498 struct btrfs_inode_extref *extref;
1499 struct extent_buffer *leaf;
1500
1501 while (1) {
1502 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1503 path, &extref, &offset);
1504 if (ret)
1505 break;
1506
1507 leaf = path->nodes[0];
1508 item_size = btrfs_item_size(leaf, path->slots[0]);
1509 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1510 cur_offset = 0;
1511
1512 while (cur_offset < item_size) {
1513 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1514 name_len = btrfs_inode_extref_name_len(leaf, extref);
1515
1516 nlink++;
1517
1518 cur_offset += name_len + sizeof(*extref);
1519 }
1520
1521 offset++;
1522 btrfs_release_path(path);
1523 }
1524 btrfs_release_path(path);
1525
1526 if (ret < 0 && ret != -ENOENT)
1527 return ret;
1528 return nlink;
1529 }
1530
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1531 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1532 {
1533 int ret;
1534 struct btrfs_key key;
1535 unsigned int nlink = 0;
1536 unsigned long ptr;
1537 unsigned long ptr_end;
1538 int name_len;
1539 u64 ino = btrfs_ino(inode);
1540
1541 key.objectid = ino;
1542 key.type = BTRFS_INODE_REF_KEY;
1543 key.offset = (u64)-1;
1544
1545 while (1) {
1546 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1547 if (ret < 0)
1548 break;
1549 if (ret > 0) {
1550 if (path->slots[0] == 0)
1551 break;
1552 path->slots[0]--;
1553 }
1554 process_slot:
1555 btrfs_item_key_to_cpu(path->nodes[0], &key,
1556 path->slots[0]);
1557 if (key.objectid != ino ||
1558 key.type != BTRFS_INODE_REF_KEY)
1559 break;
1560 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1561 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1562 path->slots[0]);
1563 while (ptr < ptr_end) {
1564 struct btrfs_inode_ref *ref;
1565
1566 ref = (struct btrfs_inode_ref *)ptr;
1567 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1568 ref);
1569 ptr = (unsigned long)(ref + 1) + name_len;
1570 nlink++;
1571 }
1572
1573 if (key.offset == 0)
1574 break;
1575 if (path->slots[0] > 0) {
1576 path->slots[0]--;
1577 goto process_slot;
1578 }
1579 key.offset--;
1580 btrfs_release_path(path);
1581 }
1582 btrfs_release_path(path);
1583
1584 return nlink;
1585 }
1586
1587 /*
1588 * There are a few corners where the link count of the file can't
1589 * be properly maintained during replay. So, instead of adding
1590 * lots of complexity to the log code, we just scan the backrefs
1591 * for any file that has been through replay.
1592 *
1593 * The scan will update the link count on the inode to reflect the
1594 * number of back refs found. If it goes down to zero, the iput
1595 * will free the inode.
1596 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1597 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1598 struct btrfs_inode *inode)
1599 {
1600 struct btrfs_root *root = inode->root;
1601 struct btrfs_path *path;
1602 int ret;
1603 u64 nlink = 0;
1604 const u64 ino = btrfs_ino(inode);
1605
1606 path = btrfs_alloc_path();
1607 if (!path)
1608 return -ENOMEM;
1609
1610 ret = count_inode_refs(inode, path);
1611 if (ret < 0)
1612 goto out;
1613
1614 nlink = ret;
1615
1616 ret = count_inode_extrefs(inode, path);
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink += ret;
1621
1622 ret = 0;
1623
1624 if (nlink != inode->vfs_inode.i_nlink) {
1625 set_nlink(&inode->vfs_inode, nlink);
1626 ret = btrfs_update_inode(trans, inode);
1627 if (ret)
1628 goto out;
1629 }
1630 if (S_ISDIR(inode->vfs_inode.i_mode))
1631 inode->index_cnt = (u64)-1;
1632
1633 if (inode->vfs_inode.i_nlink == 0) {
1634 if (S_ISDIR(inode->vfs_inode.i_mode)) {
1635 ret = replay_dir_deletes(trans, root, NULL, path,
1636 ino, 1);
1637 if (ret)
1638 goto out;
1639 }
1640 ret = btrfs_insert_orphan_item(trans, root, ino);
1641 if (ret == -EEXIST)
1642 ret = 0;
1643 }
1644
1645 out:
1646 btrfs_free_path(path);
1647 return ret;
1648 }
1649
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1650 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1651 struct btrfs_root *root,
1652 struct btrfs_path *path)
1653 {
1654 int ret;
1655 struct btrfs_key key;
1656
1657 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1658 key.type = BTRFS_ORPHAN_ITEM_KEY;
1659 key.offset = (u64)-1;
1660 while (1) {
1661 struct btrfs_inode *inode;
1662
1663 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1664 if (ret < 0)
1665 break;
1666
1667 if (ret == 1) {
1668 ret = 0;
1669 if (path->slots[0] == 0)
1670 break;
1671 path->slots[0]--;
1672 }
1673
1674 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1675 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1676 key.type != BTRFS_ORPHAN_ITEM_KEY)
1677 break;
1678
1679 ret = btrfs_del_item(trans, root, path);
1680 if (ret)
1681 break;
1682
1683 btrfs_release_path(path);
1684 inode = read_one_inode(root, key.offset);
1685 if (!inode) {
1686 ret = -EIO;
1687 break;
1688 }
1689
1690 ret = fixup_inode_link_count(trans, inode);
1691 iput(&inode->vfs_inode);
1692 if (ret)
1693 break;
1694
1695 /*
1696 * fixup on a directory may create new entries,
1697 * make sure we always look for the highset possible
1698 * offset
1699 */
1700 key.offset = (u64)-1;
1701 }
1702 btrfs_release_path(path);
1703 return ret;
1704 }
1705
1706
1707 /*
1708 * record a given inode in the fixup dir so we can check its link
1709 * count when replay is done. The link count is incremented here
1710 * so the inode won't go away until we check it
1711 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1712 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1713 struct btrfs_root *root,
1714 struct btrfs_path *path,
1715 u64 objectid)
1716 {
1717 struct btrfs_key key;
1718 int ret = 0;
1719 struct btrfs_inode *inode;
1720 struct inode *vfs_inode;
1721
1722 inode = read_one_inode(root, objectid);
1723 if (!inode)
1724 return -EIO;
1725
1726 vfs_inode = &inode->vfs_inode;
1727 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1728 key.type = BTRFS_ORPHAN_ITEM_KEY;
1729 key.offset = objectid;
1730
1731 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1732
1733 btrfs_release_path(path);
1734 if (ret == 0) {
1735 if (!vfs_inode->i_nlink)
1736 set_nlink(vfs_inode, 1);
1737 else
1738 inc_nlink(vfs_inode);
1739 ret = btrfs_update_inode(trans, inode);
1740 } else if (ret == -EEXIST) {
1741 ret = 0;
1742 }
1743 iput(vfs_inode);
1744
1745 return ret;
1746 }
1747
1748 /*
1749 * when replaying the log for a directory, we only insert names
1750 * for inodes that actually exist. This means an fsync on a directory
1751 * does not implicitly fsync all the new files in it
1752 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1753 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1754 struct btrfs_root *root,
1755 u64 dirid, u64 index,
1756 const struct fscrypt_str *name,
1757 struct btrfs_key *location)
1758 {
1759 struct btrfs_inode *inode;
1760 struct btrfs_inode *dir;
1761 int ret;
1762
1763 inode = read_one_inode(root, location->objectid);
1764 if (!inode)
1765 return -ENOENT;
1766
1767 dir = read_one_inode(root, dirid);
1768 if (!dir) {
1769 iput(&inode->vfs_inode);
1770 return -EIO;
1771 }
1772
1773 ret = btrfs_add_link(trans, dir, inode, name, 1, index);
1774
1775 /* FIXME, put inode into FIXUP list */
1776
1777 iput(&inode->vfs_inode);
1778 iput(&dir->vfs_inode);
1779 return ret;
1780 }
1781
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1782 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1783 struct btrfs_inode *dir,
1784 struct btrfs_path *path,
1785 struct btrfs_dir_item *dst_di,
1786 const struct btrfs_key *log_key,
1787 u8 log_flags,
1788 bool exists)
1789 {
1790 struct btrfs_key found_key;
1791
1792 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1793 /* The existing dentry points to the same inode, don't delete it. */
1794 if (found_key.objectid == log_key->objectid &&
1795 found_key.type == log_key->type &&
1796 found_key.offset == log_key->offset &&
1797 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1798 return 1;
1799
1800 /*
1801 * Don't drop the conflicting directory entry if the inode for the new
1802 * entry doesn't exist.
1803 */
1804 if (!exists)
1805 return 0;
1806
1807 return drop_one_dir_item(trans, path, dir, dst_di);
1808 }
1809
1810 /*
1811 * take a single entry in a log directory item and replay it into
1812 * the subvolume.
1813 *
1814 * if a conflicting item exists in the subdirectory already,
1815 * the inode it points to is unlinked and put into the link count
1816 * fix up tree.
1817 *
1818 * If a name from the log points to a file or directory that does
1819 * not exist in the FS, it is skipped. fsyncs on directories
1820 * do not force down inodes inside that directory, just changes to the
1821 * names or unlinks in a directory.
1822 *
1823 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1824 * non-existing inode) and 1 if the name was replayed.
1825 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1826 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1827 struct btrfs_root *root,
1828 struct btrfs_path *path,
1829 struct extent_buffer *eb,
1830 struct btrfs_dir_item *di,
1831 struct btrfs_key *key)
1832 {
1833 struct fscrypt_str name = { 0 };
1834 struct btrfs_dir_item *dir_dst_di;
1835 struct btrfs_dir_item *index_dst_di;
1836 bool dir_dst_matches = false;
1837 bool index_dst_matches = false;
1838 struct btrfs_key log_key;
1839 struct btrfs_key search_key;
1840 struct btrfs_inode *dir;
1841 u8 log_flags;
1842 bool exists;
1843 int ret;
1844 bool update_size = true;
1845 bool name_added = false;
1846
1847 dir = read_one_inode(root, key->objectid);
1848 if (!dir)
1849 return -EIO;
1850
1851 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1852 if (ret)
1853 goto out;
1854
1855 log_flags = btrfs_dir_flags(eb, di);
1856 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1857 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1858 btrfs_release_path(path);
1859 if (ret < 0)
1860 goto out;
1861 exists = (ret == 0);
1862 ret = 0;
1863
1864 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1865 &name, 1);
1866 if (IS_ERR(dir_dst_di)) {
1867 ret = PTR_ERR(dir_dst_di);
1868 goto out;
1869 } else if (dir_dst_di) {
1870 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di,
1871 &log_key, log_flags, exists);
1872 if (ret < 0)
1873 goto out;
1874 dir_dst_matches = (ret == 1);
1875 }
1876
1877 btrfs_release_path(path);
1878
1879 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1880 key->objectid, key->offset,
1881 &name, 1);
1882 if (IS_ERR(index_dst_di)) {
1883 ret = PTR_ERR(index_dst_di);
1884 goto out;
1885 } else if (index_dst_di) {
1886 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di,
1887 &log_key, log_flags, exists);
1888 if (ret < 0)
1889 goto out;
1890 index_dst_matches = (ret == 1);
1891 }
1892
1893 btrfs_release_path(path);
1894
1895 if (dir_dst_matches && index_dst_matches) {
1896 ret = 0;
1897 update_size = false;
1898 goto out;
1899 }
1900
1901 /*
1902 * Check if the inode reference exists in the log for the given name,
1903 * inode and parent inode
1904 */
1905 search_key.objectid = log_key.objectid;
1906 search_key.type = BTRFS_INODE_REF_KEY;
1907 search_key.offset = key->objectid;
1908 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1909 if (ret < 0) {
1910 goto out;
1911 } else if (ret) {
1912 /* The dentry will be added later. */
1913 ret = 0;
1914 update_size = false;
1915 goto out;
1916 }
1917
1918 search_key.objectid = log_key.objectid;
1919 search_key.type = BTRFS_INODE_EXTREF_KEY;
1920 search_key.offset = key->objectid;
1921 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1922 if (ret < 0) {
1923 goto out;
1924 } else if (ret) {
1925 /* The dentry will be added later. */
1926 ret = 0;
1927 update_size = false;
1928 goto out;
1929 }
1930 btrfs_release_path(path);
1931 ret = insert_one_name(trans, root, key->objectid, key->offset,
1932 &name, &log_key);
1933 if (ret && ret != -ENOENT && ret != -EEXIST)
1934 goto out;
1935 if (!ret)
1936 name_added = true;
1937 update_size = false;
1938 ret = 0;
1939
1940 out:
1941 if (!ret && update_size) {
1942 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
1943 ret = btrfs_update_inode(trans, dir);
1944 }
1945 kfree(name.name);
1946 iput(&dir->vfs_inode);
1947 if (!ret && name_added)
1948 ret = 1;
1949 return ret;
1950 }
1951
1952 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1953 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1954 struct btrfs_root *root,
1955 struct btrfs_path *path,
1956 struct extent_buffer *eb, int slot,
1957 struct btrfs_key *key)
1958 {
1959 int ret;
1960 struct btrfs_dir_item *di;
1961
1962 /* We only log dir index keys, which only contain a single dir item. */
1963 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1964
1965 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1966 ret = replay_one_name(trans, root, path, eb, di, key);
1967 if (ret < 0)
1968 return ret;
1969
1970 /*
1971 * If this entry refers to a non-directory (directories can not have a
1972 * link count > 1) and it was added in the transaction that was not
1973 * committed, make sure we fixup the link count of the inode the entry
1974 * points to. Otherwise something like the following would result in a
1975 * directory pointing to an inode with a wrong link that does not account
1976 * for this dir entry:
1977 *
1978 * mkdir testdir
1979 * touch testdir/foo
1980 * touch testdir/bar
1981 * sync
1982 *
1983 * ln testdir/bar testdir/bar_link
1984 * ln testdir/foo testdir/foo_link
1985 * xfs_io -c "fsync" testdir/bar
1986 *
1987 * <power failure>
1988 *
1989 * mount fs, log replay happens
1990 *
1991 * File foo would remain with a link count of 1 when it has two entries
1992 * pointing to it in the directory testdir. This would make it impossible
1993 * to ever delete the parent directory has it would result in stale
1994 * dentries that can never be deleted.
1995 */
1996 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1997 struct btrfs_path *fixup_path;
1998 struct btrfs_key di_key;
1999
2000 fixup_path = btrfs_alloc_path();
2001 if (!fixup_path)
2002 return -ENOMEM;
2003
2004 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2005 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2006 btrfs_free_path(fixup_path);
2007 }
2008
2009 return ret;
2010 }
2011
2012 /*
2013 * directory replay has two parts. There are the standard directory
2014 * items in the log copied from the subvolume, and range items
2015 * created in the log while the subvolume was logged.
2016 *
2017 * The range items tell us which parts of the key space the log
2018 * is authoritative for. During replay, if a key in the subvolume
2019 * directory is in a logged range item, but not actually in the log
2020 * that means it was deleted from the directory before the fsync
2021 * and should be removed.
2022 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2023 static noinline int find_dir_range(struct btrfs_root *root,
2024 struct btrfs_path *path,
2025 u64 dirid,
2026 u64 *start_ret, u64 *end_ret)
2027 {
2028 struct btrfs_key key;
2029 u64 found_end;
2030 struct btrfs_dir_log_item *item;
2031 int ret;
2032 int nritems;
2033
2034 if (*start_ret == (u64)-1)
2035 return 1;
2036
2037 key.objectid = dirid;
2038 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2039 key.offset = *start_ret;
2040
2041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042 if (ret < 0)
2043 goto out;
2044 if (ret > 0) {
2045 if (path->slots[0] == 0)
2046 goto out;
2047 path->slots[0]--;
2048 }
2049 if (ret != 0)
2050 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2051
2052 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2053 ret = 1;
2054 goto next;
2055 }
2056 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2057 struct btrfs_dir_log_item);
2058 found_end = btrfs_dir_log_end(path->nodes[0], item);
2059
2060 if (*start_ret >= key.offset && *start_ret <= found_end) {
2061 ret = 0;
2062 *start_ret = key.offset;
2063 *end_ret = found_end;
2064 goto out;
2065 }
2066 ret = 1;
2067 next:
2068 /* check the next slot in the tree to see if it is a valid item */
2069 nritems = btrfs_header_nritems(path->nodes[0]);
2070 path->slots[0]++;
2071 if (path->slots[0] >= nritems) {
2072 ret = btrfs_next_leaf(root, path);
2073 if (ret)
2074 goto out;
2075 }
2076
2077 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2078
2079 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2080 ret = 1;
2081 goto out;
2082 }
2083 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2084 struct btrfs_dir_log_item);
2085 found_end = btrfs_dir_log_end(path->nodes[0], item);
2086 *start_ret = key.offset;
2087 *end_ret = found_end;
2088 ret = 0;
2089 out:
2090 btrfs_release_path(path);
2091 return ret;
2092 }
2093
2094 /*
2095 * this looks for a given directory item in the log. If the directory
2096 * item is not in the log, the item is removed and the inode it points
2097 * to is unlinked
2098 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key)2099 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *log,
2101 struct btrfs_path *path,
2102 struct btrfs_path *log_path,
2103 struct btrfs_inode *dir,
2104 struct btrfs_key *dir_key)
2105 {
2106 struct btrfs_root *root = dir->root;
2107 int ret;
2108 struct extent_buffer *eb;
2109 int slot;
2110 struct btrfs_dir_item *di;
2111 struct fscrypt_str name = { 0 };
2112 struct btrfs_inode *inode = NULL;
2113 struct btrfs_key location;
2114
2115 /*
2116 * Currently we only log dir index keys. Even if we replay a log created
2117 * by an older kernel that logged both dir index and dir item keys, all
2118 * we need to do is process the dir index keys, we (and our caller) can
2119 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2120 */
2121 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2122
2123 eb = path->nodes[0];
2124 slot = path->slots[0];
2125 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2126 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2127 if (ret)
2128 goto out;
2129
2130 if (log) {
2131 struct btrfs_dir_item *log_di;
2132
2133 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2134 dir_key->objectid,
2135 dir_key->offset, &name, 0);
2136 if (IS_ERR(log_di)) {
2137 ret = PTR_ERR(log_di);
2138 goto out;
2139 } else if (log_di) {
2140 /* The dentry exists in the log, we have nothing to do. */
2141 ret = 0;
2142 goto out;
2143 }
2144 }
2145
2146 btrfs_dir_item_key_to_cpu(eb, di, &location);
2147 btrfs_release_path(path);
2148 btrfs_release_path(log_path);
2149 inode = read_one_inode(root, location.objectid);
2150 if (!inode) {
2151 ret = -EIO;
2152 goto out;
2153 }
2154
2155 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2156 if (ret)
2157 goto out;
2158
2159 inc_nlink(&inode->vfs_inode);
2160 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
2161 /*
2162 * Unlike dir item keys, dir index keys can only have one name (entry) in
2163 * them, as there are no key collisions since each key has a unique offset
2164 * (an index number), so we're done.
2165 */
2166 out:
2167 btrfs_release_path(path);
2168 btrfs_release_path(log_path);
2169 kfree(name.name);
2170 if (inode)
2171 iput(&inode->vfs_inode);
2172 return ret;
2173 }
2174
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2175 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_root *log,
2178 struct btrfs_path *path,
2179 const u64 ino)
2180 {
2181 struct btrfs_key search_key;
2182 struct btrfs_path *log_path;
2183 int i;
2184 int nritems;
2185 int ret;
2186
2187 log_path = btrfs_alloc_path();
2188 if (!log_path)
2189 return -ENOMEM;
2190
2191 search_key.objectid = ino;
2192 search_key.type = BTRFS_XATTR_ITEM_KEY;
2193 search_key.offset = 0;
2194 again:
2195 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2196 if (ret < 0)
2197 goto out;
2198 process_leaf:
2199 nritems = btrfs_header_nritems(path->nodes[0]);
2200 for (i = path->slots[0]; i < nritems; i++) {
2201 struct btrfs_key key;
2202 struct btrfs_dir_item *di;
2203 struct btrfs_dir_item *log_di;
2204 u32 total_size;
2205 u32 cur;
2206
2207 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2208 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2209 ret = 0;
2210 goto out;
2211 }
2212
2213 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2214 total_size = btrfs_item_size(path->nodes[0], i);
2215 cur = 0;
2216 while (cur < total_size) {
2217 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2218 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2219 u32 this_len = sizeof(*di) + name_len + data_len;
2220 char *name;
2221
2222 name = kmalloc(name_len, GFP_NOFS);
2223 if (!name) {
2224 ret = -ENOMEM;
2225 goto out;
2226 }
2227 read_extent_buffer(path->nodes[0], name,
2228 (unsigned long)(di + 1), name_len);
2229
2230 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2231 name, name_len, 0);
2232 btrfs_release_path(log_path);
2233 if (!log_di) {
2234 /* Doesn't exist in log tree, so delete it. */
2235 btrfs_release_path(path);
2236 di = btrfs_lookup_xattr(trans, root, path, ino,
2237 name, name_len, -1);
2238 kfree(name);
2239 if (IS_ERR(di)) {
2240 ret = PTR_ERR(di);
2241 goto out;
2242 }
2243 ASSERT(di);
2244 ret = btrfs_delete_one_dir_name(trans, root,
2245 path, di);
2246 if (ret)
2247 goto out;
2248 btrfs_release_path(path);
2249 search_key = key;
2250 goto again;
2251 }
2252 kfree(name);
2253 if (IS_ERR(log_di)) {
2254 ret = PTR_ERR(log_di);
2255 goto out;
2256 }
2257 cur += this_len;
2258 di = (struct btrfs_dir_item *)((char *)di + this_len);
2259 }
2260 }
2261 ret = btrfs_next_leaf(root, path);
2262 if (ret > 0)
2263 ret = 0;
2264 else if (ret == 0)
2265 goto process_leaf;
2266 out:
2267 btrfs_free_path(log_path);
2268 btrfs_release_path(path);
2269 return ret;
2270 }
2271
2272
2273 /*
2274 * deletion replay happens before we copy any new directory items
2275 * out of the log or out of backreferences from inodes. It
2276 * scans the log to find ranges of keys that log is authoritative for,
2277 * and then scans the directory to find items in those ranges that are
2278 * not present in the log.
2279 *
2280 * Anything we don't find in the log is unlinked and removed from the
2281 * directory.
2282 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2283 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2284 struct btrfs_root *root,
2285 struct btrfs_root *log,
2286 struct btrfs_path *path,
2287 u64 dirid, int del_all)
2288 {
2289 u64 range_start;
2290 u64 range_end;
2291 int ret = 0;
2292 struct btrfs_key dir_key;
2293 struct btrfs_key found_key;
2294 struct btrfs_path *log_path;
2295 struct btrfs_inode *dir;
2296
2297 dir_key.objectid = dirid;
2298 dir_key.type = BTRFS_DIR_INDEX_KEY;
2299 log_path = btrfs_alloc_path();
2300 if (!log_path)
2301 return -ENOMEM;
2302
2303 dir = read_one_inode(root, dirid);
2304 /* it isn't an error if the inode isn't there, that can happen
2305 * because we replay the deletes before we copy in the inode item
2306 * from the log
2307 */
2308 if (!dir) {
2309 btrfs_free_path(log_path);
2310 return 0;
2311 }
2312
2313 range_start = 0;
2314 range_end = 0;
2315 while (1) {
2316 if (del_all)
2317 range_end = (u64)-1;
2318 else {
2319 ret = find_dir_range(log, path, dirid,
2320 &range_start, &range_end);
2321 if (ret < 0)
2322 goto out;
2323 else if (ret > 0)
2324 break;
2325 }
2326
2327 dir_key.offset = range_start;
2328 while (1) {
2329 int nritems;
2330 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2331 0, 0);
2332 if (ret < 0)
2333 goto out;
2334
2335 nritems = btrfs_header_nritems(path->nodes[0]);
2336 if (path->slots[0] >= nritems) {
2337 ret = btrfs_next_leaf(root, path);
2338 if (ret == 1)
2339 break;
2340 else if (ret < 0)
2341 goto out;
2342 }
2343 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2344 path->slots[0]);
2345 if (found_key.objectid != dirid ||
2346 found_key.type != dir_key.type) {
2347 ret = 0;
2348 goto out;
2349 }
2350
2351 if (found_key.offset > range_end)
2352 break;
2353
2354 ret = check_item_in_log(trans, log, path,
2355 log_path, dir,
2356 &found_key);
2357 if (ret)
2358 goto out;
2359 if (found_key.offset == (u64)-1)
2360 break;
2361 dir_key.offset = found_key.offset + 1;
2362 }
2363 btrfs_release_path(path);
2364 if (range_end == (u64)-1)
2365 break;
2366 range_start = range_end + 1;
2367 }
2368 ret = 0;
2369 out:
2370 btrfs_release_path(path);
2371 btrfs_free_path(log_path);
2372 iput(&dir->vfs_inode);
2373 return ret;
2374 }
2375
2376 /*
2377 * the process_func used to replay items from the log tree. This
2378 * gets called in two different stages. The first stage just looks
2379 * for inodes and makes sure they are all copied into the subvolume.
2380 *
2381 * The second stage copies all the other item types from the log into
2382 * the subvolume. The two stage approach is slower, but gets rid of
2383 * lots of complexity around inodes referencing other inodes that exist
2384 * only in the log (references come from either directory items or inode
2385 * back refs).
2386 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2387 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2388 struct walk_control *wc, u64 gen, int level)
2389 {
2390 int nritems;
2391 struct btrfs_tree_parent_check check = {
2392 .transid = gen,
2393 .level = level
2394 };
2395 struct btrfs_path *path;
2396 struct btrfs_root *root = wc->replay_dest;
2397 struct btrfs_key key;
2398 int i;
2399 int ret;
2400
2401 ret = btrfs_read_extent_buffer(eb, &check);
2402 if (ret)
2403 return ret;
2404
2405 level = btrfs_header_level(eb);
2406
2407 if (level != 0)
2408 return 0;
2409
2410 path = btrfs_alloc_path();
2411 if (!path)
2412 return -ENOMEM;
2413
2414 nritems = btrfs_header_nritems(eb);
2415 for (i = 0; i < nritems; i++) {
2416 btrfs_item_key_to_cpu(eb, &key, i);
2417
2418 /* inode keys are done during the first stage */
2419 if (key.type == BTRFS_INODE_ITEM_KEY &&
2420 wc->stage == LOG_WALK_REPLAY_INODES) {
2421 struct btrfs_inode_item *inode_item;
2422 u32 mode;
2423
2424 inode_item = btrfs_item_ptr(eb, i,
2425 struct btrfs_inode_item);
2426 /*
2427 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2428 * and never got linked before the fsync, skip it, as
2429 * replaying it is pointless since it would be deleted
2430 * later. We skip logging tmpfiles, but it's always
2431 * possible we are replaying a log created with a kernel
2432 * that used to log tmpfiles.
2433 */
2434 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2435 wc->ignore_cur_inode = true;
2436 continue;
2437 } else {
2438 wc->ignore_cur_inode = false;
2439 }
2440 ret = replay_xattr_deletes(wc->trans, root, log,
2441 path, key.objectid);
2442 if (ret)
2443 break;
2444 mode = btrfs_inode_mode(eb, inode_item);
2445 if (S_ISDIR(mode)) {
2446 ret = replay_dir_deletes(wc->trans,
2447 root, log, path, key.objectid, 0);
2448 if (ret)
2449 break;
2450 }
2451 ret = overwrite_item(wc->trans, root, path,
2452 eb, i, &key);
2453 if (ret)
2454 break;
2455
2456 /*
2457 * Before replaying extents, truncate the inode to its
2458 * size. We need to do it now and not after log replay
2459 * because before an fsync we can have prealloc extents
2460 * added beyond the inode's i_size. If we did it after,
2461 * through orphan cleanup for example, we would drop
2462 * those prealloc extents just after replaying them.
2463 */
2464 if (S_ISREG(mode)) {
2465 struct btrfs_drop_extents_args drop_args = { 0 };
2466 struct btrfs_inode *inode;
2467 u64 from;
2468
2469 inode = read_one_inode(root, key.objectid);
2470 if (!inode) {
2471 ret = -EIO;
2472 break;
2473 }
2474 from = ALIGN(i_size_read(&inode->vfs_inode),
2475 root->fs_info->sectorsize);
2476 drop_args.start = from;
2477 drop_args.end = (u64)-1;
2478 drop_args.drop_cache = true;
2479 ret = btrfs_drop_extents(wc->trans, root, inode,
2480 &drop_args);
2481 if (!ret) {
2482 inode_sub_bytes(&inode->vfs_inode,
2483 drop_args.bytes_found);
2484 /* Update the inode's nbytes. */
2485 ret = btrfs_update_inode(wc->trans, inode);
2486 }
2487 iput(&inode->vfs_inode);
2488 if (ret)
2489 break;
2490 }
2491
2492 ret = link_to_fixup_dir(wc->trans, root,
2493 path, key.objectid);
2494 if (ret)
2495 break;
2496 }
2497
2498 if (wc->ignore_cur_inode)
2499 continue;
2500
2501 if (key.type == BTRFS_DIR_INDEX_KEY &&
2502 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2503 ret = replay_one_dir_item(wc->trans, root, path,
2504 eb, i, &key);
2505 if (ret)
2506 break;
2507 }
2508
2509 if (wc->stage < LOG_WALK_REPLAY_ALL)
2510 continue;
2511
2512 /* these keys are simply copied */
2513 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2514 ret = overwrite_item(wc->trans, root, path,
2515 eb, i, &key);
2516 if (ret)
2517 break;
2518 } else if (key.type == BTRFS_INODE_REF_KEY ||
2519 key.type == BTRFS_INODE_EXTREF_KEY) {
2520 ret = add_inode_ref(wc->trans, root, log, path,
2521 eb, i, &key);
2522 if (ret && ret != -ENOENT)
2523 break;
2524 ret = 0;
2525 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2526 ret = replay_one_extent(wc->trans, root, path,
2527 eb, i, &key);
2528 if (ret)
2529 break;
2530 }
2531 /*
2532 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2533 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2534 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2535 * older kernel with such keys, ignore them.
2536 */
2537 }
2538 btrfs_free_path(path);
2539 return ret;
2540 }
2541
2542 /*
2543 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2544 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2545 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2546 {
2547 struct btrfs_block_group *cache;
2548
2549 cache = btrfs_lookup_block_group(fs_info, start);
2550 if (!cache) {
2551 btrfs_err(fs_info, "unable to find block group for %llu", start);
2552 return;
2553 }
2554
2555 spin_lock(&cache->space_info->lock);
2556 spin_lock(&cache->lock);
2557 cache->reserved -= fs_info->nodesize;
2558 cache->space_info->bytes_reserved -= fs_info->nodesize;
2559 spin_unlock(&cache->lock);
2560 spin_unlock(&cache->space_info->lock);
2561
2562 btrfs_put_block_group(cache);
2563 }
2564
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2565 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2566 struct extent_buffer *eb)
2567 {
2568 int ret;
2569
2570 btrfs_tree_lock(eb);
2571 btrfs_clear_buffer_dirty(trans, eb);
2572 wait_on_extent_buffer_writeback(eb);
2573 btrfs_tree_unlock(eb);
2574
2575 if (trans) {
2576 ret = btrfs_pin_reserved_extent(trans, eb);
2577 if (ret)
2578 return ret;
2579 } else {
2580 unaccount_log_buffer(eb->fs_info, eb->start);
2581 }
2582
2583 return 0;
2584 }
2585
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2586 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2587 struct btrfs_root *root,
2588 struct btrfs_path *path, int *level,
2589 struct walk_control *wc)
2590 {
2591 struct btrfs_fs_info *fs_info = root->fs_info;
2592 u64 bytenr;
2593 u64 ptr_gen;
2594 struct extent_buffer *next;
2595 struct extent_buffer *cur;
2596 int ret = 0;
2597
2598 while (*level > 0) {
2599 struct btrfs_tree_parent_check check = { 0 };
2600
2601 cur = path->nodes[*level];
2602
2603 WARN_ON(btrfs_header_level(cur) != *level);
2604
2605 if (path->slots[*level] >=
2606 btrfs_header_nritems(cur))
2607 break;
2608
2609 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2610 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2611 check.transid = ptr_gen;
2612 check.level = *level - 1;
2613 check.has_first_key = true;
2614 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2615
2616 next = btrfs_find_create_tree_block(fs_info, bytenr,
2617 btrfs_header_owner(cur),
2618 *level - 1);
2619 if (IS_ERR(next))
2620 return PTR_ERR(next);
2621
2622 if (*level == 1) {
2623 ret = wc->process_func(root, next, wc, ptr_gen,
2624 *level - 1);
2625 if (ret) {
2626 free_extent_buffer(next);
2627 return ret;
2628 }
2629
2630 path->slots[*level]++;
2631 if (wc->free) {
2632 ret = btrfs_read_extent_buffer(next, &check);
2633 if (ret) {
2634 free_extent_buffer(next);
2635 return ret;
2636 }
2637
2638 ret = clean_log_buffer(trans, next);
2639 if (ret) {
2640 free_extent_buffer(next);
2641 return ret;
2642 }
2643 }
2644 free_extent_buffer(next);
2645 continue;
2646 }
2647 ret = btrfs_read_extent_buffer(next, &check);
2648 if (ret) {
2649 free_extent_buffer(next);
2650 return ret;
2651 }
2652
2653 if (path->nodes[*level-1])
2654 free_extent_buffer(path->nodes[*level-1]);
2655 path->nodes[*level-1] = next;
2656 *level = btrfs_header_level(next);
2657 path->slots[*level] = 0;
2658 cond_resched();
2659 }
2660 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2661
2662 cond_resched();
2663 return 0;
2664 }
2665
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2666 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2667 struct btrfs_root *root,
2668 struct btrfs_path *path, int *level,
2669 struct walk_control *wc)
2670 {
2671 int i;
2672 int slot;
2673 int ret;
2674
2675 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2676 slot = path->slots[i];
2677 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2678 path->slots[i]++;
2679 *level = i;
2680 WARN_ON(*level == 0);
2681 return 0;
2682 } else {
2683 ret = wc->process_func(root, path->nodes[*level], wc,
2684 btrfs_header_generation(path->nodes[*level]),
2685 *level);
2686 if (ret)
2687 return ret;
2688
2689 if (wc->free) {
2690 ret = clean_log_buffer(trans, path->nodes[*level]);
2691 if (ret)
2692 return ret;
2693 }
2694 free_extent_buffer(path->nodes[*level]);
2695 path->nodes[*level] = NULL;
2696 *level = i + 1;
2697 }
2698 }
2699 return 1;
2700 }
2701
2702 /*
2703 * drop the reference count on the tree rooted at 'snap'. This traverses
2704 * the tree freeing any blocks that have a ref count of zero after being
2705 * decremented.
2706 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2707 static int walk_log_tree(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *log, struct walk_control *wc)
2709 {
2710 int ret = 0;
2711 int wret;
2712 int level;
2713 struct btrfs_path *path;
2714 int orig_level;
2715
2716 path = btrfs_alloc_path();
2717 if (!path)
2718 return -ENOMEM;
2719
2720 level = btrfs_header_level(log->node);
2721 orig_level = level;
2722 path->nodes[level] = log->node;
2723 atomic_inc(&log->node->refs);
2724 path->slots[level] = 0;
2725
2726 while (1) {
2727 wret = walk_down_log_tree(trans, log, path, &level, wc);
2728 if (wret > 0)
2729 break;
2730 if (wret < 0) {
2731 ret = wret;
2732 goto out;
2733 }
2734
2735 wret = walk_up_log_tree(trans, log, path, &level, wc);
2736 if (wret > 0)
2737 break;
2738 if (wret < 0) {
2739 ret = wret;
2740 goto out;
2741 }
2742 }
2743
2744 /* was the root node processed? if not, catch it here */
2745 if (path->nodes[orig_level]) {
2746 ret = wc->process_func(log, path->nodes[orig_level], wc,
2747 btrfs_header_generation(path->nodes[orig_level]),
2748 orig_level);
2749 if (ret)
2750 goto out;
2751 if (wc->free)
2752 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2753 }
2754
2755 out:
2756 btrfs_free_path(path);
2757 return ret;
2758 }
2759
2760 /*
2761 * helper function to update the item for a given subvolumes log root
2762 * in the tree of log roots
2763 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2764 static int update_log_root(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *log,
2766 struct btrfs_root_item *root_item)
2767 {
2768 struct btrfs_fs_info *fs_info = log->fs_info;
2769 int ret;
2770
2771 if (log->log_transid == 1) {
2772 /* insert root item on the first sync */
2773 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2774 &log->root_key, root_item);
2775 } else {
2776 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2777 &log->root_key, root_item);
2778 }
2779 return ret;
2780 }
2781
wait_log_commit(struct btrfs_root * root,int transid)2782 static void wait_log_commit(struct btrfs_root *root, int transid)
2783 {
2784 DEFINE_WAIT(wait);
2785 int index = transid % 2;
2786
2787 /*
2788 * we only allow two pending log transactions at a time,
2789 * so we know that if ours is more than 2 older than the
2790 * current transaction, we're done
2791 */
2792 for (;;) {
2793 prepare_to_wait(&root->log_commit_wait[index],
2794 &wait, TASK_UNINTERRUPTIBLE);
2795
2796 if (!(root->log_transid_committed < transid &&
2797 atomic_read(&root->log_commit[index])))
2798 break;
2799
2800 mutex_unlock(&root->log_mutex);
2801 schedule();
2802 mutex_lock(&root->log_mutex);
2803 }
2804 finish_wait(&root->log_commit_wait[index], &wait);
2805 }
2806
wait_for_writer(struct btrfs_root * root)2807 static void wait_for_writer(struct btrfs_root *root)
2808 {
2809 DEFINE_WAIT(wait);
2810
2811 for (;;) {
2812 prepare_to_wait(&root->log_writer_wait, &wait,
2813 TASK_UNINTERRUPTIBLE);
2814 if (!atomic_read(&root->log_writers))
2815 break;
2816
2817 mutex_unlock(&root->log_mutex);
2818 schedule();
2819 mutex_lock(&root->log_mutex);
2820 }
2821 finish_wait(&root->log_writer_wait, &wait);
2822 }
2823
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2824 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2825 {
2826 ctx->log_ret = 0;
2827 ctx->log_transid = 0;
2828 ctx->log_new_dentries = false;
2829 ctx->logging_new_name = false;
2830 ctx->logging_new_delayed_dentries = false;
2831 ctx->logged_before = false;
2832 ctx->inode = inode;
2833 INIT_LIST_HEAD(&ctx->list);
2834 INIT_LIST_HEAD(&ctx->ordered_extents);
2835 INIT_LIST_HEAD(&ctx->conflict_inodes);
2836 ctx->num_conflict_inodes = 0;
2837 ctx->logging_conflict_inodes = false;
2838 ctx->scratch_eb = NULL;
2839 }
2840
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2841 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2842 {
2843 struct btrfs_inode *inode = ctx->inode;
2844
2845 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2846 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2847 return;
2848
2849 /*
2850 * Don't care about allocation failure. This is just for optimization,
2851 * if we fail to allocate here, we will try again later if needed.
2852 */
2853 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2854 }
2855
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2856 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2857 {
2858 struct btrfs_ordered_extent *ordered;
2859 struct btrfs_ordered_extent *tmp;
2860
2861 btrfs_assert_inode_locked(ctx->inode);
2862
2863 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2864 list_del_init(&ordered->log_list);
2865 btrfs_put_ordered_extent(ordered);
2866 }
2867 }
2868
2869
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2870 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2871 struct btrfs_log_ctx *ctx)
2872 {
2873 mutex_lock(&root->log_mutex);
2874 list_del_init(&ctx->list);
2875 mutex_unlock(&root->log_mutex);
2876 }
2877
2878 /*
2879 * Invoked in log mutex context, or be sure there is no other task which
2880 * can access the list.
2881 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2882 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2883 int index, int error)
2884 {
2885 struct btrfs_log_ctx *ctx;
2886 struct btrfs_log_ctx *safe;
2887
2888 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2889 list_del_init(&ctx->list);
2890 ctx->log_ret = error;
2891 }
2892 }
2893
2894 /*
2895 * Sends a given tree log down to the disk and updates the super blocks to
2896 * record it. When this call is done, you know that any inodes previously
2897 * logged are safely on disk only if it returns 0.
2898 *
2899 * Any other return value means you need to call btrfs_commit_transaction.
2900 * Some of the edge cases for fsyncing directories that have had unlinks
2901 * or renames done in the past mean that sometimes the only safe
2902 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2903 * that has happened.
2904 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2905 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2907 {
2908 int index1;
2909 int index2;
2910 int mark;
2911 int ret;
2912 struct btrfs_fs_info *fs_info = root->fs_info;
2913 struct btrfs_root *log = root->log_root;
2914 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2915 struct btrfs_root_item new_root_item;
2916 int log_transid = 0;
2917 struct btrfs_log_ctx root_log_ctx;
2918 struct blk_plug plug;
2919 u64 log_root_start;
2920 u64 log_root_level;
2921
2922 mutex_lock(&root->log_mutex);
2923 log_transid = ctx->log_transid;
2924 if (root->log_transid_committed >= log_transid) {
2925 mutex_unlock(&root->log_mutex);
2926 return ctx->log_ret;
2927 }
2928
2929 index1 = log_transid % 2;
2930 if (atomic_read(&root->log_commit[index1])) {
2931 wait_log_commit(root, log_transid);
2932 mutex_unlock(&root->log_mutex);
2933 return ctx->log_ret;
2934 }
2935 ASSERT(log_transid == root->log_transid);
2936 atomic_set(&root->log_commit[index1], 1);
2937
2938 /* wait for previous tree log sync to complete */
2939 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2940 wait_log_commit(root, log_transid - 1);
2941
2942 while (1) {
2943 int batch = atomic_read(&root->log_batch);
2944 /* when we're on an ssd, just kick the log commit out */
2945 if (!btrfs_test_opt(fs_info, SSD) &&
2946 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2947 mutex_unlock(&root->log_mutex);
2948 schedule_timeout_uninterruptible(1);
2949 mutex_lock(&root->log_mutex);
2950 }
2951 wait_for_writer(root);
2952 if (batch == atomic_read(&root->log_batch))
2953 break;
2954 }
2955
2956 /* bail out if we need to do a full commit */
2957 if (btrfs_need_log_full_commit(trans)) {
2958 ret = BTRFS_LOG_FORCE_COMMIT;
2959 mutex_unlock(&root->log_mutex);
2960 goto out;
2961 }
2962
2963 if (log_transid % 2 == 0)
2964 mark = EXTENT_DIRTY;
2965 else
2966 mark = EXTENT_NEW;
2967
2968 /* we start IO on all the marked extents here, but we don't actually
2969 * wait for them until later.
2970 */
2971 blk_start_plug(&plug);
2972 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2973 /*
2974 * -EAGAIN happens when someone, e.g., a concurrent transaction
2975 * commit, writes a dirty extent in this tree-log commit. This
2976 * concurrent write will create a hole writing out the extents,
2977 * and we cannot proceed on a zoned filesystem, requiring
2978 * sequential writing. While we can bail out to a full commit
2979 * here, but we can continue hoping the concurrent writing fills
2980 * the hole.
2981 */
2982 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2983 ret = 0;
2984 if (ret) {
2985 blk_finish_plug(&plug);
2986 btrfs_set_log_full_commit(trans);
2987 mutex_unlock(&root->log_mutex);
2988 goto out;
2989 }
2990
2991 /*
2992 * We _must_ update under the root->log_mutex in order to make sure we
2993 * have a consistent view of the log root we are trying to commit at
2994 * this moment.
2995 *
2996 * We _must_ copy this into a local copy, because we are not holding the
2997 * log_root_tree->log_mutex yet. This is important because when we
2998 * commit the log_root_tree we must have a consistent view of the
2999 * log_root_tree when we update the super block to point at the
3000 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3001 * with the commit and possibly point at the new block which we may not
3002 * have written out.
3003 */
3004 btrfs_set_root_node(&log->root_item, log->node);
3005 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3006
3007 btrfs_set_root_log_transid(root, root->log_transid + 1);
3008 log->log_transid = root->log_transid;
3009 root->log_start_pid = 0;
3010 /*
3011 * IO has been started, blocks of the log tree have WRITTEN flag set
3012 * in their headers. new modifications of the log will be written to
3013 * new positions. so it's safe to allow log writers to go in.
3014 */
3015 mutex_unlock(&root->log_mutex);
3016
3017 if (btrfs_is_zoned(fs_info)) {
3018 mutex_lock(&fs_info->tree_root->log_mutex);
3019 if (!log_root_tree->node) {
3020 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3021 if (ret) {
3022 mutex_unlock(&fs_info->tree_root->log_mutex);
3023 blk_finish_plug(&plug);
3024 goto out;
3025 }
3026 }
3027 mutex_unlock(&fs_info->tree_root->log_mutex);
3028 }
3029
3030 btrfs_init_log_ctx(&root_log_ctx, NULL);
3031
3032 mutex_lock(&log_root_tree->log_mutex);
3033
3034 index2 = log_root_tree->log_transid % 2;
3035 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3036 root_log_ctx.log_transid = log_root_tree->log_transid;
3037
3038 /*
3039 * Now we are safe to update the log_root_tree because we're under the
3040 * log_mutex, and we're a current writer so we're holding the commit
3041 * open until we drop the log_mutex.
3042 */
3043 ret = update_log_root(trans, log, &new_root_item);
3044 if (ret) {
3045 list_del_init(&root_log_ctx.list);
3046 blk_finish_plug(&plug);
3047 btrfs_set_log_full_commit(trans);
3048 if (ret != -ENOSPC)
3049 btrfs_err(fs_info,
3050 "failed to update log for root %llu ret %d",
3051 btrfs_root_id(root), ret);
3052 btrfs_wait_tree_log_extents(log, mark);
3053 mutex_unlock(&log_root_tree->log_mutex);
3054 goto out;
3055 }
3056
3057 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3058 blk_finish_plug(&plug);
3059 list_del_init(&root_log_ctx.list);
3060 mutex_unlock(&log_root_tree->log_mutex);
3061 ret = root_log_ctx.log_ret;
3062 goto out;
3063 }
3064
3065 if (atomic_read(&log_root_tree->log_commit[index2])) {
3066 blk_finish_plug(&plug);
3067 ret = btrfs_wait_tree_log_extents(log, mark);
3068 wait_log_commit(log_root_tree,
3069 root_log_ctx.log_transid);
3070 mutex_unlock(&log_root_tree->log_mutex);
3071 if (!ret)
3072 ret = root_log_ctx.log_ret;
3073 goto out;
3074 }
3075 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3076 atomic_set(&log_root_tree->log_commit[index2], 1);
3077
3078 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3079 wait_log_commit(log_root_tree,
3080 root_log_ctx.log_transid - 1);
3081 }
3082
3083 /*
3084 * now that we've moved on to the tree of log tree roots,
3085 * check the full commit flag again
3086 */
3087 if (btrfs_need_log_full_commit(trans)) {
3088 blk_finish_plug(&plug);
3089 btrfs_wait_tree_log_extents(log, mark);
3090 mutex_unlock(&log_root_tree->log_mutex);
3091 ret = BTRFS_LOG_FORCE_COMMIT;
3092 goto out_wake_log_root;
3093 }
3094
3095 ret = btrfs_write_marked_extents(fs_info,
3096 &log_root_tree->dirty_log_pages,
3097 EXTENT_DIRTY | EXTENT_NEW);
3098 blk_finish_plug(&plug);
3099 /*
3100 * As described above, -EAGAIN indicates a hole in the extents. We
3101 * cannot wait for these write outs since the waiting cause a
3102 * deadlock. Bail out to the full commit instead.
3103 */
3104 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105 btrfs_set_log_full_commit(trans);
3106 btrfs_wait_tree_log_extents(log, mark);
3107 mutex_unlock(&log_root_tree->log_mutex);
3108 goto out_wake_log_root;
3109 } else if (ret) {
3110 btrfs_set_log_full_commit(trans);
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3113 }
3114 ret = btrfs_wait_tree_log_extents(log, mark);
3115 if (!ret)
3116 ret = btrfs_wait_tree_log_extents(log_root_tree,
3117 EXTENT_NEW | EXTENT_DIRTY);
3118 if (ret) {
3119 btrfs_set_log_full_commit(trans);
3120 mutex_unlock(&log_root_tree->log_mutex);
3121 goto out_wake_log_root;
3122 }
3123
3124 log_root_start = log_root_tree->node->start;
3125 log_root_level = btrfs_header_level(log_root_tree->node);
3126 log_root_tree->log_transid++;
3127 mutex_unlock(&log_root_tree->log_mutex);
3128
3129 /*
3130 * Here we are guaranteed that nobody is going to write the superblock
3131 * for the current transaction before us and that neither we do write
3132 * our superblock before the previous transaction finishes its commit
3133 * and writes its superblock, because:
3134 *
3135 * 1) We are holding a handle on the current transaction, so no body
3136 * can commit it until we release the handle;
3137 *
3138 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139 * if the previous transaction is still committing, and hasn't yet
3140 * written its superblock, we wait for it to do it, because a
3141 * transaction commit acquires the tree_log_mutex when the commit
3142 * begins and releases it only after writing its superblock.
3143 */
3144 mutex_lock(&fs_info->tree_log_mutex);
3145
3146 /*
3147 * The previous transaction writeout phase could have failed, and thus
3148 * marked the fs in an error state. We must not commit here, as we
3149 * could have updated our generation in the super_for_commit and
3150 * writing the super here would result in transid mismatches. If there
3151 * is an error here just bail.
3152 */
3153 if (BTRFS_FS_ERROR(fs_info)) {
3154 ret = -EIO;
3155 btrfs_set_log_full_commit(trans);
3156 btrfs_abort_transaction(trans, ret);
3157 mutex_unlock(&fs_info->tree_log_mutex);
3158 goto out_wake_log_root;
3159 }
3160
3161 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3163 ret = write_all_supers(fs_info, 1);
3164 mutex_unlock(&fs_info->tree_log_mutex);
3165 if (ret) {
3166 btrfs_set_log_full_commit(trans);
3167 btrfs_abort_transaction(trans, ret);
3168 goto out_wake_log_root;
3169 }
3170
3171 /*
3172 * We know there can only be one task here, since we have not yet set
3173 * root->log_commit[index1] to 0 and any task attempting to sync the
3174 * log must wait for the previous log transaction to commit if it's
3175 * still in progress or wait for the current log transaction commit if
3176 * someone else already started it. We use <= and not < because the
3177 * first log transaction has an ID of 0.
3178 */
3179 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3180 btrfs_set_root_last_log_commit(root, log_transid);
3181
3182 out_wake_log_root:
3183 mutex_lock(&log_root_tree->log_mutex);
3184 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
3186 log_root_tree->log_transid_committed++;
3187 atomic_set(&log_root_tree->log_commit[index2], 0);
3188 mutex_unlock(&log_root_tree->log_mutex);
3189
3190 /*
3191 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192 * all the updates above are seen by the woken threads. It might not be
3193 * necessary, but proving that seems to be hard.
3194 */
3195 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3196 out:
3197 mutex_lock(&root->log_mutex);
3198 btrfs_remove_all_log_ctxs(root, index1, ret);
3199 root->log_transid_committed++;
3200 atomic_set(&root->log_commit[index1], 0);
3201 mutex_unlock(&root->log_mutex);
3202
3203 /*
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
3207 */
3208 cond_wake_up(&root->log_commit_wait[index1]);
3209 return ret;
3210 }
3211
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3212 static void free_log_tree(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *log)
3214 {
3215 int ret;
3216 struct walk_control wc = {
3217 .free = 1,
3218 .process_func = process_one_buffer
3219 };
3220
3221 if (log->node) {
3222 ret = walk_log_tree(trans, log, &wc);
3223 if (ret) {
3224 /*
3225 * We weren't able to traverse the entire log tree, the
3226 * typical scenario is getting an -EIO when reading an
3227 * extent buffer of the tree, due to a previous writeback
3228 * failure of it.
3229 */
3230 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231 &log->fs_info->fs_state);
3232
3233 /*
3234 * Some extent buffers of the log tree may still be dirty
3235 * and not yet written back to storage, because we may
3236 * have updates to a log tree without syncing a log tree,
3237 * such as during rename and link operations. So flush
3238 * them out and wait for their writeback to complete, so
3239 * that we properly cleanup their state and pages.
3240 */
3241 btrfs_write_marked_extents(log->fs_info,
3242 &log->dirty_log_pages,
3243 EXTENT_DIRTY | EXTENT_NEW);
3244 btrfs_wait_tree_log_extents(log,
3245 EXTENT_DIRTY | EXTENT_NEW);
3246
3247 if (trans)
3248 btrfs_abort_transaction(trans, ret);
3249 else
3250 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251 }
3252 }
3253
3254 extent_io_tree_release(&log->dirty_log_pages);
3255 extent_io_tree_release(&log->log_csum_range);
3256
3257 btrfs_put_root(log);
3258 }
3259
3260 /*
3261 * free all the extents used by the tree log. This should be called
3262 * at commit time of the full transaction
3263 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3264 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3265 {
3266 if (root->log_root) {
3267 free_log_tree(trans, root->log_root);
3268 root->log_root = NULL;
3269 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3270 }
3271 return 0;
3272 }
3273
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3274 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3275 struct btrfs_fs_info *fs_info)
3276 {
3277 if (fs_info->log_root_tree) {
3278 free_log_tree(trans, fs_info->log_root_tree);
3279 fs_info->log_root_tree = NULL;
3280 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3281 }
3282 return 0;
3283 }
3284
3285 /*
3286 * Check if an inode was logged in the current transaction. This correctly deals
3287 * with the case where the inode was logged but has a logged_trans of 0, which
3288 * happens if the inode is evicted and loaded again, as logged_trans is an in
3289 * memory only field (not persisted).
3290 *
3291 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3292 * and < 0 on error.
3293 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3294 static int inode_logged(const struct btrfs_trans_handle *trans,
3295 struct btrfs_inode *inode,
3296 struct btrfs_path *path_in)
3297 {
3298 struct btrfs_path *path = path_in;
3299 struct btrfs_key key;
3300 int ret;
3301
3302 if (inode->logged_trans == trans->transid)
3303 return 1;
3304
3305 /*
3306 * If logged_trans is not 0, then we know the inode logged was not logged
3307 * in this transaction, so we can return false right away.
3308 */
3309 if (inode->logged_trans > 0)
3310 return 0;
3311
3312 /*
3313 * If no log tree was created for this root in this transaction, then
3314 * the inode can not have been logged in this transaction. In that case
3315 * set logged_trans to anything greater than 0 and less than the current
3316 * transaction's ID, to avoid the search below in a future call in case
3317 * a log tree gets created after this.
3318 */
3319 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3320 inode->logged_trans = trans->transid - 1;
3321 return 0;
3322 }
3323
3324 /*
3325 * We have a log tree and the inode's logged_trans is 0. We can't tell
3326 * for sure if the inode was logged before in this transaction by looking
3327 * only at logged_trans. We could be pessimistic and assume it was, but
3328 * that can lead to unnecessarily logging an inode during rename and link
3329 * operations, and then further updating the log in followup rename and
3330 * link operations, specially if it's a directory, which adds latency
3331 * visible to applications doing a series of rename or link operations.
3332 *
3333 * A logged_trans of 0 here can mean several things:
3334 *
3335 * 1) The inode was never logged since the filesystem was mounted, and may
3336 * or may have not been evicted and loaded again;
3337 *
3338 * 2) The inode was logged in a previous transaction, then evicted and
3339 * then loaded again;
3340 *
3341 * 3) The inode was logged in the current transaction, then evicted and
3342 * then loaded again.
3343 *
3344 * For cases 1) and 2) we don't want to return true, but we need to detect
3345 * case 3) and return true. So we do a search in the log root for the inode
3346 * item.
3347 */
3348 key.objectid = btrfs_ino(inode);
3349 key.type = BTRFS_INODE_ITEM_KEY;
3350 key.offset = 0;
3351
3352 if (!path) {
3353 path = btrfs_alloc_path();
3354 if (!path)
3355 return -ENOMEM;
3356 }
3357
3358 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3359
3360 if (path_in)
3361 btrfs_release_path(path);
3362 else
3363 btrfs_free_path(path);
3364
3365 /*
3366 * Logging an inode always results in logging its inode item. So if we
3367 * did not find the item we know the inode was not logged for sure.
3368 */
3369 if (ret < 0) {
3370 return ret;
3371 } else if (ret > 0) {
3372 /*
3373 * Set logged_trans to a value greater than 0 and less then the
3374 * current transaction to avoid doing the search in future calls.
3375 */
3376 inode->logged_trans = trans->transid - 1;
3377 return 0;
3378 }
3379
3380 /*
3381 * The inode was previously logged and then evicted, set logged_trans to
3382 * the current transacion's ID, to avoid future tree searches as long as
3383 * the inode is not evicted again.
3384 */
3385 inode->logged_trans = trans->transid;
3386
3387 /*
3388 * If it's a directory, then we must set last_dir_index_offset to the
3389 * maximum possible value, so that the next attempt to log the inode does
3390 * not skip checking if dir index keys found in modified subvolume tree
3391 * leaves have been logged before, otherwise it would result in attempts
3392 * to insert duplicate dir index keys in the log tree. This must be done
3393 * because last_dir_index_offset is an in-memory only field, not persisted
3394 * in the inode item or any other on-disk structure, so its value is lost
3395 * once the inode is evicted.
3396 */
3397 if (S_ISDIR(inode->vfs_inode.i_mode))
3398 inode->last_dir_index_offset = (u64)-1;
3399
3400 return 1;
3401 }
3402
3403 /*
3404 * Delete a directory entry from the log if it exists.
3405 *
3406 * Returns < 0 on error
3407 * 1 if the entry does not exists
3408 * 0 if the entry existed and was successfully deleted
3409 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3410 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3411 struct btrfs_root *log,
3412 struct btrfs_path *path,
3413 u64 dir_ino,
3414 const struct fscrypt_str *name,
3415 u64 index)
3416 {
3417 struct btrfs_dir_item *di;
3418
3419 /*
3420 * We only log dir index items of a directory, so we don't need to look
3421 * for dir item keys.
3422 */
3423 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3424 index, name, -1);
3425 if (IS_ERR(di))
3426 return PTR_ERR(di);
3427 else if (!di)
3428 return 1;
3429
3430 /*
3431 * We do not need to update the size field of the directory's
3432 * inode item because on log replay we update the field to reflect
3433 * all existing entries in the directory (see overwrite_item()).
3434 */
3435 return btrfs_delete_one_dir_name(trans, log, path, di);
3436 }
3437
3438 /*
3439 * If both a file and directory are logged, and unlinks or renames are
3440 * mixed in, we have a few interesting corners:
3441 *
3442 * create file X in dir Y
3443 * link file X to X.link in dir Y
3444 * fsync file X
3445 * unlink file X but leave X.link
3446 * fsync dir Y
3447 *
3448 * After a crash we would expect only X.link to exist. But file X
3449 * didn't get fsync'd again so the log has back refs for X and X.link.
3450 *
3451 * We solve this by removing directory entries and inode backrefs from the
3452 * log when a file that was logged in the current transaction is
3453 * unlinked. Any later fsync will include the updated log entries, and
3454 * we'll be able to reconstruct the proper directory items from backrefs.
3455 *
3456 * This optimizations allows us to avoid relogging the entire inode
3457 * or the entire directory.
3458 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3459 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root,
3461 const struct fscrypt_str *name,
3462 struct btrfs_inode *dir, u64 index)
3463 {
3464 struct btrfs_path *path;
3465 int ret;
3466
3467 ret = inode_logged(trans, dir, NULL);
3468 if (ret == 0)
3469 return;
3470 else if (ret < 0) {
3471 btrfs_set_log_full_commit(trans);
3472 return;
3473 }
3474
3475 ret = join_running_log_trans(root);
3476 if (ret)
3477 return;
3478
3479 mutex_lock(&dir->log_mutex);
3480
3481 path = btrfs_alloc_path();
3482 if (!path) {
3483 ret = -ENOMEM;
3484 goto out_unlock;
3485 }
3486
3487 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3488 name, index);
3489 btrfs_free_path(path);
3490 out_unlock:
3491 mutex_unlock(&dir->log_mutex);
3492 if (ret < 0)
3493 btrfs_set_log_full_commit(trans);
3494 btrfs_end_log_trans(root);
3495 }
3496
3497 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3498 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root,
3500 const struct fscrypt_str *name,
3501 struct btrfs_inode *inode, u64 dirid)
3502 {
3503 struct btrfs_root *log;
3504 u64 index;
3505 int ret;
3506
3507 ret = inode_logged(trans, inode, NULL);
3508 if (ret == 0)
3509 return;
3510 else if (ret < 0) {
3511 btrfs_set_log_full_commit(trans);
3512 return;
3513 }
3514
3515 ret = join_running_log_trans(root);
3516 if (ret)
3517 return;
3518 log = root->log_root;
3519 mutex_lock(&inode->log_mutex);
3520
3521 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3522 dirid, &index);
3523 mutex_unlock(&inode->log_mutex);
3524 if (ret < 0 && ret != -ENOENT)
3525 btrfs_set_log_full_commit(trans);
3526 btrfs_end_log_trans(root);
3527 }
3528
3529 /*
3530 * creates a range item in the log for 'dirid'. first_offset and
3531 * last_offset tell us which parts of the key space the log should
3532 * be considered authoritative for.
3533 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3534 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *log,
3536 struct btrfs_path *path,
3537 u64 dirid,
3538 u64 first_offset, u64 last_offset)
3539 {
3540 int ret;
3541 struct btrfs_key key;
3542 struct btrfs_dir_log_item *item;
3543
3544 key.objectid = dirid;
3545 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3546 key.offset = first_offset;
3547 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3548 /*
3549 * -EEXIST is fine and can happen sporadically when we are logging a
3550 * directory and have concurrent insertions in the subvolume's tree for
3551 * items from other inodes and that result in pushing off some dir items
3552 * from one leaf to another in order to accommodate for the new items.
3553 * This results in logging the same dir index range key.
3554 */
3555 if (ret && ret != -EEXIST)
3556 return ret;
3557
3558 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3559 struct btrfs_dir_log_item);
3560 if (ret == -EEXIST) {
3561 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3562
3563 /*
3564 * btrfs_del_dir_entries_in_log() might have been called during
3565 * an unlink between the initial insertion of this key and the
3566 * current update, or we might be logging a single entry deletion
3567 * during a rename, so set the new last_offset to the max value.
3568 */
3569 last_offset = max(last_offset, curr_end);
3570 }
3571 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3572 btrfs_release_path(path);
3573 return 0;
3574 }
3575
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3576 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3577 struct btrfs_inode *inode,
3578 struct extent_buffer *src,
3579 struct btrfs_path *dst_path,
3580 int start_slot,
3581 int count)
3582 {
3583 struct btrfs_root *log = inode->root->log_root;
3584 char *ins_data = NULL;
3585 struct btrfs_item_batch batch;
3586 struct extent_buffer *dst;
3587 unsigned long src_offset;
3588 unsigned long dst_offset;
3589 u64 last_index;
3590 struct btrfs_key key;
3591 u32 item_size;
3592 int ret;
3593 int i;
3594
3595 ASSERT(count > 0);
3596 batch.nr = count;
3597
3598 if (count == 1) {
3599 btrfs_item_key_to_cpu(src, &key, start_slot);
3600 item_size = btrfs_item_size(src, start_slot);
3601 batch.keys = &key;
3602 batch.data_sizes = &item_size;
3603 batch.total_data_size = item_size;
3604 } else {
3605 struct btrfs_key *ins_keys;
3606 u32 *ins_sizes;
3607
3608 ins_data = kmalloc(count * sizeof(u32) +
3609 count * sizeof(struct btrfs_key), GFP_NOFS);
3610 if (!ins_data)
3611 return -ENOMEM;
3612
3613 ins_sizes = (u32 *)ins_data;
3614 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3615 batch.keys = ins_keys;
3616 batch.data_sizes = ins_sizes;
3617 batch.total_data_size = 0;
3618
3619 for (i = 0; i < count; i++) {
3620 const int slot = start_slot + i;
3621
3622 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3623 ins_sizes[i] = btrfs_item_size(src, slot);
3624 batch.total_data_size += ins_sizes[i];
3625 }
3626 }
3627
3628 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3629 if (ret)
3630 goto out;
3631
3632 dst = dst_path->nodes[0];
3633 /*
3634 * Copy all the items in bulk, in a single copy operation. Item data is
3635 * organized such that it's placed at the end of a leaf and from right
3636 * to left. For example, the data for the second item ends at an offset
3637 * that matches the offset where the data for the first item starts, the
3638 * data for the third item ends at an offset that matches the offset
3639 * where the data of the second items starts, and so on.
3640 * Therefore our source and destination start offsets for copy match the
3641 * offsets of the last items (highest slots).
3642 */
3643 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3644 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3645 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3646 btrfs_release_path(dst_path);
3647
3648 last_index = batch.keys[count - 1].offset;
3649 ASSERT(last_index > inode->last_dir_index_offset);
3650
3651 /*
3652 * If for some unexpected reason the last item's index is not greater
3653 * than the last index we logged, warn and force a transaction commit.
3654 */
3655 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3656 ret = BTRFS_LOG_FORCE_COMMIT;
3657 else
3658 inode->last_dir_index_offset = last_index;
3659
3660 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3661 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3662 out:
3663 kfree(ins_data);
3664
3665 return ret;
3666 }
3667
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3668 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3669 {
3670 const int slot = path->slots[0];
3671
3672 if (ctx->scratch_eb) {
3673 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3674 } else {
3675 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3676 if (!ctx->scratch_eb)
3677 return -ENOMEM;
3678 }
3679
3680 btrfs_release_path(path);
3681 path->nodes[0] = ctx->scratch_eb;
3682 path->slots[0] = slot;
3683 /*
3684 * Add extra ref to scratch eb so that it is not freed when callers
3685 * release the path, so we can reuse it later if needed.
3686 */
3687 atomic_inc(&ctx->scratch_eb->refs);
3688
3689 return 0;
3690 }
3691
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3692 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3693 struct btrfs_inode *inode,
3694 struct btrfs_path *path,
3695 struct btrfs_path *dst_path,
3696 struct btrfs_log_ctx *ctx,
3697 u64 *last_old_dentry_offset)
3698 {
3699 struct btrfs_root *log = inode->root->log_root;
3700 struct extent_buffer *src;
3701 const int nritems = btrfs_header_nritems(path->nodes[0]);
3702 const u64 ino = btrfs_ino(inode);
3703 bool last_found = false;
3704 int batch_start = 0;
3705 int batch_size = 0;
3706 int ret;
3707
3708 /*
3709 * We need to clone the leaf, release the read lock on it, and use the
3710 * clone before modifying the log tree. See the comment at copy_items()
3711 * about why we need to do this.
3712 */
3713 ret = clone_leaf(path, ctx);
3714 if (ret < 0)
3715 return ret;
3716
3717 src = path->nodes[0];
3718
3719 for (int i = path->slots[0]; i < nritems; i++) {
3720 struct btrfs_dir_item *di;
3721 struct btrfs_key key;
3722 int ret;
3723
3724 btrfs_item_key_to_cpu(src, &key, i);
3725
3726 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3727 last_found = true;
3728 break;
3729 }
3730
3731 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732
3733 /*
3734 * Skip ranges of items that consist only of dir item keys created
3735 * in past transactions. However if we find a gap, we must log a
3736 * dir index range item for that gap, so that index keys in that
3737 * gap are deleted during log replay.
3738 */
3739 if (btrfs_dir_transid(src, di) < trans->transid) {
3740 if (key.offset > *last_old_dentry_offset + 1) {
3741 ret = insert_dir_log_key(trans, log, dst_path,
3742 ino, *last_old_dentry_offset + 1,
3743 key.offset - 1);
3744 if (ret < 0)
3745 return ret;
3746 }
3747
3748 *last_old_dentry_offset = key.offset;
3749 continue;
3750 }
3751
3752 /* If we logged this dir index item before, we can skip it. */
3753 if (key.offset <= inode->last_dir_index_offset)
3754 continue;
3755
3756 /*
3757 * We must make sure that when we log a directory entry, the
3758 * corresponding inode, after log replay, has a matching link
3759 * count. For example:
3760 *
3761 * touch foo
3762 * mkdir mydir
3763 * sync
3764 * ln foo mydir/bar
3765 * xfs_io -c "fsync" mydir
3766 * <crash>
3767 * <mount fs and log replay>
3768 *
3769 * Would result in a fsync log that when replayed, our file inode
3770 * would have a link count of 1, but we get two directory entries
3771 * pointing to the same inode. After removing one of the names,
3772 * it would not be possible to remove the other name, which
3773 * resulted always in stale file handle errors, and would not be
3774 * possible to rmdir the parent directory, since its i_size could
3775 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3776 * resulting in -ENOTEMPTY errors.
3777 */
3778 if (!ctx->log_new_dentries) {
3779 struct btrfs_key di_key;
3780
3781 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3782 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3783 ctx->log_new_dentries = true;
3784 }
3785
3786 if (batch_size == 0)
3787 batch_start = i;
3788 batch_size++;
3789 }
3790
3791 if (batch_size > 0) {
3792 int ret;
3793
3794 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3795 batch_start, batch_size);
3796 if (ret < 0)
3797 return ret;
3798 }
3799
3800 return last_found ? 1 : 0;
3801 }
3802
3803 /*
3804 * log all the items included in the current transaction for a given
3805 * directory. This also creates the range items in the log tree required
3806 * to replay anything deleted before the fsync
3807 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3808 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3809 struct btrfs_inode *inode,
3810 struct btrfs_path *path,
3811 struct btrfs_path *dst_path,
3812 struct btrfs_log_ctx *ctx,
3813 u64 min_offset, u64 *last_offset_ret)
3814 {
3815 struct btrfs_key min_key;
3816 struct btrfs_root *root = inode->root;
3817 struct btrfs_root *log = root->log_root;
3818 int ret;
3819 u64 last_old_dentry_offset = min_offset - 1;
3820 u64 last_offset = (u64)-1;
3821 u64 ino = btrfs_ino(inode);
3822
3823 min_key.objectid = ino;
3824 min_key.type = BTRFS_DIR_INDEX_KEY;
3825 min_key.offset = min_offset;
3826
3827 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3828
3829 /*
3830 * we didn't find anything from this transaction, see if there
3831 * is anything at all
3832 */
3833 if (ret != 0 || min_key.objectid != ino ||
3834 min_key.type != BTRFS_DIR_INDEX_KEY) {
3835 min_key.objectid = ino;
3836 min_key.type = BTRFS_DIR_INDEX_KEY;
3837 min_key.offset = (u64)-1;
3838 btrfs_release_path(path);
3839 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3840 if (ret < 0) {
3841 btrfs_release_path(path);
3842 return ret;
3843 }
3844 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3845
3846 /* if ret == 0 there are items for this type,
3847 * create a range to tell us the last key of this type.
3848 * otherwise, there are no items in this directory after
3849 * *min_offset, and we create a range to indicate that.
3850 */
3851 if (ret == 0) {
3852 struct btrfs_key tmp;
3853
3854 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3855 path->slots[0]);
3856 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3857 last_old_dentry_offset = tmp.offset;
3858 } else if (ret > 0) {
3859 ret = 0;
3860 }
3861
3862 goto done;
3863 }
3864
3865 /* go backward to find any previous key */
3866 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3867 if (ret == 0) {
3868 struct btrfs_key tmp;
3869
3870 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3871 /*
3872 * The dir index key before the first one we found that needs to
3873 * be logged might be in a previous leaf, and there might be a
3874 * gap between these keys, meaning that we had deletions that
3875 * happened. So the key range item we log (key type
3876 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3877 * previous key's offset plus 1, so that those deletes are replayed.
3878 */
3879 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3880 last_old_dentry_offset = tmp.offset;
3881 } else if (ret < 0) {
3882 goto done;
3883 }
3884
3885 btrfs_release_path(path);
3886
3887 /*
3888 * Find the first key from this transaction again or the one we were at
3889 * in the loop below in case we had to reschedule. We may be logging the
3890 * directory without holding its VFS lock, which happen when logging new
3891 * dentries (through log_new_dir_dentries()) or in some cases when we
3892 * need to log the parent directory of an inode. This means a dir index
3893 * key might be deleted from the inode's root, and therefore we may not
3894 * find it anymore. If we can't find it, just move to the next key. We
3895 * can not bail out and ignore, because if we do that we will simply
3896 * not log dir index keys that come after the one that was just deleted
3897 * and we can end up logging a dir index range that ends at (u64)-1
3898 * (@last_offset is initialized to that), resulting in removing dir
3899 * entries we should not remove at log replay time.
3900 */
3901 search:
3902 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3903 if (ret > 0) {
3904 ret = btrfs_next_item(root, path);
3905 if (ret > 0) {
3906 /* There are no more keys in the inode's root. */
3907 ret = 0;
3908 goto done;
3909 }
3910 }
3911 if (ret < 0)
3912 goto done;
3913
3914 /*
3915 * we have a block from this transaction, log every item in it
3916 * from our directory
3917 */
3918 while (1) {
3919 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3920 &last_old_dentry_offset);
3921 if (ret != 0) {
3922 if (ret > 0)
3923 ret = 0;
3924 goto done;
3925 }
3926 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3927
3928 /*
3929 * look ahead to the next item and see if it is also
3930 * from this directory and from this transaction
3931 */
3932 ret = btrfs_next_leaf(root, path);
3933 if (ret) {
3934 if (ret == 1) {
3935 last_offset = (u64)-1;
3936 ret = 0;
3937 }
3938 goto done;
3939 }
3940 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3941 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3942 last_offset = (u64)-1;
3943 goto done;
3944 }
3945 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3946 /*
3947 * The next leaf was not changed in the current transaction
3948 * and has at least one dir index key.
3949 * We check for the next key because there might have been
3950 * one or more deletions between the last key we logged and
3951 * that next key. So the key range item we log (key type
3952 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3953 * offset minus 1, so that those deletes are replayed.
3954 */
3955 last_offset = min_key.offset - 1;
3956 goto done;
3957 }
3958 if (need_resched()) {
3959 btrfs_release_path(path);
3960 cond_resched();
3961 goto search;
3962 }
3963 }
3964 done:
3965 btrfs_release_path(path);
3966 btrfs_release_path(dst_path);
3967
3968 if (ret == 0) {
3969 *last_offset_ret = last_offset;
3970 /*
3971 * In case the leaf was changed in the current transaction but
3972 * all its dir items are from a past transaction, the last item
3973 * in the leaf is a dir item and there's no gap between that last
3974 * dir item and the first one on the next leaf (which did not
3975 * change in the current transaction), then we don't need to log
3976 * a range, last_old_dentry_offset is == to last_offset.
3977 */
3978 ASSERT(last_old_dentry_offset <= last_offset);
3979 if (last_old_dentry_offset < last_offset)
3980 ret = insert_dir_log_key(trans, log, path, ino,
3981 last_old_dentry_offset + 1,
3982 last_offset);
3983 }
3984
3985 return ret;
3986 }
3987
3988 /*
3989 * If the inode was logged before and it was evicted, then its
3990 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3991 * key offset. If that's the case, search for it and update the inode. This
3992 * is to avoid lookups in the log tree every time we try to insert a dir index
3993 * key from a leaf changed in the current transaction, and to allow us to always
3994 * do batch insertions of dir index keys.
3995 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3996 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3997 struct btrfs_path *path,
3998 const struct btrfs_log_ctx *ctx)
3999 {
4000 const u64 ino = btrfs_ino(inode);
4001 struct btrfs_key key;
4002 int ret;
4003
4004 lockdep_assert_held(&inode->log_mutex);
4005
4006 if (inode->last_dir_index_offset != (u64)-1)
4007 return 0;
4008
4009 if (!ctx->logged_before) {
4010 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4011 return 0;
4012 }
4013
4014 key.objectid = ino;
4015 key.type = BTRFS_DIR_INDEX_KEY;
4016 key.offset = (u64)-1;
4017
4018 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4019 /*
4020 * An error happened or we actually have an index key with an offset
4021 * value of (u64)-1. Bail out, we're done.
4022 */
4023 if (ret <= 0)
4024 goto out;
4025
4026 ret = 0;
4027 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4028
4029 /*
4030 * No dir index items, bail out and leave last_dir_index_offset with
4031 * the value right before the first valid index value.
4032 */
4033 if (path->slots[0] == 0)
4034 goto out;
4035
4036 /*
4037 * btrfs_search_slot() left us at one slot beyond the slot with the last
4038 * index key, or beyond the last key of the directory that is not an
4039 * index key. If we have an index key before, set last_dir_index_offset
4040 * to its offset value, otherwise leave it with a value right before the
4041 * first valid index value, as it means we have an empty directory.
4042 */
4043 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4044 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4045 inode->last_dir_index_offset = key.offset;
4046
4047 out:
4048 btrfs_release_path(path);
4049
4050 return ret;
4051 }
4052
4053 /*
4054 * logging directories is very similar to logging inodes, We find all the items
4055 * from the current transaction and write them to the log.
4056 *
4057 * The recovery code scans the directory in the subvolume, and if it finds a
4058 * key in the range logged that is not present in the log tree, then it means
4059 * that dir entry was unlinked during the transaction.
4060 *
4061 * In order for that scan to work, we must include one key smaller than
4062 * the smallest logged by this transaction and one key larger than the largest
4063 * key logged by this transaction.
4064 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4065 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4066 struct btrfs_inode *inode,
4067 struct btrfs_path *path,
4068 struct btrfs_path *dst_path,
4069 struct btrfs_log_ctx *ctx)
4070 {
4071 u64 min_key;
4072 u64 max_key;
4073 int ret;
4074
4075 ret = update_last_dir_index_offset(inode, path, ctx);
4076 if (ret)
4077 return ret;
4078
4079 min_key = BTRFS_DIR_START_INDEX;
4080 max_key = 0;
4081
4082 while (1) {
4083 ret = log_dir_items(trans, inode, path, dst_path,
4084 ctx, min_key, &max_key);
4085 if (ret)
4086 return ret;
4087 if (max_key == (u64)-1)
4088 break;
4089 min_key = max_key + 1;
4090 }
4091
4092 return 0;
4093 }
4094
4095 /*
4096 * a helper function to drop items from the log before we relog an
4097 * inode. max_key_type indicates the highest item type to remove.
4098 * This cannot be run for file data extents because it does not
4099 * free the extents they point to.
4100 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4101 static int drop_inode_items(struct btrfs_trans_handle *trans,
4102 struct btrfs_root *log,
4103 struct btrfs_path *path,
4104 struct btrfs_inode *inode,
4105 int max_key_type)
4106 {
4107 int ret;
4108 struct btrfs_key key;
4109 struct btrfs_key found_key;
4110 int start_slot;
4111
4112 key.objectid = btrfs_ino(inode);
4113 key.type = max_key_type;
4114 key.offset = (u64)-1;
4115
4116 while (1) {
4117 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4118 if (ret < 0) {
4119 break;
4120 } else if (ret > 0) {
4121 if (path->slots[0] == 0)
4122 break;
4123 path->slots[0]--;
4124 }
4125
4126 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4127 path->slots[0]);
4128
4129 if (found_key.objectid != key.objectid)
4130 break;
4131
4132 found_key.offset = 0;
4133 found_key.type = 0;
4134 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4135 if (ret < 0)
4136 break;
4137
4138 ret = btrfs_del_items(trans, log, path, start_slot,
4139 path->slots[0] - start_slot + 1);
4140 /*
4141 * If start slot isn't 0 then we don't need to re-search, we've
4142 * found the last guy with the objectid in this tree.
4143 */
4144 if (ret || start_slot != 0)
4145 break;
4146 btrfs_release_path(path);
4147 }
4148 btrfs_release_path(path);
4149 if (ret > 0)
4150 ret = 0;
4151 return ret;
4152 }
4153
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4154 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *log_root,
4156 struct btrfs_inode *inode,
4157 u64 new_size, u32 min_type)
4158 {
4159 struct btrfs_truncate_control control = {
4160 .new_size = new_size,
4161 .ino = btrfs_ino(inode),
4162 .min_type = min_type,
4163 .skip_ref_updates = true,
4164 };
4165
4166 return btrfs_truncate_inode_items(trans, log_root, &control);
4167 }
4168
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4169 static void fill_inode_item(struct btrfs_trans_handle *trans,
4170 struct extent_buffer *leaf,
4171 struct btrfs_inode_item *item,
4172 struct inode *inode, int log_inode_only,
4173 u64 logged_isize)
4174 {
4175 struct btrfs_map_token token;
4176 u64 flags;
4177
4178 btrfs_init_map_token(&token, leaf);
4179
4180 if (log_inode_only) {
4181 /* set the generation to zero so the recover code
4182 * can tell the difference between an logging
4183 * just to say 'this inode exists' and a logging
4184 * to say 'update this inode with these values'
4185 */
4186 btrfs_set_token_inode_generation(&token, item, 0);
4187 btrfs_set_token_inode_size(&token, item, logged_isize);
4188 } else {
4189 btrfs_set_token_inode_generation(&token, item,
4190 BTRFS_I(inode)->generation);
4191 btrfs_set_token_inode_size(&token, item, inode->i_size);
4192 }
4193
4194 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4195 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4196 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4197 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4198
4199 btrfs_set_token_timespec_sec(&token, &item->atime,
4200 inode_get_atime_sec(inode));
4201 btrfs_set_token_timespec_nsec(&token, &item->atime,
4202 inode_get_atime_nsec(inode));
4203
4204 btrfs_set_token_timespec_sec(&token, &item->mtime,
4205 inode_get_mtime_sec(inode));
4206 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4207 inode_get_mtime_nsec(inode));
4208
4209 btrfs_set_token_timespec_sec(&token, &item->ctime,
4210 inode_get_ctime_sec(inode));
4211 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4212 inode_get_ctime_nsec(inode));
4213
4214 /*
4215 * We do not need to set the nbytes field, in fact during a fast fsync
4216 * its value may not even be correct, since a fast fsync does not wait
4217 * for ordered extent completion, which is where we update nbytes, it
4218 * only waits for writeback to complete. During log replay as we find
4219 * file extent items and replay them, we adjust the nbytes field of the
4220 * inode item in subvolume tree as needed (see overwrite_item()).
4221 */
4222
4223 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4224 btrfs_set_token_inode_transid(&token, item, trans->transid);
4225 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4226 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4227 BTRFS_I(inode)->ro_flags);
4228 btrfs_set_token_inode_flags(&token, item, flags);
4229 btrfs_set_token_inode_block_group(&token, item, 0);
4230 }
4231
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4232 static int log_inode_item(struct btrfs_trans_handle *trans,
4233 struct btrfs_root *log, struct btrfs_path *path,
4234 struct btrfs_inode *inode, bool inode_item_dropped)
4235 {
4236 struct btrfs_inode_item *inode_item;
4237 struct btrfs_key key;
4238 int ret;
4239
4240 btrfs_get_inode_key(inode, &key);
4241 /*
4242 * If we are doing a fast fsync and the inode was logged before in the
4243 * current transaction, then we know the inode was previously logged and
4244 * it exists in the log tree. For performance reasons, in this case use
4245 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4246 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4247 * contention in case there are concurrent fsyncs for other inodes of the
4248 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4249 * already exists can also result in unnecessarily splitting a leaf.
4250 */
4251 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4252 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4253 ASSERT(ret <= 0);
4254 if (ret > 0)
4255 ret = -ENOENT;
4256 } else {
4257 /*
4258 * This means it is the first fsync in the current transaction,
4259 * so the inode item is not in the log and we need to insert it.
4260 * We can never get -EEXIST because we are only called for a fast
4261 * fsync and in case an inode eviction happens after the inode was
4262 * logged before in the current transaction, when we load again
4263 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4264 * flags and set ->logged_trans to 0.
4265 */
4266 ret = btrfs_insert_empty_item(trans, log, path, &key,
4267 sizeof(*inode_item));
4268 ASSERT(ret != -EEXIST);
4269 }
4270 if (ret)
4271 return ret;
4272 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4273 struct btrfs_inode_item);
4274 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4275 0, 0);
4276 btrfs_release_path(path);
4277 return 0;
4278 }
4279
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4280 static int log_csums(struct btrfs_trans_handle *trans,
4281 struct btrfs_inode *inode,
4282 struct btrfs_root *log_root,
4283 struct btrfs_ordered_sum *sums)
4284 {
4285 const u64 lock_end = sums->logical + sums->len - 1;
4286 struct extent_state *cached_state = NULL;
4287 int ret;
4288
4289 /*
4290 * If this inode was not used for reflink operations in the current
4291 * transaction with new extents, then do the fast path, no need to
4292 * worry about logging checksum items with overlapping ranges.
4293 */
4294 if (inode->last_reflink_trans < trans->transid)
4295 return btrfs_csum_file_blocks(trans, log_root, sums);
4296
4297 /*
4298 * Serialize logging for checksums. This is to avoid racing with the
4299 * same checksum being logged by another task that is logging another
4300 * file which happens to refer to the same extent as well. Such races
4301 * can leave checksum items in the log with overlapping ranges.
4302 */
4303 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4304 &cached_state);
4305 if (ret)
4306 return ret;
4307 /*
4308 * Due to extent cloning, we might have logged a csum item that covers a
4309 * subrange of a cloned extent, and later we can end up logging a csum
4310 * item for a larger subrange of the same extent or the entire range.
4311 * This would leave csum items in the log tree that cover the same range
4312 * and break the searches for checksums in the log tree, resulting in
4313 * some checksums missing in the fs/subvolume tree. So just delete (or
4314 * trim and adjust) any existing csum items in the log for this range.
4315 */
4316 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4317 if (!ret)
4318 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4319
4320 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4321 &cached_state);
4322
4323 return ret;
4324 }
4325
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4326 static noinline int copy_items(struct btrfs_trans_handle *trans,
4327 struct btrfs_inode *inode,
4328 struct btrfs_path *dst_path,
4329 struct btrfs_path *src_path,
4330 int start_slot, int nr, int inode_only,
4331 u64 logged_isize, struct btrfs_log_ctx *ctx)
4332 {
4333 struct btrfs_root *log = inode->root->log_root;
4334 struct btrfs_file_extent_item *extent;
4335 struct extent_buffer *src;
4336 int ret;
4337 struct btrfs_key *ins_keys;
4338 u32 *ins_sizes;
4339 struct btrfs_item_batch batch;
4340 char *ins_data;
4341 int dst_index;
4342 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4343 const u64 i_size = i_size_read(&inode->vfs_inode);
4344
4345 /*
4346 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4347 * use the clone. This is because otherwise we would be changing the log
4348 * tree, to insert items from the subvolume tree or insert csum items,
4349 * while holding a read lock on a leaf from the subvolume tree, which
4350 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4351 *
4352 * 1) Modifying the log tree triggers an extent buffer allocation while
4353 * holding a write lock on a parent extent buffer from the log tree.
4354 * Allocating the pages for an extent buffer, or the extent buffer
4355 * struct, can trigger inode eviction and finally the inode eviction
4356 * will trigger a release/remove of a delayed node, which requires
4357 * taking the delayed node's mutex;
4358 *
4359 * 2) Allocating a metadata extent for a log tree can trigger the async
4360 * reclaim thread and make us wait for it to release enough space and
4361 * unblock our reservation ticket. The reclaim thread can start
4362 * flushing delayed items, and that in turn results in the need to
4363 * lock delayed node mutexes and in the need to write lock extent
4364 * buffers of a subvolume tree - all this while holding a write lock
4365 * on the parent extent buffer in the log tree.
4366 *
4367 * So one task in scenario 1) running in parallel with another task in
4368 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4369 * node mutex while having a read lock on a leaf from the subvolume,
4370 * while the other is holding the delayed node's mutex and wants to
4371 * write lock the same subvolume leaf for flushing delayed items.
4372 */
4373 ret = clone_leaf(src_path, ctx);
4374 if (ret < 0)
4375 return ret;
4376
4377 src = src_path->nodes[0];
4378
4379 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4380 nr * sizeof(u32), GFP_NOFS);
4381 if (!ins_data)
4382 return -ENOMEM;
4383
4384 ins_sizes = (u32 *)ins_data;
4385 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4386 batch.keys = ins_keys;
4387 batch.data_sizes = ins_sizes;
4388 batch.total_data_size = 0;
4389 batch.nr = 0;
4390
4391 dst_index = 0;
4392 for (int i = 0; i < nr; i++) {
4393 const int src_slot = start_slot + i;
4394 struct btrfs_root *csum_root;
4395 struct btrfs_ordered_sum *sums;
4396 struct btrfs_ordered_sum *sums_next;
4397 LIST_HEAD(ordered_sums);
4398 u64 disk_bytenr;
4399 u64 disk_num_bytes;
4400 u64 extent_offset;
4401 u64 extent_num_bytes;
4402 bool is_old_extent;
4403
4404 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4405
4406 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4407 goto add_to_batch;
4408
4409 extent = btrfs_item_ptr(src, src_slot,
4410 struct btrfs_file_extent_item);
4411
4412 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4413 trans->transid);
4414
4415 /*
4416 * Don't copy extents from past generations. That would make us
4417 * log a lot more metadata for common cases like doing only a
4418 * few random writes into a file and then fsync it for the first
4419 * time or after the full sync flag is set on the inode. We can
4420 * get leaves full of extent items, most of which are from past
4421 * generations, so we can skip them - as long as the inode has
4422 * not been the target of a reflink operation in this transaction,
4423 * as in that case it might have had file extent items with old
4424 * generations copied into it. We also must always log prealloc
4425 * extents that start at or beyond eof, otherwise we would lose
4426 * them on log replay.
4427 */
4428 if (is_old_extent &&
4429 ins_keys[dst_index].offset < i_size &&
4430 inode->last_reflink_trans < trans->transid)
4431 continue;
4432
4433 if (skip_csum)
4434 goto add_to_batch;
4435
4436 /* Only regular extents have checksums. */
4437 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4438 goto add_to_batch;
4439
4440 /*
4441 * If it's an extent created in a past transaction, then its
4442 * checksums are already accessible from the committed csum tree,
4443 * no need to log them.
4444 */
4445 if (is_old_extent)
4446 goto add_to_batch;
4447
4448 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4449 /* If it's an explicit hole, there are no checksums. */
4450 if (disk_bytenr == 0)
4451 goto add_to_batch;
4452
4453 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4454
4455 if (btrfs_file_extent_compression(src, extent)) {
4456 extent_offset = 0;
4457 extent_num_bytes = disk_num_bytes;
4458 } else {
4459 extent_offset = btrfs_file_extent_offset(src, extent);
4460 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4461 }
4462
4463 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4464 disk_bytenr += extent_offset;
4465 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4466 disk_bytenr + extent_num_bytes - 1,
4467 &ordered_sums, false);
4468 if (ret < 0)
4469 goto out;
4470 ret = 0;
4471
4472 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4473 if (!ret)
4474 ret = log_csums(trans, inode, log, sums);
4475 list_del(&sums->list);
4476 kfree(sums);
4477 }
4478 if (ret)
4479 goto out;
4480
4481 add_to_batch:
4482 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4483 batch.total_data_size += ins_sizes[dst_index];
4484 batch.nr++;
4485 dst_index++;
4486 }
4487
4488 /*
4489 * We have a leaf full of old extent items that don't need to be logged,
4490 * so we don't need to do anything.
4491 */
4492 if (batch.nr == 0)
4493 goto out;
4494
4495 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4496 if (ret)
4497 goto out;
4498
4499 dst_index = 0;
4500 for (int i = 0; i < nr; i++) {
4501 const int src_slot = start_slot + i;
4502 const int dst_slot = dst_path->slots[0] + dst_index;
4503 struct btrfs_key key;
4504 unsigned long src_offset;
4505 unsigned long dst_offset;
4506
4507 /*
4508 * We're done, all the remaining items in the source leaf
4509 * correspond to old file extent items.
4510 */
4511 if (dst_index >= batch.nr)
4512 break;
4513
4514 btrfs_item_key_to_cpu(src, &key, src_slot);
4515
4516 if (key.type != BTRFS_EXTENT_DATA_KEY)
4517 goto copy_item;
4518
4519 extent = btrfs_item_ptr(src, src_slot,
4520 struct btrfs_file_extent_item);
4521
4522 /* See the comment in the previous loop, same logic. */
4523 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4524 key.offset < i_size &&
4525 inode->last_reflink_trans < trans->transid)
4526 continue;
4527
4528 copy_item:
4529 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4530 src_offset = btrfs_item_ptr_offset(src, src_slot);
4531
4532 if (key.type == BTRFS_INODE_ITEM_KEY) {
4533 struct btrfs_inode_item *inode_item;
4534
4535 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4536 struct btrfs_inode_item);
4537 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4538 &inode->vfs_inode,
4539 inode_only == LOG_INODE_EXISTS,
4540 logged_isize);
4541 } else {
4542 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4543 src_offset, ins_sizes[dst_index]);
4544 }
4545
4546 dst_index++;
4547 }
4548
4549 btrfs_release_path(dst_path);
4550 out:
4551 kfree(ins_data);
4552
4553 return ret;
4554 }
4555
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4556 static int extent_cmp(void *priv, const struct list_head *a,
4557 const struct list_head *b)
4558 {
4559 const struct extent_map *em1, *em2;
4560
4561 em1 = list_entry(a, struct extent_map, list);
4562 em2 = list_entry(b, struct extent_map, list);
4563
4564 if (em1->start < em2->start)
4565 return -1;
4566 else if (em1->start > em2->start)
4567 return 1;
4568 return 0;
4569 }
4570
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4571 static int log_extent_csums(struct btrfs_trans_handle *trans,
4572 struct btrfs_inode *inode,
4573 struct btrfs_root *log_root,
4574 const struct extent_map *em,
4575 struct btrfs_log_ctx *ctx)
4576 {
4577 struct btrfs_ordered_extent *ordered;
4578 struct btrfs_root *csum_root;
4579 u64 block_start;
4580 u64 csum_offset;
4581 u64 csum_len;
4582 u64 mod_start = em->start;
4583 u64 mod_len = em->len;
4584 LIST_HEAD(ordered_sums);
4585 int ret = 0;
4586
4587 if (inode->flags & BTRFS_INODE_NODATASUM ||
4588 (em->flags & EXTENT_FLAG_PREALLOC) ||
4589 em->disk_bytenr == EXTENT_MAP_HOLE)
4590 return 0;
4591
4592 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4593 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4594 const u64 mod_end = mod_start + mod_len;
4595 struct btrfs_ordered_sum *sums;
4596
4597 if (mod_len == 0)
4598 break;
4599
4600 if (ordered_end <= mod_start)
4601 continue;
4602 if (mod_end <= ordered->file_offset)
4603 break;
4604
4605 /*
4606 * We are going to copy all the csums on this ordered extent, so
4607 * go ahead and adjust mod_start and mod_len in case this ordered
4608 * extent has already been logged.
4609 */
4610 if (ordered->file_offset > mod_start) {
4611 if (ordered_end >= mod_end)
4612 mod_len = ordered->file_offset - mod_start;
4613 /*
4614 * If we have this case
4615 *
4616 * |--------- logged extent ---------|
4617 * |----- ordered extent ----|
4618 *
4619 * Just don't mess with mod_start and mod_len, we'll
4620 * just end up logging more csums than we need and it
4621 * will be ok.
4622 */
4623 } else {
4624 if (ordered_end < mod_end) {
4625 mod_len = mod_end - ordered_end;
4626 mod_start = ordered_end;
4627 } else {
4628 mod_len = 0;
4629 }
4630 }
4631
4632 /*
4633 * To keep us from looping for the above case of an ordered
4634 * extent that falls inside of the logged extent.
4635 */
4636 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4637 continue;
4638
4639 list_for_each_entry(sums, &ordered->list, list) {
4640 ret = log_csums(trans, inode, log_root, sums);
4641 if (ret)
4642 return ret;
4643 }
4644 }
4645
4646 /* We're done, found all csums in the ordered extents. */
4647 if (mod_len == 0)
4648 return 0;
4649
4650 /* If we're compressed we have to save the entire range of csums. */
4651 if (extent_map_is_compressed(em)) {
4652 csum_offset = 0;
4653 csum_len = em->disk_num_bytes;
4654 } else {
4655 csum_offset = mod_start - em->start;
4656 csum_len = mod_len;
4657 }
4658
4659 /* block start is already adjusted for the file extent offset. */
4660 block_start = extent_map_block_start(em);
4661 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4662 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4663 block_start + csum_offset + csum_len - 1,
4664 &ordered_sums, false);
4665 if (ret < 0)
4666 return ret;
4667 ret = 0;
4668
4669 while (!list_empty(&ordered_sums)) {
4670 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4671 struct btrfs_ordered_sum,
4672 list);
4673 if (!ret)
4674 ret = log_csums(trans, inode, log_root, sums);
4675 list_del(&sums->list);
4676 kfree(sums);
4677 }
4678
4679 return ret;
4680 }
4681
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4682 static int log_one_extent(struct btrfs_trans_handle *trans,
4683 struct btrfs_inode *inode,
4684 const struct extent_map *em,
4685 struct btrfs_path *path,
4686 struct btrfs_log_ctx *ctx)
4687 {
4688 struct btrfs_drop_extents_args drop_args = { 0 };
4689 struct btrfs_root *log = inode->root->log_root;
4690 struct btrfs_file_extent_item fi = { 0 };
4691 struct extent_buffer *leaf;
4692 struct btrfs_key key;
4693 enum btrfs_compression_type compress_type;
4694 u64 extent_offset = em->offset;
4695 u64 block_start = extent_map_block_start(em);
4696 u64 block_len;
4697 int ret;
4698
4699 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4700 if (em->flags & EXTENT_FLAG_PREALLOC)
4701 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4702 else
4703 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4704
4705 block_len = em->disk_num_bytes;
4706 compress_type = extent_map_compression(em);
4707 if (compress_type != BTRFS_COMPRESS_NONE) {
4708 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4709 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4710 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4711 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4712 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4713 }
4714
4715 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4716 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4717 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4718 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4719
4720 ret = log_extent_csums(trans, inode, log, em, ctx);
4721 if (ret)
4722 return ret;
4723
4724 /*
4725 * If this is the first time we are logging the inode in the current
4726 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4727 * because it does a deletion search, which always acquires write locks
4728 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4729 * but also adds significant contention in a log tree, since log trees
4730 * are small, with a root at level 2 or 3 at most, due to their short
4731 * life span.
4732 */
4733 if (ctx->logged_before) {
4734 drop_args.path = path;
4735 drop_args.start = em->start;
4736 drop_args.end = em->start + em->len;
4737 drop_args.replace_extent = true;
4738 drop_args.extent_item_size = sizeof(fi);
4739 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4740 if (ret)
4741 return ret;
4742 }
4743
4744 if (!drop_args.extent_inserted) {
4745 key.objectid = btrfs_ino(inode);
4746 key.type = BTRFS_EXTENT_DATA_KEY;
4747 key.offset = em->start;
4748
4749 ret = btrfs_insert_empty_item(trans, log, path, &key,
4750 sizeof(fi));
4751 if (ret)
4752 return ret;
4753 }
4754 leaf = path->nodes[0];
4755 write_extent_buffer(leaf, &fi,
4756 btrfs_item_ptr_offset(leaf, path->slots[0]),
4757 sizeof(fi));
4758
4759 btrfs_release_path(path);
4760
4761 return ret;
4762 }
4763
4764 /*
4765 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4766 * lose them after doing a full/fast fsync and replaying the log. We scan the
4767 * subvolume's root instead of iterating the inode's extent map tree because
4768 * otherwise we can log incorrect extent items based on extent map conversion.
4769 * That can happen due to the fact that extent maps are merged when they
4770 * are not in the extent map tree's list of modified extents.
4771 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4772 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4773 struct btrfs_inode *inode,
4774 struct btrfs_path *path,
4775 struct btrfs_log_ctx *ctx)
4776 {
4777 struct btrfs_root *root = inode->root;
4778 struct btrfs_key key;
4779 const u64 i_size = i_size_read(&inode->vfs_inode);
4780 const u64 ino = btrfs_ino(inode);
4781 struct btrfs_path *dst_path = NULL;
4782 bool dropped_extents = false;
4783 u64 truncate_offset = i_size;
4784 struct extent_buffer *leaf;
4785 int slot;
4786 int ins_nr = 0;
4787 int start_slot = 0;
4788 int ret;
4789
4790 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4791 return 0;
4792
4793 key.objectid = ino;
4794 key.type = BTRFS_EXTENT_DATA_KEY;
4795 key.offset = i_size;
4796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4797 if (ret < 0)
4798 goto out;
4799
4800 /*
4801 * We must check if there is a prealloc extent that starts before the
4802 * i_size and crosses the i_size boundary. This is to ensure later we
4803 * truncate down to the end of that extent and not to the i_size, as
4804 * otherwise we end up losing part of the prealloc extent after a log
4805 * replay and with an implicit hole if there is another prealloc extent
4806 * that starts at an offset beyond i_size.
4807 */
4808 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4809 if (ret < 0)
4810 goto out;
4811
4812 if (ret == 0) {
4813 struct btrfs_file_extent_item *ei;
4814
4815 leaf = path->nodes[0];
4816 slot = path->slots[0];
4817 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4818
4819 if (btrfs_file_extent_type(leaf, ei) ==
4820 BTRFS_FILE_EXTENT_PREALLOC) {
4821 u64 extent_end;
4822
4823 btrfs_item_key_to_cpu(leaf, &key, slot);
4824 extent_end = key.offset +
4825 btrfs_file_extent_num_bytes(leaf, ei);
4826
4827 if (extent_end > i_size)
4828 truncate_offset = extent_end;
4829 }
4830 } else {
4831 ret = 0;
4832 }
4833
4834 while (true) {
4835 leaf = path->nodes[0];
4836 slot = path->slots[0];
4837
4838 if (slot >= btrfs_header_nritems(leaf)) {
4839 if (ins_nr > 0) {
4840 ret = copy_items(trans, inode, dst_path, path,
4841 start_slot, ins_nr, 1, 0, ctx);
4842 if (ret < 0)
4843 goto out;
4844 ins_nr = 0;
4845 }
4846 ret = btrfs_next_leaf(root, path);
4847 if (ret < 0)
4848 goto out;
4849 if (ret > 0) {
4850 ret = 0;
4851 break;
4852 }
4853 continue;
4854 }
4855
4856 btrfs_item_key_to_cpu(leaf, &key, slot);
4857 if (key.objectid > ino)
4858 break;
4859 if (WARN_ON_ONCE(key.objectid < ino) ||
4860 key.type < BTRFS_EXTENT_DATA_KEY ||
4861 key.offset < i_size) {
4862 path->slots[0]++;
4863 continue;
4864 }
4865 /*
4866 * Avoid overlapping items in the log tree. The first time we
4867 * get here, get rid of everything from a past fsync. After
4868 * that, if the current extent starts before the end of the last
4869 * extent we copied, truncate the last one. This can happen if
4870 * an ordered extent completion modifies the subvolume tree
4871 * while btrfs_next_leaf() has the tree unlocked.
4872 */
4873 if (!dropped_extents || key.offset < truncate_offset) {
4874 ret = truncate_inode_items(trans, root->log_root, inode,
4875 min(key.offset, truncate_offset),
4876 BTRFS_EXTENT_DATA_KEY);
4877 if (ret)
4878 goto out;
4879 dropped_extents = true;
4880 }
4881 truncate_offset = btrfs_file_extent_end(path);
4882 if (ins_nr == 0)
4883 start_slot = slot;
4884 ins_nr++;
4885 path->slots[0]++;
4886 if (!dst_path) {
4887 dst_path = btrfs_alloc_path();
4888 if (!dst_path) {
4889 ret = -ENOMEM;
4890 goto out;
4891 }
4892 }
4893 }
4894 if (ins_nr > 0)
4895 ret = copy_items(trans, inode, dst_path, path,
4896 start_slot, ins_nr, 1, 0, ctx);
4897 out:
4898 btrfs_release_path(path);
4899 btrfs_free_path(dst_path);
4900 return ret;
4901 }
4902
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4903 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4904 struct btrfs_inode *inode,
4905 struct btrfs_path *path,
4906 struct btrfs_log_ctx *ctx)
4907 {
4908 struct btrfs_ordered_extent *ordered;
4909 struct btrfs_ordered_extent *tmp;
4910 struct extent_map *em, *n;
4911 LIST_HEAD(extents);
4912 struct extent_map_tree *tree = &inode->extent_tree;
4913 int ret = 0;
4914 int num = 0;
4915
4916 write_lock(&tree->lock);
4917
4918 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4919 list_del_init(&em->list);
4920 /*
4921 * Just an arbitrary number, this can be really CPU intensive
4922 * once we start getting a lot of extents, and really once we
4923 * have a bunch of extents we just want to commit since it will
4924 * be faster.
4925 */
4926 if (++num > 32768) {
4927 list_del_init(&tree->modified_extents);
4928 ret = -EFBIG;
4929 goto process;
4930 }
4931
4932 if (em->generation < trans->transid)
4933 continue;
4934
4935 /* We log prealloc extents beyond eof later. */
4936 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4937 em->start >= i_size_read(&inode->vfs_inode))
4938 continue;
4939
4940 /* Need a ref to keep it from getting evicted from cache */
4941 refcount_inc(&em->refs);
4942 em->flags |= EXTENT_FLAG_LOGGING;
4943 list_add_tail(&em->list, &extents);
4944 num++;
4945 }
4946
4947 list_sort(NULL, &extents, extent_cmp);
4948 process:
4949 while (!list_empty(&extents)) {
4950 em = list_entry(extents.next, struct extent_map, list);
4951
4952 list_del_init(&em->list);
4953
4954 /*
4955 * If we had an error we just need to delete everybody from our
4956 * private list.
4957 */
4958 if (ret) {
4959 clear_em_logging(inode, em);
4960 free_extent_map(em);
4961 continue;
4962 }
4963
4964 write_unlock(&tree->lock);
4965
4966 ret = log_one_extent(trans, inode, em, path, ctx);
4967 write_lock(&tree->lock);
4968 clear_em_logging(inode, em);
4969 free_extent_map(em);
4970 }
4971 WARN_ON(!list_empty(&extents));
4972 write_unlock(&tree->lock);
4973
4974 if (!ret)
4975 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4976 if (ret)
4977 return ret;
4978
4979 /*
4980 * We have logged all extents successfully, now make sure the commit of
4981 * the current transaction waits for the ordered extents to complete
4982 * before it commits and wipes out the log trees, otherwise we would
4983 * lose data if an ordered extents completes after the transaction
4984 * commits and a power failure happens after the transaction commit.
4985 */
4986 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4987 list_del_init(&ordered->log_list);
4988 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4989
4990 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4991 spin_lock_irq(&inode->ordered_tree_lock);
4992 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4993 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4994 atomic_inc(&trans->transaction->pending_ordered);
4995 }
4996 spin_unlock_irq(&inode->ordered_tree_lock);
4997 }
4998 btrfs_put_ordered_extent(ordered);
4999 }
5000
5001 return 0;
5002 }
5003
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5004 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5005 struct btrfs_path *path, u64 *size_ret)
5006 {
5007 struct btrfs_key key;
5008 int ret;
5009
5010 key.objectid = btrfs_ino(inode);
5011 key.type = BTRFS_INODE_ITEM_KEY;
5012 key.offset = 0;
5013
5014 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5015 if (ret < 0) {
5016 return ret;
5017 } else if (ret > 0) {
5018 *size_ret = 0;
5019 } else {
5020 struct btrfs_inode_item *item;
5021
5022 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5023 struct btrfs_inode_item);
5024 *size_ret = btrfs_inode_size(path->nodes[0], item);
5025 /*
5026 * If the in-memory inode's i_size is smaller then the inode
5027 * size stored in the btree, return the inode's i_size, so
5028 * that we get a correct inode size after replaying the log
5029 * when before a power failure we had a shrinking truncate
5030 * followed by addition of a new name (rename / new hard link).
5031 * Otherwise return the inode size from the btree, to avoid
5032 * data loss when replaying a log due to previously doing a
5033 * write that expands the inode's size and logging a new name
5034 * immediately after.
5035 */
5036 if (*size_ret > inode->vfs_inode.i_size)
5037 *size_ret = inode->vfs_inode.i_size;
5038 }
5039
5040 btrfs_release_path(path);
5041 return 0;
5042 }
5043
5044 /*
5045 * At the moment we always log all xattrs. This is to figure out at log replay
5046 * time which xattrs must have their deletion replayed. If a xattr is missing
5047 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5048 * because if a xattr is deleted, the inode is fsynced and a power failure
5049 * happens, causing the log to be replayed the next time the fs is mounted,
5050 * we want the xattr to not exist anymore (same behaviour as other filesystems
5051 * with a journal, ext3/4, xfs, f2fs, etc).
5052 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5053 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5054 struct btrfs_inode *inode,
5055 struct btrfs_path *path,
5056 struct btrfs_path *dst_path,
5057 struct btrfs_log_ctx *ctx)
5058 {
5059 struct btrfs_root *root = inode->root;
5060 int ret;
5061 struct btrfs_key key;
5062 const u64 ino = btrfs_ino(inode);
5063 int ins_nr = 0;
5064 int start_slot = 0;
5065 bool found_xattrs = false;
5066
5067 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5068 return 0;
5069
5070 key.objectid = ino;
5071 key.type = BTRFS_XATTR_ITEM_KEY;
5072 key.offset = 0;
5073
5074 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5075 if (ret < 0)
5076 return ret;
5077
5078 while (true) {
5079 int slot = path->slots[0];
5080 struct extent_buffer *leaf = path->nodes[0];
5081 int nritems = btrfs_header_nritems(leaf);
5082
5083 if (slot >= nritems) {
5084 if (ins_nr > 0) {
5085 ret = copy_items(trans, inode, dst_path, path,
5086 start_slot, ins_nr, 1, 0, ctx);
5087 if (ret < 0)
5088 return ret;
5089 ins_nr = 0;
5090 }
5091 ret = btrfs_next_leaf(root, path);
5092 if (ret < 0)
5093 return ret;
5094 else if (ret > 0)
5095 break;
5096 continue;
5097 }
5098
5099 btrfs_item_key_to_cpu(leaf, &key, slot);
5100 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5101 break;
5102
5103 if (ins_nr == 0)
5104 start_slot = slot;
5105 ins_nr++;
5106 path->slots[0]++;
5107 found_xattrs = true;
5108 cond_resched();
5109 }
5110 if (ins_nr > 0) {
5111 ret = copy_items(trans, inode, dst_path, path,
5112 start_slot, ins_nr, 1, 0, ctx);
5113 if (ret < 0)
5114 return ret;
5115 }
5116
5117 if (!found_xattrs)
5118 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5119
5120 return 0;
5121 }
5122
5123 /*
5124 * When using the NO_HOLES feature if we punched a hole that causes the
5125 * deletion of entire leafs or all the extent items of the first leaf (the one
5126 * that contains the inode item and references) we may end up not processing
5127 * any extents, because there are no leafs with a generation matching the
5128 * current transaction that have extent items for our inode. So we need to find
5129 * if any holes exist and then log them. We also need to log holes after any
5130 * truncate operation that changes the inode's size.
5131 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5132 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5133 struct btrfs_inode *inode,
5134 struct btrfs_path *path)
5135 {
5136 struct btrfs_root *root = inode->root;
5137 struct btrfs_fs_info *fs_info = root->fs_info;
5138 struct btrfs_key key;
5139 const u64 ino = btrfs_ino(inode);
5140 const u64 i_size = i_size_read(&inode->vfs_inode);
5141 u64 prev_extent_end = 0;
5142 int ret;
5143
5144 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5145 return 0;
5146
5147 key.objectid = ino;
5148 key.type = BTRFS_EXTENT_DATA_KEY;
5149 key.offset = 0;
5150
5151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5152 if (ret < 0)
5153 return ret;
5154
5155 while (true) {
5156 struct extent_buffer *leaf = path->nodes[0];
5157
5158 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5159 ret = btrfs_next_leaf(root, path);
5160 if (ret < 0)
5161 return ret;
5162 if (ret > 0) {
5163 ret = 0;
5164 break;
5165 }
5166 leaf = path->nodes[0];
5167 }
5168
5169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5170 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5171 break;
5172
5173 /* We have a hole, log it. */
5174 if (prev_extent_end < key.offset) {
5175 const u64 hole_len = key.offset - prev_extent_end;
5176
5177 /*
5178 * Release the path to avoid deadlocks with other code
5179 * paths that search the root while holding locks on
5180 * leafs from the log root.
5181 */
5182 btrfs_release_path(path);
5183 ret = btrfs_insert_hole_extent(trans, root->log_root,
5184 ino, prev_extent_end,
5185 hole_len);
5186 if (ret < 0)
5187 return ret;
5188
5189 /*
5190 * Search for the same key again in the root. Since it's
5191 * an extent item and we are holding the inode lock, the
5192 * key must still exist. If it doesn't just emit warning
5193 * and return an error to fall back to a transaction
5194 * commit.
5195 */
5196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5197 if (ret < 0)
5198 return ret;
5199 if (WARN_ON(ret > 0))
5200 return -ENOENT;
5201 leaf = path->nodes[0];
5202 }
5203
5204 prev_extent_end = btrfs_file_extent_end(path);
5205 path->slots[0]++;
5206 cond_resched();
5207 }
5208
5209 if (prev_extent_end < i_size) {
5210 u64 hole_len;
5211
5212 btrfs_release_path(path);
5213 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5214 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5215 prev_extent_end, hole_len);
5216 if (ret < 0)
5217 return ret;
5218 }
5219
5220 return 0;
5221 }
5222
5223 /*
5224 * When we are logging a new inode X, check if it doesn't have a reference that
5225 * matches the reference from some other inode Y created in a past transaction
5226 * and that was renamed in the current transaction. If we don't do this, then at
5227 * log replay time we can lose inode Y (and all its files if it's a directory):
5228 *
5229 * mkdir /mnt/x
5230 * echo "hello world" > /mnt/x/foobar
5231 * sync
5232 * mv /mnt/x /mnt/y
5233 * mkdir /mnt/x # or touch /mnt/x
5234 * xfs_io -c fsync /mnt/x
5235 * <power fail>
5236 * mount fs, trigger log replay
5237 *
5238 * After the log replay procedure, we would lose the first directory and all its
5239 * files (file foobar).
5240 * For the case where inode Y is not a directory we simply end up losing it:
5241 *
5242 * echo "123" > /mnt/foo
5243 * sync
5244 * mv /mnt/foo /mnt/bar
5245 * echo "abc" > /mnt/foo
5246 * xfs_io -c fsync /mnt/foo
5247 * <power fail>
5248 *
5249 * We also need this for cases where a snapshot entry is replaced by some other
5250 * entry (file or directory) otherwise we end up with an unreplayable log due to
5251 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5252 * if it were a regular entry:
5253 *
5254 * mkdir /mnt/x
5255 * btrfs subvolume snapshot /mnt /mnt/x/snap
5256 * btrfs subvolume delete /mnt/x/snap
5257 * rmdir /mnt/x
5258 * mkdir /mnt/x
5259 * fsync /mnt/x or fsync some new file inside it
5260 * <power fail>
5261 *
5262 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5263 * the same transaction.
5264 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5265 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5266 const int slot,
5267 const struct btrfs_key *key,
5268 struct btrfs_inode *inode,
5269 u64 *other_ino, u64 *other_parent)
5270 {
5271 int ret;
5272 struct btrfs_path *search_path;
5273 char *name = NULL;
5274 u32 name_len = 0;
5275 u32 item_size = btrfs_item_size(eb, slot);
5276 u32 cur_offset = 0;
5277 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5278
5279 search_path = btrfs_alloc_path();
5280 if (!search_path)
5281 return -ENOMEM;
5282 search_path->search_commit_root = 1;
5283 search_path->skip_locking = 1;
5284
5285 while (cur_offset < item_size) {
5286 u64 parent;
5287 u32 this_name_len;
5288 u32 this_len;
5289 unsigned long name_ptr;
5290 struct btrfs_dir_item *di;
5291 struct fscrypt_str name_str;
5292
5293 if (key->type == BTRFS_INODE_REF_KEY) {
5294 struct btrfs_inode_ref *iref;
5295
5296 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5297 parent = key->offset;
5298 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5299 name_ptr = (unsigned long)(iref + 1);
5300 this_len = sizeof(*iref) + this_name_len;
5301 } else {
5302 struct btrfs_inode_extref *extref;
5303
5304 extref = (struct btrfs_inode_extref *)(ptr +
5305 cur_offset);
5306 parent = btrfs_inode_extref_parent(eb, extref);
5307 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5308 name_ptr = (unsigned long)&extref->name;
5309 this_len = sizeof(*extref) + this_name_len;
5310 }
5311
5312 if (this_name_len > name_len) {
5313 char *new_name;
5314
5315 new_name = krealloc(name, this_name_len, GFP_NOFS);
5316 if (!new_name) {
5317 ret = -ENOMEM;
5318 goto out;
5319 }
5320 name_len = this_name_len;
5321 name = new_name;
5322 }
5323
5324 read_extent_buffer(eb, name, name_ptr, this_name_len);
5325
5326 name_str.name = name;
5327 name_str.len = this_name_len;
5328 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5329 parent, &name_str, 0);
5330 if (di && !IS_ERR(di)) {
5331 struct btrfs_key di_key;
5332
5333 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5334 di, &di_key);
5335 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5336 if (di_key.objectid != key->objectid) {
5337 ret = 1;
5338 *other_ino = di_key.objectid;
5339 *other_parent = parent;
5340 } else {
5341 ret = 0;
5342 }
5343 } else {
5344 ret = -EAGAIN;
5345 }
5346 goto out;
5347 } else if (IS_ERR(di)) {
5348 ret = PTR_ERR(di);
5349 goto out;
5350 }
5351 btrfs_release_path(search_path);
5352
5353 cur_offset += this_len;
5354 }
5355 ret = 0;
5356 out:
5357 btrfs_free_path(search_path);
5358 kfree(name);
5359 return ret;
5360 }
5361
5362 /*
5363 * Check if we need to log an inode. This is used in contexts where while
5364 * logging an inode we need to log another inode (either that it exists or in
5365 * full mode). This is used instead of btrfs_inode_in_log() because the later
5366 * requires the inode to be in the log and have the log transaction committed,
5367 * while here we do not care if the log transaction was already committed - our
5368 * caller will commit the log later - and we want to avoid logging an inode
5369 * multiple times when multiple tasks have joined the same log transaction.
5370 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5371 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5372 struct btrfs_inode *inode)
5373 {
5374 /*
5375 * If a directory was not modified, no dentries added or removed, we can
5376 * and should avoid logging it.
5377 */
5378 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5379 return false;
5380
5381 /*
5382 * If this inode does not have new/updated/deleted xattrs since the last
5383 * time it was logged and is flagged as logged in the current transaction,
5384 * we can skip logging it. As for new/deleted names, those are updated in
5385 * the log by link/unlink/rename operations.
5386 * In case the inode was logged and then evicted and reloaded, its
5387 * logged_trans will be 0, in which case we have to fully log it since
5388 * logged_trans is a transient field, not persisted.
5389 */
5390 if (inode_logged(trans, inode, NULL) == 1 &&
5391 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5392 return false;
5393
5394 return true;
5395 }
5396
5397 struct btrfs_dir_list {
5398 u64 ino;
5399 struct list_head list;
5400 };
5401
5402 /*
5403 * Log the inodes of the new dentries of a directory.
5404 * See process_dir_items_leaf() for details about why it is needed.
5405 * This is a recursive operation - if an existing dentry corresponds to a
5406 * directory, that directory's new entries are logged too (same behaviour as
5407 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5408 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5409 * complains about the following circular lock dependency / possible deadlock:
5410 *
5411 * CPU0 CPU1
5412 * ---- ----
5413 * lock(&type->i_mutex_dir_key#3/2);
5414 * lock(sb_internal#2);
5415 * lock(&type->i_mutex_dir_key#3/2);
5416 * lock(&sb->s_type->i_mutex_key#14);
5417 *
5418 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5419 * sb_start_intwrite() in btrfs_start_transaction().
5420 * Not acquiring the VFS lock of the inodes is still safe because:
5421 *
5422 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5423 * that while logging the inode new references (names) are added or removed
5424 * from the inode, leaving the logged inode item with a link count that does
5425 * not match the number of logged inode reference items. This is fine because
5426 * at log replay time we compute the real number of links and correct the
5427 * link count in the inode item (see replay_one_buffer() and
5428 * link_to_fixup_dir());
5429 *
5430 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5431 * while logging the inode's items new index items (key type
5432 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5433 * has a size that doesn't match the sum of the lengths of all the logged
5434 * names - this is ok, not a problem, because at log replay time we set the
5435 * directory's i_size to the correct value (see replay_one_name() and
5436 * overwrite_item()).
5437 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5438 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5439 struct btrfs_inode *start_inode,
5440 struct btrfs_log_ctx *ctx)
5441 {
5442 struct btrfs_root *root = start_inode->root;
5443 struct btrfs_path *path;
5444 LIST_HEAD(dir_list);
5445 struct btrfs_dir_list *dir_elem;
5446 u64 ino = btrfs_ino(start_inode);
5447 struct btrfs_inode *curr_inode = start_inode;
5448 int ret = 0;
5449
5450 /*
5451 * If we are logging a new name, as part of a link or rename operation,
5452 * don't bother logging new dentries, as we just want to log the names
5453 * of an inode and that any new parents exist.
5454 */
5455 if (ctx->logging_new_name)
5456 return 0;
5457
5458 path = btrfs_alloc_path();
5459 if (!path)
5460 return -ENOMEM;
5461
5462 /* Pairs with btrfs_add_delayed_iput below. */
5463 ihold(&curr_inode->vfs_inode);
5464
5465 while (true) {
5466 struct btrfs_key key;
5467 struct btrfs_key found_key;
5468 u64 next_index;
5469 bool continue_curr_inode = true;
5470 int iter_ret;
5471
5472 key.objectid = ino;
5473 key.type = BTRFS_DIR_INDEX_KEY;
5474 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5475 next_index = key.offset;
5476 again:
5477 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5478 struct extent_buffer *leaf = path->nodes[0];
5479 struct btrfs_dir_item *di;
5480 struct btrfs_key di_key;
5481 struct btrfs_inode *di_inode;
5482 int log_mode = LOG_INODE_EXISTS;
5483 int type;
5484
5485 if (found_key.objectid != ino ||
5486 found_key.type != BTRFS_DIR_INDEX_KEY) {
5487 continue_curr_inode = false;
5488 break;
5489 }
5490
5491 next_index = found_key.offset + 1;
5492
5493 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5494 type = btrfs_dir_ftype(leaf, di);
5495 if (btrfs_dir_transid(leaf, di) < trans->transid)
5496 continue;
5497 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5498 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5499 continue;
5500
5501 btrfs_release_path(path);
5502 di_inode = btrfs_iget_logging(di_key.objectid, root);
5503 if (IS_ERR(di_inode)) {
5504 ret = PTR_ERR(di_inode);
5505 goto out;
5506 }
5507
5508 if (!need_log_inode(trans, di_inode)) {
5509 btrfs_add_delayed_iput(di_inode);
5510 break;
5511 }
5512
5513 ctx->log_new_dentries = false;
5514 if (type == BTRFS_FT_DIR)
5515 log_mode = LOG_INODE_ALL;
5516 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5517 btrfs_add_delayed_iput(di_inode);
5518 if (ret)
5519 goto out;
5520 if (ctx->log_new_dentries) {
5521 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 if (!dir_elem) {
5523 ret = -ENOMEM;
5524 goto out;
5525 }
5526 dir_elem->ino = di_key.objectid;
5527 list_add_tail(&dir_elem->list, &dir_list);
5528 }
5529 break;
5530 }
5531
5532 btrfs_release_path(path);
5533
5534 if (iter_ret < 0) {
5535 ret = iter_ret;
5536 goto out;
5537 } else if (iter_ret > 0) {
5538 continue_curr_inode = false;
5539 } else {
5540 key = found_key;
5541 }
5542
5543 if (continue_curr_inode && key.offset < (u64)-1) {
5544 key.offset++;
5545 goto again;
5546 }
5547
5548 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5549
5550 if (list_empty(&dir_list))
5551 break;
5552
5553 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5554 ino = dir_elem->ino;
5555 list_del(&dir_elem->list);
5556 kfree(dir_elem);
5557
5558 btrfs_add_delayed_iput(curr_inode);
5559
5560 curr_inode = btrfs_iget_logging(ino, root);
5561 if (IS_ERR(curr_inode)) {
5562 ret = PTR_ERR(curr_inode);
5563 curr_inode = NULL;
5564 break;
5565 }
5566 }
5567 out:
5568 btrfs_free_path(path);
5569 if (curr_inode)
5570 btrfs_add_delayed_iput(curr_inode);
5571
5572 if (ret) {
5573 struct btrfs_dir_list *next;
5574
5575 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5576 kfree(dir_elem);
5577 }
5578
5579 return ret;
5580 }
5581
5582 struct btrfs_ino_list {
5583 u64 ino;
5584 u64 parent;
5585 struct list_head list;
5586 };
5587
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5588 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5589 {
5590 struct btrfs_ino_list *curr;
5591 struct btrfs_ino_list *next;
5592
5593 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5594 list_del(&curr->list);
5595 kfree(curr);
5596 }
5597 }
5598
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5599 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5600 struct btrfs_path *path)
5601 {
5602 struct btrfs_key key;
5603 int ret;
5604
5605 key.objectid = ino;
5606 key.type = BTRFS_INODE_ITEM_KEY;
5607 key.offset = 0;
5608
5609 path->search_commit_root = 1;
5610 path->skip_locking = 1;
5611
5612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5613 if (WARN_ON_ONCE(ret > 0)) {
5614 /*
5615 * We have previously found the inode through the commit root
5616 * so this should not happen. If it does, just error out and
5617 * fallback to a transaction commit.
5618 */
5619 ret = -ENOENT;
5620 } else if (ret == 0) {
5621 struct btrfs_inode_item *item;
5622
5623 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5624 struct btrfs_inode_item);
5625 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5626 ret = 1;
5627 }
5628
5629 btrfs_release_path(path);
5630 path->search_commit_root = 0;
5631 path->skip_locking = 0;
5632
5633 return ret;
5634 }
5635
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5636 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5637 struct btrfs_root *root,
5638 struct btrfs_path *path,
5639 u64 ino, u64 parent,
5640 struct btrfs_log_ctx *ctx)
5641 {
5642 struct btrfs_ino_list *ino_elem;
5643 struct btrfs_inode *inode;
5644
5645 /*
5646 * It's rare to have a lot of conflicting inodes, in practice it is not
5647 * common to have more than 1 or 2. We don't want to collect too many,
5648 * as we could end up logging too many inodes (even if only in
5649 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5650 * commits.
5651 */
5652 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5653 return BTRFS_LOG_FORCE_COMMIT;
5654
5655 inode = btrfs_iget_logging(ino, root);
5656 /*
5657 * If the other inode that had a conflicting dir entry was deleted in
5658 * the current transaction then we either:
5659 *
5660 * 1) Log the parent directory (later after adding it to the list) if
5661 * the inode is a directory. This is because it may be a deleted
5662 * subvolume/snapshot or it may be a regular directory that had
5663 * deleted subvolumes/snapshots (or subdirectories that had them),
5664 * and at the moment we can't deal with dropping subvolumes/snapshots
5665 * during log replay. So we just log the parent, which will result in
5666 * a fallback to a transaction commit if we are dealing with those
5667 * cases (last_unlink_trans will match the current transaction);
5668 *
5669 * 2) Do nothing if it's not a directory. During log replay we simply
5670 * unlink the conflicting dentry from the parent directory and then
5671 * add the dentry for our inode. Like this we can avoid logging the
5672 * parent directory (and maybe fallback to a transaction commit in
5673 * case it has a last_unlink_trans == trans->transid, due to moving
5674 * some inode from it to some other directory).
5675 */
5676 if (IS_ERR(inode)) {
5677 int ret = PTR_ERR(inode);
5678
5679 if (ret != -ENOENT)
5680 return ret;
5681
5682 ret = conflicting_inode_is_dir(root, ino, path);
5683 /* Not a directory or we got an error. */
5684 if (ret <= 0)
5685 return ret;
5686
5687 /* Conflicting inode is a directory, so we'll log its parent. */
5688 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5689 if (!ino_elem)
5690 return -ENOMEM;
5691 ino_elem->ino = ino;
5692 ino_elem->parent = parent;
5693 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5694 ctx->num_conflict_inodes++;
5695
5696 return 0;
5697 }
5698
5699 /*
5700 * If the inode was already logged skip it - otherwise we can hit an
5701 * infinite loop. Example:
5702 *
5703 * From the commit root (previous transaction) we have the following
5704 * inodes:
5705 *
5706 * inode 257 a directory
5707 * inode 258 with references "zz" and "zz_link" on inode 257
5708 * inode 259 with reference "a" on inode 257
5709 *
5710 * And in the current (uncommitted) transaction we have:
5711 *
5712 * inode 257 a directory, unchanged
5713 * inode 258 with references "a" and "a2" on inode 257
5714 * inode 259 with reference "zz_link" on inode 257
5715 * inode 261 with reference "zz" on inode 257
5716 *
5717 * When logging inode 261 the following infinite loop could
5718 * happen if we don't skip already logged inodes:
5719 *
5720 * - we detect inode 258 as a conflicting inode, with inode 261
5721 * on reference "zz", and log it;
5722 *
5723 * - we detect inode 259 as a conflicting inode, with inode 258
5724 * on reference "a", and log it;
5725 *
5726 * - we detect inode 258 as a conflicting inode, with inode 259
5727 * on reference "zz_link", and log it - again! After this we
5728 * repeat the above steps forever.
5729 *
5730 * Here we can use need_log_inode() because we only need to log the
5731 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5732 * so that the log ends up with the new name and without the old name.
5733 */
5734 if (!need_log_inode(trans, inode)) {
5735 btrfs_add_delayed_iput(inode);
5736 return 0;
5737 }
5738
5739 btrfs_add_delayed_iput(inode);
5740
5741 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5742 if (!ino_elem)
5743 return -ENOMEM;
5744 ino_elem->ino = ino;
5745 ino_elem->parent = parent;
5746 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5747 ctx->num_conflict_inodes++;
5748
5749 return 0;
5750 }
5751
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5752 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5753 struct btrfs_root *root,
5754 struct btrfs_log_ctx *ctx)
5755 {
5756 int ret = 0;
5757
5758 /*
5759 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5760 * otherwise we could have unbounded recursion of btrfs_log_inode()
5761 * calls. This check guarantees we can have only 1 level of recursion.
5762 */
5763 if (ctx->logging_conflict_inodes)
5764 return 0;
5765
5766 ctx->logging_conflict_inodes = true;
5767
5768 /*
5769 * New conflicting inodes may be found and added to the list while we
5770 * are logging a conflicting inode, so keep iterating while the list is
5771 * not empty.
5772 */
5773 while (!list_empty(&ctx->conflict_inodes)) {
5774 struct btrfs_ino_list *curr;
5775 struct btrfs_inode *inode;
5776 u64 ino;
5777 u64 parent;
5778
5779 curr = list_first_entry(&ctx->conflict_inodes,
5780 struct btrfs_ino_list, list);
5781 ino = curr->ino;
5782 parent = curr->parent;
5783 list_del(&curr->list);
5784 kfree(curr);
5785
5786 inode = btrfs_iget_logging(ino, root);
5787 /*
5788 * If the other inode that had a conflicting dir entry was
5789 * deleted in the current transaction, we need to log its parent
5790 * directory. See the comment at add_conflicting_inode().
5791 */
5792 if (IS_ERR(inode)) {
5793 ret = PTR_ERR(inode);
5794 if (ret != -ENOENT)
5795 break;
5796
5797 inode = btrfs_iget_logging(parent, root);
5798 if (IS_ERR(inode)) {
5799 ret = PTR_ERR(inode);
5800 break;
5801 }
5802
5803 /*
5804 * Always log the directory, we cannot make this
5805 * conditional on need_log_inode() because the directory
5806 * might have been logged in LOG_INODE_EXISTS mode or
5807 * the dir index of the conflicting inode is not in a
5808 * dir index key range logged for the directory. So we
5809 * must make sure the deletion is recorded.
5810 */
5811 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5812 btrfs_add_delayed_iput(inode);
5813 if (ret)
5814 break;
5815 continue;
5816 }
5817
5818 /*
5819 * Here we can use need_log_inode() because we only need to log
5820 * the inode in LOG_INODE_EXISTS mode and rename operations
5821 * update the log, so that the log ends up with the new name and
5822 * without the old name.
5823 *
5824 * We did this check at add_conflicting_inode(), but here we do
5825 * it again because if some other task logged the inode after
5826 * that, we can avoid doing it again.
5827 */
5828 if (!need_log_inode(trans, inode)) {
5829 btrfs_add_delayed_iput(inode);
5830 continue;
5831 }
5832
5833 /*
5834 * We are safe logging the other inode without acquiring its
5835 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5836 * are safe against concurrent renames of the other inode as
5837 * well because during a rename we pin the log and update the
5838 * log with the new name before we unpin it.
5839 */
5840 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5841 btrfs_add_delayed_iput(inode);
5842 if (ret)
5843 break;
5844 }
5845
5846 ctx->logging_conflict_inodes = false;
5847 if (ret)
5848 free_conflicting_inodes(ctx);
5849
5850 return ret;
5851 }
5852
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5853 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5854 struct btrfs_inode *inode,
5855 struct btrfs_key *min_key,
5856 const struct btrfs_key *max_key,
5857 struct btrfs_path *path,
5858 struct btrfs_path *dst_path,
5859 const u64 logged_isize,
5860 const int inode_only,
5861 struct btrfs_log_ctx *ctx,
5862 bool *need_log_inode_item)
5863 {
5864 const u64 i_size = i_size_read(&inode->vfs_inode);
5865 struct btrfs_root *root = inode->root;
5866 int ins_start_slot = 0;
5867 int ins_nr = 0;
5868 int ret;
5869
5870 while (1) {
5871 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5872 if (ret < 0)
5873 return ret;
5874 if (ret > 0) {
5875 ret = 0;
5876 break;
5877 }
5878 again:
5879 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5880 if (min_key->objectid != max_key->objectid)
5881 break;
5882 if (min_key->type > max_key->type)
5883 break;
5884
5885 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5886 *need_log_inode_item = false;
5887 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5888 min_key->offset >= i_size) {
5889 /*
5890 * Extents at and beyond eof are logged with
5891 * btrfs_log_prealloc_extents().
5892 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5893 * and no keys greater than that, so bail out.
5894 */
5895 break;
5896 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5897 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5898 (inode->generation == trans->transid ||
5899 ctx->logging_conflict_inodes)) {
5900 u64 other_ino = 0;
5901 u64 other_parent = 0;
5902
5903 ret = btrfs_check_ref_name_override(path->nodes[0],
5904 path->slots[0], min_key, inode,
5905 &other_ino, &other_parent);
5906 if (ret < 0) {
5907 return ret;
5908 } else if (ret > 0 &&
5909 other_ino != btrfs_ino(ctx->inode)) {
5910 if (ins_nr > 0) {
5911 ins_nr++;
5912 } else {
5913 ins_nr = 1;
5914 ins_start_slot = path->slots[0];
5915 }
5916 ret = copy_items(trans, inode, dst_path, path,
5917 ins_start_slot, ins_nr,
5918 inode_only, logged_isize, ctx);
5919 if (ret < 0)
5920 return ret;
5921 ins_nr = 0;
5922
5923 btrfs_release_path(path);
5924 ret = add_conflicting_inode(trans, root, path,
5925 other_ino,
5926 other_parent, ctx);
5927 if (ret)
5928 return ret;
5929 goto next_key;
5930 }
5931 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5932 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5933 if (ins_nr == 0)
5934 goto next_slot;
5935 ret = copy_items(trans, inode, dst_path, path,
5936 ins_start_slot,
5937 ins_nr, inode_only, logged_isize, ctx);
5938 if (ret < 0)
5939 return ret;
5940 ins_nr = 0;
5941 goto next_slot;
5942 }
5943
5944 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5945 ins_nr++;
5946 goto next_slot;
5947 } else if (!ins_nr) {
5948 ins_start_slot = path->slots[0];
5949 ins_nr = 1;
5950 goto next_slot;
5951 }
5952
5953 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5954 ins_nr, inode_only, logged_isize, ctx);
5955 if (ret < 0)
5956 return ret;
5957 ins_nr = 1;
5958 ins_start_slot = path->slots[0];
5959 next_slot:
5960 path->slots[0]++;
5961 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5962 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5963 path->slots[0]);
5964 goto again;
5965 }
5966 if (ins_nr) {
5967 ret = copy_items(trans, inode, dst_path, path,
5968 ins_start_slot, ins_nr, inode_only,
5969 logged_isize, ctx);
5970 if (ret < 0)
5971 return ret;
5972 ins_nr = 0;
5973 }
5974 btrfs_release_path(path);
5975 next_key:
5976 if (min_key->offset < (u64)-1) {
5977 min_key->offset++;
5978 } else if (min_key->type < max_key->type) {
5979 min_key->type++;
5980 min_key->offset = 0;
5981 } else {
5982 break;
5983 }
5984
5985 /*
5986 * We may process many leaves full of items for our inode, so
5987 * avoid monopolizing a cpu for too long by rescheduling while
5988 * not holding locks on any tree.
5989 */
5990 cond_resched();
5991 }
5992 if (ins_nr) {
5993 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5994 ins_nr, inode_only, logged_isize, ctx);
5995 if (ret)
5996 return ret;
5997 }
5998
5999 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6000 /*
6001 * Release the path because otherwise we might attempt to double
6002 * lock the same leaf with btrfs_log_prealloc_extents() below.
6003 */
6004 btrfs_release_path(path);
6005 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6006 }
6007
6008 return ret;
6009 }
6010
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6011 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6012 struct btrfs_root *log,
6013 struct btrfs_path *path,
6014 const struct btrfs_item_batch *batch,
6015 const struct btrfs_delayed_item *first_item)
6016 {
6017 const struct btrfs_delayed_item *curr = first_item;
6018 int ret;
6019
6020 ret = btrfs_insert_empty_items(trans, log, path, batch);
6021 if (ret)
6022 return ret;
6023
6024 for (int i = 0; i < batch->nr; i++) {
6025 char *data_ptr;
6026
6027 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6028 write_extent_buffer(path->nodes[0], &curr->data,
6029 (unsigned long)data_ptr, curr->data_len);
6030 curr = list_next_entry(curr, log_list);
6031 path->slots[0]++;
6032 }
6033
6034 btrfs_release_path(path);
6035
6036 return 0;
6037 }
6038
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6039 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6040 struct btrfs_inode *inode,
6041 struct btrfs_path *path,
6042 const struct list_head *delayed_ins_list,
6043 struct btrfs_log_ctx *ctx)
6044 {
6045 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6046 const int max_batch_size = 195;
6047 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6048 const u64 ino = btrfs_ino(inode);
6049 struct btrfs_root *log = inode->root->log_root;
6050 struct btrfs_item_batch batch = {
6051 .nr = 0,
6052 .total_data_size = 0,
6053 };
6054 const struct btrfs_delayed_item *first = NULL;
6055 const struct btrfs_delayed_item *curr;
6056 char *ins_data;
6057 struct btrfs_key *ins_keys;
6058 u32 *ins_sizes;
6059 u64 curr_batch_size = 0;
6060 int batch_idx = 0;
6061 int ret;
6062
6063 /* We are adding dir index items to the log tree. */
6064 lockdep_assert_held(&inode->log_mutex);
6065
6066 /*
6067 * We collect delayed items before copying index keys from the subvolume
6068 * to the log tree. However just after we collected them, they may have
6069 * been flushed (all of them or just some of them), and therefore we
6070 * could have copied them from the subvolume tree to the log tree.
6071 * So find the first delayed item that was not yet logged (they are
6072 * sorted by index number).
6073 */
6074 list_for_each_entry(curr, delayed_ins_list, log_list) {
6075 if (curr->index > inode->last_dir_index_offset) {
6076 first = curr;
6077 break;
6078 }
6079 }
6080
6081 /* Empty list or all delayed items were already logged. */
6082 if (!first)
6083 return 0;
6084
6085 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6086 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6087 if (!ins_data)
6088 return -ENOMEM;
6089 ins_sizes = (u32 *)ins_data;
6090 batch.data_sizes = ins_sizes;
6091 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6092 batch.keys = ins_keys;
6093
6094 curr = first;
6095 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6096 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6097
6098 if (curr_batch_size + curr_size > leaf_data_size ||
6099 batch.nr == max_batch_size) {
6100 ret = insert_delayed_items_batch(trans, log, path,
6101 &batch, first);
6102 if (ret)
6103 goto out;
6104 batch_idx = 0;
6105 batch.nr = 0;
6106 batch.total_data_size = 0;
6107 curr_batch_size = 0;
6108 first = curr;
6109 }
6110
6111 ins_sizes[batch_idx] = curr->data_len;
6112 ins_keys[batch_idx].objectid = ino;
6113 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6114 ins_keys[batch_idx].offset = curr->index;
6115 curr_batch_size += curr_size;
6116 batch.total_data_size += curr->data_len;
6117 batch.nr++;
6118 batch_idx++;
6119 curr = list_next_entry(curr, log_list);
6120 }
6121
6122 ASSERT(batch.nr >= 1);
6123 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6124
6125 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6126 log_list);
6127 inode->last_dir_index_offset = curr->index;
6128 out:
6129 kfree(ins_data);
6130
6131 return ret;
6132 }
6133
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6134 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6135 struct btrfs_inode *inode,
6136 struct btrfs_path *path,
6137 const struct list_head *delayed_del_list,
6138 struct btrfs_log_ctx *ctx)
6139 {
6140 const u64 ino = btrfs_ino(inode);
6141 const struct btrfs_delayed_item *curr;
6142
6143 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6144 log_list);
6145
6146 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6147 u64 first_dir_index = curr->index;
6148 u64 last_dir_index;
6149 const struct btrfs_delayed_item *next;
6150 int ret;
6151
6152 /*
6153 * Find a range of consecutive dir index items to delete. Like
6154 * this we log a single dir range item spanning several contiguous
6155 * dir items instead of logging one range item per dir index item.
6156 */
6157 next = list_next_entry(curr, log_list);
6158 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6159 if (next->index != curr->index + 1)
6160 break;
6161 curr = next;
6162 next = list_next_entry(next, log_list);
6163 }
6164
6165 last_dir_index = curr->index;
6166 ASSERT(last_dir_index >= first_dir_index);
6167
6168 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6169 ino, first_dir_index, last_dir_index);
6170 if (ret)
6171 return ret;
6172 curr = list_next_entry(curr, log_list);
6173 }
6174
6175 return 0;
6176 }
6177
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6178 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6179 struct btrfs_inode *inode,
6180 struct btrfs_path *path,
6181 const struct list_head *delayed_del_list,
6182 const struct btrfs_delayed_item *first,
6183 const struct btrfs_delayed_item **last_ret)
6184 {
6185 const struct btrfs_delayed_item *next;
6186 struct extent_buffer *leaf = path->nodes[0];
6187 const int last_slot = btrfs_header_nritems(leaf) - 1;
6188 int slot = path->slots[0] + 1;
6189 const u64 ino = btrfs_ino(inode);
6190
6191 next = list_next_entry(first, log_list);
6192
6193 while (slot < last_slot &&
6194 !list_entry_is_head(next, delayed_del_list, log_list)) {
6195 struct btrfs_key key;
6196
6197 btrfs_item_key_to_cpu(leaf, &key, slot);
6198 if (key.objectid != ino ||
6199 key.type != BTRFS_DIR_INDEX_KEY ||
6200 key.offset != next->index)
6201 break;
6202
6203 slot++;
6204 *last_ret = next;
6205 next = list_next_entry(next, log_list);
6206 }
6207
6208 return btrfs_del_items(trans, inode->root->log_root, path,
6209 path->slots[0], slot - path->slots[0]);
6210 }
6211
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6212 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6213 struct btrfs_inode *inode,
6214 struct btrfs_path *path,
6215 const struct list_head *delayed_del_list,
6216 struct btrfs_log_ctx *ctx)
6217 {
6218 struct btrfs_root *log = inode->root->log_root;
6219 const struct btrfs_delayed_item *curr;
6220 u64 last_range_start = 0;
6221 u64 last_range_end = 0;
6222 struct btrfs_key key;
6223
6224 key.objectid = btrfs_ino(inode);
6225 key.type = BTRFS_DIR_INDEX_KEY;
6226 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6227 log_list);
6228
6229 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6230 const struct btrfs_delayed_item *last = curr;
6231 u64 first_dir_index = curr->index;
6232 u64 last_dir_index;
6233 bool deleted_items = false;
6234 int ret;
6235
6236 key.offset = curr->index;
6237 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6238 if (ret < 0) {
6239 return ret;
6240 } else if (ret == 0) {
6241 ret = batch_delete_dir_index_items(trans, inode, path,
6242 delayed_del_list, curr,
6243 &last);
6244 if (ret)
6245 return ret;
6246 deleted_items = true;
6247 }
6248
6249 btrfs_release_path(path);
6250
6251 /*
6252 * If we deleted items from the leaf, it means we have a range
6253 * item logging their range, so no need to add one or update an
6254 * existing one. Otherwise we have to log a dir range item.
6255 */
6256 if (deleted_items)
6257 goto next_batch;
6258
6259 last_dir_index = last->index;
6260 ASSERT(last_dir_index >= first_dir_index);
6261 /*
6262 * If this range starts right after where the previous one ends,
6263 * then we want to reuse the previous range item and change its
6264 * end offset to the end of this range. This is just to minimize
6265 * leaf space usage, by avoiding adding a new range item.
6266 */
6267 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6268 first_dir_index = last_range_start;
6269
6270 ret = insert_dir_log_key(trans, log, path, key.objectid,
6271 first_dir_index, last_dir_index);
6272 if (ret)
6273 return ret;
6274
6275 last_range_start = first_dir_index;
6276 last_range_end = last_dir_index;
6277 next_batch:
6278 curr = list_next_entry(last, log_list);
6279 }
6280
6281 return 0;
6282 }
6283
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6284 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6285 struct btrfs_inode *inode,
6286 struct btrfs_path *path,
6287 const struct list_head *delayed_del_list,
6288 struct btrfs_log_ctx *ctx)
6289 {
6290 /*
6291 * We are deleting dir index items from the log tree or adding range
6292 * items to it.
6293 */
6294 lockdep_assert_held(&inode->log_mutex);
6295
6296 if (list_empty(delayed_del_list))
6297 return 0;
6298
6299 if (ctx->logged_before)
6300 return log_delayed_deletions_incremental(trans, inode, path,
6301 delayed_del_list, ctx);
6302
6303 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6304 ctx);
6305 }
6306
6307 /*
6308 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6309 * items instead of the subvolume tree.
6310 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6311 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6312 struct btrfs_inode *inode,
6313 const struct list_head *delayed_ins_list,
6314 struct btrfs_log_ctx *ctx)
6315 {
6316 const bool orig_log_new_dentries = ctx->log_new_dentries;
6317 struct btrfs_delayed_item *item;
6318 int ret = 0;
6319
6320 /*
6321 * No need for the log mutex, plus to avoid potential deadlocks or
6322 * lockdep annotations due to nesting of delayed inode mutexes and log
6323 * mutexes.
6324 */
6325 lockdep_assert_not_held(&inode->log_mutex);
6326
6327 ASSERT(!ctx->logging_new_delayed_dentries);
6328 ctx->logging_new_delayed_dentries = true;
6329
6330 list_for_each_entry(item, delayed_ins_list, log_list) {
6331 struct btrfs_dir_item *dir_item;
6332 struct btrfs_inode *di_inode;
6333 struct btrfs_key key;
6334 int log_mode = LOG_INODE_EXISTS;
6335
6336 dir_item = (struct btrfs_dir_item *)item->data;
6337 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6338
6339 if (key.type == BTRFS_ROOT_ITEM_KEY)
6340 continue;
6341
6342 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6343 if (IS_ERR(di_inode)) {
6344 ret = PTR_ERR(di_inode);
6345 break;
6346 }
6347
6348 if (!need_log_inode(trans, di_inode)) {
6349 btrfs_add_delayed_iput(di_inode);
6350 continue;
6351 }
6352
6353 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6354 log_mode = LOG_INODE_ALL;
6355
6356 ctx->log_new_dentries = false;
6357 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6358
6359 if (!ret && ctx->log_new_dentries)
6360 ret = log_new_dir_dentries(trans, di_inode, ctx);
6361
6362 btrfs_add_delayed_iput(di_inode);
6363
6364 if (ret)
6365 break;
6366 }
6367
6368 ctx->log_new_dentries = orig_log_new_dentries;
6369 ctx->logging_new_delayed_dentries = false;
6370
6371 return ret;
6372 }
6373
6374 /* log a single inode in the tree log.
6375 * At least one parent directory for this inode must exist in the tree
6376 * or be logged already.
6377 *
6378 * Any items from this inode changed by the current transaction are copied
6379 * to the log tree. An extra reference is taken on any extents in this
6380 * file, allowing us to avoid a whole pile of corner cases around logging
6381 * blocks that have been removed from the tree.
6382 *
6383 * See LOG_INODE_ALL and related defines for a description of what inode_only
6384 * does.
6385 *
6386 * This handles both files and directories.
6387 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6388 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6389 struct btrfs_inode *inode,
6390 int inode_only,
6391 struct btrfs_log_ctx *ctx)
6392 {
6393 struct btrfs_path *path;
6394 struct btrfs_path *dst_path;
6395 struct btrfs_key min_key;
6396 struct btrfs_key max_key;
6397 struct btrfs_root *log = inode->root->log_root;
6398 int ret;
6399 bool fast_search = false;
6400 u64 ino = btrfs_ino(inode);
6401 struct extent_map_tree *em_tree = &inode->extent_tree;
6402 u64 logged_isize = 0;
6403 bool need_log_inode_item = true;
6404 bool xattrs_logged = false;
6405 bool inode_item_dropped = true;
6406 bool full_dir_logging = false;
6407 LIST_HEAD(delayed_ins_list);
6408 LIST_HEAD(delayed_del_list);
6409
6410 path = btrfs_alloc_path();
6411 if (!path)
6412 return -ENOMEM;
6413 dst_path = btrfs_alloc_path();
6414 if (!dst_path) {
6415 btrfs_free_path(path);
6416 return -ENOMEM;
6417 }
6418
6419 min_key.objectid = ino;
6420 min_key.type = BTRFS_INODE_ITEM_KEY;
6421 min_key.offset = 0;
6422
6423 max_key.objectid = ino;
6424
6425
6426 /* today the code can only do partial logging of directories */
6427 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6428 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6429 &inode->runtime_flags) &&
6430 inode_only >= LOG_INODE_EXISTS))
6431 max_key.type = BTRFS_XATTR_ITEM_KEY;
6432 else
6433 max_key.type = (u8)-1;
6434 max_key.offset = (u64)-1;
6435
6436 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6437 full_dir_logging = true;
6438
6439 /*
6440 * If we are logging a directory while we are logging dentries of the
6441 * delayed items of some other inode, then we need to flush the delayed
6442 * items of this directory and not log the delayed items directly. This
6443 * is to prevent more than one level of recursion into btrfs_log_inode()
6444 * by having something like this:
6445 *
6446 * $ mkdir -p a/b/c/d/e/f/g/h/...
6447 * $ xfs_io -c "fsync" a
6448 *
6449 * Where all directories in the path did not exist before and are
6450 * created in the current transaction.
6451 * So in such a case we directly log the delayed items of the main
6452 * directory ("a") without flushing them first, while for each of its
6453 * subdirectories we flush their delayed items before logging them.
6454 * This prevents a potential unbounded recursion like this:
6455 *
6456 * btrfs_log_inode()
6457 * log_new_delayed_dentries()
6458 * btrfs_log_inode()
6459 * log_new_delayed_dentries()
6460 * btrfs_log_inode()
6461 * log_new_delayed_dentries()
6462 * (...)
6463 *
6464 * We have thresholds for the maximum number of delayed items to have in
6465 * memory, and once they are hit, the items are flushed asynchronously.
6466 * However the limit is quite high, so lets prevent deep levels of
6467 * recursion to happen by limiting the maximum depth to be 1.
6468 */
6469 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6470 ret = btrfs_commit_inode_delayed_items(trans, inode);
6471 if (ret)
6472 goto out;
6473 }
6474
6475 mutex_lock(&inode->log_mutex);
6476
6477 /*
6478 * For symlinks, we must always log their content, which is stored in an
6479 * inline extent, otherwise we could end up with an empty symlink after
6480 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6481 * one attempts to create an empty symlink).
6482 * We don't need to worry about flushing delalloc, because when we create
6483 * the inline extent when the symlink is created (we never have delalloc
6484 * for symlinks).
6485 */
6486 if (S_ISLNK(inode->vfs_inode.i_mode))
6487 inode_only = LOG_INODE_ALL;
6488
6489 /*
6490 * Before logging the inode item, cache the value returned by
6491 * inode_logged(), because after that we have the need to figure out if
6492 * the inode was previously logged in this transaction.
6493 */
6494 ret = inode_logged(trans, inode, path);
6495 if (ret < 0)
6496 goto out_unlock;
6497 ctx->logged_before = (ret == 1);
6498 ret = 0;
6499
6500 /*
6501 * This is for cases where logging a directory could result in losing a
6502 * a file after replaying the log. For example, if we move a file from a
6503 * directory A to a directory B, then fsync directory A, we have no way
6504 * to known the file was moved from A to B, so logging just A would
6505 * result in losing the file after a log replay.
6506 */
6507 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6508 ret = BTRFS_LOG_FORCE_COMMIT;
6509 goto out_unlock;
6510 }
6511
6512 /*
6513 * a brute force approach to making sure we get the most uptodate
6514 * copies of everything.
6515 */
6516 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6517 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6518 if (ctx->logged_before)
6519 ret = drop_inode_items(trans, log, path, inode,
6520 BTRFS_XATTR_ITEM_KEY);
6521 } else {
6522 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6523 /*
6524 * Make sure the new inode item we write to the log has
6525 * the same isize as the current one (if it exists).
6526 * This is necessary to prevent data loss after log
6527 * replay, and also to prevent doing a wrong expanding
6528 * truncate - for e.g. create file, write 4K into offset
6529 * 0, fsync, write 4K into offset 4096, add hard link,
6530 * fsync some other file (to sync log), power fail - if
6531 * we use the inode's current i_size, after log replay
6532 * we get a 8Kb file, with the last 4Kb extent as a hole
6533 * (zeroes), as if an expanding truncate happened,
6534 * instead of getting a file of 4Kb only.
6535 */
6536 ret = logged_inode_size(log, inode, path, &logged_isize);
6537 if (ret)
6538 goto out_unlock;
6539 }
6540 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6541 &inode->runtime_flags)) {
6542 if (inode_only == LOG_INODE_EXISTS) {
6543 max_key.type = BTRFS_XATTR_ITEM_KEY;
6544 if (ctx->logged_before)
6545 ret = drop_inode_items(trans, log, path,
6546 inode, max_key.type);
6547 } else {
6548 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6549 &inode->runtime_flags);
6550 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6551 &inode->runtime_flags);
6552 if (ctx->logged_before)
6553 ret = truncate_inode_items(trans, log,
6554 inode, 0, 0);
6555 }
6556 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6557 &inode->runtime_flags) ||
6558 inode_only == LOG_INODE_EXISTS) {
6559 if (inode_only == LOG_INODE_ALL)
6560 fast_search = true;
6561 max_key.type = BTRFS_XATTR_ITEM_KEY;
6562 if (ctx->logged_before)
6563 ret = drop_inode_items(trans, log, path, inode,
6564 max_key.type);
6565 } else {
6566 if (inode_only == LOG_INODE_ALL)
6567 fast_search = true;
6568 inode_item_dropped = false;
6569 goto log_extents;
6570 }
6571
6572 }
6573 if (ret)
6574 goto out_unlock;
6575
6576 /*
6577 * If we are logging a directory in full mode, collect the delayed items
6578 * before iterating the subvolume tree, so that we don't miss any new
6579 * dir index items in case they get flushed while or right after we are
6580 * iterating the subvolume tree.
6581 */
6582 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6583 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6584 &delayed_del_list);
6585
6586 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6587 path, dst_path, logged_isize,
6588 inode_only, ctx,
6589 &need_log_inode_item);
6590 if (ret)
6591 goto out_unlock;
6592
6593 btrfs_release_path(path);
6594 btrfs_release_path(dst_path);
6595 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6596 if (ret)
6597 goto out_unlock;
6598 xattrs_logged = true;
6599 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6600 btrfs_release_path(path);
6601 btrfs_release_path(dst_path);
6602 ret = btrfs_log_holes(trans, inode, path);
6603 if (ret)
6604 goto out_unlock;
6605 }
6606 log_extents:
6607 btrfs_release_path(path);
6608 btrfs_release_path(dst_path);
6609 if (need_log_inode_item) {
6610 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6611 if (ret)
6612 goto out_unlock;
6613 /*
6614 * If we are doing a fast fsync and the inode was logged before
6615 * in this transaction, we don't need to log the xattrs because
6616 * they were logged before. If xattrs were added, changed or
6617 * deleted since the last time we logged the inode, then we have
6618 * already logged them because the inode had the runtime flag
6619 * BTRFS_INODE_COPY_EVERYTHING set.
6620 */
6621 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6622 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6623 if (ret)
6624 goto out_unlock;
6625 btrfs_release_path(path);
6626 }
6627 }
6628 if (fast_search) {
6629 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6630 if (ret)
6631 goto out_unlock;
6632 } else if (inode_only == LOG_INODE_ALL) {
6633 struct extent_map *em, *n;
6634
6635 write_lock(&em_tree->lock);
6636 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6637 list_del_init(&em->list);
6638 write_unlock(&em_tree->lock);
6639 }
6640
6641 if (full_dir_logging) {
6642 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6643 if (ret)
6644 goto out_unlock;
6645 ret = log_delayed_insertion_items(trans, inode, path,
6646 &delayed_ins_list, ctx);
6647 if (ret)
6648 goto out_unlock;
6649 ret = log_delayed_deletion_items(trans, inode, path,
6650 &delayed_del_list, ctx);
6651 if (ret)
6652 goto out_unlock;
6653 }
6654
6655 spin_lock(&inode->lock);
6656 inode->logged_trans = trans->transid;
6657 /*
6658 * Don't update last_log_commit if we logged that an inode exists.
6659 * We do this for three reasons:
6660 *
6661 * 1) We might have had buffered writes to this inode that were
6662 * flushed and had their ordered extents completed in this
6663 * transaction, but we did not previously log the inode with
6664 * LOG_INODE_ALL. Later the inode was evicted and after that
6665 * it was loaded again and this LOG_INODE_EXISTS log operation
6666 * happened. We must make sure that if an explicit fsync against
6667 * the inode is performed later, it logs the new extents, an
6668 * updated inode item, etc, and syncs the log. The same logic
6669 * applies to direct IO writes instead of buffered writes.
6670 *
6671 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6672 * is logged with an i_size of 0 or whatever value was logged
6673 * before. If later the i_size of the inode is increased by a
6674 * truncate operation, the log is synced through an fsync of
6675 * some other inode and then finally an explicit fsync against
6676 * this inode is made, we must make sure this fsync logs the
6677 * inode with the new i_size, the hole between old i_size and
6678 * the new i_size, and syncs the log.
6679 *
6680 * 3) If we are logging that an ancestor inode exists as part of
6681 * logging a new name from a link or rename operation, don't update
6682 * its last_log_commit - otherwise if an explicit fsync is made
6683 * against an ancestor, the fsync considers the inode in the log
6684 * and doesn't sync the log, resulting in the ancestor missing after
6685 * a power failure unless the log was synced as part of an fsync
6686 * against any other unrelated inode.
6687 */
6688 if (inode_only != LOG_INODE_EXISTS)
6689 inode->last_log_commit = inode->last_sub_trans;
6690 spin_unlock(&inode->lock);
6691
6692 /*
6693 * Reset the last_reflink_trans so that the next fsync does not need to
6694 * go through the slower path when logging extents and their checksums.
6695 */
6696 if (inode_only == LOG_INODE_ALL)
6697 inode->last_reflink_trans = 0;
6698
6699 out_unlock:
6700 mutex_unlock(&inode->log_mutex);
6701 out:
6702 btrfs_free_path(path);
6703 btrfs_free_path(dst_path);
6704
6705 if (ret)
6706 free_conflicting_inodes(ctx);
6707 else
6708 ret = log_conflicting_inodes(trans, inode->root, ctx);
6709
6710 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6711 if (!ret)
6712 ret = log_new_delayed_dentries(trans, inode,
6713 &delayed_ins_list, ctx);
6714
6715 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6716 &delayed_del_list);
6717 }
6718
6719 return ret;
6720 }
6721
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6722 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6723 struct btrfs_inode *inode,
6724 struct btrfs_log_ctx *ctx)
6725 {
6726 int ret;
6727 struct btrfs_path *path;
6728 struct btrfs_key key;
6729 struct btrfs_root *root = inode->root;
6730 const u64 ino = btrfs_ino(inode);
6731
6732 path = btrfs_alloc_path();
6733 if (!path)
6734 return -ENOMEM;
6735 path->skip_locking = 1;
6736 path->search_commit_root = 1;
6737
6738 key.objectid = ino;
6739 key.type = BTRFS_INODE_REF_KEY;
6740 key.offset = 0;
6741 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6742 if (ret < 0)
6743 goto out;
6744
6745 while (true) {
6746 struct extent_buffer *leaf = path->nodes[0];
6747 int slot = path->slots[0];
6748 u32 cur_offset = 0;
6749 u32 item_size;
6750 unsigned long ptr;
6751
6752 if (slot >= btrfs_header_nritems(leaf)) {
6753 ret = btrfs_next_leaf(root, path);
6754 if (ret < 0)
6755 goto out;
6756 else if (ret > 0)
6757 break;
6758 continue;
6759 }
6760
6761 btrfs_item_key_to_cpu(leaf, &key, slot);
6762 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6763 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6764 break;
6765
6766 item_size = btrfs_item_size(leaf, slot);
6767 ptr = btrfs_item_ptr_offset(leaf, slot);
6768 while (cur_offset < item_size) {
6769 struct btrfs_key inode_key;
6770 struct btrfs_inode *dir_inode;
6771
6772 inode_key.type = BTRFS_INODE_ITEM_KEY;
6773 inode_key.offset = 0;
6774
6775 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6776 struct btrfs_inode_extref *extref;
6777
6778 extref = (struct btrfs_inode_extref *)
6779 (ptr + cur_offset);
6780 inode_key.objectid = btrfs_inode_extref_parent(
6781 leaf, extref);
6782 cur_offset += sizeof(*extref);
6783 cur_offset += btrfs_inode_extref_name_len(leaf,
6784 extref);
6785 } else {
6786 inode_key.objectid = key.offset;
6787 cur_offset = item_size;
6788 }
6789
6790 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6791 /*
6792 * If the parent inode was deleted, return an error to
6793 * fallback to a transaction commit. This is to prevent
6794 * getting an inode that was moved from one parent A to
6795 * a parent B, got its former parent A deleted and then
6796 * it got fsync'ed, from existing at both parents after
6797 * a log replay (and the old parent still existing).
6798 * Example:
6799 *
6800 * mkdir /mnt/A
6801 * mkdir /mnt/B
6802 * touch /mnt/B/bar
6803 * sync
6804 * mv /mnt/B/bar /mnt/A/bar
6805 * mv -T /mnt/A /mnt/B
6806 * fsync /mnt/B/bar
6807 * <power fail>
6808 *
6809 * If we ignore the old parent B which got deleted,
6810 * after a log replay we would have file bar linked
6811 * at both parents and the old parent B would still
6812 * exist.
6813 */
6814 if (IS_ERR(dir_inode)) {
6815 ret = PTR_ERR(dir_inode);
6816 goto out;
6817 }
6818
6819 if (!need_log_inode(trans, dir_inode)) {
6820 btrfs_add_delayed_iput(dir_inode);
6821 continue;
6822 }
6823
6824 ctx->log_new_dentries = false;
6825 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6826 if (!ret && ctx->log_new_dentries)
6827 ret = log_new_dir_dentries(trans, dir_inode, ctx);
6828 btrfs_add_delayed_iput(dir_inode);
6829 if (ret)
6830 goto out;
6831 }
6832 path->slots[0]++;
6833 }
6834 ret = 0;
6835 out:
6836 btrfs_free_path(path);
6837 return ret;
6838 }
6839
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6840 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6841 struct btrfs_root *root,
6842 struct btrfs_path *path,
6843 struct btrfs_log_ctx *ctx)
6844 {
6845 struct btrfs_key found_key;
6846
6847 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6848
6849 while (true) {
6850 struct extent_buffer *leaf;
6851 int slot;
6852 struct btrfs_key search_key;
6853 struct btrfs_inode *inode;
6854 u64 ino;
6855 int ret = 0;
6856
6857 btrfs_release_path(path);
6858
6859 ino = found_key.offset;
6860
6861 search_key.objectid = found_key.offset;
6862 search_key.type = BTRFS_INODE_ITEM_KEY;
6863 search_key.offset = 0;
6864 inode = btrfs_iget_logging(ino, root);
6865 if (IS_ERR(inode))
6866 return PTR_ERR(inode);
6867
6868 if (inode->generation >= trans->transid &&
6869 need_log_inode(trans, inode))
6870 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6871 btrfs_add_delayed_iput(inode);
6872 if (ret)
6873 return ret;
6874
6875 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6876 break;
6877
6878 search_key.type = BTRFS_INODE_REF_KEY;
6879 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6880 if (ret < 0)
6881 return ret;
6882
6883 leaf = path->nodes[0];
6884 slot = path->slots[0];
6885 if (slot >= btrfs_header_nritems(leaf)) {
6886 ret = btrfs_next_leaf(root, path);
6887 if (ret < 0)
6888 return ret;
6889 else if (ret > 0)
6890 return -ENOENT;
6891 leaf = path->nodes[0];
6892 slot = path->slots[0];
6893 }
6894
6895 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6896 if (found_key.objectid != search_key.objectid ||
6897 found_key.type != BTRFS_INODE_REF_KEY)
6898 return -ENOENT;
6899 }
6900 return 0;
6901 }
6902
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6903 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6904 struct btrfs_inode *inode,
6905 struct dentry *parent,
6906 struct btrfs_log_ctx *ctx)
6907 {
6908 struct btrfs_root *root = inode->root;
6909 struct dentry *old_parent = NULL;
6910 struct super_block *sb = inode->vfs_inode.i_sb;
6911 int ret = 0;
6912
6913 while (true) {
6914 if (!parent || d_really_is_negative(parent) ||
6915 sb != parent->d_sb)
6916 break;
6917
6918 inode = BTRFS_I(d_inode(parent));
6919 if (root != inode->root)
6920 break;
6921
6922 if (inode->generation >= trans->transid &&
6923 need_log_inode(trans, inode)) {
6924 ret = btrfs_log_inode(trans, inode,
6925 LOG_INODE_EXISTS, ctx);
6926 if (ret)
6927 break;
6928 }
6929 if (IS_ROOT(parent))
6930 break;
6931
6932 parent = dget_parent(parent);
6933 dput(old_parent);
6934 old_parent = parent;
6935 }
6936 dput(old_parent);
6937
6938 return ret;
6939 }
6940
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6941 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6942 struct btrfs_inode *inode,
6943 struct dentry *parent,
6944 struct btrfs_log_ctx *ctx)
6945 {
6946 struct btrfs_root *root = inode->root;
6947 const u64 ino = btrfs_ino(inode);
6948 struct btrfs_path *path;
6949 struct btrfs_key search_key;
6950 int ret;
6951
6952 /*
6953 * For a single hard link case, go through a fast path that does not
6954 * need to iterate the fs/subvolume tree.
6955 */
6956 if (inode->vfs_inode.i_nlink < 2)
6957 return log_new_ancestors_fast(trans, inode, parent, ctx);
6958
6959 path = btrfs_alloc_path();
6960 if (!path)
6961 return -ENOMEM;
6962
6963 search_key.objectid = ino;
6964 search_key.type = BTRFS_INODE_REF_KEY;
6965 search_key.offset = 0;
6966 again:
6967 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6968 if (ret < 0)
6969 goto out;
6970 if (ret == 0)
6971 path->slots[0]++;
6972
6973 while (true) {
6974 struct extent_buffer *leaf = path->nodes[0];
6975 int slot = path->slots[0];
6976 struct btrfs_key found_key;
6977
6978 if (slot >= btrfs_header_nritems(leaf)) {
6979 ret = btrfs_next_leaf(root, path);
6980 if (ret < 0)
6981 goto out;
6982 else if (ret > 0)
6983 break;
6984 continue;
6985 }
6986
6987 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6988 if (found_key.objectid != ino ||
6989 found_key.type > BTRFS_INODE_EXTREF_KEY)
6990 break;
6991
6992 /*
6993 * Don't deal with extended references because they are rare
6994 * cases and too complex to deal with (we would need to keep
6995 * track of which subitem we are processing for each item in
6996 * this loop, etc). So just return some error to fallback to
6997 * a transaction commit.
6998 */
6999 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7000 ret = -EMLINK;
7001 goto out;
7002 }
7003
7004 /*
7005 * Logging ancestors needs to do more searches on the fs/subvol
7006 * tree, so it releases the path as needed to avoid deadlocks.
7007 * Keep track of the last inode ref key and resume from that key
7008 * after logging all new ancestors for the current hard link.
7009 */
7010 memcpy(&search_key, &found_key, sizeof(search_key));
7011
7012 ret = log_new_ancestors(trans, root, path, ctx);
7013 if (ret)
7014 goto out;
7015 btrfs_release_path(path);
7016 goto again;
7017 }
7018 ret = 0;
7019 out:
7020 btrfs_free_path(path);
7021 return ret;
7022 }
7023
7024 /*
7025 * helper function around btrfs_log_inode to make sure newly created
7026 * parent directories also end up in the log. A minimal inode and backref
7027 * only logging is done of any parent directories that are older than
7028 * the last committed transaction
7029 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7030 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7031 struct btrfs_inode *inode,
7032 struct dentry *parent,
7033 int inode_only,
7034 struct btrfs_log_ctx *ctx)
7035 {
7036 struct btrfs_root *root = inode->root;
7037 struct btrfs_fs_info *fs_info = root->fs_info;
7038 int ret = 0;
7039 bool log_dentries;
7040
7041 if (btrfs_test_opt(fs_info, NOTREELOG))
7042 return BTRFS_LOG_FORCE_COMMIT;
7043
7044 if (btrfs_root_refs(&root->root_item) == 0)
7045 return BTRFS_LOG_FORCE_COMMIT;
7046
7047 /*
7048 * If we're logging an inode from a subvolume created in the current
7049 * transaction we must force a commit since the root is not persisted.
7050 */
7051 if (btrfs_root_generation(&root->root_item) == trans->transid)
7052 return BTRFS_LOG_FORCE_COMMIT;
7053
7054 /*
7055 * Skip already logged inodes or inodes corresponding to tmpfiles
7056 * (since logging them is pointless, a link count of 0 means they
7057 * will never be accessible).
7058 */
7059 if ((btrfs_inode_in_log(inode, trans->transid) &&
7060 list_empty(&ctx->ordered_extents)) ||
7061 inode->vfs_inode.i_nlink == 0)
7062 return BTRFS_NO_LOG_SYNC;
7063
7064 ret = start_log_trans(trans, root, ctx);
7065 if (ret)
7066 return ret;
7067
7068 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7069 if (ret)
7070 goto end_trans;
7071
7072 /*
7073 * for regular files, if its inode is already on disk, we don't
7074 * have to worry about the parents at all. This is because
7075 * we can use the last_unlink_trans field to record renames
7076 * and other fun in this file.
7077 */
7078 if (S_ISREG(inode->vfs_inode.i_mode) &&
7079 inode->generation < trans->transid &&
7080 inode->last_unlink_trans < trans->transid) {
7081 ret = 0;
7082 goto end_trans;
7083 }
7084
7085 /*
7086 * Track if we need to log dentries because ctx->log_new_dentries can
7087 * be modified in the call chains below.
7088 */
7089 log_dentries = ctx->log_new_dentries;
7090
7091 /*
7092 * On unlink we must make sure all our current and old parent directory
7093 * inodes are fully logged. This is to prevent leaving dangling
7094 * directory index entries in directories that were our parents but are
7095 * not anymore. Not doing this results in old parent directory being
7096 * impossible to delete after log replay (rmdir will always fail with
7097 * error -ENOTEMPTY).
7098 *
7099 * Example 1:
7100 *
7101 * mkdir testdir
7102 * touch testdir/foo
7103 * ln testdir/foo testdir/bar
7104 * sync
7105 * unlink testdir/bar
7106 * xfs_io -c fsync testdir/foo
7107 * <power failure>
7108 * mount fs, triggers log replay
7109 *
7110 * If we don't log the parent directory (testdir), after log replay the
7111 * directory still has an entry pointing to the file inode using the bar
7112 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7113 * the file inode has a link count of 1.
7114 *
7115 * Example 2:
7116 *
7117 * mkdir testdir
7118 * touch foo
7119 * ln foo testdir/foo2
7120 * ln foo testdir/foo3
7121 * sync
7122 * unlink testdir/foo3
7123 * xfs_io -c fsync foo
7124 * <power failure>
7125 * mount fs, triggers log replay
7126 *
7127 * Similar as the first example, after log replay the parent directory
7128 * testdir still has an entry pointing to the inode file with name foo3
7129 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7130 * and has a link count of 2.
7131 */
7132 if (inode->last_unlink_trans >= trans->transid) {
7133 ret = btrfs_log_all_parents(trans, inode, ctx);
7134 if (ret)
7135 goto end_trans;
7136 }
7137
7138 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7139 if (ret)
7140 goto end_trans;
7141
7142 if (log_dentries)
7143 ret = log_new_dir_dentries(trans, inode, ctx);
7144 end_trans:
7145 if (ret < 0) {
7146 btrfs_set_log_full_commit(trans);
7147 ret = BTRFS_LOG_FORCE_COMMIT;
7148 }
7149
7150 if (ret)
7151 btrfs_remove_log_ctx(root, ctx);
7152 btrfs_end_log_trans(root);
7153
7154 return ret;
7155 }
7156
7157 /*
7158 * it is not safe to log dentry if the chunk root has added new
7159 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7160 * If this returns 1, you must commit the transaction to safely get your
7161 * data on disk.
7162 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7163 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7164 struct dentry *dentry,
7165 struct btrfs_log_ctx *ctx)
7166 {
7167 struct dentry *parent = dget_parent(dentry);
7168 int ret;
7169
7170 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7171 LOG_INODE_ALL, ctx);
7172 dput(parent);
7173
7174 return ret;
7175 }
7176
7177 /*
7178 * should be called during mount to recover any replay any log trees
7179 * from the FS
7180 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7181 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7182 {
7183 int ret;
7184 struct btrfs_path *path;
7185 struct btrfs_trans_handle *trans;
7186 struct btrfs_key key;
7187 struct btrfs_key found_key;
7188 struct btrfs_root *log;
7189 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7190 struct walk_control wc = {
7191 .process_func = process_one_buffer,
7192 .stage = LOG_WALK_PIN_ONLY,
7193 };
7194
7195 path = btrfs_alloc_path();
7196 if (!path)
7197 return -ENOMEM;
7198
7199 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7200
7201 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7202 if (IS_ERR(trans)) {
7203 ret = PTR_ERR(trans);
7204 goto error;
7205 }
7206
7207 wc.trans = trans;
7208 wc.pin = 1;
7209
7210 ret = walk_log_tree(trans, log_root_tree, &wc);
7211 if (ret) {
7212 btrfs_abort_transaction(trans, ret);
7213 goto error;
7214 }
7215
7216 again:
7217 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7218 key.type = BTRFS_ROOT_ITEM_KEY;
7219 key.offset = (u64)-1;
7220
7221 while (1) {
7222 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7223
7224 if (ret < 0) {
7225 btrfs_abort_transaction(trans, ret);
7226 goto error;
7227 }
7228 if (ret > 0) {
7229 if (path->slots[0] == 0)
7230 break;
7231 path->slots[0]--;
7232 }
7233 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7234 path->slots[0]);
7235 btrfs_release_path(path);
7236 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7237 break;
7238
7239 log = btrfs_read_tree_root(log_root_tree, &found_key);
7240 if (IS_ERR(log)) {
7241 ret = PTR_ERR(log);
7242 btrfs_abort_transaction(trans, ret);
7243 goto error;
7244 }
7245
7246 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7247 true);
7248 if (IS_ERR(wc.replay_dest)) {
7249 ret = PTR_ERR(wc.replay_dest);
7250
7251 /*
7252 * We didn't find the subvol, likely because it was
7253 * deleted. This is ok, simply skip this log and go to
7254 * the next one.
7255 *
7256 * We need to exclude the root because we can't have
7257 * other log replays overwriting this log as we'll read
7258 * it back in a few more times. This will keep our
7259 * block from being modified, and we'll just bail for
7260 * each subsequent pass.
7261 */
7262 if (ret == -ENOENT)
7263 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7264 btrfs_put_root(log);
7265
7266 if (!ret)
7267 goto next;
7268 btrfs_abort_transaction(trans, ret);
7269 goto error;
7270 }
7271
7272 wc.replay_dest->log_root = log;
7273 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7274 if (ret)
7275 /* The loop needs to continue due to the root refs */
7276 btrfs_abort_transaction(trans, ret);
7277 else
7278 ret = walk_log_tree(trans, log, &wc);
7279
7280 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7281 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7282 path);
7283 if (ret)
7284 btrfs_abort_transaction(trans, ret);
7285 }
7286
7287 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7288 struct btrfs_root *root = wc.replay_dest;
7289
7290 btrfs_release_path(path);
7291
7292 /*
7293 * We have just replayed everything, and the highest
7294 * objectid of fs roots probably has changed in case
7295 * some inode_item's got replayed.
7296 *
7297 * root->objectid_mutex is not acquired as log replay
7298 * could only happen during mount.
7299 */
7300 ret = btrfs_init_root_free_objectid(root);
7301 if (ret)
7302 btrfs_abort_transaction(trans, ret);
7303 }
7304
7305 wc.replay_dest->log_root = NULL;
7306 btrfs_put_root(wc.replay_dest);
7307 btrfs_put_root(log);
7308
7309 if (ret)
7310 goto error;
7311 next:
7312 if (found_key.offset == 0)
7313 break;
7314 key.offset = found_key.offset - 1;
7315 }
7316 btrfs_release_path(path);
7317
7318 /* step one is to pin it all, step two is to replay just inodes */
7319 if (wc.pin) {
7320 wc.pin = 0;
7321 wc.process_func = replay_one_buffer;
7322 wc.stage = LOG_WALK_REPLAY_INODES;
7323 goto again;
7324 }
7325 /* step three is to replay everything */
7326 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7327 wc.stage++;
7328 goto again;
7329 }
7330
7331 btrfs_free_path(path);
7332
7333 /* step 4: commit the transaction, which also unpins the blocks */
7334 ret = btrfs_commit_transaction(trans);
7335 if (ret)
7336 return ret;
7337
7338 log_root_tree->log_root = NULL;
7339 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7340 btrfs_put_root(log_root_tree);
7341
7342 return 0;
7343 error:
7344 if (wc.trans)
7345 btrfs_end_transaction(wc.trans);
7346 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7347 btrfs_free_path(path);
7348 return ret;
7349 }
7350
7351 /*
7352 * there are some corner cases where we want to force a full
7353 * commit instead of allowing a directory to be logged.
7354 *
7355 * They revolve around files there were unlinked from the directory, and
7356 * this function updates the parent directory so that a full commit is
7357 * properly done if it is fsync'd later after the unlinks are done.
7358 *
7359 * Must be called before the unlink operations (updates to the subvolume tree,
7360 * inodes, etc) are done.
7361 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7362 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7363 struct btrfs_inode *dir, struct btrfs_inode *inode,
7364 bool for_rename)
7365 {
7366 /*
7367 * when we're logging a file, if it hasn't been renamed
7368 * or unlinked, and its inode is fully committed on disk,
7369 * we don't have to worry about walking up the directory chain
7370 * to log its parents.
7371 *
7372 * So, we use the last_unlink_trans field to put this transid
7373 * into the file. When the file is logged we check it and
7374 * don't log the parents if the file is fully on disk.
7375 */
7376 mutex_lock(&inode->log_mutex);
7377 inode->last_unlink_trans = trans->transid;
7378 mutex_unlock(&inode->log_mutex);
7379
7380 if (!for_rename)
7381 return;
7382
7383 /*
7384 * If this directory was already logged, any new names will be logged
7385 * with btrfs_log_new_name() and old names will be deleted from the log
7386 * tree with btrfs_del_dir_entries_in_log() or with
7387 * btrfs_del_inode_ref_in_log().
7388 */
7389 if (inode_logged(trans, dir, NULL) == 1)
7390 return;
7391
7392 /*
7393 * If the inode we're about to unlink was logged before, the log will be
7394 * properly updated with the new name with btrfs_log_new_name() and the
7395 * old name removed with btrfs_del_dir_entries_in_log() or with
7396 * btrfs_del_inode_ref_in_log().
7397 */
7398 if (inode_logged(trans, inode, NULL) == 1)
7399 return;
7400
7401 /*
7402 * when renaming files across directories, if the directory
7403 * there we're unlinking from gets fsync'd later on, there's
7404 * no way to find the destination directory later and fsync it
7405 * properly. So, we have to be conservative and force commits
7406 * so the new name gets discovered.
7407 */
7408 mutex_lock(&dir->log_mutex);
7409 dir->last_unlink_trans = trans->transid;
7410 mutex_unlock(&dir->log_mutex);
7411 }
7412
7413 /*
7414 * Make sure that if someone attempts to fsync the parent directory of a deleted
7415 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7416 * that after replaying the log tree of the parent directory's root we will not
7417 * see the snapshot anymore and at log replay time we will not see any log tree
7418 * corresponding to the deleted snapshot's root, which could lead to replaying
7419 * it after replaying the log tree of the parent directory (which would replay
7420 * the snapshot delete operation).
7421 *
7422 * Must be called before the actual snapshot destroy operation (updates to the
7423 * parent root and tree of tree roots trees, etc) are done.
7424 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7425 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7426 struct btrfs_inode *dir)
7427 {
7428 mutex_lock(&dir->log_mutex);
7429 dir->last_unlink_trans = trans->transid;
7430 mutex_unlock(&dir->log_mutex);
7431 }
7432
7433 /*
7434 * Call this when creating a subvolume in a directory.
7435 * Because we don't commit a transaction when creating a subvolume, we can't
7436 * allow the directory pointing to the subvolume to be logged with an entry that
7437 * points to an unpersisted root if we are still in the transaction used to
7438 * create the subvolume, so make any attempt to log the directory to result in a
7439 * full log sync.
7440 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7441 * for full commit when renaming a subvolume.
7442 */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7443 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7444 struct btrfs_inode *dir)
7445 {
7446 mutex_lock(&dir->log_mutex);
7447 dir->last_unlink_trans = trans->transid;
7448 mutex_unlock(&dir->log_mutex);
7449 }
7450
7451 /*
7452 * Update the log after adding a new name for an inode.
7453 *
7454 * @trans: Transaction handle.
7455 * @old_dentry: The dentry associated with the old name and the old
7456 * parent directory.
7457 * @old_dir: The inode of the previous parent directory for the case
7458 * of a rename. For a link operation, it must be NULL.
7459 * @old_dir_index: The index number associated with the old name, meaningful
7460 * only for rename operations (when @old_dir is not NULL).
7461 * Ignored for link operations.
7462 * @parent: The dentry associated with the directory under which the
7463 * new name is located.
7464 *
7465 * Call this after adding a new name for an inode, as a result of a link or
7466 * rename operation, and it will properly update the log to reflect the new name.
7467 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7468 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7469 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7470 u64 old_dir_index, struct dentry *parent)
7471 {
7472 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7473 struct btrfs_root *root = inode->root;
7474 struct btrfs_log_ctx ctx;
7475 bool log_pinned = false;
7476 int ret;
7477
7478 /*
7479 * this will force the logging code to walk the dentry chain
7480 * up for the file
7481 */
7482 if (!S_ISDIR(inode->vfs_inode.i_mode))
7483 inode->last_unlink_trans = trans->transid;
7484
7485 /*
7486 * if this inode hasn't been logged and directory we're renaming it
7487 * from hasn't been logged, we don't need to log it
7488 */
7489 ret = inode_logged(trans, inode, NULL);
7490 if (ret < 0) {
7491 goto out;
7492 } else if (ret == 0) {
7493 if (!old_dir)
7494 return;
7495 /*
7496 * If the inode was not logged and we are doing a rename (old_dir is not
7497 * NULL), check if old_dir was logged - if it was not we can return and
7498 * do nothing.
7499 */
7500 ret = inode_logged(trans, old_dir, NULL);
7501 if (ret < 0)
7502 goto out;
7503 else if (ret == 0)
7504 return;
7505 }
7506 ret = 0;
7507
7508 /*
7509 * If we are doing a rename (old_dir is not NULL) from a directory that
7510 * was previously logged, make sure that on log replay we get the old
7511 * dir entry deleted. This is needed because we will also log the new
7512 * name of the renamed inode, so we need to make sure that after log
7513 * replay we don't end up with both the new and old dir entries existing.
7514 */
7515 if (old_dir && old_dir->logged_trans == trans->transid) {
7516 struct btrfs_root *log = old_dir->root->log_root;
7517 struct btrfs_path *path;
7518 struct fscrypt_name fname;
7519
7520 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7521
7522 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7523 &old_dentry->d_name, 0, &fname);
7524 if (ret)
7525 goto out;
7526 /*
7527 * We have two inodes to update in the log, the old directory and
7528 * the inode that got renamed, so we must pin the log to prevent
7529 * anyone from syncing the log until we have updated both inodes
7530 * in the log.
7531 */
7532 ret = join_running_log_trans(root);
7533 /*
7534 * At least one of the inodes was logged before, so this should
7535 * not fail, but if it does, it's not serious, just bail out and
7536 * mark the log for a full commit.
7537 */
7538 if (WARN_ON_ONCE(ret < 0)) {
7539 fscrypt_free_filename(&fname);
7540 goto out;
7541 }
7542
7543 log_pinned = true;
7544
7545 path = btrfs_alloc_path();
7546 if (!path) {
7547 ret = -ENOMEM;
7548 fscrypt_free_filename(&fname);
7549 goto out;
7550 }
7551
7552 /*
7553 * Other concurrent task might be logging the old directory,
7554 * as it can be triggered when logging other inode that had or
7555 * still has a dentry in the old directory. We lock the old
7556 * directory's log_mutex to ensure the deletion of the old
7557 * name is persisted, because during directory logging we
7558 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7559 * the old name's dir index item is in the delayed items, so
7560 * it could be missed by an in progress directory logging.
7561 */
7562 mutex_lock(&old_dir->log_mutex);
7563 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7564 &fname.disk_name, old_dir_index);
7565 if (ret > 0) {
7566 /*
7567 * The dentry does not exist in the log, so record its
7568 * deletion.
7569 */
7570 btrfs_release_path(path);
7571 ret = insert_dir_log_key(trans, log, path,
7572 btrfs_ino(old_dir),
7573 old_dir_index, old_dir_index);
7574 }
7575 mutex_unlock(&old_dir->log_mutex);
7576
7577 btrfs_free_path(path);
7578 fscrypt_free_filename(&fname);
7579 if (ret < 0)
7580 goto out;
7581 }
7582
7583 btrfs_init_log_ctx(&ctx, inode);
7584 ctx.logging_new_name = true;
7585 btrfs_init_log_ctx_scratch_eb(&ctx);
7586 /*
7587 * We don't care about the return value. If we fail to log the new name
7588 * then we know the next attempt to sync the log will fallback to a full
7589 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7590 * we don't need to worry about getting a log committed that has an
7591 * inconsistent state after a rename operation.
7592 */
7593 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7594 free_extent_buffer(ctx.scratch_eb);
7595 ASSERT(list_empty(&ctx.conflict_inodes));
7596 out:
7597 /*
7598 * If an error happened mark the log for a full commit because it's not
7599 * consistent and up to date or we couldn't find out if one of the
7600 * inodes was logged before in this transaction. Do it before unpinning
7601 * the log, to avoid any races with someone else trying to commit it.
7602 */
7603 if (ret < 0)
7604 btrfs_set_log_full_commit(trans);
7605 if (log_pinned)
7606 btrfs_end_log_trans(root);
7607 }
7608
7609