xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 0e8863244ef5b7d4391816062fcc07ff49aa7dcf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static int vcpu_mmap_sz(void);
28 
open_path_or_exit(const char * path,int flags)29 int open_path_or_exit(const char *path, int flags)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
35 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
36 
37 	return fd;
38 }
39 
40 /*
41  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
42  *
43  * Input Args:
44  *   flags - The flags to pass when opening KVM_DEV_PATH.
45  *
46  * Return:
47  *   The opened file descriptor of /dev/kvm.
48  */
_open_kvm_dev_path_or_exit(int flags)49 static int _open_kvm_dev_path_or_exit(int flags)
50 {
51 	return open_path_or_exit(KVM_DEV_PATH, flags);
52 }
53 
open_kvm_dev_path_or_exit(void)54 int open_kvm_dev_path_or_exit(void)
55 {
56 	return _open_kvm_dev_path_or_exit(O_RDONLY);
57 }
58 
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)59 static ssize_t get_module_param(const char *module_name, const char *param,
60 				void *buffer, size_t buffer_size)
61 {
62 	const int path_size = 128;
63 	char path[path_size];
64 	ssize_t bytes_read;
65 	int fd, r;
66 
67 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
68 		     module_name, param);
69 	TEST_ASSERT(r < path_size,
70 		    "Failed to construct sysfs path in %d bytes.", path_size);
71 
72 	fd = open_path_or_exit(path, O_RDONLY);
73 
74 	bytes_read = read(fd, buffer, buffer_size);
75 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
76 		    path, bytes_read, buffer_size);
77 
78 	r = close(fd);
79 	TEST_ASSERT(!r, "close(%s) failed", path);
80 	return bytes_read;
81 }
82 
get_module_param_integer(const char * module_name,const char * param)83 static int get_module_param_integer(const char *module_name, const char *param)
84 {
85 	/*
86 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
87 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
88 	 * at the end.
89 	 */
90 	char value[16 + 1 + 1];
91 	ssize_t r;
92 
93 	memset(value, '\0', sizeof(value));
94 
95 	r = get_module_param(module_name, param, value, sizeof(value));
96 	TEST_ASSERT(value[r - 1] == '\n',
97 		    "Expected trailing newline, got char '%c'", value[r - 1]);
98 
99 	/*
100 	 * Squash the newline, otherwise atoi_paranoid() will complain about
101 	 * trailing non-NUL characters in the string.
102 	 */
103 	value[r - 1] = '\0';
104 	return atoi_paranoid(value);
105 }
106 
get_module_param_bool(const char * module_name,const char * param)107 static bool get_module_param_bool(const char *module_name, const char *param)
108 {
109 	char value;
110 	ssize_t r;
111 
112 	r = get_module_param(module_name, param, &value, sizeof(value));
113 	TEST_ASSERT_EQ(r, 1);
114 
115 	if (value == 'Y')
116 		return true;
117 	else if (value == 'N')
118 		return false;
119 
120 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
121 }
122 
get_kvm_param_bool(const char * param)123 bool get_kvm_param_bool(const char *param)
124 {
125 	return get_module_param_bool("kvm", param);
126 }
127 
get_kvm_intel_param_bool(const char * param)128 bool get_kvm_intel_param_bool(const char *param)
129 {
130 	return get_module_param_bool("kvm_intel", param);
131 }
132 
get_kvm_amd_param_bool(const char * param)133 bool get_kvm_amd_param_bool(const char *param)
134 {
135 	return get_module_param_bool("kvm_amd", param);
136 }
137 
get_kvm_param_integer(const char * param)138 int get_kvm_param_integer(const char *param)
139 {
140 	return get_module_param_integer("kvm", param);
141 }
142 
get_kvm_intel_param_integer(const char * param)143 int get_kvm_intel_param_integer(const char *param)
144 {
145 	return get_module_param_integer("kvm_intel", param);
146 }
147 
get_kvm_amd_param_integer(const char * param)148 int get_kvm_amd_param_integer(const char *param)
149 {
150 	return get_module_param_integer("kvm_amd", param);
151 }
152 
153 /*
154  * Capability
155  *
156  * Input Args:
157  *   cap - Capability
158  *
159  * Output Args: None
160  *
161  * Return:
162  *   On success, the Value corresponding to the capability (KVM_CAP_*)
163  *   specified by the value of cap.  On failure a TEST_ASSERT failure
164  *   is produced.
165  *
166  * Looks up and returns the value corresponding to the capability
167  * (KVM_CAP_*) given by cap.
168  */
kvm_check_cap(long cap)169 unsigned int kvm_check_cap(long cap)
170 {
171 	int ret;
172 	int kvm_fd;
173 
174 	kvm_fd = open_kvm_dev_path_or_exit();
175 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
176 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
177 
178 	close(kvm_fd);
179 
180 	return (unsigned int)ret;
181 }
182 
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
184 {
185 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
186 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
187 	else
188 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
189 	vm->dirty_ring_size = ring_size;
190 }
191 
vm_open(struct kvm_vm * vm)192 static void vm_open(struct kvm_vm *vm)
193 {
194 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
195 
196 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
197 
198 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
199 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
200 
201 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
202 		vm->stats.fd = vm_get_stats_fd(vm);
203 	else
204 		vm->stats.fd = -1;
205 }
206 
vm_guest_mode_string(uint32_t i)207 const char *vm_guest_mode_string(uint32_t i)
208 {
209 	static const char * const strings[] = {
210 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
211 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
212 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
213 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
214 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
215 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
216 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
217 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
218 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
219 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
220 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
221 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
222 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
223 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
224 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
225 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
226 	};
227 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
228 		       "Missing new mode strings?");
229 
230 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
231 
232 	return strings[i];
233 }
234 
235 const struct vm_guest_mode_params vm_guest_mode_params[] = {
236 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
237 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
238 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
239 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
240 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
241 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
242 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
243 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
244 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
245 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
246 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
247 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
248 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
249 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
250 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
251 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
252 };
253 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
254 	       "Missing new mode params?");
255 
256 /*
257  * Initializes vm->vpages_valid to match the canonical VA space of the
258  * architecture.
259  *
260  * The default implementation is valid for architectures which split the
261  * range addressed by a single page table into a low and high region
262  * based on the MSB of the VA. On architectures with this behavior
263  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
264  */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)265 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
266 {
267 	sparsebit_set_num(vm->vpages_valid,
268 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
269 	sparsebit_set_num(vm->vpages_valid,
270 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
271 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
272 }
273 
____vm_create(struct vm_shape shape)274 struct kvm_vm *____vm_create(struct vm_shape shape)
275 {
276 	struct kvm_vm *vm;
277 
278 	vm = calloc(1, sizeof(*vm));
279 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
280 
281 	INIT_LIST_HEAD(&vm->vcpus);
282 	vm->regions.gpa_tree = RB_ROOT;
283 	vm->regions.hva_tree = RB_ROOT;
284 	hash_init(vm->regions.slot_hash);
285 
286 	vm->mode = shape.mode;
287 	vm->type = shape.type;
288 
289 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
290 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
291 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
292 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
293 
294 	/* Setup mode specific traits. */
295 	switch (vm->mode) {
296 	case VM_MODE_P52V48_4K:
297 		vm->pgtable_levels = 4;
298 		break;
299 	case VM_MODE_P52V48_64K:
300 		vm->pgtable_levels = 3;
301 		break;
302 	case VM_MODE_P48V48_4K:
303 		vm->pgtable_levels = 4;
304 		break;
305 	case VM_MODE_P48V48_64K:
306 		vm->pgtable_levels = 3;
307 		break;
308 	case VM_MODE_P40V48_4K:
309 	case VM_MODE_P36V48_4K:
310 		vm->pgtable_levels = 4;
311 		break;
312 	case VM_MODE_P40V48_64K:
313 	case VM_MODE_P36V48_64K:
314 		vm->pgtable_levels = 3;
315 		break;
316 	case VM_MODE_P52V48_16K:
317 	case VM_MODE_P48V48_16K:
318 	case VM_MODE_P40V48_16K:
319 	case VM_MODE_P36V48_16K:
320 		vm->pgtable_levels = 4;
321 		break;
322 	case VM_MODE_P36V47_16K:
323 		vm->pgtable_levels = 3;
324 		break;
325 	case VM_MODE_PXXV48_4K:
326 #ifdef __x86_64__
327 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
328 		kvm_init_vm_address_properties(vm);
329 		/*
330 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
331 		 * it doesn't take effect unless a CR4.LA57 is set, which it
332 		 * isn't for this mode (48-bit virtual address space).
333 		 */
334 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
335 			    "Linear address width (%d bits) not supported",
336 			    vm->va_bits);
337 		pr_debug("Guest physical address width detected: %d\n",
338 			 vm->pa_bits);
339 		vm->pgtable_levels = 4;
340 		vm->va_bits = 48;
341 #else
342 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
343 #endif
344 		break;
345 	case VM_MODE_P47V64_4K:
346 		vm->pgtable_levels = 5;
347 		break;
348 	case VM_MODE_P44V64_4K:
349 		vm->pgtable_levels = 5;
350 		break;
351 	default:
352 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
353 	}
354 
355 #ifdef __aarch64__
356 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
357 	if (vm->pa_bits != 40)
358 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
359 #endif
360 
361 	vm_open(vm);
362 
363 	/* Limit to VA-bit canonical virtual addresses. */
364 	vm->vpages_valid = sparsebit_alloc();
365 	vm_vaddr_populate_bitmap(vm);
366 
367 	/* Limit physical addresses to PA-bits. */
368 	vm->max_gfn = vm_compute_max_gfn(vm);
369 
370 	/* Allocate and setup memory for guest. */
371 	vm->vpages_mapped = sparsebit_alloc();
372 
373 	return vm;
374 }
375 
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)376 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
377 				     uint32_t nr_runnable_vcpus,
378 				     uint64_t extra_mem_pages)
379 {
380 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
381 	uint64_t nr_pages;
382 
383 	TEST_ASSERT(nr_runnable_vcpus,
384 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
385 
386 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
387 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
388 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
389 
390 	/*
391 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
392 	 * test code and other per-VM assets that will be loaded into memslot0.
393 	 */
394 	nr_pages = 512;
395 
396 	/* Account for the per-vCPU stacks on behalf of the test. */
397 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
398 
399 	/*
400 	 * Account for the number of pages needed for the page tables.  The
401 	 * maximum page table size for a memory region will be when the
402 	 * smallest page size is used. Considering each page contains x page
403 	 * table descriptors, the total extra size for page tables (for extra
404 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
405 	 * than N/x*2.
406 	 */
407 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
408 
409 	/* Account for the number of pages needed by ucall. */
410 	nr_pages += ucall_nr_pages_required(page_size);
411 
412 	return vm_adjust_num_guest_pages(mode, nr_pages);
413 }
414 
kvm_set_files_rlimit(uint32_t nr_vcpus)415 void kvm_set_files_rlimit(uint32_t nr_vcpus)
416 {
417 	/*
418 	 * Each vCPU will open two file descriptors: the vCPU itself and the
419 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
420 	 * buffer for all other files a test may open.
421 	 */
422 	int nr_fds_wanted = nr_vcpus * 2 + 100;
423 	struct rlimit rl;
424 
425 	/*
426 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
427 	 * try raising the limits if needed.
428 	 */
429 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
430 
431 	if (rl.rlim_cur < nr_fds_wanted) {
432 		rl.rlim_cur = nr_fds_wanted;
433 		if (rl.rlim_max < nr_fds_wanted) {
434 			int old_rlim_max = rl.rlim_max;
435 
436 			rl.rlim_max = nr_fds_wanted;
437 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
438 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
439 				       old_rlim_max, nr_fds_wanted);
440 		} else {
441 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
442 		}
443 	}
444 
445 }
446 
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)447 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
448 			   uint64_t nr_extra_pages)
449 {
450 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
451 						 nr_extra_pages);
452 	struct userspace_mem_region *slot0;
453 	struct kvm_vm *vm;
454 	int i;
455 
456 	kvm_set_files_rlimit(nr_runnable_vcpus);
457 
458 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
459 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
460 
461 	vm = ____vm_create(shape);
462 
463 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
464 	for (i = 0; i < NR_MEM_REGIONS; i++)
465 		vm->memslots[i] = 0;
466 
467 	kvm_vm_elf_load(vm, program_invocation_name);
468 
469 	/*
470 	 * TODO: Add proper defines to protect the library's memslots, and then
471 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
472 	 * read-only memslots as MMIO, and creating a read-only memslot for the
473 	 * MMIO region would prevent silently clobbering the MMIO region.
474 	 */
475 	slot0 = memslot2region(vm, 0);
476 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
477 
478 	if (guest_random_seed != last_guest_seed) {
479 		pr_info("Random seed: 0x%x\n", guest_random_seed);
480 		last_guest_seed = guest_random_seed;
481 	}
482 	guest_rng = new_guest_random_state(guest_random_seed);
483 	sync_global_to_guest(vm, guest_rng);
484 
485 	kvm_arch_vm_post_create(vm);
486 
487 	return vm;
488 }
489 
490 /*
491  * VM Create with customized parameters
492  *
493  * Input Args:
494  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
495  *   nr_vcpus - VCPU count
496  *   extra_mem_pages - Non-slot0 physical memory total size
497  *   guest_code - Guest entry point
498  *   vcpuids - VCPU IDs
499  *
500  * Output Args: None
501  *
502  * Return:
503  *   Pointer to opaque structure that describes the created VM.
504  *
505  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
506  * extra_mem_pages is only used to calculate the maximum page table size,
507  * no real memory allocation for non-slot0 memory in this function.
508  */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])509 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
510 				      uint64_t extra_mem_pages,
511 				      void *guest_code, struct kvm_vcpu *vcpus[])
512 {
513 	struct kvm_vm *vm;
514 	int i;
515 
516 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
517 
518 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
519 
520 	for (i = 0; i < nr_vcpus; ++i)
521 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
522 
523 	return vm;
524 }
525 
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)526 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
527 					       struct kvm_vcpu **vcpu,
528 					       uint64_t extra_mem_pages,
529 					       void *guest_code)
530 {
531 	struct kvm_vcpu *vcpus[1];
532 	struct kvm_vm *vm;
533 
534 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
535 
536 	*vcpu = vcpus[0];
537 	return vm;
538 }
539 
540 /*
541  * VM Restart
542  *
543  * Input Args:
544  *   vm - VM that has been released before
545  *
546  * Output Args: None
547  *
548  * Reopens the file descriptors associated to the VM and reinstates the
549  * global state, such as the irqchip and the memory regions that are mapped
550  * into the guest.
551  */
kvm_vm_restart(struct kvm_vm * vmp)552 void kvm_vm_restart(struct kvm_vm *vmp)
553 {
554 	int ctr;
555 	struct userspace_mem_region *region;
556 
557 	vm_open(vmp);
558 	if (vmp->has_irqchip)
559 		vm_create_irqchip(vmp);
560 
561 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
562 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
563 
564 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
565 			    "  rc: %i errno: %i\n"
566 			    "  slot: %u flags: 0x%x\n"
567 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
568 			    ret, errno, region->region.slot,
569 			    region->region.flags,
570 			    region->region.guest_phys_addr,
571 			    region->region.memory_size);
572 	}
573 }
574 
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)575 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
576 					      uint32_t vcpu_id)
577 {
578 	return __vm_vcpu_add(vm, vcpu_id);
579 }
580 
vm_recreate_with_one_vcpu(struct kvm_vm * vm)581 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
582 {
583 	kvm_vm_restart(vm);
584 
585 	return vm_vcpu_recreate(vm, 0);
586 }
587 
kvm_pin_this_task_to_pcpu(uint32_t pcpu)588 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
589 {
590 	cpu_set_t mask;
591 	int r;
592 
593 	CPU_ZERO(&mask);
594 	CPU_SET(pcpu, &mask);
595 	r = sched_setaffinity(0, sizeof(mask), &mask);
596 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
597 }
598 
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)599 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
600 {
601 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
602 
603 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
604 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
605 	return pcpu;
606 }
607 
kvm_print_vcpu_pinning_help(void)608 void kvm_print_vcpu_pinning_help(void)
609 {
610 	const char *name = program_invocation_name;
611 
612 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
613 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
614 	       "     entry for the main application task (specified via entry\n"
615 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
616 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
617 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
618 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
619 	       "         %s -v 3 -c 22,23,24,50\n\n"
620 	       "     To leave the application task unpinned, drop the final entry:\n\n"
621 	       "         %s -v 3 -c 22,23,24\n\n"
622 	       "     (default: no pinning)\n", name, name);
623 }
624 
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)625 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
626 			    int nr_vcpus)
627 {
628 	cpu_set_t allowed_mask;
629 	char *cpu, *cpu_list;
630 	char delim[2] = ",";
631 	int i, r;
632 
633 	cpu_list = strdup(pcpus_string);
634 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
635 
636 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
637 	TEST_ASSERT(!r, "sched_getaffinity() failed");
638 
639 	cpu = strtok(cpu_list, delim);
640 
641 	/* 1. Get all pcpus for vcpus. */
642 	for (i = 0; i < nr_vcpus; i++) {
643 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
644 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
645 		cpu = strtok(NULL, delim);
646 	}
647 
648 	/* 2. Check if the main worker needs to be pinned. */
649 	if (cpu) {
650 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
651 		cpu = strtok(NULL, delim);
652 	}
653 
654 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
655 	free(cpu_list);
656 }
657 
658 /*
659  * Userspace Memory Region Find
660  *
661  * Input Args:
662  *   vm - Virtual Machine
663  *   start - Starting VM physical address
664  *   end - Ending VM physical address, inclusive.
665  *
666  * Output Args: None
667  *
668  * Return:
669  *   Pointer to overlapping region, NULL if no such region.
670  *
671  * Searches for a region with any physical memory that overlaps with
672  * any portion of the guest physical addresses from start to end
673  * inclusive.  If multiple overlapping regions exist, a pointer to any
674  * of the regions is returned.  Null is returned only when no overlapping
675  * region exists.
676  */
677 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)678 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
679 {
680 	struct rb_node *node;
681 
682 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
683 		struct userspace_mem_region *region =
684 			container_of(node, struct userspace_mem_region, gpa_node);
685 		uint64_t existing_start = region->region.guest_phys_addr;
686 		uint64_t existing_end = region->region.guest_phys_addr
687 			+ region->region.memory_size - 1;
688 		if (start <= existing_end && end >= existing_start)
689 			return region;
690 
691 		if (start < existing_start)
692 			node = node->rb_left;
693 		else
694 			node = node->rb_right;
695 	}
696 
697 	return NULL;
698 }
699 
kvm_stats_release(struct kvm_binary_stats * stats)700 static void kvm_stats_release(struct kvm_binary_stats *stats)
701 {
702 	int ret;
703 
704 	if (stats->fd < 0)
705 		return;
706 
707 	if (stats->desc) {
708 		free(stats->desc);
709 		stats->desc = NULL;
710 	}
711 
712 	ret = close(stats->fd);
713 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
714 	stats->fd = -1;
715 }
716 
vcpu_arch_free(struct kvm_vcpu * vcpu)717 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
718 {
719 
720 }
721 
722 /*
723  * VM VCPU Remove
724  *
725  * Input Args:
726  *   vcpu - VCPU to remove
727  *
728  * Output Args: None
729  *
730  * Return: None, TEST_ASSERT failures for all error conditions
731  *
732  * Removes a vCPU from a VM and frees its resources.
733  */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)734 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
735 {
736 	int ret;
737 
738 	if (vcpu->dirty_gfns) {
739 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
740 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
741 		vcpu->dirty_gfns = NULL;
742 	}
743 
744 	ret = munmap(vcpu->run, vcpu_mmap_sz());
745 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
746 
747 	ret = close(vcpu->fd);
748 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
749 
750 	kvm_stats_release(&vcpu->stats);
751 
752 	list_del(&vcpu->list);
753 
754 	vcpu_arch_free(vcpu);
755 	free(vcpu);
756 }
757 
kvm_vm_release(struct kvm_vm * vmp)758 void kvm_vm_release(struct kvm_vm *vmp)
759 {
760 	struct kvm_vcpu *vcpu, *tmp;
761 	int ret;
762 
763 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
764 		vm_vcpu_rm(vmp, vcpu);
765 
766 	ret = close(vmp->fd);
767 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
768 
769 	ret = close(vmp->kvm_fd);
770 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
771 
772 	/* Free cached stats metadata and close FD */
773 	kvm_stats_release(&vmp->stats);
774 }
775 
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)776 static void __vm_mem_region_delete(struct kvm_vm *vm,
777 				   struct userspace_mem_region *region)
778 {
779 	int ret;
780 
781 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
782 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
783 	hash_del(&region->slot_node);
784 
785 	sparsebit_free(&region->unused_phy_pages);
786 	sparsebit_free(&region->protected_phy_pages);
787 	ret = munmap(region->mmap_start, region->mmap_size);
788 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
789 	if (region->fd >= 0) {
790 		/* There's an extra map when using shared memory. */
791 		ret = munmap(region->mmap_alias, region->mmap_size);
792 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
793 		close(region->fd);
794 	}
795 	if (region->region.guest_memfd >= 0)
796 		close(region->region.guest_memfd);
797 
798 	free(region);
799 }
800 
801 /*
802  * Destroys and frees the VM pointed to by vmp.
803  */
kvm_vm_free(struct kvm_vm * vmp)804 void kvm_vm_free(struct kvm_vm *vmp)
805 {
806 	int ctr;
807 	struct hlist_node *node;
808 	struct userspace_mem_region *region;
809 
810 	if (vmp == NULL)
811 		return;
812 
813 	/* Free userspace_mem_regions. */
814 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
815 		__vm_mem_region_delete(vmp, region);
816 
817 	/* Free sparsebit arrays. */
818 	sparsebit_free(&vmp->vpages_valid);
819 	sparsebit_free(&vmp->vpages_mapped);
820 
821 	kvm_vm_release(vmp);
822 
823 	/* Free the structure describing the VM. */
824 	free(vmp);
825 }
826 
kvm_memfd_alloc(size_t size,bool hugepages)827 int kvm_memfd_alloc(size_t size, bool hugepages)
828 {
829 	int memfd_flags = MFD_CLOEXEC;
830 	int fd, r;
831 
832 	if (hugepages)
833 		memfd_flags |= MFD_HUGETLB;
834 
835 	fd = memfd_create("kvm_selftest", memfd_flags);
836 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
837 
838 	r = ftruncate(fd, size);
839 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
840 
841 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
842 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
843 
844 	return fd;
845 }
846 
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)847 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
848 					       struct userspace_mem_region *region)
849 {
850 	struct rb_node **cur, *parent;
851 
852 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
853 		struct userspace_mem_region *cregion;
854 
855 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
856 		parent = *cur;
857 		if (region->region.guest_phys_addr <
858 		    cregion->region.guest_phys_addr)
859 			cur = &(*cur)->rb_left;
860 		else {
861 			TEST_ASSERT(region->region.guest_phys_addr !=
862 				    cregion->region.guest_phys_addr,
863 				    "Duplicate GPA in region tree");
864 
865 			cur = &(*cur)->rb_right;
866 		}
867 	}
868 
869 	rb_link_node(&region->gpa_node, parent, cur);
870 	rb_insert_color(&region->gpa_node, gpa_tree);
871 }
872 
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)873 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
874 					       struct userspace_mem_region *region)
875 {
876 	struct rb_node **cur, *parent;
877 
878 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
879 		struct userspace_mem_region *cregion;
880 
881 		cregion = container_of(*cur, typeof(*cregion), hva_node);
882 		parent = *cur;
883 		if (region->host_mem < cregion->host_mem)
884 			cur = &(*cur)->rb_left;
885 		else {
886 			TEST_ASSERT(region->host_mem !=
887 				    cregion->host_mem,
888 				    "Duplicate HVA in region tree");
889 
890 			cur = &(*cur)->rb_right;
891 		}
892 	}
893 
894 	rb_link_node(&region->hva_node, parent, cur);
895 	rb_insert_color(&region->hva_node, hva_tree);
896 }
897 
898 
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)899 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
900 				uint64_t gpa, uint64_t size, void *hva)
901 {
902 	struct kvm_userspace_memory_region region = {
903 		.slot = slot,
904 		.flags = flags,
905 		.guest_phys_addr = gpa,
906 		.memory_size = size,
907 		.userspace_addr = (uintptr_t)hva,
908 	};
909 
910 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
911 }
912 
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)913 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
914 			       uint64_t gpa, uint64_t size, void *hva)
915 {
916 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
917 
918 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
919 		    errno, strerror(errno));
920 }
921 
922 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
923 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
924 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
925 
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)926 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
927 				 uint64_t gpa, uint64_t size, void *hva,
928 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
929 {
930 	struct kvm_userspace_memory_region2 region = {
931 		.slot = slot,
932 		.flags = flags,
933 		.guest_phys_addr = gpa,
934 		.memory_size = size,
935 		.userspace_addr = (uintptr_t)hva,
936 		.guest_memfd = guest_memfd,
937 		.guest_memfd_offset = guest_memfd_offset,
938 	};
939 
940 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
941 
942 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
943 }
944 
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)945 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
946 				uint64_t gpa, uint64_t size, void *hva,
947 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
948 {
949 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
950 					       guest_memfd, guest_memfd_offset);
951 
952 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
953 		    errno, strerror(errno));
954 }
955 
956 
957 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)958 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
959 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
960 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
961 {
962 	int ret;
963 	struct userspace_mem_region *region;
964 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
965 	size_t mem_size = npages * vm->page_size;
966 	size_t alignment;
967 
968 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
969 
970 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
971 		"Number of guest pages is not compatible with the host. "
972 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
973 
974 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
975 		"address not on a page boundary.\n"
976 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
977 		guest_paddr, vm->page_size);
978 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
979 		<= vm->max_gfn, "Physical range beyond maximum "
980 		"supported physical address,\n"
981 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
982 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
983 		guest_paddr, npages, vm->max_gfn, vm->page_size);
984 
985 	/*
986 	 * Confirm a mem region with an overlapping address doesn't
987 	 * already exist.
988 	 */
989 	region = (struct userspace_mem_region *) userspace_mem_region_find(
990 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
991 	if (region != NULL)
992 		TEST_FAIL("overlapping userspace_mem_region already "
993 			"exists\n"
994 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
995 			"page_size: 0x%x\n"
996 			"  existing guest_paddr: 0x%lx size: 0x%lx",
997 			guest_paddr, npages, vm->page_size,
998 			(uint64_t) region->region.guest_phys_addr,
999 			(uint64_t) region->region.memory_size);
1000 
1001 	/* Confirm no region with the requested slot already exists. */
1002 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1003 			       slot) {
1004 		if (region->region.slot != slot)
1005 			continue;
1006 
1007 		TEST_FAIL("A mem region with the requested slot "
1008 			"already exists.\n"
1009 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1010 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1011 			slot, guest_paddr, npages,
1012 			region->region.slot,
1013 			(uint64_t) region->region.guest_phys_addr,
1014 			(uint64_t) region->region.memory_size);
1015 	}
1016 
1017 	/* Allocate and initialize new mem region structure. */
1018 	region = calloc(1, sizeof(*region));
1019 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1020 	region->mmap_size = mem_size;
1021 
1022 #ifdef __s390x__
1023 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1024 	alignment = 0x100000;
1025 #else
1026 	alignment = 1;
1027 #endif
1028 
1029 	/*
1030 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1031 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1032 	 * because mmap will always return an address aligned to the HugeTLB
1033 	 * page size.
1034 	 */
1035 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1036 		alignment = max(backing_src_pagesz, alignment);
1037 
1038 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1039 
1040 	/* Add enough memory to align up if necessary */
1041 	if (alignment > 1)
1042 		region->mmap_size += alignment;
1043 
1044 	region->fd = -1;
1045 	if (backing_src_is_shared(src_type))
1046 		region->fd = kvm_memfd_alloc(region->mmap_size,
1047 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1048 
1049 	region->mmap_start = mmap(NULL, region->mmap_size,
1050 				  PROT_READ | PROT_WRITE,
1051 				  vm_mem_backing_src_alias(src_type)->flag,
1052 				  region->fd, 0);
1053 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1054 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1055 
1056 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1057 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1058 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1059 		    region->mmap_start, backing_src_pagesz);
1060 
1061 	/* Align host address */
1062 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1063 
1064 	/* As needed perform madvise */
1065 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1066 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1067 		ret = madvise(region->host_mem, mem_size,
1068 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1069 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1070 			    region->host_mem, mem_size,
1071 			    vm_mem_backing_src_alias(src_type)->name);
1072 	}
1073 
1074 	region->backing_src_type = src_type;
1075 
1076 	if (flags & KVM_MEM_GUEST_MEMFD) {
1077 		if (guest_memfd < 0) {
1078 			uint32_t guest_memfd_flags = 0;
1079 			TEST_ASSERT(!guest_memfd_offset,
1080 				    "Offset must be zero when creating new guest_memfd");
1081 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1082 		} else {
1083 			/*
1084 			 * Install a unique fd for each memslot so that the fd
1085 			 * can be closed when the region is deleted without
1086 			 * needing to track if the fd is owned by the framework
1087 			 * or by the caller.
1088 			 */
1089 			guest_memfd = dup(guest_memfd);
1090 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1091 		}
1092 
1093 		region->region.guest_memfd = guest_memfd;
1094 		region->region.guest_memfd_offset = guest_memfd_offset;
1095 	} else {
1096 		region->region.guest_memfd = -1;
1097 	}
1098 
1099 	region->unused_phy_pages = sparsebit_alloc();
1100 	if (vm_arch_has_protected_memory(vm))
1101 		region->protected_phy_pages = sparsebit_alloc();
1102 	sparsebit_set_num(region->unused_phy_pages,
1103 		guest_paddr >> vm->page_shift, npages);
1104 	region->region.slot = slot;
1105 	region->region.flags = flags;
1106 	region->region.guest_phys_addr = guest_paddr;
1107 	region->region.memory_size = npages * vm->page_size;
1108 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1109 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1110 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1111 		"  rc: %i errno: %i\n"
1112 		"  slot: %u flags: 0x%x\n"
1113 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1114 		ret, errno, slot, flags,
1115 		guest_paddr, (uint64_t) region->region.memory_size,
1116 		region->region.guest_memfd);
1117 
1118 	/* Add to quick lookup data structures */
1119 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1120 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1121 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1122 
1123 	/* If shared memory, create an alias. */
1124 	if (region->fd >= 0) {
1125 		region->mmap_alias = mmap(NULL, region->mmap_size,
1126 					  PROT_READ | PROT_WRITE,
1127 					  vm_mem_backing_src_alias(src_type)->flag,
1128 					  region->fd, 0);
1129 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1130 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1131 
1132 		/* Align host alias address */
1133 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1134 	}
1135 }
1136 
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1137 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1138 				 enum vm_mem_backing_src_type src_type,
1139 				 uint64_t guest_paddr, uint32_t slot,
1140 				 uint64_t npages, uint32_t flags)
1141 {
1142 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1143 }
1144 
1145 /*
1146  * Memslot to region
1147  *
1148  * Input Args:
1149  *   vm - Virtual Machine
1150  *   memslot - KVM memory slot ID
1151  *
1152  * Output Args: None
1153  *
1154  * Return:
1155  *   Pointer to memory region structure that describe memory region
1156  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1157  *   on error (e.g. currently no memory region using memslot as a KVM
1158  *   memory slot ID).
1159  */
1160 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1161 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1162 {
1163 	struct userspace_mem_region *region;
1164 
1165 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1166 			       memslot)
1167 		if (region->region.slot == memslot)
1168 			return region;
1169 
1170 	fprintf(stderr, "No mem region with the requested slot found,\n"
1171 		"  requested slot: %u\n", memslot);
1172 	fputs("---- vm dump ----\n", stderr);
1173 	vm_dump(stderr, vm, 2);
1174 	TEST_FAIL("Mem region not found");
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * VM Memory Region Flags Set
1180  *
1181  * Input Args:
1182  *   vm - Virtual Machine
1183  *   flags - Starting guest physical address
1184  *
1185  * Output Args: None
1186  *
1187  * Return: None
1188  *
1189  * Sets the flags of the memory region specified by the value of slot,
1190  * to the values given by flags.
1191  */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1192 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1193 {
1194 	int ret;
1195 	struct userspace_mem_region *region;
1196 
1197 	region = memslot2region(vm, slot);
1198 
1199 	region->region.flags = flags;
1200 
1201 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1202 
1203 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1204 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1205 		ret, errno, slot, flags);
1206 }
1207 
1208 /*
1209  * VM Memory Region Move
1210  *
1211  * Input Args:
1212  *   vm - Virtual Machine
1213  *   slot - Slot of the memory region to move
1214  *   new_gpa - Starting guest physical address
1215  *
1216  * Output Args: None
1217  *
1218  * Return: None
1219  *
1220  * Change the gpa of a memory region.
1221  */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1222 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1223 {
1224 	struct userspace_mem_region *region;
1225 	int ret;
1226 
1227 	region = memslot2region(vm, slot);
1228 
1229 	region->region.guest_phys_addr = new_gpa;
1230 
1231 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1232 
1233 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1234 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1235 		    ret, errno, slot, new_gpa);
1236 }
1237 
1238 /*
1239  * VM Memory Region Delete
1240  *
1241  * Input Args:
1242  *   vm - Virtual Machine
1243  *   slot - Slot of the memory region to delete
1244  *
1245  * Output Args: None
1246  *
1247  * Return: None
1248  *
1249  * Delete a memory region.
1250  */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1251 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1252 {
1253 	struct userspace_mem_region *region = memslot2region(vm, slot);
1254 
1255 	region->region.memory_size = 0;
1256 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1257 
1258 	__vm_mem_region_delete(vm, region);
1259 }
1260 
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1261 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1262 			    bool punch_hole)
1263 {
1264 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1265 	struct userspace_mem_region *region;
1266 	uint64_t end = base + size;
1267 	uint64_t gpa, len;
1268 	off_t fd_offset;
1269 	int ret;
1270 
1271 	for (gpa = base; gpa < end; gpa += len) {
1272 		uint64_t offset;
1273 
1274 		region = userspace_mem_region_find(vm, gpa, gpa);
1275 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1276 			    "Private memory region not found for GPA 0x%lx", gpa);
1277 
1278 		offset = gpa - region->region.guest_phys_addr;
1279 		fd_offset = region->region.guest_memfd_offset + offset;
1280 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1281 
1282 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1283 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1284 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1285 			    region->region.guest_memfd, mode, fd_offset);
1286 	}
1287 }
1288 
1289 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1290 static int vcpu_mmap_sz(void)
1291 {
1292 	int dev_fd, ret;
1293 
1294 	dev_fd = open_kvm_dev_path_or_exit();
1295 
1296 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1297 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1298 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1299 
1300 	close(dev_fd);
1301 
1302 	return ret;
1303 }
1304 
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1305 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1306 {
1307 	struct kvm_vcpu *vcpu;
1308 
1309 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1310 		if (vcpu->id == vcpu_id)
1311 			return true;
1312 	}
1313 
1314 	return false;
1315 }
1316 
1317 /*
1318  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1319  * No additional vCPU setup is done.  Returns the vCPU.
1320  */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1321 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1322 {
1323 	struct kvm_vcpu *vcpu;
1324 
1325 	/* Confirm a vcpu with the specified id doesn't already exist. */
1326 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1327 
1328 	/* Allocate and initialize new vcpu structure. */
1329 	vcpu = calloc(1, sizeof(*vcpu));
1330 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1331 
1332 	vcpu->vm = vm;
1333 	vcpu->id = vcpu_id;
1334 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1335 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1336 
1337 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1338 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1339 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1340 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1341 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1342 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1343 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1344 
1345 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1346 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1347 	else
1348 		vcpu->stats.fd = -1;
1349 
1350 	/* Add to linked-list of VCPUs. */
1351 	list_add(&vcpu->list, &vm->vcpus);
1352 
1353 	return vcpu;
1354 }
1355 
1356 /*
1357  * VM Virtual Address Unused Gap
1358  *
1359  * Input Args:
1360  *   vm - Virtual Machine
1361  *   sz - Size (bytes)
1362  *   vaddr_min - Minimum Virtual Address
1363  *
1364  * Output Args: None
1365  *
1366  * Return:
1367  *   Lowest virtual address at or below vaddr_min, with at least
1368  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1369  *   size sz is available.
1370  *
1371  * Within the VM specified by vm, locates the lowest starting virtual
1372  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1373  * TEST_ASSERT failure occurs for invalid input or no area of at least
1374  * sz unallocated bytes >= vaddr_min is available.
1375  */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1376 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1377 			       vm_vaddr_t vaddr_min)
1378 {
1379 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1380 
1381 	/* Determine lowest permitted virtual page index. */
1382 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1383 	if ((pgidx_start * vm->page_size) < vaddr_min)
1384 		goto no_va_found;
1385 
1386 	/* Loop over section with enough valid virtual page indexes. */
1387 	if (!sparsebit_is_set_num(vm->vpages_valid,
1388 		pgidx_start, pages))
1389 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1390 			pgidx_start, pages);
1391 	do {
1392 		/*
1393 		 * Are there enough unused virtual pages available at
1394 		 * the currently proposed starting virtual page index.
1395 		 * If not, adjust proposed starting index to next
1396 		 * possible.
1397 		 */
1398 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1399 			pgidx_start, pages))
1400 			goto va_found;
1401 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1402 			pgidx_start, pages);
1403 		if (pgidx_start == 0)
1404 			goto no_va_found;
1405 
1406 		/*
1407 		 * If needed, adjust proposed starting virtual address,
1408 		 * to next range of valid virtual addresses.
1409 		 */
1410 		if (!sparsebit_is_set_num(vm->vpages_valid,
1411 			pgidx_start, pages)) {
1412 			pgidx_start = sparsebit_next_set_num(
1413 				vm->vpages_valid, pgidx_start, pages);
1414 			if (pgidx_start == 0)
1415 				goto no_va_found;
1416 		}
1417 	} while (pgidx_start != 0);
1418 
1419 no_va_found:
1420 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1421 
1422 	/* NOT REACHED */
1423 	return -1;
1424 
1425 va_found:
1426 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1427 		pgidx_start, pages),
1428 		"Unexpected, invalid virtual page index range,\n"
1429 		"  pgidx_start: 0x%lx\n"
1430 		"  pages: 0x%lx",
1431 		pgidx_start, pages);
1432 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1433 		pgidx_start, pages),
1434 		"Unexpected, pages already mapped,\n"
1435 		"  pgidx_start: 0x%lx\n"
1436 		"  pages: 0x%lx",
1437 		pgidx_start, pages);
1438 
1439 	return pgidx_start * vm->page_size;
1440 }
1441 
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1442 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1443 				     vm_vaddr_t vaddr_min,
1444 				     enum kvm_mem_region_type type,
1445 				     bool protected)
1446 {
1447 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1448 
1449 	virt_pgd_alloc(vm);
1450 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1451 						KVM_UTIL_MIN_PFN * vm->page_size,
1452 						vm->memslots[type], protected);
1453 
1454 	/*
1455 	 * Find an unused range of virtual page addresses of at least
1456 	 * pages in length.
1457 	 */
1458 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1459 
1460 	/* Map the virtual pages. */
1461 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1462 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1463 
1464 		virt_pg_map(vm, vaddr, paddr);
1465 
1466 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1467 	}
1468 
1469 	return vaddr_start;
1470 }
1471 
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1472 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1473 			    enum kvm_mem_region_type type)
1474 {
1475 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1476 				  vm_arch_has_protected_memory(vm));
1477 }
1478 
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1479 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1480 				 vm_vaddr_t vaddr_min,
1481 				 enum kvm_mem_region_type type)
1482 {
1483 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1484 }
1485 
1486 /*
1487  * VM Virtual Address Allocate
1488  *
1489  * Input Args:
1490  *   vm - Virtual Machine
1491  *   sz - Size in bytes
1492  *   vaddr_min - Minimum starting virtual address
1493  *
1494  * Output Args: None
1495  *
1496  * Return:
1497  *   Starting guest virtual address
1498  *
1499  * Allocates at least sz bytes within the virtual address space of the vm
1500  * given by vm.  The allocated bytes are mapped to a virtual address >=
1501  * the address given by vaddr_min.  Note that each allocation uses a
1502  * a unique set of pages, with the minimum real allocation being at least
1503  * a page. The allocated physical space comes from the TEST_DATA memory region.
1504  */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1505 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1506 {
1507 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1508 }
1509 
1510 /*
1511  * VM Virtual Address Allocate Pages
1512  *
1513  * Input Args:
1514  *   vm - Virtual Machine
1515  *
1516  * Output Args: None
1517  *
1518  * Return:
1519  *   Starting guest virtual address
1520  *
1521  * Allocates at least N system pages worth of bytes within the virtual address
1522  * space of the vm.
1523  */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1524 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1525 {
1526 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1527 }
1528 
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1529 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1530 {
1531 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1532 }
1533 
1534 /*
1535  * VM Virtual Address Allocate Page
1536  *
1537  * Input Args:
1538  *   vm - Virtual Machine
1539  *
1540  * Output Args: None
1541  *
1542  * Return:
1543  *   Starting guest virtual address
1544  *
1545  * Allocates at least one system page worth of bytes within the virtual address
1546  * space of the vm.
1547  */
vm_vaddr_alloc_page(struct kvm_vm * vm)1548 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1549 {
1550 	return vm_vaddr_alloc_pages(vm, 1);
1551 }
1552 
1553 /*
1554  * Map a range of VM virtual address to the VM's physical address
1555  *
1556  * Input Args:
1557  *   vm - Virtual Machine
1558  *   vaddr - Virtuall address to map
1559  *   paddr - VM Physical Address
1560  *   npages - The number of pages to map
1561  *
1562  * Output Args: None
1563  *
1564  * Return: None
1565  *
1566  * Within the VM given by @vm, creates a virtual translation for
1567  * @npages starting at @vaddr to the page range starting at @paddr.
1568  */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1569 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1570 	      unsigned int npages)
1571 {
1572 	size_t page_size = vm->page_size;
1573 	size_t size = npages * page_size;
1574 
1575 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1576 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1577 
1578 	while (npages--) {
1579 		virt_pg_map(vm, vaddr, paddr);
1580 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1581 
1582 		vaddr += page_size;
1583 		paddr += page_size;
1584 	}
1585 }
1586 
1587 /*
1588  * Address VM Physical to Host Virtual
1589  *
1590  * Input Args:
1591  *   vm - Virtual Machine
1592  *   gpa - VM physical address
1593  *
1594  * Output Args: None
1595  *
1596  * Return:
1597  *   Equivalent host virtual address
1598  *
1599  * Locates the memory region containing the VM physical address given
1600  * by gpa, within the VM given by vm.  When found, the host virtual
1601  * address providing the memory to the vm physical address is returned.
1602  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1603  */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1604 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1605 {
1606 	struct userspace_mem_region *region;
1607 
1608 	gpa = vm_untag_gpa(vm, gpa);
1609 
1610 	region = userspace_mem_region_find(vm, gpa, gpa);
1611 	if (!region) {
1612 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1613 		return NULL;
1614 	}
1615 
1616 	return (void *)((uintptr_t)region->host_mem
1617 		+ (gpa - region->region.guest_phys_addr));
1618 }
1619 
1620 /*
1621  * Address Host Virtual to VM Physical
1622  *
1623  * Input Args:
1624  *   vm - Virtual Machine
1625  *   hva - Host virtual address
1626  *
1627  * Output Args: None
1628  *
1629  * Return:
1630  *   Equivalent VM physical address
1631  *
1632  * Locates the memory region containing the host virtual address given
1633  * by hva, within the VM given by vm.  When found, the equivalent
1634  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1635  * region containing hva exists.
1636  */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1637 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1638 {
1639 	struct rb_node *node;
1640 
1641 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1642 		struct userspace_mem_region *region =
1643 			container_of(node, struct userspace_mem_region, hva_node);
1644 
1645 		if (hva >= region->host_mem) {
1646 			if (hva <= (region->host_mem
1647 				+ region->region.memory_size - 1))
1648 				return (vm_paddr_t)((uintptr_t)
1649 					region->region.guest_phys_addr
1650 					+ (hva - (uintptr_t)region->host_mem));
1651 
1652 			node = node->rb_right;
1653 		} else
1654 			node = node->rb_left;
1655 	}
1656 
1657 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1658 	return -1;
1659 }
1660 
1661 /*
1662  * Address VM physical to Host Virtual *alias*.
1663  *
1664  * Input Args:
1665  *   vm - Virtual Machine
1666  *   gpa - VM physical address
1667  *
1668  * Output Args: None
1669  *
1670  * Return:
1671  *   Equivalent address within the host virtual *alias* area, or NULL
1672  *   (without failing the test) if the guest memory is not shared (so
1673  *   no alias exists).
1674  *
1675  * Create a writable, shared virtual=>physical alias for the specific GPA.
1676  * The primary use case is to allow the host selftest to manipulate guest
1677  * memory without mapping said memory in the guest's address space. And, for
1678  * userfaultfd-based demand paging, to do so without triggering userfaults.
1679  */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1680 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1681 {
1682 	struct userspace_mem_region *region;
1683 	uintptr_t offset;
1684 
1685 	region = userspace_mem_region_find(vm, gpa, gpa);
1686 	if (!region)
1687 		return NULL;
1688 
1689 	if (!region->host_alias)
1690 		return NULL;
1691 
1692 	offset = gpa - region->region.guest_phys_addr;
1693 	return (void *) ((uintptr_t) region->host_alias + offset);
1694 }
1695 
1696 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1697 void vm_create_irqchip(struct kvm_vm *vm)
1698 {
1699 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1700 
1701 	vm->has_irqchip = true;
1702 }
1703 
_vcpu_run(struct kvm_vcpu * vcpu)1704 int _vcpu_run(struct kvm_vcpu *vcpu)
1705 {
1706 	int rc;
1707 
1708 	do {
1709 		rc = __vcpu_run(vcpu);
1710 	} while (rc == -1 && errno == EINTR);
1711 
1712 	if (!rc)
1713 		assert_on_unhandled_exception(vcpu);
1714 
1715 	return rc;
1716 }
1717 
1718 /*
1719  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1720  * Assert if the KVM returns an error (other than -EINTR).
1721  */
vcpu_run(struct kvm_vcpu * vcpu)1722 void vcpu_run(struct kvm_vcpu *vcpu)
1723 {
1724 	int ret = _vcpu_run(vcpu);
1725 
1726 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1727 }
1728 
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1729 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1730 {
1731 	int ret;
1732 
1733 	vcpu->run->immediate_exit = 1;
1734 	ret = __vcpu_run(vcpu);
1735 	vcpu->run->immediate_exit = 0;
1736 
1737 	TEST_ASSERT(ret == -1 && errno == EINTR,
1738 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1739 		    ret, errno);
1740 }
1741 
1742 /*
1743  * Get the list of guest registers which are supported for
1744  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1745  * it is the caller's responsibility to free the list.
1746  */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1747 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1748 {
1749 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1750 	int ret;
1751 
1752 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1753 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1754 
1755 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1756 	reg_list->n = reg_list_n.n;
1757 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1758 	return reg_list;
1759 }
1760 
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1761 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1762 {
1763 	uint32_t page_size = getpagesize();
1764 	uint32_t size = vcpu->vm->dirty_ring_size;
1765 
1766 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1767 
1768 	if (!vcpu->dirty_gfns) {
1769 		void *addr;
1770 
1771 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1772 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1773 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1774 
1775 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1776 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1777 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1778 
1779 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1780 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1781 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1782 
1783 		vcpu->dirty_gfns = addr;
1784 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1785 	}
1786 
1787 	return vcpu->dirty_gfns;
1788 }
1789 
1790 /*
1791  * Device Ioctl
1792  */
1793 
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1794 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1795 {
1796 	struct kvm_device_attr attribute = {
1797 		.group = group,
1798 		.attr = attr,
1799 		.flags = 0,
1800 	};
1801 
1802 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1803 }
1804 
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1805 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1806 {
1807 	struct kvm_create_device create_dev = {
1808 		.type = type,
1809 		.flags = KVM_CREATE_DEVICE_TEST,
1810 	};
1811 
1812 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1813 }
1814 
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1815 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1816 {
1817 	struct kvm_create_device create_dev = {
1818 		.type = type,
1819 		.fd = -1,
1820 		.flags = 0,
1821 	};
1822 	int err;
1823 
1824 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1825 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1826 	return err ? : create_dev.fd;
1827 }
1828 
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1829 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1830 {
1831 	struct kvm_device_attr kvmattr = {
1832 		.group = group,
1833 		.attr = attr,
1834 		.flags = 0,
1835 		.addr = (uintptr_t)val,
1836 	};
1837 
1838 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1839 }
1840 
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1841 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1842 {
1843 	struct kvm_device_attr kvmattr = {
1844 		.group = group,
1845 		.attr = attr,
1846 		.flags = 0,
1847 		.addr = (uintptr_t)val,
1848 	};
1849 
1850 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1851 }
1852 
1853 /*
1854  * IRQ related functions.
1855  */
1856 
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1857 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1858 {
1859 	struct kvm_irq_level irq_level = {
1860 		.irq    = irq,
1861 		.level  = level,
1862 	};
1863 
1864 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1865 }
1866 
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1867 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1868 {
1869 	int ret = _kvm_irq_line(vm, irq, level);
1870 
1871 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1872 }
1873 
kvm_gsi_routing_create(void)1874 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1875 {
1876 	struct kvm_irq_routing *routing;
1877 	size_t size;
1878 
1879 	size = sizeof(struct kvm_irq_routing);
1880 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1881 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1882 	routing = calloc(1, size);
1883 	assert(routing);
1884 
1885 	return routing;
1886 }
1887 
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1888 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1889 		uint32_t gsi, uint32_t pin)
1890 {
1891 	int i;
1892 
1893 	assert(routing);
1894 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1895 
1896 	i = routing->nr;
1897 	routing->entries[i].gsi = gsi;
1898 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1899 	routing->entries[i].flags = 0;
1900 	routing->entries[i].u.irqchip.irqchip = 0;
1901 	routing->entries[i].u.irqchip.pin = pin;
1902 	routing->nr++;
1903 }
1904 
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1905 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1906 {
1907 	int ret;
1908 
1909 	assert(routing);
1910 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1911 	free(routing);
1912 
1913 	return ret;
1914 }
1915 
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1916 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1917 {
1918 	int ret;
1919 
1920 	ret = _kvm_gsi_routing_write(vm, routing);
1921 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1922 }
1923 
1924 /*
1925  * VM Dump
1926  *
1927  * Input Args:
1928  *   vm - Virtual Machine
1929  *   indent - Left margin indent amount
1930  *
1931  * Output Args:
1932  *   stream - Output FILE stream
1933  *
1934  * Return: None
1935  *
1936  * Dumps the current state of the VM given by vm, to the FILE stream
1937  * given by stream.
1938  */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1939 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1940 {
1941 	int ctr;
1942 	struct userspace_mem_region *region;
1943 	struct kvm_vcpu *vcpu;
1944 
1945 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1946 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1947 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1948 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1949 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1950 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1951 			"host_virt: %p\n", indent + 2, "",
1952 			(uint64_t) region->region.guest_phys_addr,
1953 			(uint64_t) region->region.memory_size,
1954 			region->host_mem);
1955 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1956 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1957 		if (region->protected_phy_pages) {
1958 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1959 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1960 		}
1961 	}
1962 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1963 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1964 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1965 		vm->pgd_created);
1966 	if (vm->pgd_created) {
1967 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1968 			indent + 2, "");
1969 		virt_dump(stream, vm, indent + 4);
1970 	}
1971 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1972 
1973 	list_for_each_entry(vcpu, &vm->vcpus, list)
1974 		vcpu_dump(stream, vcpu, indent + 2);
1975 }
1976 
1977 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1978 
1979 /* Known KVM exit reasons */
1980 static struct exit_reason {
1981 	unsigned int reason;
1982 	const char *name;
1983 } exit_reasons_known[] = {
1984 	KVM_EXIT_STRING(UNKNOWN),
1985 	KVM_EXIT_STRING(EXCEPTION),
1986 	KVM_EXIT_STRING(IO),
1987 	KVM_EXIT_STRING(HYPERCALL),
1988 	KVM_EXIT_STRING(DEBUG),
1989 	KVM_EXIT_STRING(HLT),
1990 	KVM_EXIT_STRING(MMIO),
1991 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1992 	KVM_EXIT_STRING(SHUTDOWN),
1993 	KVM_EXIT_STRING(FAIL_ENTRY),
1994 	KVM_EXIT_STRING(INTR),
1995 	KVM_EXIT_STRING(SET_TPR),
1996 	KVM_EXIT_STRING(TPR_ACCESS),
1997 	KVM_EXIT_STRING(S390_SIEIC),
1998 	KVM_EXIT_STRING(S390_RESET),
1999 	KVM_EXIT_STRING(DCR),
2000 	KVM_EXIT_STRING(NMI),
2001 	KVM_EXIT_STRING(INTERNAL_ERROR),
2002 	KVM_EXIT_STRING(OSI),
2003 	KVM_EXIT_STRING(PAPR_HCALL),
2004 	KVM_EXIT_STRING(S390_UCONTROL),
2005 	KVM_EXIT_STRING(WATCHDOG),
2006 	KVM_EXIT_STRING(S390_TSCH),
2007 	KVM_EXIT_STRING(EPR),
2008 	KVM_EXIT_STRING(SYSTEM_EVENT),
2009 	KVM_EXIT_STRING(S390_STSI),
2010 	KVM_EXIT_STRING(IOAPIC_EOI),
2011 	KVM_EXIT_STRING(HYPERV),
2012 	KVM_EXIT_STRING(ARM_NISV),
2013 	KVM_EXIT_STRING(X86_RDMSR),
2014 	KVM_EXIT_STRING(X86_WRMSR),
2015 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2016 	KVM_EXIT_STRING(AP_RESET_HOLD),
2017 	KVM_EXIT_STRING(X86_BUS_LOCK),
2018 	KVM_EXIT_STRING(XEN),
2019 	KVM_EXIT_STRING(RISCV_SBI),
2020 	KVM_EXIT_STRING(RISCV_CSR),
2021 	KVM_EXIT_STRING(NOTIFY),
2022 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2023 	KVM_EXIT_STRING(MEMORY_FAULT),
2024 };
2025 
2026 /*
2027  * Exit Reason String
2028  *
2029  * Input Args:
2030  *   exit_reason - Exit reason
2031  *
2032  * Output Args: None
2033  *
2034  * Return:
2035  *   Constant string pointer describing the exit reason.
2036  *
2037  * Locates and returns a constant string that describes the KVM exit
2038  * reason given by exit_reason.  If no such string is found, a constant
2039  * string of "Unknown" is returned.
2040  */
exit_reason_str(unsigned int exit_reason)2041 const char *exit_reason_str(unsigned int exit_reason)
2042 {
2043 	unsigned int n1;
2044 
2045 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2046 		if (exit_reason == exit_reasons_known[n1].reason)
2047 			return exit_reasons_known[n1].name;
2048 	}
2049 
2050 	return "Unknown";
2051 }
2052 
2053 /*
2054  * Physical Contiguous Page Allocator
2055  *
2056  * Input Args:
2057  *   vm - Virtual Machine
2058  *   num - number of pages
2059  *   paddr_min - Physical address minimum
2060  *   memslot - Memory region to allocate page from
2061  *   protected - True if the pages will be used as protected/private memory
2062  *
2063  * Output Args: None
2064  *
2065  * Return:
2066  *   Starting physical address
2067  *
2068  * Within the VM specified by vm, locates a range of available physical
2069  * pages at or above paddr_min. If found, the pages are marked as in use
2070  * and their base address is returned. A TEST_ASSERT failure occurs if
2071  * not enough pages are available at or above paddr_min.
2072  */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2073 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2074 				vm_paddr_t paddr_min, uint32_t memslot,
2075 				bool protected)
2076 {
2077 	struct userspace_mem_region *region;
2078 	sparsebit_idx_t pg, base;
2079 
2080 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2081 
2082 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2083 		"not divisible by page size.\n"
2084 		"  paddr_min: 0x%lx page_size: 0x%x",
2085 		paddr_min, vm->page_size);
2086 
2087 	region = memslot2region(vm, memslot);
2088 	TEST_ASSERT(!protected || region->protected_phy_pages,
2089 		    "Region doesn't support protected memory");
2090 
2091 	base = pg = paddr_min >> vm->page_shift;
2092 	do {
2093 		for (; pg < base + num; ++pg) {
2094 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2095 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2096 				break;
2097 			}
2098 		}
2099 	} while (pg && pg != base + num);
2100 
2101 	if (pg == 0) {
2102 		fprintf(stderr, "No guest physical page available, "
2103 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2104 			paddr_min, vm->page_size, memslot);
2105 		fputs("---- vm dump ----\n", stderr);
2106 		vm_dump(stderr, vm, 2);
2107 		abort();
2108 	}
2109 
2110 	for (pg = base; pg < base + num; ++pg) {
2111 		sparsebit_clear(region->unused_phy_pages, pg);
2112 		if (protected)
2113 			sparsebit_set(region->protected_phy_pages, pg);
2114 	}
2115 
2116 	return base * vm->page_size;
2117 }
2118 
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2119 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2120 			     uint32_t memslot)
2121 {
2122 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2123 }
2124 
vm_alloc_page_table(struct kvm_vm * vm)2125 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2126 {
2127 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2128 				 vm->memslots[MEM_REGION_PT]);
2129 }
2130 
2131 /*
2132  * Address Guest Virtual to Host Virtual
2133  *
2134  * Input Args:
2135  *   vm - Virtual Machine
2136  *   gva - VM virtual address
2137  *
2138  * Output Args: None
2139  *
2140  * Return:
2141  *   Equivalent host virtual address
2142  */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2143 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2144 {
2145 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2146 }
2147 
vm_compute_max_gfn(struct kvm_vm * vm)2148 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2149 {
2150 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2151 }
2152 
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2153 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2154 				      unsigned int page_shift,
2155 				      unsigned int new_page_shift,
2156 				      bool ceil)
2157 {
2158 	unsigned int n = 1 << (new_page_shift - page_shift);
2159 
2160 	if (page_shift >= new_page_shift)
2161 		return num_pages * (1 << (page_shift - new_page_shift));
2162 
2163 	return num_pages / n + !!(ceil && num_pages % n);
2164 }
2165 
getpageshift(void)2166 static inline int getpageshift(void)
2167 {
2168 	return __builtin_ffs(getpagesize()) - 1;
2169 }
2170 
2171 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2172 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2173 {
2174 	return vm_calc_num_pages(num_guest_pages,
2175 				 vm_guest_mode_params[mode].page_shift,
2176 				 getpageshift(), true);
2177 }
2178 
2179 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2180 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2181 {
2182 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2183 				 vm_guest_mode_params[mode].page_shift, false);
2184 }
2185 
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2186 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2187 {
2188 	unsigned int n;
2189 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2190 	return vm_adjust_num_guest_pages(mode, n);
2191 }
2192 
2193 /*
2194  * Read binary stats descriptors
2195  *
2196  * Input Args:
2197  *   stats_fd - the file descriptor for the binary stats file from which to read
2198  *   header - the binary stats metadata header corresponding to the given FD
2199  *
2200  * Output Args: None
2201  *
2202  * Return:
2203  *   A pointer to a newly allocated series of stat descriptors.
2204  *   Caller is responsible for freeing the returned kvm_stats_desc.
2205  *
2206  * Read the stats descriptors from the binary stats interface.
2207  */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2208 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2209 					      struct kvm_stats_header *header)
2210 {
2211 	struct kvm_stats_desc *stats_desc;
2212 	ssize_t desc_size, total_size, ret;
2213 
2214 	desc_size = get_stats_descriptor_size(header);
2215 	total_size = header->num_desc * desc_size;
2216 
2217 	stats_desc = calloc(header->num_desc, desc_size);
2218 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2219 
2220 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2221 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2222 
2223 	return stats_desc;
2224 }
2225 
2226 /*
2227  * Read stat data for a particular stat
2228  *
2229  * Input Args:
2230  *   stats_fd - the file descriptor for the binary stats file from which to read
2231  *   header - the binary stats metadata header corresponding to the given FD
2232  *   desc - the binary stat metadata for the particular stat to be read
2233  *   max_elements - the maximum number of 8-byte values to read into data
2234  *
2235  * Output Args:
2236  *   data - the buffer into which stat data should be read
2237  *
2238  * Read the data values of a specified stat from the binary stats interface.
2239  */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2240 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2241 		    struct kvm_stats_desc *desc, uint64_t *data,
2242 		    size_t max_elements)
2243 {
2244 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2245 	size_t size = nr_elements * sizeof(*data);
2246 	ssize_t ret;
2247 
2248 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2249 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2250 
2251 	ret = pread(stats_fd, data, size,
2252 		    header->data_offset + desc->offset);
2253 
2254 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2255 		    desc->name, errno, strerror(errno));
2256 	TEST_ASSERT(ret == size,
2257 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2258 		    desc->name, size, ret);
2259 }
2260 
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2261 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2262 		  uint64_t *data, size_t max_elements)
2263 {
2264 	struct kvm_stats_desc *desc;
2265 	size_t size_desc;
2266 	int i;
2267 
2268 	if (!stats->desc) {
2269 		read_stats_header(stats->fd, &stats->header);
2270 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2271 	}
2272 
2273 	size_desc = get_stats_descriptor_size(&stats->header);
2274 
2275 	for (i = 0; i < stats->header.num_desc; ++i) {
2276 		desc = (void *)stats->desc + (i * size_desc);
2277 
2278 		if (strcmp(desc->name, name))
2279 			continue;
2280 
2281 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2282 		return;
2283 	}
2284 
2285 	TEST_FAIL("Unable to find stat '%s'", name);
2286 }
2287 
kvm_arch_vm_post_create(struct kvm_vm * vm)2288 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2289 {
2290 }
2291 
kvm_selftest_arch_init(void)2292 __weak void kvm_selftest_arch_init(void)
2293 {
2294 }
2295 
kvm_selftest_init(void)2296 void __attribute((constructor)) kvm_selftest_init(void)
2297 {
2298 	/* Tell stdout not to buffer its content. */
2299 	setbuf(stdout, NULL);
2300 
2301 	guest_random_seed = last_guest_seed = random();
2302 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2303 
2304 	kvm_selftest_arch_init();
2305 }
2306 
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2307 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2308 {
2309 	sparsebit_idx_t pg = 0;
2310 	struct userspace_mem_region *region;
2311 
2312 	if (!vm_arch_has_protected_memory(vm))
2313 		return false;
2314 
2315 	region = userspace_mem_region_find(vm, paddr, paddr);
2316 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2317 
2318 	pg = paddr >> vm->page_shift;
2319 	return sparsebit_is_set(region->protected_phy_pages, pg);
2320 }
2321