1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26
27 static int vcpu_mmap_sz(void);
28
open_path_or_exit(const char * path,int flags)29 int open_path_or_exit(const char *path, int flags)
30 {
31 int fd;
32
33 fd = open(path, flags);
34 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
35 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
36
37 return fd;
38 }
39
40 /*
41 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
42 *
43 * Input Args:
44 * flags - The flags to pass when opening KVM_DEV_PATH.
45 *
46 * Return:
47 * The opened file descriptor of /dev/kvm.
48 */
_open_kvm_dev_path_or_exit(int flags)49 static int _open_kvm_dev_path_or_exit(int flags)
50 {
51 return open_path_or_exit(KVM_DEV_PATH, flags);
52 }
53
open_kvm_dev_path_or_exit(void)54 int open_kvm_dev_path_or_exit(void)
55 {
56 return _open_kvm_dev_path_or_exit(O_RDONLY);
57 }
58
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)59 static ssize_t get_module_param(const char *module_name, const char *param,
60 void *buffer, size_t buffer_size)
61 {
62 const int path_size = 128;
63 char path[path_size];
64 ssize_t bytes_read;
65 int fd, r;
66
67 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
68 module_name, param);
69 TEST_ASSERT(r < path_size,
70 "Failed to construct sysfs path in %d bytes.", path_size);
71
72 fd = open_path_or_exit(path, O_RDONLY);
73
74 bytes_read = read(fd, buffer, buffer_size);
75 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
76 path, bytes_read, buffer_size);
77
78 r = close(fd);
79 TEST_ASSERT(!r, "close(%s) failed", path);
80 return bytes_read;
81 }
82
get_module_param_integer(const char * module_name,const char * param)83 static int get_module_param_integer(const char *module_name, const char *param)
84 {
85 /*
86 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
87 * NUL char, and 1 byte because the kernel sucks and inserts a newline
88 * at the end.
89 */
90 char value[16 + 1 + 1];
91 ssize_t r;
92
93 memset(value, '\0', sizeof(value));
94
95 r = get_module_param(module_name, param, value, sizeof(value));
96 TEST_ASSERT(value[r - 1] == '\n',
97 "Expected trailing newline, got char '%c'", value[r - 1]);
98
99 /*
100 * Squash the newline, otherwise atoi_paranoid() will complain about
101 * trailing non-NUL characters in the string.
102 */
103 value[r - 1] = '\0';
104 return atoi_paranoid(value);
105 }
106
get_module_param_bool(const char * module_name,const char * param)107 static bool get_module_param_bool(const char *module_name, const char *param)
108 {
109 char value;
110 ssize_t r;
111
112 r = get_module_param(module_name, param, &value, sizeof(value));
113 TEST_ASSERT_EQ(r, 1);
114
115 if (value == 'Y')
116 return true;
117 else if (value == 'N')
118 return false;
119
120 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
121 }
122
get_kvm_param_bool(const char * param)123 bool get_kvm_param_bool(const char *param)
124 {
125 return get_module_param_bool("kvm", param);
126 }
127
get_kvm_intel_param_bool(const char * param)128 bool get_kvm_intel_param_bool(const char *param)
129 {
130 return get_module_param_bool("kvm_intel", param);
131 }
132
get_kvm_amd_param_bool(const char * param)133 bool get_kvm_amd_param_bool(const char *param)
134 {
135 return get_module_param_bool("kvm_amd", param);
136 }
137
get_kvm_param_integer(const char * param)138 int get_kvm_param_integer(const char *param)
139 {
140 return get_module_param_integer("kvm", param);
141 }
142
get_kvm_intel_param_integer(const char * param)143 int get_kvm_intel_param_integer(const char *param)
144 {
145 return get_module_param_integer("kvm_intel", param);
146 }
147
get_kvm_amd_param_integer(const char * param)148 int get_kvm_amd_param_integer(const char *param)
149 {
150 return get_module_param_integer("kvm_amd", param);
151 }
152
153 /*
154 * Capability
155 *
156 * Input Args:
157 * cap - Capability
158 *
159 * Output Args: None
160 *
161 * Return:
162 * On success, the Value corresponding to the capability (KVM_CAP_*)
163 * specified by the value of cap. On failure a TEST_ASSERT failure
164 * is produced.
165 *
166 * Looks up and returns the value corresponding to the capability
167 * (KVM_CAP_*) given by cap.
168 */
kvm_check_cap(long cap)169 unsigned int kvm_check_cap(long cap)
170 {
171 int ret;
172 int kvm_fd;
173
174 kvm_fd = open_kvm_dev_path_or_exit();
175 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
176 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
177
178 close(kvm_fd);
179
180 return (unsigned int)ret;
181 }
182
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
184 {
185 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
186 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
187 else
188 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
189 vm->dirty_ring_size = ring_size;
190 }
191
vm_open(struct kvm_vm * vm)192 static void vm_open(struct kvm_vm *vm)
193 {
194 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
195
196 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
197
198 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
199 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
200
201 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
202 vm->stats.fd = vm_get_stats_fd(vm);
203 else
204 vm->stats.fd = -1;
205 }
206
vm_guest_mode_string(uint32_t i)207 const char *vm_guest_mode_string(uint32_t i)
208 {
209 static const char * const strings[] = {
210 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
211 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
212 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
213 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
214 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
215 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
216 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
217 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
218 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
219 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
220 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
221 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
222 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
223 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
224 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
225 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
226 };
227 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
228 "Missing new mode strings?");
229
230 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
231
232 return strings[i];
233 }
234
235 const struct vm_guest_mode_params vm_guest_mode_params[] = {
236 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
237 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
238 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
239 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
240 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
241 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
242 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
243 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
244 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
245 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
246 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
247 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
248 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
249 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
250 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
251 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
252 };
253 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
254 "Missing new mode params?");
255
256 /*
257 * Initializes vm->vpages_valid to match the canonical VA space of the
258 * architecture.
259 *
260 * The default implementation is valid for architectures which split the
261 * range addressed by a single page table into a low and high region
262 * based on the MSB of the VA. On architectures with this behavior
263 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
264 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)265 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
266 {
267 sparsebit_set_num(vm->vpages_valid,
268 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
269 sparsebit_set_num(vm->vpages_valid,
270 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
271 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
272 }
273
____vm_create(struct vm_shape shape)274 struct kvm_vm *____vm_create(struct vm_shape shape)
275 {
276 struct kvm_vm *vm;
277
278 vm = calloc(1, sizeof(*vm));
279 TEST_ASSERT(vm != NULL, "Insufficient Memory");
280
281 INIT_LIST_HEAD(&vm->vcpus);
282 vm->regions.gpa_tree = RB_ROOT;
283 vm->regions.hva_tree = RB_ROOT;
284 hash_init(vm->regions.slot_hash);
285
286 vm->mode = shape.mode;
287 vm->type = shape.type;
288
289 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
290 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
291 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
292 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
293
294 /* Setup mode specific traits. */
295 switch (vm->mode) {
296 case VM_MODE_P52V48_4K:
297 vm->pgtable_levels = 4;
298 break;
299 case VM_MODE_P52V48_64K:
300 vm->pgtable_levels = 3;
301 break;
302 case VM_MODE_P48V48_4K:
303 vm->pgtable_levels = 4;
304 break;
305 case VM_MODE_P48V48_64K:
306 vm->pgtable_levels = 3;
307 break;
308 case VM_MODE_P40V48_4K:
309 case VM_MODE_P36V48_4K:
310 vm->pgtable_levels = 4;
311 break;
312 case VM_MODE_P40V48_64K:
313 case VM_MODE_P36V48_64K:
314 vm->pgtable_levels = 3;
315 break;
316 case VM_MODE_P52V48_16K:
317 case VM_MODE_P48V48_16K:
318 case VM_MODE_P40V48_16K:
319 case VM_MODE_P36V48_16K:
320 vm->pgtable_levels = 4;
321 break;
322 case VM_MODE_P36V47_16K:
323 vm->pgtable_levels = 3;
324 break;
325 case VM_MODE_PXXV48_4K:
326 #ifdef __x86_64__
327 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
328 kvm_init_vm_address_properties(vm);
329 /*
330 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
331 * it doesn't take effect unless a CR4.LA57 is set, which it
332 * isn't for this mode (48-bit virtual address space).
333 */
334 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
335 "Linear address width (%d bits) not supported",
336 vm->va_bits);
337 pr_debug("Guest physical address width detected: %d\n",
338 vm->pa_bits);
339 vm->pgtable_levels = 4;
340 vm->va_bits = 48;
341 #else
342 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
343 #endif
344 break;
345 case VM_MODE_P47V64_4K:
346 vm->pgtable_levels = 5;
347 break;
348 case VM_MODE_P44V64_4K:
349 vm->pgtable_levels = 5;
350 break;
351 default:
352 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
353 }
354
355 #ifdef __aarch64__
356 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
357 if (vm->pa_bits != 40)
358 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
359 #endif
360
361 vm_open(vm);
362
363 /* Limit to VA-bit canonical virtual addresses. */
364 vm->vpages_valid = sparsebit_alloc();
365 vm_vaddr_populate_bitmap(vm);
366
367 /* Limit physical addresses to PA-bits. */
368 vm->max_gfn = vm_compute_max_gfn(vm);
369
370 /* Allocate and setup memory for guest. */
371 vm->vpages_mapped = sparsebit_alloc();
372
373 return vm;
374 }
375
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)376 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
377 uint32_t nr_runnable_vcpus,
378 uint64_t extra_mem_pages)
379 {
380 uint64_t page_size = vm_guest_mode_params[mode].page_size;
381 uint64_t nr_pages;
382
383 TEST_ASSERT(nr_runnable_vcpus,
384 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
385
386 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
387 "nr_vcpus = %d too large for host, max-vcpus = %d",
388 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
389
390 /*
391 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
392 * test code and other per-VM assets that will be loaded into memslot0.
393 */
394 nr_pages = 512;
395
396 /* Account for the per-vCPU stacks on behalf of the test. */
397 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
398
399 /*
400 * Account for the number of pages needed for the page tables. The
401 * maximum page table size for a memory region will be when the
402 * smallest page size is used. Considering each page contains x page
403 * table descriptors, the total extra size for page tables (for extra
404 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
405 * than N/x*2.
406 */
407 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
408
409 /* Account for the number of pages needed by ucall. */
410 nr_pages += ucall_nr_pages_required(page_size);
411
412 return vm_adjust_num_guest_pages(mode, nr_pages);
413 }
414
kvm_set_files_rlimit(uint32_t nr_vcpus)415 void kvm_set_files_rlimit(uint32_t nr_vcpus)
416 {
417 /*
418 * Each vCPU will open two file descriptors: the vCPU itself and the
419 * vCPU's binary stats file descriptor. Add an arbitrary amount of
420 * buffer for all other files a test may open.
421 */
422 int nr_fds_wanted = nr_vcpus * 2 + 100;
423 struct rlimit rl;
424
425 /*
426 * Check that we're allowed to open nr_fds_wanted file descriptors and
427 * try raising the limits if needed.
428 */
429 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
430
431 if (rl.rlim_cur < nr_fds_wanted) {
432 rl.rlim_cur = nr_fds_wanted;
433 if (rl.rlim_max < nr_fds_wanted) {
434 int old_rlim_max = rl.rlim_max;
435
436 rl.rlim_max = nr_fds_wanted;
437 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
438 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
439 old_rlim_max, nr_fds_wanted);
440 } else {
441 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
442 }
443 }
444
445 }
446
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)447 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
448 uint64_t nr_extra_pages)
449 {
450 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
451 nr_extra_pages);
452 struct userspace_mem_region *slot0;
453 struct kvm_vm *vm;
454 int i;
455
456 kvm_set_files_rlimit(nr_runnable_vcpus);
457
458 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
459 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
460
461 vm = ____vm_create(shape);
462
463 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
464 for (i = 0; i < NR_MEM_REGIONS; i++)
465 vm->memslots[i] = 0;
466
467 kvm_vm_elf_load(vm, program_invocation_name);
468
469 /*
470 * TODO: Add proper defines to protect the library's memslots, and then
471 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
472 * read-only memslots as MMIO, and creating a read-only memslot for the
473 * MMIO region would prevent silently clobbering the MMIO region.
474 */
475 slot0 = memslot2region(vm, 0);
476 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
477
478 if (guest_random_seed != last_guest_seed) {
479 pr_info("Random seed: 0x%x\n", guest_random_seed);
480 last_guest_seed = guest_random_seed;
481 }
482 guest_rng = new_guest_random_state(guest_random_seed);
483 sync_global_to_guest(vm, guest_rng);
484
485 kvm_arch_vm_post_create(vm);
486
487 return vm;
488 }
489
490 /*
491 * VM Create with customized parameters
492 *
493 * Input Args:
494 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
495 * nr_vcpus - VCPU count
496 * extra_mem_pages - Non-slot0 physical memory total size
497 * guest_code - Guest entry point
498 * vcpuids - VCPU IDs
499 *
500 * Output Args: None
501 *
502 * Return:
503 * Pointer to opaque structure that describes the created VM.
504 *
505 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
506 * extra_mem_pages is only used to calculate the maximum page table size,
507 * no real memory allocation for non-slot0 memory in this function.
508 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])509 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
510 uint64_t extra_mem_pages,
511 void *guest_code, struct kvm_vcpu *vcpus[])
512 {
513 struct kvm_vm *vm;
514 int i;
515
516 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
517
518 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
519
520 for (i = 0; i < nr_vcpus; ++i)
521 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
522
523 return vm;
524 }
525
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)526 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
527 struct kvm_vcpu **vcpu,
528 uint64_t extra_mem_pages,
529 void *guest_code)
530 {
531 struct kvm_vcpu *vcpus[1];
532 struct kvm_vm *vm;
533
534 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
535
536 *vcpu = vcpus[0];
537 return vm;
538 }
539
540 /*
541 * VM Restart
542 *
543 * Input Args:
544 * vm - VM that has been released before
545 *
546 * Output Args: None
547 *
548 * Reopens the file descriptors associated to the VM and reinstates the
549 * global state, such as the irqchip and the memory regions that are mapped
550 * into the guest.
551 */
kvm_vm_restart(struct kvm_vm * vmp)552 void kvm_vm_restart(struct kvm_vm *vmp)
553 {
554 int ctr;
555 struct userspace_mem_region *region;
556
557 vm_open(vmp);
558 if (vmp->has_irqchip)
559 vm_create_irqchip(vmp);
560
561 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
562 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
563
564 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
565 " rc: %i errno: %i\n"
566 " slot: %u flags: 0x%x\n"
567 " guest_phys_addr: 0x%llx size: 0x%llx",
568 ret, errno, region->region.slot,
569 region->region.flags,
570 region->region.guest_phys_addr,
571 region->region.memory_size);
572 }
573 }
574
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)575 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
576 uint32_t vcpu_id)
577 {
578 return __vm_vcpu_add(vm, vcpu_id);
579 }
580
vm_recreate_with_one_vcpu(struct kvm_vm * vm)581 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
582 {
583 kvm_vm_restart(vm);
584
585 return vm_vcpu_recreate(vm, 0);
586 }
587
kvm_pin_this_task_to_pcpu(uint32_t pcpu)588 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
589 {
590 cpu_set_t mask;
591 int r;
592
593 CPU_ZERO(&mask);
594 CPU_SET(pcpu, &mask);
595 r = sched_setaffinity(0, sizeof(mask), &mask);
596 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
597 }
598
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)599 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
600 {
601 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
602
603 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
604 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
605 return pcpu;
606 }
607
kvm_print_vcpu_pinning_help(void)608 void kvm_print_vcpu_pinning_help(void)
609 {
610 const char *name = program_invocation_name;
611
612 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
613 " values (target pCPU), one for each vCPU, plus an optional\n"
614 " entry for the main application task (specified via entry\n"
615 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
616 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
617 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
618 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
619 " %s -v 3 -c 22,23,24,50\n\n"
620 " To leave the application task unpinned, drop the final entry:\n\n"
621 " %s -v 3 -c 22,23,24\n\n"
622 " (default: no pinning)\n", name, name);
623 }
624
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)625 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
626 int nr_vcpus)
627 {
628 cpu_set_t allowed_mask;
629 char *cpu, *cpu_list;
630 char delim[2] = ",";
631 int i, r;
632
633 cpu_list = strdup(pcpus_string);
634 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
635
636 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
637 TEST_ASSERT(!r, "sched_getaffinity() failed");
638
639 cpu = strtok(cpu_list, delim);
640
641 /* 1. Get all pcpus for vcpus. */
642 for (i = 0; i < nr_vcpus; i++) {
643 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
644 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
645 cpu = strtok(NULL, delim);
646 }
647
648 /* 2. Check if the main worker needs to be pinned. */
649 if (cpu) {
650 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
651 cpu = strtok(NULL, delim);
652 }
653
654 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
655 free(cpu_list);
656 }
657
658 /*
659 * Userspace Memory Region Find
660 *
661 * Input Args:
662 * vm - Virtual Machine
663 * start - Starting VM physical address
664 * end - Ending VM physical address, inclusive.
665 *
666 * Output Args: None
667 *
668 * Return:
669 * Pointer to overlapping region, NULL if no such region.
670 *
671 * Searches for a region with any physical memory that overlaps with
672 * any portion of the guest physical addresses from start to end
673 * inclusive. If multiple overlapping regions exist, a pointer to any
674 * of the regions is returned. Null is returned only when no overlapping
675 * region exists.
676 */
677 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)678 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
679 {
680 struct rb_node *node;
681
682 for (node = vm->regions.gpa_tree.rb_node; node; ) {
683 struct userspace_mem_region *region =
684 container_of(node, struct userspace_mem_region, gpa_node);
685 uint64_t existing_start = region->region.guest_phys_addr;
686 uint64_t existing_end = region->region.guest_phys_addr
687 + region->region.memory_size - 1;
688 if (start <= existing_end && end >= existing_start)
689 return region;
690
691 if (start < existing_start)
692 node = node->rb_left;
693 else
694 node = node->rb_right;
695 }
696
697 return NULL;
698 }
699
kvm_stats_release(struct kvm_binary_stats * stats)700 static void kvm_stats_release(struct kvm_binary_stats *stats)
701 {
702 int ret;
703
704 if (stats->fd < 0)
705 return;
706
707 if (stats->desc) {
708 free(stats->desc);
709 stats->desc = NULL;
710 }
711
712 ret = close(stats->fd);
713 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
714 stats->fd = -1;
715 }
716
vcpu_arch_free(struct kvm_vcpu * vcpu)717 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
718 {
719
720 }
721
722 /*
723 * VM VCPU Remove
724 *
725 * Input Args:
726 * vcpu - VCPU to remove
727 *
728 * Output Args: None
729 *
730 * Return: None, TEST_ASSERT failures for all error conditions
731 *
732 * Removes a vCPU from a VM and frees its resources.
733 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)734 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
735 {
736 int ret;
737
738 if (vcpu->dirty_gfns) {
739 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
740 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
741 vcpu->dirty_gfns = NULL;
742 }
743
744 ret = munmap(vcpu->run, vcpu_mmap_sz());
745 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
746
747 ret = close(vcpu->fd);
748 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
749
750 kvm_stats_release(&vcpu->stats);
751
752 list_del(&vcpu->list);
753
754 vcpu_arch_free(vcpu);
755 free(vcpu);
756 }
757
kvm_vm_release(struct kvm_vm * vmp)758 void kvm_vm_release(struct kvm_vm *vmp)
759 {
760 struct kvm_vcpu *vcpu, *tmp;
761 int ret;
762
763 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
764 vm_vcpu_rm(vmp, vcpu);
765
766 ret = close(vmp->fd);
767 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
768
769 ret = close(vmp->kvm_fd);
770 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
771
772 /* Free cached stats metadata and close FD */
773 kvm_stats_release(&vmp->stats);
774 }
775
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)776 static void __vm_mem_region_delete(struct kvm_vm *vm,
777 struct userspace_mem_region *region)
778 {
779 int ret;
780
781 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
782 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
783 hash_del(®ion->slot_node);
784
785 sparsebit_free(®ion->unused_phy_pages);
786 sparsebit_free(®ion->protected_phy_pages);
787 ret = munmap(region->mmap_start, region->mmap_size);
788 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
789 if (region->fd >= 0) {
790 /* There's an extra map when using shared memory. */
791 ret = munmap(region->mmap_alias, region->mmap_size);
792 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
793 close(region->fd);
794 }
795 if (region->region.guest_memfd >= 0)
796 close(region->region.guest_memfd);
797
798 free(region);
799 }
800
801 /*
802 * Destroys and frees the VM pointed to by vmp.
803 */
kvm_vm_free(struct kvm_vm * vmp)804 void kvm_vm_free(struct kvm_vm *vmp)
805 {
806 int ctr;
807 struct hlist_node *node;
808 struct userspace_mem_region *region;
809
810 if (vmp == NULL)
811 return;
812
813 /* Free userspace_mem_regions. */
814 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
815 __vm_mem_region_delete(vmp, region);
816
817 /* Free sparsebit arrays. */
818 sparsebit_free(&vmp->vpages_valid);
819 sparsebit_free(&vmp->vpages_mapped);
820
821 kvm_vm_release(vmp);
822
823 /* Free the structure describing the VM. */
824 free(vmp);
825 }
826
kvm_memfd_alloc(size_t size,bool hugepages)827 int kvm_memfd_alloc(size_t size, bool hugepages)
828 {
829 int memfd_flags = MFD_CLOEXEC;
830 int fd, r;
831
832 if (hugepages)
833 memfd_flags |= MFD_HUGETLB;
834
835 fd = memfd_create("kvm_selftest", memfd_flags);
836 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
837
838 r = ftruncate(fd, size);
839 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
840
841 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
842 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
843
844 return fd;
845 }
846
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)847 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
848 struct userspace_mem_region *region)
849 {
850 struct rb_node **cur, *parent;
851
852 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
853 struct userspace_mem_region *cregion;
854
855 cregion = container_of(*cur, typeof(*cregion), gpa_node);
856 parent = *cur;
857 if (region->region.guest_phys_addr <
858 cregion->region.guest_phys_addr)
859 cur = &(*cur)->rb_left;
860 else {
861 TEST_ASSERT(region->region.guest_phys_addr !=
862 cregion->region.guest_phys_addr,
863 "Duplicate GPA in region tree");
864
865 cur = &(*cur)->rb_right;
866 }
867 }
868
869 rb_link_node(®ion->gpa_node, parent, cur);
870 rb_insert_color(®ion->gpa_node, gpa_tree);
871 }
872
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)873 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
874 struct userspace_mem_region *region)
875 {
876 struct rb_node **cur, *parent;
877
878 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
879 struct userspace_mem_region *cregion;
880
881 cregion = container_of(*cur, typeof(*cregion), hva_node);
882 parent = *cur;
883 if (region->host_mem < cregion->host_mem)
884 cur = &(*cur)->rb_left;
885 else {
886 TEST_ASSERT(region->host_mem !=
887 cregion->host_mem,
888 "Duplicate HVA in region tree");
889
890 cur = &(*cur)->rb_right;
891 }
892 }
893
894 rb_link_node(®ion->hva_node, parent, cur);
895 rb_insert_color(®ion->hva_node, hva_tree);
896 }
897
898
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)899 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
900 uint64_t gpa, uint64_t size, void *hva)
901 {
902 struct kvm_userspace_memory_region region = {
903 .slot = slot,
904 .flags = flags,
905 .guest_phys_addr = gpa,
906 .memory_size = size,
907 .userspace_addr = (uintptr_t)hva,
908 };
909
910 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
911 }
912
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)913 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
914 uint64_t gpa, uint64_t size, void *hva)
915 {
916 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
917
918 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
919 errno, strerror(errno));
920 }
921
922 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
923 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
924 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
925
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)926 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
927 uint64_t gpa, uint64_t size, void *hva,
928 uint32_t guest_memfd, uint64_t guest_memfd_offset)
929 {
930 struct kvm_userspace_memory_region2 region = {
931 .slot = slot,
932 .flags = flags,
933 .guest_phys_addr = gpa,
934 .memory_size = size,
935 .userspace_addr = (uintptr_t)hva,
936 .guest_memfd = guest_memfd,
937 .guest_memfd_offset = guest_memfd_offset,
938 };
939
940 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
941
942 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
943 }
944
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)945 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
946 uint64_t gpa, uint64_t size, void *hva,
947 uint32_t guest_memfd, uint64_t guest_memfd_offset)
948 {
949 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
950 guest_memfd, guest_memfd_offset);
951
952 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
953 errno, strerror(errno));
954 }
955
956
957 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)958 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
959 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
960 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
961 {
962 int ret;
963 struct userspace_mem_region *region;
964 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
965 size_t mem_size = npages * vm->page_size;
966 size_t alignment;
967
968 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
969
970 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
971 "Number of guest pages is not compatible with the host. "
972 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
973
974 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
975 "address not on a page boundary.\n"
976 " guest_paddr: 0x%lx vm->page_size: 0x%x",
977 guest_paddr, vm->page_size);
978 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
979 <= vm->max_gfn, "Physical range beyond maximum "
980 "supported physical address,\n"
981 " guest_paddr: 0x%lx npages: 0x%lx\n"
982 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
983 guest_paddr, npages, vm->max_gfn, vm->page_size);
984
985 /*
986 * Confirm a mem region with an overlapping address doesn't
987 * already exist.
988 */
989 region = (struct userspace_mem_region *) userspace_mem_region_find(
990 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
991 if (region != NULL)
992 TEST_FAIL("overlapping userspace_mem_region already "
993 "exists\n"
994 " requested guest_paddr: 0x%lx npages: 0x%lx "
995 "page_size: 0x%x\n"
996 " existing guest_paddr: 0x%lx size: 0x%lx",
997 guest_paddr, npages, vm->page_size,
998 (uint64_t) region->region.guest_phys_addr,
999 (uint64_t) region->region.memory_size);
1000
1001 /* Confirm no region with the requested slot already exists. */
1002 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1003 slot) {
1004 if (region->region.slot != slot)
1005 continue;
1006
1007 TEST_FAIL("A mem region with the requested slot "
1008 "already exists.\n"
1009 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1010 " existing slot: %u paddr: 0x%lx size: 0x%lx",
1011 slot, guest_paddr, npages,
1012 region->region.slot,
1013 (uint64_t) region->region.guest_phys_addr,
1014 (uint64_t) region->region.memory_size);
1015 }
1016
1017 /* Allocate and initialize new mem region structure. */
1018 region = calloc(1, sizeof(*region));
1019 TEST_ASSERT(region != NULL, "Insufficient Memory");
1020 region->mmap_size = mem_size;
1021
1022 #ifdef __s390x__
1023 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1024 alignment = 0x100000;
1025 #else
1026 alignment = 1;
1027 #endif
1028
1029 /*
1030 * When using THP mmap is not guaranteed to returned a hugepage aligned
1031 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1032 * because mmap will always return an address aligned to the HugeTLB
1033 * page size.
1034 */
1035 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1036 alignment = max(backing_src_pagesz, alignment);
1037
1038 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1039
1040 /* Add enough memory to align up if necessary */
1041 if (alignment > 1)
1042 region->mmap_size += alignment;
1043
1044 region->fd = -1;
1045 if (backing_src_is_shared(src_type))
1046 region->fd = kvm_memfd_alloc(region->mmap_size,
1047 src_type == VM_MEM_SRC_SHARED_HUGETLB);
1048
1049 region->mmap_start = mmap(NULL, region->mmap_size,
1050 PROT_READ | PROT_WRITE,
1051 vm_mem_backing_src_alias(src_type)->flag,
1052 region->fd, 0);
1053 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1054 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1055
1056 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1057 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1058 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1059 region->mmap_start, backing_src_pagesz);
1060
1061 /* Align host address */
1062 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1063
1064 /* As needed perform madvise */
1065 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1066 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1067 ret = madvise(region->host_mem, mem_size,
1068 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1069 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1070 region->host_mem, mem_size,
1071 vm_mem_backing_src_alias(src_type)->name);
1072 }
1073
1074 region->backing_src_type = src_type;
1075
1076 if (flags & KVM_MEM_GUEST_MEMFD) {
1077 if (guest_memfd < 0) {
1078 uint32_t guest_memfd_flags = 0;
1079 TEST_ASSERT(!guest_memfd_offset,
1080 "Offset must be zero when creating new guest_memfd");
1081 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1082 } else {
1083 /*
1084 * Install a unique fd for each memslot so that the fd
1085 * can be closed when the region is deleted without
1086 * needing to track if the fd is owned by the framework
1087 * or by the caller.
1088 */
1089 guest_memfd = dup(guest_memfd);
1090 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1091 }
1092
1093 region->region.guest_memfd = guest_memfd;
1094 region->region.guest_memfd_offset = guest_memfd_offset;
1095 } else {
1096 region->region.guest_memfd = -1;
1097 }
1098
1099 region->unused_phy_pages = sparsebit_alloc();
1100 if (vm_arch_has_protected_memory(vm))
1101 region->protected_phy_pages = sparsebit_alloc();
1102 sparsebit_set_num(region->unused_phy_pages,
1103 guest_paddr >> vm->page_shift, npages);
1104 region->region.slot = slot;
1105 region->region.flags = flags;
1106 region->region.guest_phys_addr = guest_paddr;
1107 region->region.memory_size = npages * vm->page_size;
1108 region->region.userspace_addr = (uintptr_t) region->host_mem;
1109 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1110 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1111 " rc: %i errno: %i\n"
1112 " slot: %u flags: 0x%x\n"
1113 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1114 ret, errno, slot, flags,
1115 guest_paddr, (uint64_t) region->region.memory_size,
1116 region->region.guest_memfd);
1117
1118 /* Add to quick lookup data structures */
1119 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1120 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1121 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1122
1123 /* If shared memory, create an alias. */
1124 if (region->fd >= 0) {
1125 region->mmap_alias = mmap(NULL, region->mmap_size,
1126 PROT_READ | PROT_WRITE,
1127 vm_mem_backing_src_alias(src_type)->flag,
1128 region->fd, 0);
1129 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1130 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1131
1132 /* Align host alias address */
1133 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1134 }
1135 }
1136
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1137 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1138 enum vm_mem_backing_src_type src_type,
1139 uint64_t guest_paddr, uint32_t slot,
1140 uint64_t npages, uint32_t flags)
1141 {
1142 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1143 }
1144
1145 /*
1146 * Memslot to region
1147 *
1148 * Input Args:
1149 * vm - Virtual Machine
1150 * memslot - KVM memory slot ID
1151 *
1152 * Output Args: None
1153 *
1154 * Return:
1155 * Pointer to memory region structure that describe memory region
1156 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1157 * on error (e.g. currently no memory region using memslot as a KVM
1158 * memory slot ID).
1159 */
1160 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1161 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1162 {
1163 struct userspace_mem_region *region;
1164
1165 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1166 memslot)
1167 if (region->region.slot == memslot)
1168 return region;
1169
1170 fprintf(stderr, "No mem region with the requested slot found,\n"
1171 " requested slot: %u\n", memslot);
1172 fputs("---- vm dump ----\n", stderr);
1173 vm_dump(stderr, vm, 2);
1174 TEST_FAIL("Mem region not found");
1175 return NULL;
1176 }
1177
1178 /*
1179 * VM Memory Region Flags Set
1180 *
1181 * Input Args:
1182 * vm - Virtual Machine
1183 * flags - Starting guest physical address
1184 *
1185 * Output Args: None
1186 *
1187 * Return: None
1188 *
1189 * Sets the flags of the memory region specified by the value of slot,
1190 * to the values given by flags.
1191 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1192 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1193 {
1194 int ret;
1195 struct userspace_mem_region *region;
1196
1197 region = memslot2region(vm, slot);
1198
1199 region->region.flags = flags;
1200
1201 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1202
1203 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1204 " rc: %i errno: %i slot: %u flags: 0x%x",
1205 ret, errno, slot, flags);
1206 }
1207
1208 /*
1209 * VM Memory Region Move
1210 *
1211 * Input Args:
1212 * vm - Virtual Machine
1213 * slot - Slot of the memory region to move
1214 * new_gpa - Starting guest physical address
1215 *
1216 * Output Args: None
1217 *
1218 * Return: None
1219 *
1220 * Change the gpa of a memory region.
1221 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1222 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1223 {
1224 struct userspace_mem_region *region;
1225 int ret;
1226
1227 region = memslot2region(vm, slot);
1228
1229 region->region.guest_phys_addr = new_gpa;
1230
1231 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1232
1233 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1234 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1235 ret, errno, slot, new_gpa);
1236 }
1237
1238 /*
1239 * VM Memory Region Delete
1240 *
1241 * Input Args:
1242 * vm - Virtual Machine
1243 * slot - Slot of the memory region to delete
1244 *
1245 * Output Args: None
1246 *
1247 * Return: None
1248 *
1249 * Delete a memory region.
1250 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1251 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1252 {
1253 struct userspace_mem_region *region = memslot2region(vm, slot);
1254
1255 region->region.memory_size = 0;
1256 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1257
1258 __vm_mem_region_delete(vm, region);
1259 }
1260
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1261 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1262 bool punch_hole)
1263 {
1264 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1265 struct userspace_mem_region *region;
1266 uint64_t end = base + size;
1267 uint64_t gpa, len;
1268 off_t fd_offset;
1269 int ret;
1270
1271 for (gpa = base; gpa < end; gpa += len) {
1272 uint64_t offset;
1273
1274 region = userspace_mem_region_find(vm, gpa, gpa);
1275 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1276 "Private memory region not found for GPA 0x%lx", gpa);
1277
1278 offset = gpa - region->region.guest_phys_addr;
1279 fd_offset = region->region.guest_memfd_offset + offset;
1280 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1281
1282 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1283 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1284 punch_hole ? "punch hole" : "allocate", gpa, len,
1285 region->region.guest_memfd, mode, fd_offset);
1286 }
1287 }
1288
1289 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1290 static int vcpu_mmap_sz(void)
1291 {
1292 int dev_fd, ret;
1293
1294 dev_fd = open_kvm_dev_path_or_exit();
1295
1296 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1297 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1298 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1299
1300 close(dev_fd);
1301
1302 return ret;
1303 }
1304
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1305 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1306 {
1307 struct kvm_vcpu *vcpu;
1308
1309 list_for_each_entry(vcpu, &vm->vcpus, list) {
1310 if (vcpu->id == vcpu_id)
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
1317 /*
1318 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1319 * No additional vCPU setup is done. Returns the vCPU.
1320 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1321 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1322 {
1323 struct kvm_vcpu *vcpu;
1324
1325 /* Confirm a vcpu with the specified id doesn't already exist. */
1326 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1327
1328 /* Allocate and initialize new vcpu structure. */
1329 vcpu = calloc(1, sizeof(*vcpu));
1330 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1331
1332 vcpu->vm = vm;
1333 vcpu->id = vcpu_id;
1334 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1335 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1336
1337 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1338 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1339 vcpu_mmap_sz(), sizeof(*vcpu->run));
1340 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1341 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1342 TEST_ASSERT(vcpu->run != MAP_FAILED,
1343 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1344
1345 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1346 vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1347 else
1348 vcpu->stats.fd = -1;
1349
1350 /* Add to linked-list of VCPUs. */
1351 list_add(&vcpu->list, &vm->vcpus);
1352
1353 return vcpu;
1354 }
1355
1356 /*
1357 * VM Virtual Address Unused Gap
1358 *
1359 * Input Args:
1360 * vm - Virtual Machine
1361 * sz - Size (bytes)
1362 * vaddr_min - Minimum Virtual Address
1363 *
1364 * Output Args: None
1365 *
1366 * Return:
1367 * Lowest virtual address at or below vaddr_min, with at least
1368 * sz unused bytes. TEST_ASSERT failure if no area of at least
1369 * size sz is available.
1370 *
1371 * Within the VM specified by vm, locates the lowest starting virtual
1372 * address >= vaddr_min, that has at least sz unallocated bytes. A
1373 * TEST_ASSERT failure occurs for invalid input or no area of at least
1374 * sz unallocated bytes >= vaddr_min is available.
1375 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1376 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1377 vm_vaddr_t vaddr_min)
1378 {
1379 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1380
1381 /* Determine lowest permitted virtual page index. */
1382 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1383 if ((pgidx_start * vm->page_size) < vaddr_min)
1384 goto no_va_found;
1385
1386 /* Loop over section with enough valid virtual page indexes. */
1387 if (!sparsebit_is_set_num(vm->vpages_valid,
1388 pgidx_start, pages))
1389 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1390 pgidx_start, pages);
1391 do {
1392 /*
1393 * Are there enough unused virtual pages available at
1394 * the currently proposed starting virtual page index.
1395 * If not, adjust proposed starting index to next
1396 * possible.
1397 */
1398 if (sparsebit_is_clear_num(vm->vpages_mapped,
1399 pgidx_start, pages))
1400 goto va_found;
1401 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1402 pgidx_start, pages);
1403 if (pgidx_start == 0)
1404 goto no_va_found;
1405
1406 /*
1407 * If needed, adjust proposed starting virtual address,
1408 * to next range of valid virtual addresses.
1409 */
1410 if (!sparsebit_is_set_num(vm->vpages_valid,
1411 pgidx_start, pages)) {
1412 pgidx_start = sparsebit_next_set_num(
1413 vm->vpages_valid, pgidx_start, pages);
1414 if (pgidx_start == 0)
1415 goto no_va_found;
1416 }
1417 } while (pgidx_start != 0);
1418
1419 no_va_found:
1420 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1421
1422 /* NOT REACHED */
1423 return -1;
1424
1425 va_found:
1426 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1427 pgidx_start, pages),
1428 "Unexpected, invalid virtual page index range,\n"
1429 " pgidx_start: 0x%lx\n"
1430 " pages: 0x%lx",
1431 pgidx_start, pages);
1432 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1433 pgidx_start, pages),
1434 "Unexpected, pages already mapped,\n"
1435 " pgidx_start: 0x%lx\n"
1436 " pages: 0x%lx",
1437 pgidx_start, pages);
1438
1439 return pgidx_start * vm->page_size;
1440 }
1441
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1442 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1443 vm_vaddr_t vaddr_min,
1444 enum kvm_mem_region_type type,
1445 bool protected)
1446 {
1447 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1448
1449 virt_pgd_alloc(vm);
1450 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1451 KVM_UTIL_MIN_PFN * vm->page_size,
1452 vm->memslots[type], protected);
1453
1454 /*
1455 * Find an unused range of virtual page addresses of at least
1456 * pages in length.
1457 */
1458 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1459
1460 /* Map the virtual pages. */
1461 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1462 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1463
1464 virt_pg_map(vm, vaddr, paddr);
1465
1466 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1467 }
1468
1469 return vaddr_start;
1470 }
1471
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1472 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1473 enum kvm_mem_region_type type)
1474 {
1475 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1476 vm_arch_has_protected_memory(vm));
1477 }
1478
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1479 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1480 vm_vaddr_t vaddr_min,
1481 enum kvm_mem_region_type type)
1482 {
1483 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1484 }
1485
1486 /*
1487 * VM Virtual Address Allocate
1488 *
1489 * Input Args:
1490 * vm - Virtual Machine
1491 * sz - Size in bytes
1492 * vaddr_min - Minimum starting virtual address
1493 *
1494 * Output Args: None
1495 *
1496 * Return:
1497 * Starting guest virtual address
1498 *
1499 * Allocates at least sz bytes within the virtual address space of the vm
1500 * given by vm. The allocated bytes are mapped to a virtual address >=
1501 * the address given by vaddr_min. Note that each allocation uses a
1502 * a unique set of pages, with the minimum real allocation being at least
1503 * a page. The allocated physical space comes from the TEST_DATA memory region.
1504 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1505 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1506 {
1507 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1508 }
1509
1510 /*
1511 * VM Virtual Address Allocate Pages
1512 *
1513 * Input Args:
1514 * vm - Virtual Machine
1515 *
1516 * Output Args: None
1517 *
1518 * Return:
1519 * Starting guest virtual address
1520 *
1521 * Allocates at least N system pages worth of bytes within the virtual address
1522 * space of the vm.
1523 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1524 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1525 {
1526 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1527 }
1528
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1529 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1530 {
1531 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1532 }
1533
1534 /*
1535 * VM Virtual Address Allocate Page
1536 *
1537 * Input Args:
1538 * vm - Virtual Machine
1539 *
1540 * Output Args: None
1541 *
1542 * Return:
1543 * Starting guest virtual address
1544 *
1545 * Allocates at least one system page worth of bytes within the virtual address
1546 * space of the vm.
1547 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1548 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1549 {
1550 return vm_vaddr_alloc_pages(vm, 1);
1551 }
1552
1553 /*
1554 * Map a range of VM virtual address to the VM's physical address
1555 *
1556 * Input Args:
1557 * vm - Virtual Machine
1558 * vaddr - Virtuall address to map
1559 * paddr - VM Physical Address
1560 * npages - The number of pages to map
1561 *
1562 * Output Args: None
1563 *
1564 * Return: None
1565 *
1566 * Within the VM given by @vm, creates a virtual translation for
1567 * @npages starting at @vaddr to the page range starting at @paddr.
1568 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1569 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1570 unsigned int npages)
1571 {
1572 size_t page_size = vm->page_size;
1573 size_t size = npages * page_size;
1574
1575 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1576 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1577
1578 while (npages--) {
1579 virt_pg_map(vm, vaddr, paddr);
1580 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1581
1582 vaddr += page_size;
1583 paddr += page_size;
1584 }
1585 }
1586
1587 /*
1588 * Address VM Physical to Host Virtual
1589 *
1590 * Input Args:
1591 * vm - Virtual Machine
1592 * gpa - VM physical address
1593 *
1594 * Output Args: None
1595 *
1596 * Return:
1597 * Equivalent host virtual address
1598 *
1599 * Locates the memory region containing the VM physical address given
1600 * by gpa, within the VM given by vm. When found, the host virtual
1601 * address providing the memory to the vm physical address is returned.
1602 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1603 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1604 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1605 {
1606 struct userspace_mem_region *region;
1607
1608 gpa = vm_untag_gpa(vm, gpa);
1609
1610 region = userspace_mem_region_find(vm, gpa, gpa);
1611 if (!region) {
1612 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1613 return NULL;
1614 }
1615
1616 return (void *)((uintptr_t)region->host_mem
1617 + (gpa - region->region.guest_phys_addr));
1618 }
1619
1620 /*
1621 * Address Host Virtual to VM Physical
1622 *
1623 * Input Args:
1624 * vm - Virtual Machine
1625 * hva - Host virtual address
1626 *
1627 * Output Args: None
1628 *
1629 * Return:
1630 * Equivalent VM physical address
1631 *
1632 * Locates the memory region containing the host virtual address given
1633 * by hva, within the VM given by vm. When found, the equivalent
1634 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1635 * region containing hva exists.
1636 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1637 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1638 {
1639 struct rb_node *node;
1640
1641 for (node = vm->regions.hva_tree.rb_node; node; ) {
1642 struct userspace_mem_region *region =
1643 container_of(node, struct userspace_mem_region, hva_node);
1644
1645 if (hva >= region->host_mem) {
1646 if (hva <= (region->host_mem
1647 + region->region.memory_size - 1))
1648 return (vm_paddr_t)((uintptr_t)
1649 region->region.guest_phys_addr
1650 + (hva - (uintptr_t)region->host_mem));
1651
1652 node = node->rb_right;
1653 } else
1654 node = node->rb_left;
1655 }
1656
1657 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1658 return -1;
1659 }
1660
1661 /*
1662 * Address VM physical to Host Virtual *alias*.
1663 *
1664 * Input Args:
1665 * vm - Virtual Machine
1666 * gpa - VM physical address
1667 *
1668 * Output Args: None
1669 *
1670 * Return:
1671 * Equivalent address within the host virtual *alias* area, or NULL
1672 * (without failing the test) if the guest memory is not shared (so
1673 * no alias exists).
1674 *
1675 * Create a writable, shared virtual=>physical alias for the specific GPA.
1676 * The primary use case is to allow the host selftest to manipulate guest
1677 * memory without mapping said memory in the guest's address space. And, for
1678 * userfaultfd-based demand paging, to do so without triggering userfaults.
1679 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1680 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1681 {
1682 struct userspace_mem_region *region;
1683 uintptr_t offset;
1684
1685 region = userspace_mem_region_find(vm, gpa, gpa);
1686 if (!region)
1687 return NULL;
1688
1689 if (!region->host_alias)
1690 return NULL;
1691
1692 offset = gpa - region->region.guest_phys_addr;
1693 return (void *) ((uintptr_t) region->host_alias + offset);
1694 }
1695
1696 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1697 void vm_create_irqchip(struct kvm_vm *vm)
1698 {
1699 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1700
1701 vm->has_irqchip = true;
1702 }
1703
_vcpu_run(struct kvm_vcpu * vcpu)1704 int _vcpu_run(struct kvm_vcpu *vcpu)
1705 {
1706 int rc;
1707
1708 do {
1709 rc = __vcpu_run(vcpu);
1710 } while (rc == -1 && errno == EINTR);
1711
1712 if (!rc)
1713 assert_on_unhandled_exception(vcpu);
1714
1715 return rc;
1716 }
1717
1718 /*
1719 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1720 * Assert if the KVM returns an error (other than -EINTR).
1721 */
vcpu_run(struct kvm_vcpu * vcpu)1722 void vcpu_run(struct kvm_vcpu *vcpu)
1723 {
1724 int ret = _vcpu_run(vcpu);
1725
1726 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1727 }
1728
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1729 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1730 {
1731 int ret;
1732
1733 vcpu->run->immediate_exit = 1;
1734 ret = __vcpu_run(vcpu);
1735 vcpu->run->immediate_exit = 0;
1736
1737 TEST_ASSERT(ret == -1 && errno == EINTR,
1738 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1739 ret, errno);
1740 }
1741
1742 /*
1743 * Get the list of guest registers which are supported for
1744 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1745 * it is the caller's responsibility to free the list.
1746 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1747 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1748 {
1749 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1750 int ret;
1751
1752 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1753 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1754
1755 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1756 reg_list->n = reg_list_n.n;
1757 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1758 return reg_list;
1759 }
1760
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1761 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1762 {
1763 uint32_t page_size = getpagesize();
1764 uint32_t size = vcpu->vm->dirty_ring_size;
1765
1766 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1767
1768 if (!vcpu->dirty_gfns) {
1769 void *addr;
1770
1771 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1772 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1773 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1774
1775 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1776 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1777 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1778
1779 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1780 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1781 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1782
1783 vcpu->dirty_gfns = addr;
1784 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1785 }
1786
1787 return vcpu->dirty_gfns;
1788 }
1789
1790 /*
1791 * Device Ioctl
1792 */
1793
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1794 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1795 {
1796 struct kvm_device_attr attribute = {
1797 .group = group,
1798 .attr = attr,
1799 .flags = 0,
1800 };
1801
1802 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1803 }
1804
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1805 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1806 {
1807 struct kvm_create_device create_dev = {
1808 .type = type,
1809 .flags = KVM_CREATE_DEVICE_TEST,
1810 };
1811
1812 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1813 }
1814
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1815 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1816 {
1817 struct kvm_create_device create_dev = {
1818 .type = type,
1819 .fd = -1,
1820 .flags = 0,
1821 };
1822 int err;
1823
1824 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1825 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1826 return err ? : create_dev.fd;
1827 }
1828
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1829 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1830 {
1831 struct kvm_device_attr kvmattr = {
1832 .group = group,
1833 .attr = attr,
1834 .flags = 0,
1835 .addr = (uintptr_t)val,
1836 };
1837
1838 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1839 }
1840
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1841 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1842 {
1843 struct kvm_device_attr kvmattr = {
1844 .group = group,
1845 .attr = attr,
1846 .flags = 0,
1847 .addr = (uintptr_t)val,
1848 };
1849
1850 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1851 }
1852
1853 /*
1854 * IRQ related functions.
1855 */
1856
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1857 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1858 {
1859 struct kvm_irq_level irq_level = {
1860 .irq = irq,
1861 .level = level,
1862 };
1863
1864 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1865 }
1866
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1867 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1868 {
1869 int ret = _kvm_irq_line(vm, irq, level);
1870
1871 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1872 }
1873
kvm_gsi_routing_create(void)1874 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1875 {
1876 struct kvm_irq_routing *routing;
1877 size_t size;
1878
1879 size = sizeof(struct kvm_irq_routing);
1880 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1881 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1882 routing = calloc(1, size);
1883 assert(routing);
1884
1885 return routing;
1886 }
1887
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1888 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1889 uint32_t gsi, uint32_t pin)
1890 {
1891 int i;
1892
1893 assert(routing);
1894 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1895
1896 i = routing->nr;
1897 routing->entries[i].gsi = gsi;
1898 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1899 routing->entries[i].flags = 0;
1900 routing->entries[i].u.irqchip.irqchip = 0;
1901 routing->entries[i].u.irqchip.pin = pin;
1902 routing->nr++;
1903 }
1904
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1905 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1906 {
1907 int ret;
1908
1909 assert(routing);
1910 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1911 free(routing);
1912
1913 return ret;
1914 }
1915
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1916 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1917 {
1918 int ret;
1919
1920 ret = _kvm_gsi_routing_write(vm, routing);
1921 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1922 }
1923
1924 /*
1925 * VM Dump
1926 *
1927 * Input Args:
1928 * vm - Virtual Machine
1929 * indent - Left margin indent amount
1930 *
1931 * Output Args:
1932 * stream - Output FILE stream
1933 *
1934 * Return: None
1935 *
1936 * Dumps the current state of the VM given by vm, to the FILE stream
1937 * given by stream.
1938 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1939 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1940 {
1941 int ctr;
1942 struct userspace_mem_region *region;
1943 struct kvm_vcpu *vcpu;
1944
1945 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1946 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1947 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1948 fprintf(stream, "%*sMem Regions:\n", indent, "");
1949 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1950 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1951 "host_virt: %p\n", indent + 2, "",
1952 (uint64_t) region->region.guest_phys_addr,
1953 (uint64_t) region->region.memory_size,
1954 region->host_mem);
1955 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1956 sparsebit_dump(stream, region->unused_phy_pages, 0);
1957 if (region->protected_phy_pages) {
1958 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1959 sparsebit_dump(stream, region->protected_phy_pages, 0);
1960 }
1961 }
1962 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1963 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1964 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1965 vm->pgd_created);
1966 if (vm->pgd_created) {
1967 fprintf(stream, "%*sVirtual Translation Tables:\n",
1968 indent + 2, "");
1969 virt_dump(stream, vm, indent + 4);
1970 }
1971 fprintf(stream, "%*sVCPUs:\n", indent, "");
1972
1973 list_for_each_entry(vcpu, &vm->vcpus, list)
1974 vcpu_dump(stream, vcpu, indent + 2);
1975 }
1976
1977 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1978
1979 /* Known KVM exit reasons */
1980 static struct exit_reason {
1981 unsigned int reason;
1982 const char *name;
1983 } exit_reasons_known[] = {
1984 KVM_EXIT_STRING(UNKNOWN),
1985 KVM_EXIT_STRING(EXCEPTION),
1986 KVM_EXIT_STRING(IO),
1987 KVM_EXIT_STRING(HYPERCALL),
1988 KVM_EXIT_STRING(DEBUG),
1989 KVM_EXIT_STRING(HLT),
1990 KVM_EXIT_STRING(MMIO),
1991 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1992 KVM_EXIT_STRING(SHUTDOWN),
1993 KVM_EXIT_STRING(FAIL_ENTRY),
1994 KVM_EXIT_STRING(INTR),
1995 KVM_EXIT_STRING(SET_TPR),
1996 KVM_EXIT_STRING(TPR_ACCESS),
1997 KVM_EXIT_STRING(S390_SIEIC),
1998 KVM_EXIT_STRING(S390_RESET),
1999 KVM_EXIT_STRING(DCR),
2000 KVM_EXIT_STRING(NMI),
2001 KVM_EXIT_STRING(INTERNAL_ERROR),
2002 KVM_EXIT_STRING(OSI),
2003 KVM_EXIT_STRING(PAPR_HCALL),
2004 KVM_EXIT_STRING(S390_UCONTROL),
2005 KVM_EXIT_STRING(WATCHDOG),
2006 KVM_EXIT_STRING(S390_TSCH),
2007 KVM_EXIT_STRING(EPR),
2008 KVM_EXIT_STRING(SYSTEM_EVENT),
2009 KVM_EXIT_STRING(S390_STSI),
2010 KVM_EXIT_STRING(IOAPIC_EOI),
2011 KVM_EXIT_STRING(HYPERV),
2012 KVM_EXIT_STRING(ARM_NISV),
2013 KVM_EXIT_STRING(X86_RDMSR),
2014 KVM_EXIT_STRING(X86_WRMSR),
2015 KVM_EXIT_STRING(DIRTY_RING_FULL),
2016 KVM_EXIT_STRING(AP_RESET_HOLD),
2017 KVM_EXIT_STRING(X86_BUS_LOCK),
2018 KVM_EXIT_STRING(XEN),
2019 KVM_EXIT_STRING(RISCV_SBI),
2020 KVM_EXIT_STRING(RISCV_CSR),
2021 KVM_EXIT_STRING(NOTIFY),
2022 KVM_EXIT_STRING(LOONGARCH_IOCSR),
2023 KVM_EXIT_STRING(MEMORY_FAULT),
2024 };
2025
2026 /*
2027 * Exit Reason String
2028 *
2029 * Input Args:
2030 * exit_reason - Exit reason
2031 *
2032 * Output Args: None
2033 *
2034 * Return:
2035 * Constant string pointer describing the exit reason.
2036 *
2037 * Locates and returns a constant string that describes the KVM exit
2038 * reason given by exit_reason. If no such string is found, a constant
2039 * string of "Unknown" is returned.
2040 */
exit_reason_str(unsigned int exit_reason)2041 const char *exit_reason_str(unsigned int exit_reason)
2042 {
2043 unsigned int n1;
2044
2045 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2046 if (exit_reason == exit_reasons_known[n1].reason)
2047 return exit_reasons_known[n1].name;
2048 }
2049
2050 return "Unknown";
2051 }
2052
2053 /*
2054 * Physical Contiguous Page Allocator
2055 *
2056 * Input Args:
2057 * vm - Virtual Machine
2058 * num - number of pages
2059 * paddr_min - Physical address minimum
2060 * memslot - Memory region to allocate page from
2061 * protected - True if the pages will be used as protected/private memory
2062 *
2063 * Output Args: None
2064 *
2065 * Return:
2066 * Starting physical address
2067 *
2068 * Within the VM specified by vm, locates a range of available physical
2069 * pages at or above paddr_min. If found, the pages are marked as in use
2070 * and their base address is returned. A TEST_ASSERT failure occurs if
2071 * not enough pages are available at or above paddr_min.
2072 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2073 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2074 vm_paddr_t paddr_min, uint32_t memslot,
2075 bool protected)
2076 {
2077 struct userspace_mem_region *region;
2078 sparsebit_idx_t pg, base;
2079
2080 TEST_ASSERT(num > 0, "Must allocate at least one page");
2081
2082 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2083 "not divisible by page size.\n"
2084 " paddr_min: 0x%lx page_size: 0x%x",
2085 paddr_min, vm->page_size);
2086
2087 region = memslot2region(vm, memslot);
2088 TEST_ASSERT(!protected || region->protected_phy_pages,
2089 "Region doesn't support protected memory");
2090
2091 base = pg = paddr_min >> vm->page_shift;
2092 do {
2093 for (; pg < base + num; ++pg) {
2094 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2095 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2096 break;
2097 }
2098 }
2099 } while (pg && pg != base + num);
2100
2101 if (pg == 0) {
2102 fprintf(stderr, "No guest physical page available, "
2103 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2104 paddr_min, vm->page_size, memslot);
2105 fputs("---- vm dump ----\n", stderr);
2106 vm_dump(stderr, vm, 2);
2107 abort();
2108 }
2109
2110 for (pg = base; pg < base + num; ++pg) {
2111 sparsebit_clear(region->unused_phy_pages, pg);
2112 if (protected)
2113 sparsebit_set(region->protected_phy_pages, pg);
2114 }
2115
2116 return base * vm->page_size;
2117 }
2118
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2119 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2120 uint32_t memslot)
2121 {
2122 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2123 }
2124
vm_alloc_page_table(struct kvm_vm * vm)2125 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2126 {
2127 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2128 vm->memslots[MEM_REGION_PT]);
2129 }
2130
2131 /*
2132 * Address Guest Virtual to Host Virtual
2133 *
2134 * Input Args:
2135 * vm - Virtual Machine
2136 * gva - VM virtual address
2137 *
2138 * Output Args: None
2139 *
2140 * Return:
2141 * Equivalent host virtual address
2142 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2143 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2144 {
2145 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2146 }
2147
vm_compute_max_gfn(struct kvm_vm * vm)2148 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2149 {
2150 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2151 }
2152
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2153 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2154 unsigned int page_shift,
2155 unsigned int new_page_shift,
2156 bool ceil)
2157 {
2158 unsigned int n = 1 << (new_page_shift - page_shift);
2159
2160 if (page_shift >= new_page_shift)
2161 return num_pages * (1 << (page_shift - new_page_shift));
2162
2163 return num_pages / n + !!(ceil && num_pages % n);
2164 }
2165
getpageshift(void)2166 static inline int getpageshift(void)
2167 {
2168 return __builtin_ffs(getpagesize()) - 1;
2169 }
2170
2171 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2172 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2173 {
2174 return vm_calc_num_pages(num_guest_pages,
2175 vm_guest_mode_params[mode].page_shift,
2176 getpageshift(), true);
2177 }
2178
2179 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2180 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2181 {
2182 return vm_calc_num_pages(num_host_pages, getpageshift(),
2183 vm_guest_mode_params[mode].page_shift, false);
2184 }
2185
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2186 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2187 {
2188 unsigned int n;
2189 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2190 return vm_adjust_num_guest_pages(mode, n);
2191 }
2192
2193 /*
2194 * Read binary stats descriptors
2195 *
2196 * Input Args:
2197 * stats_fd - the file descriptor for the binary stats file from which to read
2198 * header - the binary stats metadata header corresponding to the given FD
2199 *
2200 * Output Args: None
2201 *
2202 * Return:
2203 * A pointer to a newly allocated series of stat descriptors.
2204 * Caller is responsible for freeing the returned kvm_stats_desc.
2205 *
2206 * Read the stats descriptors from the binary stats interface.
2207 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2208 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2209 struct kvm_stats_header *header)
2210 {
2211 struct kvm_stats_desc *stats_desc;
2212 ssize_t desc_size, total_size, ret;
2213
2214 desc_size = get_stats_descriptor_size(header);
2215 total_size = header->num_desc * desc_size;
2216
2217 stats_desc = calloc(header->num_desc, desc_size);
2218 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2219
2220 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2221 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2222
2223 return stats_desc;
2224 }
2225
2226 /*
2227 * Read stat data for a particular stat
2228 *
2229 * Input Args:
2230 * stats_fd - the file descriptor for the binary stats file from which to read
2231 * header - the binary stats metadata header corresponding to the given FD
2232 * desc - the binary stat metadata for the particular stat to be read
2233 * max_elements - the maximum number of 8-byte values to read into data
2234 *
2235 * Output Args:
2236 * data - the buffer into which stat data should be read
2237 *
2238 * Read the data values of a specified stat from the binary stats interface.
2239 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2240 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2241 struct kvm_stats_desc *desc, uint64_t *data,
2242 size_t max_elements)
2243 {
2244 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2245 size_t size = nr_elements * sizeof(*data);
2246 ssize_t ret;
2247
2248 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2249 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2250
2251 ret = pread(stats_fd, data, size,
2252 header->data_offset + desc->offset);
2253
2254 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2255 desc->name, errno, strerror(errno));
2256 TEST_ASSERT(ret == size,
2257 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2258 desc->name, size, ret);
2259 }
2260
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2261 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2262 uint64_t *data, size_t max_elements)
2263 {
2264 struct kvm_stats_desc *desc;
2265 size_t size_desc;
2266 int i;
2267
2268 if (!stats->desc) {
2269 read_stats_header(stats->fd, &stats->header);
2270 stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2271 }
2272
2273 size_desc = get_stats_descriptor_size(&stats->header);
2274
2275 for (i = 0; i < stats->header.num_desc; ++i) {
2276 desc = (void *)stats->desc + (i * size_desc);
2277
2278 if (strcmp(desc->name, name))
2279 continue;
2280
2281 read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2282 return;
2283 }
2284
2285 TEST_FAIL("Unable to find stat '%s'", name);
2286 }
2287
kvm_arch_vm_post_create(struct kvm_vm * vm)2288 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2289 {
2290 }
2291
kvm_selftest_arch_init(void)2292 __weak void kvm_selftest_arch_init(void)
2293 {
2294 }
2295
kvm_selftest_init(void)2296 void __attribute((constructor)) kvm_selftest_init(void)
2297 {
2298 /* Tell stdout not to buffer its content. */
2299 setbuf(stdout, NULL);
2300
2301 guest_random_seed = last_guest_seed = random();
2302 pr_info("Random seed: 0x%x\n", guest_random_seed);
2303
2304 kvm_selftest_arch_init();
2305 }
2306
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2307 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2308 {
2309 sparsebit_idx_t pg = 0;
2310 struct userspace_mem_region *region;
2311
2312 if (!vm_arch_has_protected_memory(vm))
2313 return false;
2314
2315 region = userspace_mem_region_find(vm, paddr, paddr);
2316 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2317
2318 pg = paddr >> vm->page_shift;
2319 return sparsebit_is_set(region->protected_phy_pages, pg);
2320 }
2321