1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15
16 static struct smbd_response *get_empty_queue_buffer(
17 struct smbd_connection *info);
18 static struct smbd_response *get_receive_buffer(
19 struct smbd_connection *info);
20 static void put_receive_buffer(
21 struct smbd_connection *info,
22 struct smbd_response *response);
23 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
24 static void destroy_receive_buffers(struct smbd_connection *info);
25
26 static void put_empty_packet(
27 struct smbd_connection *info, struct smbd_response *response);
28 static void enqueue_reassembly(
29 struct smbd_connection *info,
30 struct smbd_response *response, int data_length);
31 static struct smbd_response *_get_first_reassembly(
32 struct smbd_connection *info);
33
34 static int smbd_post_recv(
35 struct smbd_connection *info,
36 struct smbd_response *response);
37
38 static int smbd_post_send_empty(struct smbd_connection *info);
39
40 static void destroy_mr_list(struct smbd_connection *info);
41 static int allocate_mr_list(struct smbd_connection *info);
42
43 struct smb_extract_to_rdma {
44 struct ib_sge *sge;
45 unsigned int nr_sge;
46 unsigned int max_sge;
47 struct ib_device *device;
48 u32 local_dma_lkey;
49 enum dma_data_direction direction;
50 };
51 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
52 struct smb_extract_to_rdma *rdma);
53
54 /* Port numbers for SMBD transport */
55 #define SMB_PORT 445
56 #define SMBD_PORT 5445
57
58 /* Address lookup and resolve timeout in ms */
59 #define RDMA_RESOLVE_TIMEOUT 5000
60
61 /* SMBD negotiation timeout in seconds */
62 #define SMBD_NEGOTIATE_TIMEOUT 120
63
64 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
65 #define SMBD_MIN_RECEIVE_SIZE 128
66 #define SMBD_MIN_FRAGMENTED_SIZE 131072
67
68 /*
69 * Default maximum number of RDMA read/write outstanding on this connection
70 * This value is possibly decreased during QP creation on hardware limit
71 */
72 #define SMBD_CM_RESPONDER_RESOURCES 32
73
74 /* Maximum number of retries on data transfer operations */
75 #define SMBD_CM_RETRY 6
76 /* No need to retry on Receiver Not Ready since SMBD manages credits */
77 #define SMBD_CM_RNR_RETRY 0
78
79 /*
80 * User configurable initial values per SMBD transport connection
81 * as defined in [MS-SMBD] 3.1.1.1
82 * Those may change after a SMBD negotiation
83 */
84 /* The local peer's maximum number of credits to grant to the peer */
85 int smbd_receive_credit_max = 255;
86
87 /* The remote peer's credit request of local peer */
88 int smbd_send_credit_target = 255;
89
90 /* The maximum single message size can be sent to remote peer */
91 int smbd_max_send_size = 1364;
92
93 /* The maximum fragmented upper-layer payload receive size supported */
94 int smbd_max_fragmented_recv_size = 1024 * 1024;
95
96 /* The maximum single-message size which can be received */
97 int smbd_max_receive_size = 1364;
98
99 /* The timeout to initiate send of a keepalive message on idle */
100 int smbd_keep_alive_interval = 120;
101
102 /*
103 * User configurable initial values for RDMA transport
104 * The actual values used may be lower and are limited to hardware capabilities
105 */
106 /* Default maximum number of pages in a single RDMA write/read */
107 int smbd_max_frmr_depth = 2048;
108
109 /* If payload is less than this byte, use RDMA send/recv not read/write */
110 int rdma_readwrite_threshold = 4096;
111
112 /* Transport logging functions
113 * Logging are defined as classes. They can be OR'ed to define the actual
114 * logging level via module parameter smbd_logging_class
115 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
116 * log_rdma_event()
117 */
118 #define LOG_OUTGOING 0x1
119 #define LOG_INCOMING 0x2
120 #define LOG_READ 0x4
121 #define LOG_WRITE 0x8
122 #define LOG_RDMA_SEND 0x10
123 #define LOG_RDMA_RECV 0x20
124 #define LOG_KEEP_ALIVE 0x40
125 #define LOG_RDMA_EVENT 0x80
126 #define LOG_RDMA_MR 0x100
127 static unsigned int smbd_logging_class;
128 module_param(smbd_logging_class, uint, 0644);
129 MODULE_PARM_DESC(smbd_logging_class,
130 "Logging class for SMBD transport 0x0 to 0x100");
131
132 #define ERR 0x0
133 #define INFO 0x1
134 static unsigned int smbd_logging_level = ERR;
135 module_param(smbd_logging_level, uint, 0644);
136 MODULE_PARM_DESC(smbd_logging_level,
137 "Logging level for SMBD transport, 0 (default): error, 1: info");
138
139 #define log_rdma(level, class, fmt, args...) \
140 do { \
141 if (level <= smbd_logging_level || class & smbd_logging_class) \
142 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
143 } while (0)
144
145 #define log_outgoing(level, fmt, args...) \
146 log_rdma(level, LOG_OUTGOING, fmt, ##args)
147 #define log_incoming(level, fmt, args...) \
148 log_rdma(level, LOG_INCOMING, fmt, ##args)
149 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
150 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
151 #define log_rdma_send(level, fmt, args...) \
152 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
153 #define log_rdma_recv(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
155 #define log_keep_alive(level, fmt, args...) \
156 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
157 #define log_rdma_event(level, fmt, args...) \
158 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
159 #define log_rdma_mr(level, fmt, args...) \
160 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
161
smbd_disconnect_rdma_work(struct work_struct * work)162 static void smbd_disconnect_rdma_work(struct work_struct *work)
163 {
164 struct smbd_connection *info =
165 container_of(work, struct smbd_connection, disconnect_work);
166 struct smbdirect_socket *sc = &info->socket;
167
168 if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
169 sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
170 rdma_disconnect(sc->rdma.cm_id);
171 }
172 }
173
smbd_disconnect_rdma_connection(struct smbd_connection * info)174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176 queue_work(info->workqueue, &info->disconnect_work);
177 }
178
179 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)180 static int smbd_conn_upcall(
181 struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183 struct smbd_connection *info = id->context;
184 struct smbdirect_socket *sc = &info->socket;
185
186 log_rdma_event(INFO, "event=%d status=%d\n",
187 event->event, event->status);
188
189 switch (event->event) {
190 case RDMA_CM_EVENT_ADDR_RESOLVED:
191 case RDMA_CM_EVENT_ROUTE_RESOLVED:
192 info->ri_rc = 0;
193 complete(&info->ri_done);
194 break;
195
196 case RDMA_CM_EVENT_ADDR_ERROR:
197 info->ri_rc = -EHOSTUNREACH;
198 complete(&info->ri_done);
199 break;
200
201 case RDMA_CM_EVENT_ROUTE_ERROR:
202 info->ri_rc = -ENETUNREACH;
203 complete(&info->ri_done);
204 break;
205
206 case RDMA_CM_EVENT_ESTABLISHED:
207 log_rdma_event(INFO, "connected event=%d\n", event->event);
208 sc->status = SMBDIRECT_SOCKET_CONNECTED;
209 wake_up_interruptible(&info->conn_wait);
210 break;
211
212 case RDMA_CM_EVENT_CONNECT_ERROR:
213 case RDMA_CM_EVENT_UNREACHABLE:
214 case RDMA_CM_EVENT_REJECTED:
215 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
216 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
217 wake_up_interruptible(&info->conn_wait);
218 break;
219
220 case RDMA_CM_EVENT_DEVICE_REMOVAL:
221 case RDMA_CM_EVENT_DISCONNECTED:
222 /* This happens when we fail the negotiation */
223 if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
224 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 wake_up(&info->conn_wait);
226 break;
227 }
228
229 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 wake_up_interruptible(&info->disconn_wait);
231 wake_up_interruptible(&info->wait_reassembly_queue);
232 wake_up_interruptible_all(&info->wait_send_queue);
233 break;
234
235 default:
236 break;
237 }
238
239 return 0;
240 }
241
242 /* Upcall from RDMA QP */
243 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)244 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
245 {
246 struct smbd_connection *info = context;
247
248 log_rdma_event(ERR, "%s on device %s info %p\n",
249 ib_event_msg(event->event), event->device->name, info);
250
251 switch (event->event) {
252 case IB_EVENT_CQ_ERR:
253 case IB_EVENT_QP_FATAL:
254 smbd_disconnect_rdma_connection(info);
255 break;
256
257 default:
258 break;
259 }
260 }
261
smbd_request_payload(struct smbd_request * request)262 static inline void *smbd_request_payload(struct smbd_request *request)
263 {
264 return (void *)request->packet;
265 }
266
smbd_response_payload(struct smbd_response * response)267 static inline void *smbd_response_payload(struct smbd_response *response)
268 {
269 return (void *)response->packet;
270 }
271
272 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)273 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
274 {
275 int i;
276 struct smbd_request *request =
277 container_of(wc->wr_cqe, struct smbd_request, cqe);
278 struct smbd_connection *info = request->info;
279 struct smbdirect_socket *sc = &info->socket;
280
281 log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
282 request, wc->status);
283
284 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
285 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
286 wc->status, wc->opcode);
287 smbd_disconnect_rdma_connection(request->info);
288 }
289
290 for (i = 0; i < request->num_sge; i++)
291 ib_dma_unmap_single(sc->ib.dev,
292 request->sge[i].addr,
293 request->sge[i].length,
294 DMA_TO_DEVICE);
295
296 if (atomic_dec_and_test(&request->info->send_pending))
297 wake_up(&request->info->wait_send_pending);
298
299 wake_up(&request->info->wait_post_send);
300
301 mempool_free(request, request->info->request_mempool);
302 }
303
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)304 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
305 {
306 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
307 resp->min_version, resp->max_version,
308 resp->negotiated_version, resp->credits_requested,
309 resp->credits_granted, resp->status,
310 resp->max_readwrite_size, resp->preferred_send_size,
311 resp->max_receive_size, resp->max_fragmented_size);
312 }
313
314 /*
315 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
316 * response, packet_length: the negotiation response message
317 * return value: true if negotiation is a success, false if failed
318 */
process_negotiation_response(struct smbd_response * response,int packet_length)319 static bool process_negotiation_response(
320 struct smbd_response *response, int packet_length)
321 {
322 struct smbd_connection *info = response->info;
323 struct smbdirect_socket *sc = &info->socket;
324 struct smbdirect_socket_parameters *sp = &sc->parameters;
325 struct smbdirect_negotiate_resp *packet = smbd_response_payload(response);
326
327 if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
328 log_rdma_event(ERR,
329 "error: packet_length=%d\n", packet_length);
330 return false;
331 }
332
333 if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
334 log_rdma_event(ERR, "error: negotiated_version=%x\n",
335 le16_to_cpu(packet->negotiated_version));
336 return false;
337 }
338 info->protocol = le16_to_cpu(packet->negotiated_version);
339
340 if (packet->credits_requested == 0) {
341 log_rdma_event(ERR, "error: credits_requested==0\n");
342 return false;
343 }
344 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
345
346 if (packet->credits_granted == 0) {
347 log_rdma_event(ERR, "error: credits_granted==0\n");
348 return false;
349 }
350 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
351
352 atomic_set(&info->receive_credits, 0);
353
354 if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
355 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
356 le32_to_cpu(packet->preferred_send_size));
357 return false;
358 }
359 sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
360
361 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
362 log_rdma_event(ERR, "error: max_receive_size=%d\n",
363 le32_to_cpu(packet->max_receive_size));
364 return false;
365 }
366 sp->max_send_size = min_t(u32, sp->max_send_size,
367 le32_to_cpu(packet->max_receive_size));
368
369 if (le32_to_cpu(packet->max_fragmented_size) <
370 SMBD_MIN_FRAGMENTED_SIZE) {
371 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
372 le32_to_cpu(packet->max_fragmented_size));
373 return false;
374 }
375 sp->max_fragmented_send_size =
376 le32_to_cpu(packet->max_fragmented_size);
377 info->rdma_readwrite_threshold =
378 rdma_readwrite_threshold > sp->max_fragmented_send_size ?
379 sp->max_fragmented_send_size :
380 rdma_readwrite_threshold;
381
382
383 sp->max_read_write_size = min_t(u32,
384 le32_to_cpu(packet->max_readwrite_size),
385 info->max_frmr_depth * PAGE_SIZE);
386 info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
387
388 return true;
389 }
390
smbd_post_send_credits(struct work_struct * work)391 static void smbd_post_send_credits(struct work_struct *work)
392 {
393 int ret = 0;
394 int use_receive_queue = 1;
395 int rc;
396 struct smbd_response *response;
397 struct smbd_connection *info =
398 container_of(work, struct smbd_connection,
399 post_send_credits_work);
400 struct smbdirect_socket *sc = &info->socket;
401
402 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
403 wake_up(&info->wait_receive_queues);
404 return;
405 }
406
407 if (info->receive_credit_target >
408 atomic_read(&info->receive_credits)) {
409 while (true) {
410 if (use_receive_queue)
411 response = get_receive_buffer(info);
412 else
413 response = get_empty_queue_buffer(info);
414 if (!response) {
415 /* now switch to empty packet queue */
416 if (use_receive_queue) {
417 use_receive_queue = 0;
418 continue;
419 } else
420 break;
421 }
422
423 response->type = SMBD_TRANSFER_DATA;
424 response->first_segment = false;
425 rc = smbd_post_recv(info, response);
426 if (rc) {
427 log_rdma_recv(ERR,
428 "post_recv failed rc=%d\n", rc);
429 put_receive_buffer(info, response);
430 break;
431 }
432
433 ret++;
434 }
435 }
436
437 spin_lock(&info->lock_new_credits_offered);
438 info->new_credits_offered += ret;
439 spin_unlock(&info->lock_new_credits_offered);
440
441 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
442 info->send_immediate = true;
443 if (atomic_read(&info->receive_credits) <
444 info->receive_credit_target - 1) {
445 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
446 info->send_immediate) {
447 log_keep_alive(INFO, "send an empty message\n");
448 smbd_post_send_empty(info);
449 }
450 }
451 }
452
453 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)454 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
455 {
456 struct smbdirect_data_transfer *data_transfer;
457 struct smbd_response *response =
458 container_of(wc->wr_cqe, struct smbd_response, cqe);
459 struct smbd_connection *info = response->info;
460 int data_length = 0;
461
462 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
463 response, response->type, wc->status, wc->opcode,
464 wc->byte_len, wc->pkey_index);
465
466 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
467 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
468 wc->status, wc->opcode);
469 smbd_disconnect_rdma_connection(info);
470 goto error;
471 }
472
473 ib_dma_sync_single_for_cpu(
474 wc->qp->device,
475 response->sge.addr,
476 response->sge.length,
477 DMA_FROM_DEVICE);
478
479 switch (response->type) {
480 /* SMBD negotiation response */
481 case SMBD_NEGOTIATE_RESP:
482 dump_smbdirect_negotiate_resp(smbd_response_payload(response));
483 info->full_packet_received = true;
484 info->negotiate_done =
485 process_negotiation_response(response, wc->byte_len);
486 complete(&info->negotiate_completion);
487 break;
488
489 /* SMBD data transfer packet */
490 case SMBD_TRANSFER_DATA:
491 data_transfer = smbd_response_payload(response);
492 data_length = le32_to_cpu(data_transfer->data_length);
493
494 /*
495 * If this is a packet with data playload place the data in
496 * reassembly queue and wake up the reading thread
497 */
498 if (data_length) {
499 if (info->full_packet_received)
500 response->first_segment = true;
501
502 if (le32_to_cpu(data_transfer->remaining_data_length))
503 info->full_packet_received = false;
504 else
505 info->full_packet_received = true;
506
507 enqueue_reassembly(
508 info,
509 response,
510 data_length);
511 } else
512 put_empty_packet(info, response);
513
514 if (data_length)
515 wake_up_interruptible(&info->wait_reassembly_queue);
516
517 atomic_dec(&info->receive_credits);
518 info->receive_credit_target =
519 le16_to_cpu(data_transfer->credits_requested);
520 if (le16_to_cpu(data_transfer->credits_granted)) {
521 atomic_add(le16_to_cpu(data_transfer->credits_granted),
522 &info->send_credits);
523 /*
524 * We have new send credits granted from remote peer
525 * If any sender is waiting for credits, unblock it
526 */
527 wake_up_interruptible(&info->wait_send_queue);
528 }
529
530 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
531 le16_to_cpu(data_transfer->flags),
532 le32_to_cpu(data_transfer->data_offset),
533 le32_to_cpu(data_transfer->data_length),
534 le32_to_cpu(data_transfer->remaining_data_length));
535
536 /* Send a KEEP_ALIVE response right away if requested */
537 info->keep_alive_requested = KEEP_ALIVE_NONE;
538 if (le16_to_cpu(data_transfer->flags) &
539 SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
540 info->keep_alive_requested = KEEP_ALIVE_PENDING;
541 }
542
543 return;
544
545 default:
546 log_rdma_recv(ERR,
547 "unexpected response type=%d\n", response->type);
548 }
549
550 error:
551 put_receive_buffer(info, response);
552 }
553
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)554 static struct rdma_cm_id *smbd_create_id(
555 struct smbd_connection *info,
556 struct sockaddr *dstaddr, int port)
557 {
558 struct rdma_cm_id *id;
559 int rc;
560 __be16 *sport;
561
562 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
563 RDMA_PS_TCP, IB_QPT_RC);
564 if (IS_ERR(id)) {
565 rc = PTR_ERR(id);
566 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
567 return id;
568 }
569
570 if (dstaddr->sa_family == AF_INET6)
571 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
572 else
573 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
574
575 *sport = htons(port);
576
577 init_completion(&info->ri_done);
578 info->ri_rc = -ETIMEDOUT;
579
580 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
581 RDMA_RESOLVE_TIMEOUT);
582 if (rc) {
583 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
584 goto out;
585 }
586 rc = wait_for_completion_interruptible_timeout(
587 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
588 /* e.g. if interrupted returns -ERESTARTSYS */
589 if (rc < 0) {
590 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
591 goto out;
592 }
593 rc = info->ri_rc;
594 if (rc) {
595 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
596 goto out;
597 }
598
599 info->ri_rc = -ETIMEDOUT;
600 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
601 if (rc) {
602 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
603 goto out;
604 }
605 rc = wait_for_completion_interruptible_timeout(
606 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
607 /* e.g. if interrupted returns -ERESTARTSYS */
608 if (rc < 0) {
609 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
610 goto out;
611 }
612 rc = info->ri_rc;
613 if (rc) {
614 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
615 goto out;
616 }
617
618 return id;
619
620 out:
621 rdma_destroy_id(id);
622 return ERR_PTR(rc);
623 }
624
625 /*
626 * Test if FRWR (Fast Registration Work Requests) is supported on the device
627 * This implementation requires FRWR on RDMA read/write
628 * return value: true if it is supported
629 */
frwr_is_supported(struct ib_device_attr * attrs)630 static bool frwr_is_supported(struct ib_device_attr *attrs)
631 {
632 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
633 return false;
634 if (attrs->max_fast_reg_page_list_len == 0)
635 return false;
636 return true;
637 }
638
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)639 static int smbd_ia_open(
640 struct smbd_connection *info,
641 struct sockaddr *dstaddr, int port)
642 {
643 struct smbdirect_socket *sc = &info->socket;
644 int rc;
645
646 sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
647 if (IS_ERR(sc->rdma.cm_id)) {
648 rc = PTR_ERR(sc->rdma.cm_id);
649 goto out1;
650 }
651 sc->ib.dev = sc->rdma.cm_id->device;
652
653 if (!frwr_is_supported(&sc->ib.dev->attrs)) {
654 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
655 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
656 sc->ib.dev->attrs.device_cap_flags,
657 sc->ib.dev->attrs.max_fast_reg_page_list_len);
658 rc = -EPROTONOSUPPORT;
659 goto out2;
660 }
661 info->max_frmr_depth = min_t(int,
662 smbd_max_frmr_depth,
663 sc->ib.dev->attrs.max_fast_reg_page_list_len);
664 info->mr_type = IB_MR_TYPE_MEM_REG;
665 if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
666 info->mr_type = IB_MR_TYPE_SG_GAPS;
667
668 sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
669 if (IS_ERR(sc->ib.pd)) {
670 rc = PTR_ERR(sc->ib.pd);
671 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
672 goto out2;
673 }
674
675 return 0;
676
677 out2:
678 rdma_destroy_id(sc->rdma.cm_id);
679 sc->rdma.cm_id = NULL;
680
681 out1:
682 return rc;
683 }
684
685 /*
686 * Send a negotiation request message to the peer
687 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
688 * After negotiation, the transport is connected and ready for
689 * carrying upper layer SMB payload
690 */
smbd_post_send_negotiate_req(struct smbd_connection * info)691 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
692 {
693 struct smbdirect_socket *sc = &info->socket;
694 struct smbdirect_socket_parameters *sp = &sc->parameters;
695 struct ib_send_wr send_wr;
696 int rc = -ENOMEM;
697 struct smbd_request *request;
698 struct smbdirect_negotiate_req *packet;
699
700 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
701 if (!request)
702 return rc;
703
704 request->info = info;
705
706 packet = smbd_request_payload(request);
707 packet->min_version = cpu_to_le16(SMBDIRECT_V1);
708 packet->max_version = cpu_to_le16(SMBDIRECT_V1);
709 packet->reserved = 0;
710 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
711 packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
712 packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
713 packet->max_fragmented_size =
714 cpu_to_le32(sp->max_fragmented_recv_size);
715
716 request->num_sge = 1;
717 request->sge[0].addr = ib_dma_map_single(
718 sc->ib.dev, (void *)packet,
719 sizeof(*packet), DMA_TO_DEVICE);
720 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
721 rc = -EIO;
722 goto dma_mapping_failed;
723 }
724
725 request->sge[0].length = sizeof(*packet);
726 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
727
728 ib_dma_sync_single_for_device(
729 sc->ib.dev, request->sge[0].addr,
730 request->sge[0].length, DMA_TO_DEVICE);
731
732 request->cqe.done = send_done;
733
734 send_wr.next = NULL;
735 send_wr.wr_cqe = &request->cqe;
736 send_wr.sg_list = request->sge;
737 send_wr.num_sge = request->num_sge;
738 send_wr.opcode = IB_WR_SEND;
739 send_wr.send_flags = IB_SEND_SIGNALED;
740
741 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
742 request->sge[0].addr,
743 request->sge[0].length, request->sge[0].lkey);
744
745 atomic_inc(&info->send_pending);
746 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
747 if (!rc)
748 return 0;
749
750 /* if we reach here, post send failed */
751 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
752 atomic_dec(&info->send_pending);
753 ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
754 request->sge[0].length, DMA_TO_DEVICE);
755
756 smbd_disconnect_rdma_connection(info);
757
758 dma_mapping_failed:
759 mempool_free(request, info->request_mempool);
760 return rc;
761 }
762
763 /*
764 * Extend the credits to remote peer
765 * This implements [MS-SMBD] 3.1.5.9
766 * The idea is that we should extend credits to remote peer as quickly as
767 * it's allowed, to maintain data flow. We allocate as much receive
768 * buffer as possible, and extend the receive credits to remote peer
769 * return value: the new credtis being granted.
770 */
manage_credits_prior_sending(struct smbd_connection * info)771 static int manage_credits_prior_sending(struct smbd_connection *info)
772 {
773 int new_credits;
774
775 spin_lock(&info->lock_new_credits_offered);
776 new_credits = info->new_credits_offered;
777 info->new_credits_offered = 0;
778 spin_unlock(&info->lock_new_credits_offered);
779
780 return new_credits;
781 }
782
783 /*
784 * Check if we need to send a KEEP_ALIVE message
785 * The idle connection timer triggers a KEEP_ALIVE message when expires
786 * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
787 * back a response.
788 * return value:
789 * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
790 * 0: otherwise
791 */
manage_keep_alive_before_sending(struct smbd_connection * info)792 static int manage_keep_alive_before_sending(struct smbd_connection *info)
793 {
794 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
795 info->keep_alive_requested = KEEP_ALIVE_SENT;
796 return 1;
797 }
798 return 0;
799 }
800
801 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)802 static int smbd_post_send(struct smbd_connection *info,
803 struct smbd_request *request)
804 {
805 struct smbdirect_socket *sc = &info->socket;
806 struct smbdirect_socket_parameters *sp = &sc->parameters;
807 struct ib_send_wr send_wr;
808 int rc, i;
809
810 for (i = 0; i < request->num_sge; i++) {
811 log_rdma_send(INFO,
812 "rdma_request sge[%d] addr=0x%llx length=%u\n",
813 i, request->sge[i].addr, request->sge[i].length);
814 ib_dma_sync_single_for_device(
815 sc->ib.dev,
816 request->sge[i].addr,
817 request->sge[i].length,
818 DMA_TO_DEVICE);
819 }
820
821 request->cqe.done = send_done;
822
823 send_wr.next = NULL;
824 send_wr.wr_cqe = &request->cqe;
825 send_wr.sg_list = request->sge;
826 send_wr.num_sge = request->num_sge;
827 send_wr.opcode = IB_WR_SEND;
828 send_wr.send_flags = IB_SEND_SIGNALED;
829
830 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
831 if (rc) {
832 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
833 smbd_disconnect_rdma_connection(info);
834 rc = -EAGAIN;
835 } else
836 /* Reset timer for idle connection after packet is sent */
837 mod_delayed_work(info->workqueue, &info->idle_timer_work,
838 msecs_to_jiffies(sp->keepalive_interval_msec));
839
840 return rc;
841 }
842
smbd_post_send_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)843 static int smbd_post_send_iter(struct smbd_connection *info,
844 struct iov_iter *iter,
845 int *_remaining_data_length)
846 {
847 struct smbdirect_socket *sc = &info->socket;
848 struct smbdirect_socket_parameters *sp = &sc->parameters;
849 int i, rc;
850 int header_length;
851 int data_length;
852 struct smbd_request *request;
853 struct smbdirect_data_transfer *packet;
854 int new_credits = 0;
855
856 wait_credit:
857 /* Wait for send credits. A SMBD packet needs one credit */
858 rc = wait_event_interruptible(info->wait_send_queue,
859 atomic_read(&info->send_credits) > 0 ||
860 sc->status != SMBDIRECT_SOCKET_CONNECTED);
861 if (rc)
862 goto err_wait_credit;
863
864 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
865 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
866 rc = -EAGAIN;
867 goto err_wait_credit;
868 }
869 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
870 atomic_inc(&info->send_credits);
871 goto wait_credit;
872 }
873
874 wait_send_queue:
875 wait_event(info->wait_post_send,
876 atomic_read(&info->send_pending) < sp->send_credit_target ||
877 sc->status != SMBDIRECT_SOCKET_CONNECTED);
878
879 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
880 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
881 rc = -EAGAIN;
882 goto err_wait_send_queue;
883 }
884
885 if (unlikely(atomic_inc_return(&info->send_pending) >
886 sp->send_credit_target)) {
887 atomic_dec(&info->send_pending);
888 goto wait_send_queue;
889 }
890
891 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
892 if (!request) {
893 rc = -ENOMEM;
894 goto err_alloc;
895 }
896
897 request->info = info;
898 memset(request->sge, 0, sizeof(request->sge));
899
900 /* Fill in the data payload to find out how much data we can add */
901 if (iter) {
902 struct smb_extract_to_rdma extract = {
903 .nr_sge = 1,
904 .max_sge = SMBDIRECT_MAX_SEND_SGE,
905 .sge = request->sge,
906 .device = sc->ib.dev,
907 .local_dma_lkey = sc->ib.pd->local_dma_lkey,
908 .direction = DMA_TO_DEVICE,
909 };
910 size_t payload_len = umin(*_remaining_data_length,
911 sp->max_send_size - sizeof(*packet));
912
913 rc = smb_extract_iter_to_rdma(iter, payload_len,
914 &extract);
915 if (rc < 0)
916 goto err_dma;
917 data_length = rc;
918 request->num_sge = extract.nr_sge;
919 *_remaining_data_length -= data_length;
920 } else {
921 data_length = 0;
922 request->num_sge = 1;
923 }
924
925 /* Fill in the packet header */
926 packet = smbd_request_payload(request);
927 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
928
929 new_credits = manage_credits_prior_sending(info);
930 atomic_add(new_credits, &info->receive_credits);
931 packet->credits_granted = cpu_to_le16(new_credits);
932
933 info->send_immediate = false;
934
935 packet->flags = 0;
936 if (manage_keep_alive_before_sending(info))
937 packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
938
939 packet->reserved = 0;
940 if (!data_length)
941 packet->data_offset = 0;
942 else
943 packet->data_offset = cpu_to_le32(24);
944 packet->data_length = cpu_to_le32(data_length);
945 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
946 packet->padding = 0;
947
948 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
949 le16_to_cpu(packet->credits_requested),
950 le16_to_cpu(packet->credits_granted),
951 le32_to_cpu(packet->data_offset),
952 le32_to_cpu(packet->data_length),
953 le32_to_cpu(packet->remaining_data_length));
954
955 /* Map the packet to DMA */
956 header_length = sizeof(struct smbdirect_data_transfer);
957 /* If this is a packet without payload, don't send padding */
958 if (!data_length)
959 header_length = offsetof(struct smbdirect_data_transfer, padding);
960
961 request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
962 (void *)packet,
963 header_length,
964 DMA_TO_DEVICE);
965 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
966 rc = -EIO;
967 request->sge[0].addr = 0;
968 goto err_dma;
969 }
970
971 request->sge[0].length = header_length;
972 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
973
974 rc = smbd_post_send(info, request);
975 if (!rc)
976 return 0;
977
978 err_dma:
979 for (i = 0; i < request->num_sge; i++)
980 if (request->sge[i].addr)
981 ib_dma_unmap_single(sc->ib.dev,
982 request->sge[i].addr,
983 request->sge[i].length,
984 DMA_TO_DEVICE);
985 mempool_free(request, info->request_mempool);
986
987 /* roll back receive credits and credits to be offered */
988 spin_lock(&info->lock_new_credits_offered);
989 info->new_credits_offered += new_credits;
990 spin_unlock(&info->lock_new_credits_offered);
991 atomic_sub(new_credits, &info->receive_credits);
992
993 err_alloc:
994 if (atomic_dec_and_test(&info->send_pending))
995 wake_up(&info->wait_send_pending);
996
997 err_wait_send_queue:
998 /* roll back send credits and pending */
999 atomic_inc(&info->send_credits);
1000
1001 err_wait_credit:
1002 return rc;
1003 }
1004
1005 /*
1006 * Send an empty message
1007 * Empty message is used to extend credits to peer to for keep live
1008 * while there is no upper layer payload to send at the time
1009 */
smbd_post_send_empty(struct smbd_connection * info)1010 static int smbd_post_send_empty(struct smbd_connection *info)
1011 {
1012 int remaining_data_length = 0;
1013
1014 info->count_send_empty++;
1015 return smbd_post_send_iter(info, NULL, &remaining_data_length);
1016 }
1017
smbd_post_send_full_iter(struct smbd_connection * info,struct iov_iter * iter,int * _remaining_data_length)1018 static int smbd_post_send_full_iter(struct smbd_connection *info,
1019 struct iov_iter *iter,
1020 int *_remaining_data_length)
1021 {
1022 int rc = 0;
1023
1024 /*
1025 * smbd_post_send_iter() respects the
1026 * negotiated max_send_size, so we need to
1027 * loop until the full iter is posted
1028 */
1029
1030 while (iov_iter_count(iter) > 0) {
1031 rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1032 if (rc < 0)
1033 break;
1034 }
1035
1036 return rc;
1037 }
1038
1039 /*
1040 * Post a receive request to the transport
1041 * The remote peer can only send data when a receive request is posted
1042 * The interaction is controlled by send/receive credit system
1043 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1044 static int smbd_post_recv(
1045 struct smbd_connection *info, struct smbd_response *response)
1046 {
1047 struct smbdirect_socket *sc = &info->socket;
1048 struct smbdirect_socket_parameters *sp = &sc->parameters;
1049 struct ib_recv_wr recv_wr;
1050 int rc = -EIO;
1051
1052 response->sge.addr = ib_dma_map_single(
1053 sc->ib.dev, response->packet,
1054 sp->max_recv_size, DMA_FROM_DEVICE);
1055 if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1056 return rc;
1057
1058 response->sge.length = sp->max_recv_size;
1059 response->sge.lkey = sc->ib.pd->local_dma_lkey;
1060
1061 response->cqe.done = recv_done;
1062
1063 recv_wr.wr_cqe = &response->cqe;
1064 recv_wr.next = NULL;
1065 recv_wr.sg_list = &response->sge;
1066 recv_wr.num_sge = 1;
1067
1068 rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1069 if (rc) {
1070 ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1071 response->sge.length, DMA_FROM_DEVICE);
1072 smbd_disconnect_rdma_connection(info);
1073 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1074 }
1075
1076 return rc;
1077 }
1078
1079 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1080 static int smbd_negotiate(struct smbd_connection *info)
1081 {
1082 int rc;
1083 struct smbd_response *response = get_receive_buffer(info);
1084
1085 response->type = SMBD_NEGOTIATE_RESP;
1086 rc = smbd_post_recv(info, response);
1087 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1088 rc, response->sge.addr,
1089 response->sge.length, response->sge.lkey);
1090 if (rc)
1091 return rc;
1092
1093 init_completion(&info->negotiate_completion);
1094 info->negotiate_done = false;
1095 rc = smbd_post_send_negotiate_req(info);
1096 if (rc)
1097 return rc;
1098
1099 rc = wait_for_completion_interruptible_timeout(
1100 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1101 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1102
1103 if (info->negotiate_done)
1104 return 0;
1105
1106 if (rc == 0)
1107 rc = -ETIMEDOUT;
1108 else if (rc == -ERESTARTSYS)
1109 rc = -EINTR;
1110 else
1111 rc = -ENOTCONN;
1112
1113 return rc;
1114 }
1115
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1116 static void put_empty_packet(
1117 struct smbd_connection *info, struct smbd_response *response)
1118 {
1119 spin_lock(&info->empty_packet_queue_lock);
1120 list_add_tail(&response->list, &info->empty_packet_queue);
1121 info->count_empty_packet_queue++;
1122 spin_unlock(&info->empty_packet_queue_lock);
1123
1124 queue_work(info->workqueue, &info->post_send_credits_work);
1125 }
1126
1127 /*
1128 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1129 * This is a queue for reassembling upper layer payload and present to upper
1130 * layer. All the inncoming payload go to the reassembly queue, regardless of
1131 * if reassembly is required. The uuper layer code reads from the queue for all
1132 * incoming payloads.
1133 * Put a received packet to the reassembly queue
1134 * response: the packet received
1135 * data_length: the size of payload in this packet
1136 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1137 static void enqueue_reassembly(
1138 struct smbd_connection *info,
1139 struct smbd_response *response,
1140 int data_length)
1141 {
1142 spin_lock(&info->reassembly_queue_lock);
1143 list_add_tail(&response->list, &info->reassembly_queue);
1144 info->reassembly_queue_length++;
1145 /*
1146 * Make sure reassembly_data_length is updated after list and
1147 * reassembly_queue_length are updated. On the dequeue side
1148 * reassembly_data_length is checked without a lock to determine
1149 * if reassembly_queue_length and list is up to date
1150 */
1151 virt_wmb();
1152 info->reassembly_data_length += data_length;
1153 spin_unlock(&info->reassembly_queue_lock);
1154 info->count_reassembly_queue++;
1155 info->count_enqueue_reassembly_queue++;
1156 }
1157
1158 /*
1159 * Get the first entry at the front of reassembly queue
1160 * Caller is responsible for locking
1161 * return value: the first entry if any, NULL if queue is empty
1162 */
_get_first_reassembly(struct smbd_connection * info)1163 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1164 {
1165 struct smbd_response *ret = NULL;
1166
1167 if (!list_empty(&info->reassembly_queue)) {
1168 ret = list_first_entry(
1169 &info->reassembly_queue,
1170 struct smbd_response, list);
1171 }
1172 return ret;
1173 }
1174
get_empty_queue_buffer(struct smbd_connection * info)1175 static struct smbd_response *get_empty_queue_buffer(
1176 struct smbd_connection *info)
1177 {
1178 struct smbd_response *ret = NULL;
1179 unsigned long flags;
1180
1181 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1182 if (!list_empty(&info->empty_packet_queue)) {
1183 ret = list_first_entry(
1184 &info->empty_packet_queue,
1185 struct smbd_response, list);
1186 list_del(&ret->list);
1187 info->count_empty_packet_queue--;
1188 }
1189 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1190
1191 return ret;
1192 }
1193
1194 /*
1195 * Get a receive buffer
1196 * For each remote send, we need to post a receive. The receive buffers are
1197 * pre-allocated in advance.
1198 * return value: the receive buffer, NULL if none is available
1199 */
get_receive_buffer(struct smbd_connection * info)1200 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1201 {
1202 struct smbd_response *ret = NULL;
1203 unsigned long flags;
1204
1205 spin_lock_irqsave(&info->receive_queue_lock, flags);
1206 if (!list_empty(&info->receive_queue)) {
1207 ret = list_first_entry(
1208 &info->receive_queue,
1209 struct smbd_response, list);
1210 list_del(&ret->list);
1211 info->count_receive_queue--;
1212 info->count_get_receive_buffer++;
1213 }
1214 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * Return a receive buffer
1221 * Upon returning of a receive buffer, we can post new receive and extend
1222 * more receive credits to remote peer. This is done immediately after a
1223 * receive buffer is returned.
1224 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1225 static void put_receive_buffer(
1226 struct smbd_connection *info, struct smbd_response *response)
1227 {
1228 struct smbdirect_socket *sc = &info->socket;
1229 unsigned long flags;
1230
1231 ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1232 response->sge.length, DMA_FROM_DEVICE);
1233
1234 spin_lock_irqsave(&info->receive_queue_lock, flags);
1235 list_add_tail(&response->list, &info->receive_queue);
1236 info->count_receive_queue++;
1237 info->count_put_receive_buffer++;
1238 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1239
1240 queue_work(info->workqueue, &info->post_send_credits_work);
1241 }
1242
1243 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1244 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1245 {
1246 int i;
1247 struct smbd_response *response;
1248
1249 INIT_LIST_HEAD(&info->reassembly_queue);
1250 spin_lock_init(&info->reassembly_queue_lock);
1251 info->reassembly_data_length = 0;
1252 info->reassembly_queue_length = 0;
1253
1254 INIT_LIST_HEAD(&info->receive_queue);
1255 spin_lock_init(&info->receive_queue_lock);
1256 info->count_receive_queue = 0;
1257
1258 INIT_LIST_HEAD(&info->empty_packet_queue);
1259 spin_lock_init(&info->empty_packet_queue_lock);
1260 info->count_empty_packet_queue = 0;
1261
1262 init_waitqueue_head(&info->wait_receive_queues);
1263
1264 for (i = 0; i < num_buf; i++) {
1265 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1266 if (!response)
1267 goto allocate_failed;
1268
1269 response->info = info;
1270 list_add_tail(&response->list, &info->receive_queue);
1271 info->count_receive_queue++;
1272 }
1273
1274 return 0;
1275
1276 allocate_failed:
1277 while (!list_empty(&info->receive_queue)) {
1278 response = list_first_entry(
1279 &info->receive_queue,
1280 struct smbd_response, list);
1281 list_del(&response->list);
1282 info->count_receive_queue--;
1283
1284 mempool_free(response, info->response_mempool);
1285 }
1286 return -ENOMEM;
1287 }
1288
destroy_receive_buffers(struct smbd_connection * info)1289 static void destroy_receive_buffers(struct smbd_connection *info)
1290 {
1291 struct smbd_response *response;
1292
1293 while ((response = get_receive_buffer(info)))
1294 mempool_free(response, info->response_mempool);
1295
1296 while ((response = get_empty_queue_buffer(info)))
1297 mempool_free(response, info->response_mempool);
1298 }
1299
1300 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1301 static void idle_connection_timer(struct work_struct *work)
1302 {
1303 struct smbd_connection *info = container_of(
1304 work, struct smbd_connection,
1305 idle_timer_work.work);
1306 struct smbdirect_socket *sc = &info->socket;
1307 struct smbdirect_socket_parameters *sp = &sc->parameters;
1308
1309 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1310 log_keep_alive(ERR,
1311 "error status info->keep_alive_requested=%d\n",
1312 info->keep_alive_requested);
1313 smbd_disconnect_rdma_connection(info);
1314 return;
1315 }
1316
1317 log_keep_alive(INFO, "about to send an empty idle message\n");
1318 smbd_post_send_empty(info);
1319
1320 /* Setup the next idle timeout work */
1321 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1322 msecs_to_jiffies(sp->keepalive_interval_msec));
1323 }
1324
1325 /*
1326 * Destroy the transport and related RDMA and memory resources
1327 * Need to go through all the pending counters and make sure on one is using
1328 * the transport while it is destroyed
1329 */
smbd_destroy(struct TCP_Server_Info * server)1330 void smbd_destroy(struct TCP_Server_Info *server)
1331 {
1332 struct smbd_connection *info = server->smbd_conn;
1333 struct smbdirect_socket *sc;
1334 struct smbdirect_socket_parameters *sp;
1335 struct smbd_response *response;
1336 unsigned long flags;
1337
1338 if (!info) {
1339 log_rdma_event(INFO, "rdma session already destroyed\n");
1340 return;
1341 }
1342 sc = &info->socket;
1343 sp = &sc->parameters;
1344
1345 log_rdma_event(INFO, "destroying rdma session\n");
1346 if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1347 rdma_disconnect(sc->rdma.cm_id);
1348 log_rdma_event(INFO, "wait for transport being disconnected\n");
1349 wait_event_interruptible(
1350 info->disconn_wait,
1351 sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1352 }
1353
1354 log_rdma_event(INFO, "destroying qp\n");
1355 ib_drain_qp(sc->ib.qp);
1356 rdma_destroy_qp(sc->rdma.cm_id);
1357 sc->ib.qp = NULL;
1358
1359 log_rdma_event(INFO, "cancelling idle timer\n");
1360 cancel_delayed_work_sync(&info->idle_timer_work);
1361
1362 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1363 wait_event(info->wait_send_pending,
1364 atomic_read(&info->send_pending) == 0);
1365
1366 /* It's not possible for upper layer to get to reassembly */
1367 log_rdma_event(INFO, "drain the reassembly queue\n");
1368 do {
1369 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1370 response = _get_first_reassembly(info);
1371 if (response) {
1372 list_del(&response->list);
1373 spin_unlock_irqrestore(
1374 &info->reassembly_queue_lock, flags);
1375 put_receive_buffer(info, response);
1376 } else
1377 spin_unlock_irqrestore(
1378 &info->reassembly_queue_lock, flags);
1379 } while (response);
1380 info->reassembly_data_length = 0;
1381
1382 log_rdma_event(INFO, "free receive buffers\n");
1383 wait_event(info->wait_receive_queues,
1384 info->count_receive_queue + info->count_empty_packet_queue
1385 == sp->recv_credit_max);
1386 destroy_receive_buffers(info);
1387
1388 /*
1389 * For performance reasons, memory registration and deregistration
1390 * are not locked by srv_mutex. It is possible some processes are
1391 * blocked on transport srv_mutex while holding memory registration.
1392 * Release the transport srv_mutex to allow them to hit the failure
1393 * path when sending data, and then release memory registrations.
1394 */
1395 log_rdma_event(INFO, "freeing mr list\n");
1396 wake_up_interruptible_all(&info->wait_mr);
1397 while (atomic_read(&info->mr_used_count)) {
1398 cifs_server_unlock(server);
1399 msleep(1000);
1400 cifs_server_lock(server);
1401 }
1402 destroy_mr_list(info);
1403
1404 ib_free_cq(sc->ib.send_cq);
1405 ib_free_cq(sc->ib.recv_cq);
1406 ib_dealloc_pd(sc->ib.pd);
1407 rdma_destroy_id(sc->rdma.cm_id);
1408
1409 /* free mempools */
1410 mempool_destroy(info->request_mempool);
1411 kmem_cache_destroy(info->request_cache);
1412
1413 mempool_destroy(info->response_mempool);
1414 kmem_cache_destroy(info->response_cache);
1415
1416 sc->status = SMBDIRECT_SOCKET_DESTROYED;
1417
1418 destroy_workqueue(info->workqueue);
1419 log_rdma_event(INFO, "rdma session destroyed\n");
1420 kfree(info);
1421 server->smbd_conn = NULL;
1422 }
1423
1424 /*
1425 * Reconnect this SMBD connection, called from upper layer
1426 * return value: 0 on success, or actual error code
1427 */
smbd_reconnect(struct TCP_Server_Info * server)1428 int smbd_reconnect(struct TCP_Server_Info *server)
1429 {
1430 log_rdma_event(INFO, "reconnecting rdma session\n");
1431
1432 if (!server->smbd_conn) {
1433 log_rdma_event(INFO, "rdma session already destroyed\n");
1434 goto create_conn;
1435 }
1436
1437 /*
1438 * This is possible if transport is disconnected and we haven't received
1439 * notification from RDMA, but upper layer has detected timeout
1440 */
1441 if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1442 log_rdma_event(INFO, "disconnecting transport\n");
1443 smbd_destroy(server);
1444 }
1445
1446 create_conn:
1447 log_rdma_event(INFO, "creating rdma session\n");
1448 server->smbd_conn = smbd_get_connection(
1449 server, (struct sockaddr *) &server->dstaddr);
1450
1451 if (server->smbd_conn) {
1452 cifs_dbg(VFS, "RDMA transport re-established\n");
1453 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1454 return 0;
1455 }
1456 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1457 return -ENOENT;
1458 }
1459
destroy_caches_and_workqueue(struct smbd_connection * info)1460 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1461 {
1462 destroy_receive_buffers(info);
1463 destroy_workqueue(info->workqueue);
1464 mempool_destroy(info->response_mempool);
1465 kmem_cache_destroy(info->response_cache);
1466 mempool_destroy(info->request_mempool);
1467 kmem_cache_destroy(info->request_cache);
1468 }
1469
1470 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1471 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1472 {
1473 struct smbdirect_socket *sc = &info->socket;
1474 struct smbdirect_socket_parameters *sp = &sc->parameters;
1475 char name[MAX_NAME_LEN];
1476 int rc;
1477
1478 if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1479 return -ENOMEM;
1480
1481 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1482 info->request_cache =
1483 kmem_cache_create(
1484 name,
1485 sizeof(struct smbd_request) +
1486 sizeof(struct smbdirect_data_transfer),
1487 0, SLAB_HWCACHE_ALIGN, NULL);
1488 if (!info->request_cache)
1489 return -ENOMEM;
1490
1491 info->request_mempool =
1492 mempool_create(sp->send_credit_target, mempool_alloc_slab,
1493 mempool_free_slab, info->request_cache);
1494 if (!info->request_mempool)
1495 goto out1;
1496
1497 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1498
1499 struct kmem_cache_args response_args = {
1500 .align = __alignof__(struct smbd_response),
1501 .useroffset = (offsetof(struct smbd_response, packet) +
1502 sizeof(struct smbdirect_data_transfer)),
1503 .usersize = sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1504 };
1505 info->response_cache =
1506 kmem_cache_create(name,
1507 sizeof(struct smbd_response) + sp->max_recv_size,
1508 &response_args, SLAB_HWCACHE_ALIGN);
1509 if (!info->response_cache)
1510 goto out2;
1511
1512 info->response_mempool =
1513 mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1514 mempool_free_slab, info->response_cache);
1515 if (!info->response_mempool)
1516 goto out3;
1517
1518 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1519 info->workqueue = create_workqueue(name);
1520 if (!info->workqueue)
1521 goto out4;
1522
1523 rc = allocate_receive_buffers(info, sp->recv_credit_max);
1524 if (rc) {
1525 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1526 goto out5;
1527 }
1528
1529 return 0;
1530
1531 out5:
1532 destroy_workqueue(info->workqueue);
1533 out4:
1534 mempool_destroy(info->response_mempool);
1535 out3:
1536 kmem_cache_destroy(info->response_cache);
1537 out2:
1538 mempool_destroy(info->request_mempool);
1539 out1:
1540 kmem_cache_destroy(info->request_cache);
1541 return -ENOMEM;
1542 }
1543
1544 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1545 static struct smbd_connection *_smbd_get_connection(
1546 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1547 {
1548 int rc;
1549 struct smbd_connection *info;
1550 struct smbdirect_socket *sc;
1551 struct smbdirect_socket_parameters *sp;
1552 struct rdma_conn_param conn_param;
1553 struct ib_qp_init_attr qp_attr;
1554 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1555 struct ib_port_immutable port_immutable;
1556 u32 ird_ord_hdr[2];
1557
1558 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1559 if (!info)
1560 return NULL;
1561 sc = &info->socket;
1562 sp = &sc->parameters;
1563
1564 sc->status = SMBDIRECT_SOCKET_CONNECTING;
1565 rc = smbd_ia_open(info, dstaddr, port);
1566 if (rc) {
1567 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1568 goto create_id_failed;
1569 }
1570
1571 if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1572 smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1573 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1574 smbd_send_credit_target,
1575 sc->ib.dev->attrs.max_cqe,
1576 sc->ib.dev->attrs.max_qp_wr);
1577 goto config_failed;
1578 }
1579
1580 if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1581 smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1582 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1583 smbd_receive_credit_max,
1584 sc->ib.dev->attrs.max_cqe,
1585 sc->ib.dev->attrs.max_qp_wr);
1586 goto config_failed;
1587 }
1588
1589 sp->recv_credit_max = smbd_receive_credit_max;
1590 sp->send_credit_target = smbd_send_credit_target;
1591 sp->max_send_size = smbd_max_send_size;
1592 sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1593 sp->max_recv_size = smbd_max_receive_size;
1594 sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1595
1596 if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1597 sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1598 log_rdma_event(ERR,
1599 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1600 IB_DEVICE_NAME_MAX,
1601 sc->ib.dev->name,
1602 sc->ib.dev->attrs.max_send_sge,
1603 sc->ib.dev->attrs.max_recv_sge);
1604 goto config_failed;
1605 }
1606
1607 sc->ib.send_cq =
1608 ib_alloc_cq_any(sc->ib.dev, info,
1609 sp->send_credit_target, IB_POLL_SOFTIRQ);
1610 if (IS_ERR(sc->ib.send_cq)) {
1611 sc->ib.send_cq = NULL;
1612 goto alloc_cq_failed;
1613 }
1614
1615 sc->ib.recv_cq =
1616 ib_alloc_cq_any(sc->ib.dev, info,
1617 sp->recv_credit_max, IB_POLL_SOFTIRQ);
1618 if (IS_ERR(sc->ib.recv_cq)) {
1619 sc->ib.recv_cq = NULL;
1620 goto alloc_cq_failed;
1621 }
1622
1623 memset(&qp_attr, 0, sizeof(qp_attr));
1624 qp_attr.event_handler = smbd_qp_async_error_upcall;
1625 qp_attr.qp_context = info;
1626 qp_attr.cap.max_send_wr = sp->send_credit_target;
1627 qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1628 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1629 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1630 qp_attr.cap.max_inline_data = 0;
1631 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1632 qp_attr.qp_type = IB_QPT_RC;
1633 qp_attr.send_cq = sc->ib.send_cq;
1634 qp_attr.recv_cq = sc->ib.recv_cq;
1635 qp_attr.port_num = ~0;
1636
1637 rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1638 if (rc) {
1639 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1640 goto create_qp_failed;
1641 }
1642 sc->ib.qp = sc->rdma.cm_id->qp;
1643
1644 memset(&conn_param, 0, sizeof(conn_param));
1645 conn_param.initiator_depth = 0;
1646
1647 conn_param.responder_resources =
1648 min(sc->ib.dev->attrs.max_qp_rd_atom,
1649 SMBD_CM_RESPONDER_RESOURCES);
1650 info->responder_resources = conn_param.responder_resources;
1651 log_rdma_mr(INFO, "responder_resources=%d\n",
1652 info->responder_resources);
1653
1654 /* Need to send IRD/ORD in private data for iWARP */
1655 sc->ib.dev->ops.get_port_immutable(
1656 sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1657 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1658 ird_ord_hdr[0] = info->responder_resources;
1659 ird_ord_hdr[1] = 1;
1660 conn_param.private_data = ird_ord_hdr;
1661 conn_param.private_data_len = sizeof(ird_ord_hdr);
1662 } else {
1663 conn_param.private_data = NULL;
1664 conn_param.private_data_len = 0;
1665 }
1666
1667 conn_param.retry_count = SMBD_CM_RETRY;
1668 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1669 conn_param.flow_control = 0;
1670
1671 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1672 &addr_in->sin_addr, port);
1673
1674 init_waitqueue_head(&info->conn_wait);
1675 init_waitqueue_head(&info->disconn_wait);
1676 init_waitqueue_head(&info->wait_reassembly_queue);
1677 rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1678 if (rc) {
1679 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1680 goto rdma_connect_failed;
1681 }
1682
1683 wait_event_interruptible(
1684 info->conn_wait, sc->status != SMBDIRECT_SOCKET_CONNECTING);
1685
1686 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1687 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1688 goto rdma_connect_failed;
1689 }
1690
1691 log_rdma_event(INFO, "rdma_connect connected\n");
1692
1693 rc = allocate_caches_and_workqueue(info);
1694 if (rc) {
1695 log_rdma_event(ERR, "cache allocation failed\n");
1696 goto allocate_cache_failed;
1697 }
1698
1699 init_waitqueue_head(&info->wait_send_queue);
1700 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1701 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1702 msecs_to_jiffies(sp->keepalive_interval_msec));
1703
1704 init_waitqueue_head(&info->wait_send_pending);
1705 atomic_set(&info->send_pending, 0);
1706
1707 init_waitqueue_head(&info->wait_post_send);
1708
1709 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1710 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1711 info->new_credits_offered = 0;
1712 spin_lock_init(&info->lock_new_credits_offered);
1713
1714 rc = smbd_negotiate(info);
1715 if (rc) {
1716 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1717 goto negotiation_failed;
1718 }
1719
1720 rc = allocate_mr_list(info);
1721 if (rc) {
1722 log_rdma_mr(ERR, "memory registration allocation failed\n");
1723 goto allocate_mr_failed;
1724 }
1725
1726 return info;
1727
1728 allocate_mr_failed:
1729 /* At this point, need to a full transport shutdown */
1730 server->smbd_conn = info;
1731 smbd_destroy(server);
1732 return NULL;
1733
1734 negotiation_failed:
1735 cancel_delayed_work_sync(&info->idle_timer_work);
1736 destroy_caches_and_workqueue(info);
1737 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1738 init_waitqueue_head(&info->conn_wait);
1739 rdma_disconnect(sc->rdma.cm_id);
1740 wait_event(info->conn_wait,
1741 sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1742
1743 allocate_cache_failed:
1744 rdma_connect_failed:
1745 rdma_destroy_qp(sc->rdma.cm_id);
1746
1747 create_qp_failed:
1748 alloc_cq_failed:
1749 if (sc->ib.send_cq)
1750 ib_free_cq(sc->ib.send_cq);
1751 if (sc->ib.recv_cq)
1752 ib_free_cq(sc->ib.recv_cq);
1753
1754 config_failed:
1755 ib_dealloc_pd(sc->ib.pd);
1756 rdma_destroy_id(sc->rdma.cm_id);
1757
1758 create_id_failed:
1759 kfree(info);
1760 return NULL;
1761 }
1762
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1763 struct smbd_connection *smbd_get_connection(
1764 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1765 {
1766 struct smbd_connection *ret;
1767 int port = SMBD_PORT;
1768
1769 try_again:
1770 ret = _smbd_get_connection(server, dstaddr, port);
1771
1772 /* Try SMB_PORT if SMBD_PORT doesn't work */
1773 if (!ret && port == SMBD_PORT) {
1774 port = SMB_PORT;
1775 goto try_again;
1776 }
1777 return ret;
1778 }
1779
1780 /*
1781 * Receive data from the transport's receive reassembly queue
1782 * All the incoming data packets are placed in reassembly queue
1783 * iter: the buffer to read data into
1784 * size: the length of data to read
1785 * return value: actual data read
1786 *
1787 * Note: this implementation copies the data from reassembly queue to receive
1788 * buffers used by upper layer. This is not the optimal code path. A better way
1789 * to do it is to not have upper layer allocate its receive buffers but rather
1790 * borrow the buffer from reassembly queue, and return it after data is
1791 * consumed. But this will require more changes to upper layer code, and also
1792 * need to consider packet boundaries while they still being reassembled.
1793 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1794 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1795 {
1796 struct smbdirect_socket *sc = &info->socket;
1797 struct smbd_response *response;
1798 struct smbdirect_data_transfer *data_transfer;
1799 size_t size = iov_iter_count(&msg->msg_iter);
1800 int to_copy, to_read, data_read, offset;
1801 u32 data_length, remaining_data_length, data_offset;
1802 int rc;
1803
1804 if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1805 return -EINVAL; /* It's a bug in upper layer to get there */
1806
1807 again:
1808 /*
1809 * No need to hold the reassembly queue lock all the time as we are
1810 * the only one reading from the front of the queue. The transport
1811 * may add more entries to the back of the queue at the same time
1812 */
1813 log_read(INFO, "size=%zd info->reassembly_data_length=%d\n", size,
1814 info->reassembly_data_length);
1815 if (info->reassembly_data_length >= size) {
1816 int queue_length;
1817 int queue_removed = 0;
1818
1819 /*
1820 * Need to make sure reassembly_data_length is read before
1821 * reading reassembly_queue_length and calling
1822 * _get_first_reassembly. This call is lock free
1823 * as we never read at the end of the queue which are being
1824 * updated in SOFTIRQ as more data is received
1825 */
1826 virt_rmb();
1827 queue_length = info->reassembly_queue_length;
1828 data_read = 0;
1829 to_read = size;
1830 offset = info->first_entry_offset;
1831 while (data_read < size) {
1832 response = _get_first_reassembly(info);
1833 data_transfer = smbd_response_payload(response);
1834 data_length = le32_to_cpu(data_transfer->data_length);
1835 remaining_data_length =
1836 le32_to_cpu(
1837 data_transfer->remaining_data_length);
1838 data_offset = le32_to_cpu(data_transfer->data_offset);
1839
1840 /*
1841 * The upper layer expects RFC1002 length at the
1842 * beginning of the payload. Return it to indicate
1843 * the total length of the packet. This minimize the
1844 * change to upper layer packet processing logic. This
1845 * will be eventually remove when an intermediate
1846 * transport layer is added
1847 */
1848 if (response->first_segment && size == 4) {
1849 unsigned int rfc1002_len =
1850 data_length + remaining_data_length;
1851 __be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1852 if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1853 &msg->msg_iter) != sizeof(rfc1002_hdr))
1854 return -EFAULT;
1855 data_read = 4;
1856 response->first_segment = false;
1857 log_read(INFO, "returning rfc1002 length %d\n",
1858 rfc1002_len);
1859 goto read_rfc1002_done;
1860 }
1861
1862 to_copy = min_t(int, data_length - offset, to_read);
1863 if (copy_to_iter((char *)data_transfer + data_offset + offset,
1864 to_copy, &msg->msg_iter) != to_copy)
1865 return -EFAULT;
1866
1867 /* move on to the next buffer? */
1868 if (to_copy == data_length - offset) {
1869 queue_length--;
1870 /*
1871 * No need to lock if we are not at the
1872 * end of the queue
1873 */
1874 if (queue_length)
1875 list_del(&response->list);
1876 else {
1877 spin_lock_irq(
1878 &info->reassembly_queue_lock);
1879 list_del(&response->list);
1880 spin_unlock_irq(
1881 &info->reassembly_queue_lock);
1882 }
1883 queue_removed++;
1884 info->count_reassembly_queue--;
1885 info->count_dequeue_reassembly_queue++;
1886 put_receive_buffer(info, response);
1887 offset = 0;
1888 log_read(INFO, "put_receive_buffer offset=0\n");
1889 } else
1890 offset += to_copy;
1891
1892 to_read -= to_copy;
1893 data_read += to_copy;
1894
1895 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1896 to_copy, data_length - offset,
1897 to_read, data_read, offset);
1898 }
1899
1900 spin_lock_irq(&info->reassembly_queue_lock);
1901 info->reassembly_data_length -= data_read;
1902 info->reassembly_queue_length -= queue_removed;
1903 spin_unlock_irq(&info->reassembly_queue_lock);
1904
1905 info->first_entry_offset = offset;
1906 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1907 data_read, info->reassembly_data_length,
1908 info->first_entry_offset);
1909 read_rfc1002_done:
1910 return data_read;
1911 }
1912
1913 log_read(INFO, "wait_event on more data\n");
1914 rc = wait_event_interruptible(
1915 info->wait_reassembly_queue,
1916 info->reassembly_data_length >= size ||
1917 sc->status != SMBDIRECT_SOCKET_CONNECTED);
1918 /* Don't return any data if interrupted */
1919 if (rc)
1920 return rc;
1921
1922 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1923 log_read(ERR, "disconnected\n");
1924 return -ECONNABORTED;
1925 }
1926
1927 goto again;
1928 }
1929
1930 /*
1931 * Send data to transport
1932 * Each rqst is transported as a SMBDirect payload
1933 * rqst: the data to write
1934 * return value: 0 if successfully write, otherwise error code
1935 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1936 int smbd_send(struct TCP_Server_Info *server,
1937 int num_rqst, struct smb_rqst *rqst_array)
1938 {
1939 struct smbd_connection *info = server->smbd_conn;
1940 struct smbdirect_socket *sc = &info->socket;
1941 struct smbdirect_socket_parameters *sp = &sc->parameters;
1942 struct smb_rqst *rqst;
1943 struct iov_iter iter;
1944 unsigned int remaining_data_length, klen;
1945 int rc, i, rqst_idx;
1946
1947 if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1948 return -EAGAIN;
1949
1950 /*
1951 * Add in the page array if there is one. The caller needs to set
1952 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1953 * ends at page boundary
1954 */
1955 remaining_data_length = 0;
1956 for (i = 0; i < num_rqst; i++)
1957 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1958
1959 if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1960 /* assertion: payload never exceeds negotiated maximum */
1961 log_write(ERR, "payload size %d > max size %d\n",
1962 remaining_data_length, sp->max_fragmented_send_size);
1963 return -EINVAL;
1964 }
1965
1966 log_write(INFO, "num_rqst=%d total length=%u\n",
1967 num_rqst, remaining_data_length);
1968
1969 rqst_idx = 0;
1970 do {
1971 rqst = &rqst_array[rqst_idx];
1972
1973 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1974 rqst_idx, smb_rqst_len(server, rqst));
1975 for (i = 0; i < rqst->rq_nvec; i++)
1976 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1977
1978 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1979 rqst_idx, rqst->rq_nvec, remaining_data_length,
1980 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1981
1982 /* Send the metadata pages. */
1983 klen = 0;
1984 for (i = 0; i < rqst->rq_nvec; i++)
1985 klen += rqst->rq_iov[i].iov_len;
1986 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1987
1988 rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1989 if (rc < 0)
1990 break;
1991
1992 if (iov_iter_count(&rqst->rq_iter) > 0) {
1993 /* And then the data pages if there are any */
1994 rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1995 &remaining_data_length);
1996 if (rc < 0)
1997 break;
1998 }
1999
2000 } while (++rqst_idx < num_rqst);
2001
2002 /*
2003 * As an optimization, we don't wait for individual I/O to finish
2004 * before sending the next one.
2005 * Send them all and wait for pending send count to get to 0
2006 * that means all the I/Os have been out and we are good to return
2007 */
2008
2009 wait_event(info->wait_send_pending,
2010 atomic_read(&info->send_pending) == 0);
2011
2012 return rc;
2013 }
2014
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2015 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2016 {
2017 struct smbd_mr *mr;
2018 struct ib_cqe *cqe;
2019
2020 if (wc->status) {
2021 log_rdma_mr(ERR, "status=%d\n", wc->status);
2022 cqe = wc->wr_cqe;
2023 mr = container_of(cqe, struct smbd_mr, cqe);
2024 smbd_disconnect_rdma_connection(mr->conn);
2025 }
2026 }
2027
2028 /*
2029 * The work queue function that recovers MRs
2030 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2031 * again. Both calls are slow, so finish them in a workqueue. This will not
2032 * block I/O path.
2033 * There is one workqueue that recovers MRs, there is no need to lock as the
2034 * I/O requests calling smbd_register_mr will never update the links in the
2035 * mr_list.
2036 */
smbd_mr_recovery_work(struct work_struct * work)2037 static void smbd_mr_recovery_work(struct work_struct *work)
2038 {
2039 struct smbd_connection *info =
2040 container_of(work, struct smbd_connection, mr_recovery_work);
2041 struct smbdirect_socket *sc = &info->socket;
2042 struct smbd_mr *smbdirect_mr;
2043 int rc;
2044
2045 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2046 if (smbdirect_mr->state == MR_ERROR) {
2047
2048 /* recover this MR entry */
2049 rc = ib_dereg_mr(smbdirect_mr->mr);
2050 if (rc) {
2051 log_rdma_mr(ERR,
2052 "ib_dereg_mr failed rc=%x\n",
2053 rc);
2054 smbd_disconnect_rdma_connection(info);
2055 continue;
2056 }
2057
2058 smbdirect_mr->mr = ib_alloc_mr(
2059 sc->ib.pd, info->mr_type,
2060 info->max_frmr_depth);
2061 if (IS_ERR(smbdirect_mr->mr)) {
2062 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2063 info->mr_type,
2064 info->max_frmr_depth);
2065 smbd_disconnect_rdma_connection(info);
2066 continue;
2067 }
2068 } else
2069 /* This MR is being used, don't recover it */
2070 continue;
2071
2072 smbdirect_mr->state = MR_READY;
2073
2074 /* smbdirect_mr->state is updated by this function
2075 * and is read and updated by I/O issuing CPUs trying
2076 * to get a MR, the call to atomic_inc_return
2077 * implicates a memory barrier and guarantees this
2078 * value is updated before waking up any calls to
2079 * get_mr() from the I/O issuing CPUs
2080 */
2081 if (atomic_inc_return(&info->mr_ready_count) == 1)
2082 wake_up_interruptible(&info->wait_mr);
2083 }
2084 }
2085
destroy_mr_list(struct smbd_connection * info)2086 static void destroy_mr_list(struct smbd_connection *info)
2087 {
2088 struct smbdirect_socket *sc = &info->socket;
2089 struct smbd_mr *mr, *tmp;
2090
2091 cancel_work_sync(&info->mr_recovery_work);
2092 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2093 if (mr->state == MR_INVALIDATED)
2094 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2095 mr->sgt.nents, mr->dir);
2096 ib_dereg_mr(mr->mr);
2097 kfree(mr->sgt.sgl);
2098 kfree(mr);
2099 }
2100 }
2101
2102 /*
2103 * Allocate MRs used for RDMA read/write
2104 * The number of MRs will not exceed hardware capability in responder_resources
2105 * All MRs are kept in mr_list. The MR can be recovered after it's used
2106 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2107 * as MRs are used and recovered for I/O, but the list links will not change
2108 */
allocate_mr_list(struct smbd_connection * info)2109 static int allocate_mr_list(struct smbd_connection *info)
2110 {
2111 struct smbdirect_socket *sc = &info->socket;
2112 int i;
2113 struct smbd_mr *smbdirect_mr, *tmp;
2114
2115 INIT_LIST_HEAD(&info->mr_list);
2116 init_waitqueue_head(&info->wait_mr);
2117 spin_lock_init(&info->mr_list_lock);
2118 atomic_set(&info->mr_ready_count, 0);
2119 atomic_set(&info->mr_used_count, 0);
2120 init_waitqueue_head(&info->wait_for_mr_cleanup);
2121 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2122 /* Allocate more MRs (2x) than hardware responder_resources */
2123 for (i = 0; i < info->responder_resources * 2; i++) {
2124 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2125 if (!smbdirect_mr)
2126 goto cleanup_entries;
2127 smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2128 info->max_frmr_depth);
2129 if (IS_ERR(smbdirect_mr->mr)) {
2130 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2131 info->mr_type, info->max_frmr_depth);
2132 goto out;
2133 }
2134 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2135 sizeof(struct scatterlist),
2136 GFP_KERNEL);
2137 if (!smbdirect_mr->sgt.sgl) {
2138 log_rdma_mr(ERR, "failed to allocate sgl\n");
2139 ib_dereg_mr(smbdirect_mr->mr);
2140 goto out;
2141 }
2142 smbdirect_mr->state = MR_READY;
2143 smbdirect_mr->conn = info;
2144
2145 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2146 atomic_inc(&info->mr_ready_count);
2147 }
2148 return 0;
2149
2150 out:
2151 kfree(smbdirect_mr);
2152 cleanup_entries:
2153 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2154 list_del(&smbdirect_mr->list);
2155 ib_dereg_mr(smbdirect_mr->mr);
2156 kfree(smbdirect_mr->sgt.sgl);
2157 kfree(smbdirect_mr);
2158 }
2159 return -ENOMEM;
2160 }
2161
2162 /*
2163 * Get a MR from mr_list. This function waits until there is at least one
2164 * MR available in the list. It may access the list while the
2165 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2166 * as they never modify the same places. However, there may be several CPUs
2167 * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2168 * protect this situation.
2169 */
get_mr(struct smbd_connection * info)2170 static struct smbd_mr *get_mr(struct smbd_connection *info)
2171 {
2172 struct smbdirect_socket *sc = &info->socket;
2173 struct smbd_mr *ret;
2174 int rc;
2175 again:
2176 rc = wait_event_interruptible(info->wait_mr,
2177 atomic_read(&info->mr_ready_count) ||
2178 sc->status != SMBDIRECT_SOCKET_CONNECTED);
2179 if (rc) {
2180 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2181 return NULL;
2182 }
2183
2184 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2185 log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2186 return NULL;
2187 }
2188
2189 spin_lock(&info->mr_list_lock);
2190 list_for_each_entry(ret, &info->mr_list, list) {
2191 if (ret->state == MR_READY) {
2192 ret->state = MR_REGISTERED;
2193 spin_unlock(&info->mr_list_lock);
2194 atomic_dec(&info->mr_ready_count);
2195 atomic_inc(&info->mr_used_count);
2196 return ret;
2197 }
2198 }
2199
2200 spin_unlock(&info->mr_list_lock);
2201 /*
2202 * It is possible that we could fail to get MR because other processes may
2203 * try to acquire a MR at the same time. If this is the case, retry it.
2204 */
2205 goto again;
2206 }
2207
2208 /*
2209 * Transcribe the pages from an iterator into an MR scatterlist.
2210 */
smbd_iter_to_mr(struct smbd_connection * info,struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2211 static int smbd_iter_to_mr(struct smbd_connection *info,
2212 struct iov_iter *iter,
2213 struct sg_table *sgt,
2214 unsigned int max_sg)
2215 {
2216 int ret;
2217
2218 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2219
2220 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2221 WARN_ON(ret < 0);
2222 if (sgt->nents > 0)
2223 sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2224 return ret;
2225 }
2226
2227 /*
2228 * Register memory for RDMA read/write
2229 * iter: the buffer to register memory with
2230 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2231 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2232 * return value: the MR registered, NULL if failed.
2233 */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2234 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2235 struct iov_iter *iter,
2236 bool writing, bool need_invalidate)
2237 {
2238 struct smbdirect_socket *sc = &info->socket;
2239 struct smbd_mr *smbdirect_mr;
2240 int rc, num_pages;
2241 enum dma_data_direction dir;
2242 struct ib_reg_wr *reg_wr;
2243
2244 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2245 if (num_pages > info->max_frmr_depth) {
2246 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2247 num_pages, info->max_frmr_depth);
2248 WARN_ON_ONCE(1);
2249 return NULL;
2250 }
2251
2252 smbdirect_mr = get_mr(info);
2253 if (!smbdirect_mr) {
2254 log_rdma_mr(ERR, "get_mr returning NULL\n");
2255 return NULL;
2256 }
2257
2258 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2259 smbdirect_mr->dir = dir;
2260 smbdirect_mr->need_invalidate = need_invalidate;
2261 smbdirect_mr->sgt.nents = 0;
2262 smbdirect_mr->sgt.orig_nents = 0;
2263
2264 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2265 num_pages, iov_iter_count(iter), info->max_frmr_depth);
2266 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2267
2268 rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2269 smbdirect_mr->sgt.nents, dir);
2270 if (!rc) {
2271 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2272 num_pages, dir, rc);
2273 goto dma_map_error;
2274 }
2275
2276 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2277 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2278 if (rc != smbdirect_mr->sgt.nents) {
2279 log_rdma_mr(ERR,
2280 "ib_map_mr_sg failed rc = %d nents = %x\n",
2281 rc, smbdirect_mr->sgt.nents);
2282 goto map_mr_error;
2283 }
2284
2285 ib_update_fast_reg_key(smbdirect_mr->mr,
2286 ib_inc_rkey(smbdirect_mr->mr->rkey));
2287 reg_wr = &smbdirect_mr->wr;
2288 reg_wr->wr.opcode = IB_WR_REG_MR;
2289 smbdirect_mr->cqe.done = register_mr_done;
2290 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2291 reg_wr->wr.num_sge = 0;
2292 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2293 reg_wr->mr = smbdirect_mr->mr;
2294 reg_wr->key = smbdirect_mr->mr->rkey;
2295 reg_wr->access = writing ?
2296 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2297 IB_ACCESS_REMOTE_READ;
2298
2299 /*
2300 * There is no need for waiting for complemtion on ib_post_send
2301 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2302 * on the next ib_post_send when we actually send I/O to remote peer
2303 */
2304 rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL);
2305 if (!rc)
2306 return smbdirect_mr;
2307
2308 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2309 rc, reg_wr->key);
2310
2311 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2312 map_mr_error:
2313 ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2314 smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2315
2316 dma_map_error:
2317 smbdirect_mr->state = MR_ERROR;
2318 if (atomic_dec_and_test(&info->mr_used_count))
2319 wake_up(&info->wait_for_mr_cleanup);
2320
2321 smbd_disconnect_rdma_connection(info);
2322
2323 return NULL;
2324 }
2325
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2326 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2327 {
2328 struct smbd_mr *smbdirect_mr;
2329 struct ib_cqe *cqe;
2330
2331 cqe = wc->wr_cqe;
2332 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2333 smbdirect_mr->state = MR_INVALIDATED;
2334 if (wc->status != IB_WC_SUCCESS) {
2335 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2336 smbdirect_mr->state = MR_ERROR;
2337 }
2338 complete(&smbdirect_mr->invalidate_done);
2339 }
2340
2341 /*
2342 * Deregister a MR after I/O is done
2343 * This function may wait if remote invalidation is not used
2344 * and we have to locally invalidate the buffer to prevent data is being
2345 * modified by remote peer after upper layer consumes it
2346 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2347 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2348 {
2349 struct ib_send_wr *wr;
2350 struct smbd_connection *info = smbdirect_mr->conn;
2351 struct smbdirect_socket *sc = &info->socket;
2352 int rc = 0;
2353
2354 if (smbdirect_mr->need_invalidate) {
2355 /* Need to finish local invalidation before returning */
2356 wr = &smbdirect_mr->inv_wr;
2357 wr->opcode = IB_WR_LOCAL_INV;
2358 smbdirect_mr->cqe.done = local_inv_done;
2359 wr->wr_cqe = &smbdirect_mr->cqe;
2360 wr->num_sge = 0;
2361 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2362 wr->send_flags = IB_SEND_SIGNALED;
2363
2364 init_completion(&smbdirect_mr->invalidate_done);
2365 rc = ib_post_send(sc->ib.qp, wr, NULL);
2366 if (rc) {
2367 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2368 smbd_disconnect_rdma_connection(info);
2369 goto done;
2370 }
2371 wait_for_completion(&smbdirect_mr->invalidate_done);
2372 smbdirect_mr->need_invalidate = false;
2373 } else
2374 /*
2375 * For remote invalidation, just set it to MR_INVALIDATED
2376 * and defer to mr_recovery_work to recover the MR for next use
2377 */
2378 smbdirect_mr->state = MR_INVALIDATED;
2379
2380 if (smbdirect_mr->state == MR_INVALIDATED) {
2381 ib_dma_unmap_sg(
2382 sc->ib.dev, smbdirect_mr->sgt.sgl,
2383 smbdirect_mr->sgt.nents,
2384 smbdirect_mr->dir);
2385 smbdirect_mr->state = MR_READY;
2386 if (atomic_inc_return(&info->mr_ready_count) == 1)
2387 wake_up_interruptible(&info->wait_mr);
2388 } else
2389 /*
2390 * Schedule the work to do MR recovery for future I/Os MR
2391 * recovery is slow and don't want it to block current I/O
2392 */
2393 queue_work(info->workqueue, &info->mr_recovery_work);
2394
2395 done:
2396 if (atomic_dec_and_test(&info->mr_used_count))
2397 wake_up(&info->wait_for_mr_cleanup);
2398
2399 return rc;
2400 }
2401
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2402 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2403 struct page *lowest_page, size_t off, size_t len)
2404 {
2405 struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2406 u64 addr;
2407
2408 addr = ib_dma_map_page(rdma->device, lowest_page,
2409 off, len, rdma->direction);
2410 if (ib_dma_mapping_error(rdma->device, addr))
2411 return false;
2412
2413 sge->addr = addr;
2414 sge->length = len;
2415 sge->lkey = rdma->local_dma_lkey;
2416 rdma->nr_sge++;
2417 return true;
2418 }
2419
2420 /*
2421 * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2422 * element list. The pages are not pinned.
2423 */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2424 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2425 struct smb_extract_to_rdma *rdma,
2426 ssize_t maxsize)
2427 {
2428 const struct bio_vec *bv = iter->bvec;
2429 unsigned long start = iter->iov_offset;
2430 unsigned int i;
2431 ssize_t ret = 0;
2432
2433 for (i = 0; i < iter->nr_segs; i++) {
2434 size_t off, len;
2435
2436 len = bv[i].bv_len;
2437 if (start >= len) {
2438 start -= len;
2439 continue;
2440 }
2441
2442 len = min_t(size_t, maxsize, len - start);
2443 off = bv[i].bv_offset + start;
2444
2445 if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2446 return -EIO;
2447
2448 ret += len;
2449 maxsize -= len;
2450 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2451 break;
2452 start = 0;
2453 }
2454
2455 if (ret > 0)
2456 iov_iter_advance(iter, ret);
2457 return ret;
2458 }
2459
2460 /*
2461 * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2462 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2463 * The pages are not pinned.
2464 */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2465 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2466 struct smb_extract_to_rdma *rdma,
2467 ssize_t maxsize)
2468 {
2469 const struct kvec *kv = iter->kvec;
2470 unsigned long start = iter->iov_offset;
2471 unsigned int i;
2472 ssize_t ret = 0;
2473
2474 for (i = 0; i < iter->nr_segs; i++) {
2475 struct page *page;
2476 unsigned long kaddr;
2477 size_t off, len, seg;
2478
2479 len = kv[i].iov_len;
2480 if (start >= len) {
2481 start -= len;
2482 continue;
2483 }
2484
2485 kaddr = (unsigned long)kv[i].iov_base + start;
2486 off = kaddr & ~PAGE_MASK;
2487 len = min_t(size_t, maxsize, len - start);
2488 kaddr &= PAGE_MASK;
2489
2490 maxsize -= len;
2491 do {
2492 seg = min_t(size_t, len, PAGE_SIZE - off);
2493
2494 if (is_vmalloc_or_module_addr((void *)kaddr))
2495 page = vmalloc_to_page((void *)kaddr);
2496 else
2497 page = virt_to_page((void *)kaddr);
2498
2499 if (!smb_set_sge(rdma, page, off, seg))
2500 return -EIO;
2501
2502 ret += seg;
2503 len -= seg;
2504 kaddr += PAGE_SIZE;
2505 off = 0;
2506 } while (len > 0 && rdma->nr_sge < rdma->max_sge);
2507
2508 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2509 break;
2510 start = 0;
2511 }
2512
2513 if (ret > 0)
2514 iov_iter_advance(iter, ret);
2515 return ret;
2516 }
2517
2518 /*
2519 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2520 * list. The folios are not pinned.
2521 */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2522 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2523 struct smb_extract_to_rdma *rdma,
2524 ssize_t maxsize)
2525 {
2526 const struct folio_queue *folioq = iter->folioq;
2527 unsigned int slot = iter->folioq_slot;
2528 ssize_t ret = 0;
2529 size_t offset = iter->iov_offset;
2530
2531 BUG_ON(!folioq);
2532
2533 if (slot >= folioq_nr_slots(folioq)) {
2534 folioq = folioq->next;
2535 if (WARN_ON_ONCE(!folioq))
2536 return -EIO;
2537 slot = 0;
2538 }
2539
2540 do {
2541 struct folio *folio = folioq_folio(folioq, slot);
2542 size_t fsize = folioq_folio_size(folioq, slot);
2543
2544 if (offset < fsize) {
2545 size_t part = umin(maxsize, fsize - offset);
2546
2547 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2548 return -EIO;
2549
2550 offset += part;
2551 ret += part;
2552 maxsize -= part;
2553 }
2554
2555 if (offset >= fsize) {
2556 offset = 0;
2557 slot++;
2558 if (slot >= folioq_nr_slots(folioq)) {
2559 if (!folioq->next) {
2560 WARN_ON_ONCE(ret < iter->count);
2561 break;
2562 }
2563 folioq = folioq->next;
2564 slot = 0;
2565 }
2566 }
2567 } while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2568
2569 iter->folioq = folioq;
2570 iter->folioq_slot = slot;
2571 iter->iov_offset = offset;
2572 iter->count -= ret;
2573 return ret;
2574 }
2575
2576 /*
2577 * Extract page fragments from up to the given amount of the source iterator
2578 * and build up an RDMA list that refers to all of those bits. The RDMA list
2579 * is appended to, up to the maximum number of elements set in the parameter
2580 * block.
2581 *
2582 * The extracted page fragments are not pinned or ref'd in any way; if an
2583 * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2584 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2585 * way.
2586 */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)2587 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2588 struct smb_extract_to_rdma *rdma)
2589 {
2590 ssize_t ret;
2591 int before = rdma->nr_sge;
2592
2593 switch (iov_iter_type(iter)) {
2594 case ITER_BVEC:
2595 ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2596 break;
2597 case ITER_KVEC:
2598 ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2599 break;
2600 case ITER_FOLIOQ:
2601 ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2602 break;
2603 default:
2604 WARN_ON_ONCE(1);
2605 return -EIO;
2606 }
2607
2608 if (ret < 0) {
2609 while (rdma->nr_sge > before) {
2610 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2611
2612 ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2613 rdma->direction);
2614 sge->addr = 0;
2615 }
2616 }
2617
2618 return ret;
2619 }
2620