1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resizable, Scalable, Concurrent Hash Table 4 * 5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 8 * 9 * Code partially derived from nft_hash 10 * Rewritten with rehash code from br_multicast plus single list 11 * pointer as suggested by Josh Triplett 12 */ 13 14 #include <linux/atomic.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/log2.h> 18 #include <linux/sched.h> 19 #include <linux/rculist.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/jhash.h> 24 #include <linux/random.h> 25 #include <linux/rhashtable.h> 26 #include <linux/err.h> 27 #include <linux/export.h> 28 29 #define HASH_DEFAULT_SIZE 64UL 30 #define HASH_MIN_SIZE 4U 31 32 union nested_table { 33 union nested_table __rcu *table; 34 struct rhash_lock_head __rcu *bucket; 35 }; 36 37 static u32 head_hashfn(struct rhashtable *ht, 38 const struct bucket_table *tbl, 39 const struct rhash_head *he) 40 { 41 return rht_head_hashfn(ht, tbl, he, ht->p); 42 } 43 44 #ifdef CONFIG_PROVE_LOCKING 45 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 46 47 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 48 { 49 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 50 } 51 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 52 53 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 54 { 55 if (!debug_locks) 56 return 1; 57 if (unlikely(tbl->nest)) 58 return 1; 59 return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); 60 } 61 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 62 #else 63 #define ASSERT_RHT_MUTEX(HT) 64 #endif 65 66 static inline union nested_table *nested_table_top( 67 const struct bucket_table *tbl) 68 { 69 /* The top-level bucket entry does not need RCU protection 70 * because it's set at the same time as tbl->nest. 71 */ 72 return (void *)rcu_dereference_protected(tbl->buckets[0], 1); 73 } 74 75 static void nested_table_free(union nested_table *ntbl, unsigned int size) 76 { 77 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 78 const unsigned int len = 1 << shift; 79 unsigned int i; 80 81 ntbl = rcu_dereference_protected(ntbl->table, 1); 82 if (!ntbl) 83 return; 84 85 if (size > len) { 86 size >>= shift; 87 for (i = 0; i < len; i++) 88 nested_table_free(ntbl + i, size); 89 } 90 91 kfree(ntbl); 92 } 93 94 static void nested_bucket_table_free(const struct bucket_table *tbl) 95 { 96 unsigned int size = tbl->size >> tbl->nest; 97 unsigned int len = 1 << tbl->nest; 98 union nested_table *ntbl; 99 unsigned int i; 100 101 ntbl = nested_table_top(tbl); 102 103 for (i = 0; i < len; i++) 104 nested_table_free(ntbl + i, size); 105 106 kfree(ntbl); 107 } 108 109 static void bucket_table_free(const struct bucket_table *tbl) 110 { 111 if (tbl->nest) 112 nested_bucket_table_free(tbl); 113 114 kvfree(tbl); 115 } 116 117 static void bucket_table_free_rcu(struct rcu_head *head) 118 { 119 bucket_table_free(container_of(head, struct bucket_table, rcu)); 120 } 121 122 static union nested_table *nested_table_alloc(struct rhashtable *ht, 123 union nested_table __rcu **prev, 124 bool leaf) 125 { 126 union nested_table *ntbl; 127 int i; 128 129 ntbl = rcu_dereference(*prev); 130 if (ntbl) 131 return ntbl; 132 133 ntbl = alloc_hooks_tag(ht->alloc_tag, 134 kmalloc_noprof(PAGE_SIZE, GFP_ATOMIC|__GFP_ZERO)); 135 136 if (ntbl && leaf) { 137 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) 138 INIT_RHT_NULLS_HEAD(ntbl[i].bucket); 139 } 140 141 if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) 142 return ntbl; 143 /* Raced with another thread. */ 144 kfree(ntbl); 145 return rcu_dereference(*prev); 146 } 147 148 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 149 size_t nbuckets, 150 gfp_t gfp) 151 { 152 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 153 struct bucket_table *tbl; 154 size_t size; 155 156 if (nbuckets < (1 << (shift + 1))) 157 return NULL; 158 159 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 160 161 tbl = alloc_hooks_tag(ht->alloc_tag, 162 kmalloc_noprof(size, gfp|__GFP_ZERO)); 163 if (!tbl) 164 return NULL; 165 166 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 167 false)) { 168 kfree(tbl); 169 return NULL; 170 } 171 172 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 173 174 return tbl; 175 } 176 177 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 178 size_t nbuckets, 179 gfp_t gfp) 180 { 181 struct bucket_table *tbl = NULL; 182 size_t size; 183 int i; 184 static struct lock_class_key __key; 185 186 tbl = alloc_hooks_tag(ht->alloc_tag, 187 kvmalloc_node_noprof(struct_size(tbl, buckets, nbuckets), 188 gfp|__GFP_ZERO, NUMA_NO_NODE)); 189 190 size = nbuckets; 191 192 if (tbl == NULL && !gfpflags_allow_blocking(gfp)) { 193 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 194 nbuckets = 0; 195 } 196 197 if (tbl == NULL) 198 return NULL; 199 200 lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); 201 202 tbl->size = size; 203 204 rcu_head_init(&tbl->rcu); 205 INIT_LIST_HEAD(&tbl->walkers); 206 207 tbl->hash_rnd = get_random_u32(); 208 209 for (i = 0; i < nbuckets; i++) 210 INIT_RHT_NULLS_HEAD(tbl->buckets[i]); 211 212 return tbl; 213 } 214 215 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 216 struct bucket_table *tbl) 217 { 218 struct bucket_table *new_tbl; 219 220 do { 221 new_tbl = tbl; 222 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 223 } while (tbl); 224 225 return new_tbl; 226 } 227 228 static int rhashtable_rehash_one(struct rhashtable *ht, 229 struct rhash_lock_head __rcu **bkt, 230 unsigned int old_hash) 231 { 232 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 233 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); 234 int err = -EAGAIN; 235 struct rhash_head *head, *next, *entry; 236 struct rhash_head __rcu **pprev = NULL; 237 unsigned int new_hash; 238 unsigned long flags; 239 240 if (new_tbl->nest) 241 goto out; 242 243 err = -ENOENT; 244 245 rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), 246 old_tbl, old_hash) { 247 err = 0; 248 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 249 250 if (rht_is_a_nulls(next)) 251 break; 252 253 pprev = &entry->next; 254 } 255 256 if (err) 257 goto out; 258 259 new_hash = head_hashfn(ht, new_tbl, entry); 260 261 flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], 262 SINGLE_DEPTH_NESTING); 263 264 head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); 265 266 RCU_INIT_POINTER(entry->next, head); 267 268 rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags); 269 270 if (pprev) 271 rcu_assign_pointer(*pprev, next); 272 else 273 /* Need to preserved the bit lock. */ 274 rht_assign_locked(bkt, next); 275 276 out: 277 return err; 278 } 279 280 static int rhashtable_rehash_chain(struct rhashtable *ht, 281 unsigned int old_hash) 282 { 283 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 284 struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash); 285 unsigned long flags; 286 int err; 287 288 if (!bkt) 289 return 0; 290 flags = rht_lock(old_tbl, bkt); 291 292 while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) 293 ; 294 295 if (err == -ENOENT) 296 err = 0; 297 rht_unlock(old_tbl, bkt, flags); 298 299 return err; 300 } 301 302 static int rhashtable_rehash_attach(struct rhashtable *ht, 303 struct bucket_table *old_tbl, 304 struct bucket_table *new_tbl) 305 { 306 /* Make insertions go into the new, empty table right away. Deletions 307 * and lookups will be attempted in both tables until we synchronize. 308 * As cmpxchg() provides strong barriers, we do not need 309 * rcu_assign_pointer(). 310 */ 311 312 if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, 313 new_tbl) != NULL) 314 return -EEXIST; 315 316 return 0; 317 } 318 319 static int rhashtable_rehash_table(struct rhashtable *ht) 320 { 321 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 322 struct bucket_table *new_tbl; 323 struct rhashtable_walker *walker; 324 unsigned int old_hash; 325 int err; 326 327 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 328 if (!new_tbl) 329 return 0; 330 331 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 332 err = rhashtable_rehash_chain(ht, old_hash); 333 if (err) 334 return err; 335 cond_resched(); 336 } 337 338 /* Publish the new table pointer. */ 339 rcu_assign_pointer(ht->tbl, new_tbl); 340 341 spin_lock(&ht->lock); 342 list_for_each_entry(walker, &old_tbl->walkers, list) 343 walker->tbl = NULL; 344 345 /* Wait for readers. All new readers will see the new 346 * table, and thus no references to the old table will 347 * remain. 348 * We do this inside the locked region so that 349 * rhashtable_walk_stop() can use rcu_head_after_call_rcu() 350 * to check if it should not re-link the table. 351 */ 352 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 353 spin_unlock(&ht->lock); 354 355 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 356 } 357 358 static int rhashtable_rehash_alloc(struct rhashtable *ht, 359 struct bucket_table *old_tbl, 360 unsigned int size) 361 { 362 struct bucket_table *new_tbl; 363 int err; 364 365 ASSERT_RHT_MUTEX(ht); 366 367 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 368 if (new_tbl == NULL) 369 return -ENOMEM; 370 371 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 372 if (err) 373 bucket_table_free(new_tbl); 374 375 return err; 376 } 377 378 /** 379 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 380 * @ht: the hash table to shrink 381 * 382 * This function shrinks the hash table to fit, i.e., the smallest 383 * size would not cause it to expand right away automatically. 384 * 385 * The caller must ensure that no concurrent resizing occurs by holding 386 * ht->mutex. 387 * 388 * The caller must ensure that no concurrent table mutations take place. 389 * It is however valid to have concurrent lookups if they are RCU protected. 390 * 391 * It is valid to have concurrent insertions and deletions protected by per 392 * bucket locks or concurrent RCU protected lookups and traversals. 393 */ 394 static int rhashtable_shrink(struct rhashtable *ht) 395 { 396 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 397 unsigned int nelems = atomic_read(&ht->nelems); 398 unsigned int size = 0; 399 400 if (nelems) 401 size = roundup_pow_of_two(nelems * 3 / 2); 402 if (size < ht->p.min_size) 403 size = ht->p.min_size; 404 405 if (old_tbl->size <= size) 406 return 0; 407 408 if (rht_dereference(old_tbl->future_tbl, ht)) 409 return -EEXIST; 410 411 return rhashtable_rehash_alloc(ht, old_tbl, size); 412 } 413 414 static void rht_deferred_worker(struct work_struct *work) 415 { 416 struct rhashtable *ht; 417 struct bucket_table *tbl; 418 int err = 0; 419 420 ht = container_of(work, struct rhashtable, run_work); 421 mutex_lock(&ht->mutex); 422 423 tbl = rht_dereference(ht->tbl, ht); 424 tbl = rhashtable_last_table(ht, tbl); 425 426 if (rht_grow_above_75(ht, tbl)) 427 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 428 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 429 err = rhashtable_shrink(ht); 430 else if (tbl->nest) 431 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 432 433 if (!err || err == -EEXIST) { 434 int nerr; 435 436 nerr = rhashtable_rehash_table(ht); 437 err = err ?: nerr; 438 } 439 440 mutex_unlock(&ht->mutex); 441 442 if (err) 443 schedule_work(&ht->run_work); 444 } 445 446 static int rhashtable_insert_rehash(struct rhashtable *ht, 447 struct bucket_table *tbl) 448 { 449 struct bucket_table *old_tbl; 450 struct bucket_table *new_tbl; 451 unsigned int size; 452 int err; 453 454 old_tbl = rht_dereference_rcu(ht->tbl, ht); 455 456 size = tbl->size; 457 458 err = -EBUSY; 459 460 if (rht_grow_above_75(ht, tbl)) 461 size *= 2; 462 /* Do not schedule more than one rehash */ 463 else if (old_tbl != tbl) 464 goto fail; 465 466 err = -ENOMEM; 467 468 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); 469 if (new_tbl == NULL) 470 goto fail; 471 472 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 473 if (err) { 474 bucket_table_free(new_tbl); 475 if (err == -EEXIST) 476 err = 0; 477 } else 478 schedule_work(&ht->run_work); 479 480 return err; 481 482 fail: 483 /* Do not fail the insert if someone else did a rehash. */ 484 if (likely(rcu_access_pointer(tbl->future_tbl))) 485 return 0; 486 487 /* Schedule async rehash to retry allocation in process context. */ 488 if (err == -ENOMEM) 489 schedule_work(&ht->run_work); 490 491 return err; 492 } 493 494 static void *rhashtable_lookup_one(struct rhashtable *ht, 495 struct rhash_lock_head __rcu **bkt, 496 struct bucket_table *tbl, unsigned int hash, 497 const void *key, struct rhash_head *obj) 498 { 499 struct rhashtable_compare_arg arg = { 500 .ht = ht, 501 .key = key, 502 }; 503 struct rhash_head __rcu **pprev = NULL; 504 struct rhash_head *head; 505 int elasticity; 506 507 elasticity = RHT_ELASTICITY; 508 rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { 509 struct rhlist_head *list; 510 struct rhlist_head *plist; 511 512 elasticity--; 513 if (!key || 514 (ht->p.obj_cmpfn ? 515 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 516 rhashtable_compare(&arg, rht_obj(ht, head)))) { 517 pprev = &head->next; 518 continue; 519 } 520 521 if (!ht->rhlist) 522 return rht_obj(ht, head); 523 524 list = container_of(obj, struct rhlist_head, rhead); 525 plist = container_of(head, struct rhlist_head, rhead); 526 527 RCU_INIT_POINTER(list->next, plist); 528 head = rht_dereference_bucket(head->next, tbl, hash); 529 RCU_INIT_POINTER(list->rhead.next, head); 530 if (pprev) 531 rcu_assign_pointer(*pprev, obj); 532 else 533 /* Need to preserve the bit lock */ 534 rht_assign_locked(bkt, obj); 535 536 return NULL; 537 } 538 539 if (elasticity <= 0) 540 return ERR_PTR(-EAGAIN); 541 542 return ERR_PTR(-ENOENT); 543 } 544 545 static struct bucket_table *rhashtable_insert_one( 546 struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, 547 struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj, 548 void *data) 549 { 550 struct bucket_table *new_tbl; 551 struct rhash_head *head; 552 553 if (!IS_ERR_OR_NULL(data)) 554 return ERR_PTR(-EEXIST); 555 556 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 557 return ERR_CAST(data); 558 559 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 560 if (new_tbl) 561 return new_tbl; 562 563 if (PTR_ERR(data) != -ENOENT) 564 return ERR_CAST(data); 565 566 if (unlikely(rht_grow_above_max(ht, tbl))) 567 return ERR_PTR(-E2BIG); 568 569 if (unlikely(rht_grow_above_100(ht, tbl))) 570 return ERR_PTR(-EAGAIN); 571 572 head = rht_ptr(bkt, tbl, hash); 573 574 RCU_INIT_POINTER(obj->next, head); 575 if (ht->rhlist) { 576 struct rhlist_head *list; 577 578 list = container_of(obj, struct rhlist_head, rhead); 579 RCU_INIT_POINTER(list->next, NULL); 580 } 581 582 /* bkt is always the head of the list, so it holds 583 * the lock, which we need to preserve 584 */ 585 rht_assign_locked(bkt, obj); 586 587 return NULL; 588 } 589 590 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 591 struct rhash_head *obj) 592 { 593 struct bucket_table *new_tbl; 594 struct bucket_table *tbl; 595 struct rhash_lock_head __rcu **bkt; 596 unsigned long flags; 597 unsigned int hash; 598 void *data; 599 600 new_tbl = rcu_dereference(ht->tbl); 601 602 do { 603 tbl = new_tbl; 604 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 605 if (rcu_access_pointer(tbl->future_tbl)) 606 /* Failure is OK */ 607 bkt = rht_bucket_var(tbl, hash); 608 else 609 bkt = rht_bucket_insert(ht, tbl, hash); 610 if (bkt == NULL) { 611 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 612 data = ERR_PTR(-EAGAIN); 613 } else { 614 bool inserted; 615 616 flags = rht_lock(tbl, bkt); 617 data = rhashtable_lookup_one(ht, bkt, tbl, 618 hash, key, obj); 619 new_tbl = rhashtable_insert_one(ht, bkt, tbl, 620 hash, obj, data); 621 inserted = data && !new_tbl; 622 if (inserted) 623 atomic_inc(&ht->nelems); 624 if (PTR_ERR(new_tbl) != -EEXIST) 625 data = ERR_CAST(new_tbl); 626 627 rht_unlock(tbl, bkt, flags); 628 629 if (inserted && rht_grow_above_75(ht, tbl)) 630 schedule_work(&ht->run_work); 631 } 632 } while (!IS_ERR_OR_NULL(new_tbl)); 633 634 if (PTR_ERR(data) == -EAGAIN) 635 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 636 -EAGAIN); 637 638 return data; 639 } 640 641 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 642 struct rhash_head *obj) 643 { 644 void *data; 645 646 do { 647 rcu_read_lock(); 648 data = rhashtable_try_insert(ht, key, obj); 649 rcu_read_unlock(); 650 } while (PTR_ERR(data) == -EAGAIN); 651 652 return data; 653 } 654 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 655 656 /** 657 * rhashtable_walk_enter - Initialise an iterator 658 * @ht: Table to walk over 659 * @iter: Hash table Iterator 660 * 661 * This function prepares a hash table walk. 662 * 663 * Note that if you restart a walk after rhashtable_walk_stop you 664 * may see the same object twice. Also, you may miss objects if 665 * there are removals in between rhashtable_walk_stop and the next 666 * call to rhashtable_walk_start. 667 * 668 * For a completely stable walk you should construct your own data 669 * structure outside the hash table. 670 * 671 * This function may be called from any process context, including 672 * non-preemptible context, but cannot be called from softirq or 673 * hardirq context. 674 * 675 * You must call rhashtable_walk_exit after this function returns. 676 */ 677 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 678 { 679 iter->ht = ht; 680 iter->p = NULL; 681 iter->slot = 0; 682 iter->skip = 0; 683 iter->end_of_table = 0; 684 685 spin_lock(&ht->lock); 686 iter->walker.tbl = 687 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 688 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 689 spin_unlock(&ht->lock); 690 } 691 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 692 693 /** 694 * rhashtable_walk_exit - Free an iterator 695 * @iter: Hash table Iterator 696 * 697 * This function frees resources allocated by rhashtable_walk_enter. 698 */ 699 void rhashtable_walk_exit(struct rhashtable_iter *iter) 700 { 701 spin_lock(&iter->ht->lock); 702 if (iter->walker.tbl) 703 list_del(&iter->walker.list); 704 spin_unlock(&iter->ht->lock); 705 } 706 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 707 708 /** 709 * rhashtable_walk_start_check - Start a hash table walk 710 * @iter: Hash table iterator 711 * 712 * Start a hash table walk at the current iterator position. Note that we take 713 * the RCU lock in all cases including when we return an error. So you must 714 * always call rhashtable_walk_stop to clean up. 715 * 716 * Returns zero if successful. 717 * 718 * Returns -EAGAIN if resize event occurred. Note that the iterator 719 * will rewind back to the beginning and you may use it immediately 720 * by calling rhashtable_walk_next. 721 * 722 * rhashtable_walk_start is defined as an inline variant that returns 723 * void. This is preferred in cases where the caller would ignore 724 * resize events and always continue. 725 */ 726 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 727 __acquires(RCU) 728 { 729 struct rhashtable *ht = iter->ht; 730 bool rhlist = ht->rhlist; 731 732 rcu_read_lock(); 733 734 spin_lock(&ht->lock); 735 if (iter->walker.tbl) 736 list_del(&iter->walker.list); 737 spin_unlock(&ht->lock); 738 739 if (iter->end_of_table) 740 return 0; 741 if (!iter->walker.tbl) { 742 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 743 iter->slot = 0; 744 iter->skip = 0; 745 return -EAGAIN; 746 } 747 748 if (iter->p && !rhlist) { 749 /* 750 * We need to validate that 'p' is still in the table, and 751 * if so, update 'skip' 752 */ 753 struct rhash_head *p; 754 int skip = 0; 755 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 756 skip++; 757 if (p == iter->p) { 758 iter->skip = skip; 759 goto found; 760 } 761 } 762 iter->p = NULL; 763 } else if (iter->p && rhlist) { 764 /* Need to validate that 'list' is still in the table, and 765 * if so, update 'skip' and 'p'. 766 */ 767 struct rhash_head *p; 768 struct rhlist_head *list; 769 int skip = 0; 770 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 771 for (list = container_of(p, struct rhlist_head, rhead); 772 list; 773 list = rcu_dereference(list->next)) { 774 skip++; 775 if (list == iter->list) { 776 iter->p = p; 777 iter->skip = skip; 778 goto found; 779 } 780 } 781 } 782 iter->p = NULL; 783 } 784 found: 785 return 0; 786 } 787 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 788 789 /** 790 * __rhashtable_walk_find_next - Find the next element in a table (or the first 791 * one in case of a new walk). 792 * 793 * @iter: Hash table iterator 794 * 795 * Returns the found object or NULL when the end of the table is reached. 796 * 797 * Returns -EAGAIN if resize event occurred. 798 */ 799 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 800 { 801 struct bucket_table *tbl = iter->walker.tbl; 802 struct rhlist_head *list = iter->list; 803 struct rhashtable *ht = iter->ht; 804 struct rhash_head *p = iter->p; 805 bool rhlist = ht->rhlist; 806 807 if (!tbl) 808 return NULL; 809 810 for (; iter->slot < tbl->size; iter->slot++) { 811 int skip = iter->skip; 812 813 rht_for_each_rcu(p, tbl, iter->slot) { 814 if (rhlist) { 815 list = container_of(p, struct rhlist_head, 816 rhead); 817 do { 818 if (!skip) 819 goto next; 820 skip--; 821 list = rcu_dereference(list->next); 822 } while (list); 823 824 continue; 825 } 826 if (!skip) 827 break; 828 skip--; 829 } 830 831 next: 832 if (!rht_is_a_nulls(p)) { 833 iter->skip++; 834 iter->p = p; 835 iter->list = list; 836 return rht_obj(ht, rhlist ? &list->rhead : p); 837 } 838 839 iter->skip = 0; 840 } 841 842 iter->p = NULL; 843 844 /* Ensure we see any new tables. */ 845 smp_rmb(); 846 847 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 848 if (iter->walker.tbl) { 849 iter->slot = 0; 850 iter->skip = 0; 851 return ERR_PTR(-EAGAIN); 852 } else { 853 iter->end_of_table = true; 854 } 855 856 return NULL; 857 } 858 859 /** 860 * rhashtable_walk_next - Return the next object and advance the iterator 861 * @iter: Hash table iterator 862 * 863 * Note that you must call rhashtable_walk_stop when you are finished 864 * with the walk. 865 * 866 * Returns the next object or NULL when the end of the table is reached. 867 * 868 * Returns -EAGAIN if resize event occurred. Note that the iterator 869 * will rewind back to the beginning and you may continue to use it. 870 */ 871 void *rhashtable_walk_next(struct rhashtable_iter *iter) 872 { 873 struct rhlist_head *list = iter->list; 874 struct rhashtable *ht = iter->ht; 875 struct rhash_head *p = iter->p; 876 bool rhlist = ht->rhlist; 877 878 if (p) { 879 if (!rhlist || !(list = rcu_dereference(list->next))) { 880 p = rcu_dereference(p->next); 881 list = container_of(p, struct rhlist_head, rhead); 882 } 883 if (!rht_is_a_nulls(p)) { 884 iter->skip++; 885 iter->p = p; 886 iter->list = list; 887 return rht_obj(ht, rhlist ? &list->rhead : p); 888 } 889 890 /* At the end of this slot, switch to next one and then find 891 * next entry from that point. 892 */ 893 iter->skip = 0; 894 iter->slot++; 895 } 896 897 return __rhashtable_walk_find_next(iter); 898 } 899 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 900 901 /** 902 * rhashtable_walk_peek - Return the next object but don't advance the iterator 903 * @iter: Hash table iterator 904 * 905 * Returns the next object or NULL when the end of the table is reached. 906 * 907 * Returns -EAGAIN if resize event occurred. Note that the iterator 908 * will rewind back to the beginning and you may continue to use it. 909 */ 910 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 911 { 912 struct rhlist_head *list = iter->list; 913 struct rhashtable *ht = iter->ht; 914 struct rhash_head *p = iter->p; 915 916 if (p) 917 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 918 919 /* No object found in current iter, find next one in the table. */ 920 921 if (iter->skip) { 922 /* A nonzero skip value points to the next entry in the table 923 * beyond that last one that was found. Decrement skip so 924 * we find the current value. __rhashtable_walk_find_next 925 * will restore the original value of skip assuming that 926 * the table hasn't changed. 927 */ 928 iter->skip--; 929 } 930 931 return __rhashtable_walk_find_next(iter); 932 } 933 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 934 935 /** 936 * rhashtable_walk_stop - Finish a hash table walk 937 * @iter: Hash table iterator 938 * 939 * Finish a hash table walk. Does not reset the iterator to the start of the 940 * hash table. 941 */ 942 void rhashtable_walk_stop(struct rhashtable_iter *iter) 943 __releases(RCU) 944 { 945 struct rhashtable *ht; 946 struct bucket_table *tbl = iter->walker.tbl; 947 948 if (!tbl) 949 goto out; 950 951 ht = iter->ht; 952 953 spin_lock(&ht->lock); 954 if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) 955 /* This bucket table is being freed, don't re-link it. */ 956 iter->walker.tbl = NULL; 957 else 958 list_add(&iter->walker.list, &tbl->walkers); 959 spin_unlock(&ht->lock); 960 961 out: 962 rcu_read_unlock(); 963 } 964 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 965 966 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 967 { 968 size_t retsize; 969 970 if (params->nelem_hint) 971 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 972 (unsigned long)params->min_size); 973 else 974 retsize = max(HASH_DEFAULT_SIZE, 975 (unsigned long)params->min_size); 976 977 return retsize; 978 } 979 980 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 981 { 982 return jhash2(key, length, seed); 983 } 984 985 /** 986 * rhashtable_init - initialize a new hash table 987 * @ht: hash table to be initialized 988 * @params: configuration parameters 989 * 990 * Initializes a new hash table based on the provided configuration 991 * parameters. A table can be configured either with a variable or 992 * fixed length key: 993 * 994 * Configuration Example 1: Fixed length keys 995 * struct test_obj { 996 * int key; 997 * void * my_member; 998 * struct rhash_head node; 999 * }; 1000 * 1001 * struct rhashtable_params params = { 1002 * .head_offset = offsetof(struct test_obj, node), 1003 * .key_offset = offsetof(struct test_obj, key), 1004 * .key_len = sizeof(int), 1005 * .hashfn = jhash, 1006 * }; 1007 * 1008 * Configuration Example 2: Variable length keys 1009 * struct test_obj { 1010 * [...] 1011 * struct rhash_head node; 1012 * }; 1013 * 1014 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 1015 * { 1016 * struct test_obj *obj = data; 1017 * 1018 * return [... hash ...]; 1019 * } 1020 * 1021 * struct rhashtable_params params = { 1022 * .head_offset = offsetof(struct test_obj, node), 1023 * .hashfn = jhash, 1024 * .obj_hashfn = my_hash_fn, 1025 * }; 1026 */ 1027 int rhashtable_init_noprof(struct rhashtable *ht, 1028 const struct rhashtable_params *params) 1029 { 1030 struct bucket_table *tbl; 1031 size_t size; 1032 1033 if ((!params->key_len && !params->obj_hashfn) || 1034 (params->obj_hashfn && !params->obj_cmpfn)) 1035 return -EINVAL; 1036 1037 memset(ht, 0, sizeof(*ht)); 1038 mutex_init(&ht->mutex); 1039 spin_lock_init(&ht->lock); 1040 memcpy(&ht->p, params, sizeof(*params)); 1041 1042 alloc_tag_record(ht->alloc_tag); 1043 1044 if (params->min_size) 1045 ht->p.min_size = roundup_pow_of_two(params->min_size); 1046 1047 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1048 ht->max_elems = 1u << 31; 1049 1050 if (params->max_size) { 1051 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1052 if (ht->p.max_size < ht->max_elems / 2) 1053 ht->max_elems = ht->p.max_size * 2; 1054 } 1055 1056 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1057 1058 size = rounded_hashtable_size(&ht->p); 1059 1060 ht->key_len = ht->p.key_len; 1061 if (!params->hashfn) { 1062 ht->p.hashfn = jhash; 1063 1064 if (!(ht->key_len & (sizeof(u32) - 1))) { 1065 ht->key_len /= sizeof(u32); 1066 ht->p.hashfn = rhashtable_jhash2; 1067 } 1068 } 1069 1070 /* 1071 * This is api initialization and thus we need to guarantee the 1072 * initial rhashtable allocation. Upon failure, retry with the 1073 * smallest possible size with __GFP_NOFAIL semantics. 1074 */ 1075 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1076 if (unlikely(tbl == NULL)) { 1077 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1078 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); 1079 } 1080 1081 atomic_set(&ht->nelems, 0); 1082 1083 RCU_INIT_POINTER(ht->tbl, tbl); 1084 1085 INIT_WORK(&ht->run_work, rht_deferred_worker); 1086 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(rhashtable_init_noprof); 1090 1091 /** 1092 * rhltable_init - initialize a new hash list table 1093 * @hlt: hash list table to be initialized 1094 * @params: configuration parameters 1095 * 1096 * Initializes a new hash list table. 1097 * 1098 * See documentation for rhashtable_init. 1099 */ 1100 int rhltable_init_noprof(struct rhltable *hlt, const struct rhashtable_params *params) 1101 { 1102 int err; 1103 1104 err = rhashtable_init_noprof(&hlt->ht, params); 1105 hlt->ht.rhlist = true; 1106 return err; 1107 } 1108 EXPORT_SYMBOL_GPL(rhltable_init_noprof); 1109 1110 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1111 void (*free_fn)(void *ptr, void *arg), 1112 void *arg) 1113 { 1114 struct rhlist_head *list; 1115 1116 if (!ht->rhlist) { 1117 free_fn(rht_obj(ht, obj), arg); 1118 return; 1119 } 1120 1121 list = container_of(obj, struct rhlist_head, rhead); 1122 do { 1123 obj = &list->rhead; 1124 list = rht_dereference(list->next, ht); 1125 free_fn(rht_obj(ht, obj), arg); 1126 } while (list); 1127 } 1128 1129 /** 1130 * rhashtable_free_and_destroy - free elements and destroy hash table 1131 * @ht: the hash table to destroy 1132 * @free_fn: callback to release resources of element 1133 * @arg: pointer passed to free_fn 1134 * 1135 * Stops an eventual async resize. If defined, invokes free_fn for each 1136 * element to releasal resources. Please note that RCU protected 1137 * readers may still be accessing the elements. Releasing of resources 1138 * must occur in a compatible manner. Then frees the bucket array. 1139 * 1140 * This function will eventually sleep to wait for an async resize 1141 * to complete. The caller is responsible that no further write operations 1142 * occurs in parallel. 1143 */ 1144 void rhashtable_free_and_destroy(struct rhashtable *ht, 1145 void (*free_fn)(void *ptr, void *arg), 1146 void *arg) 1147 { 1148 struct bucket_table *tbl, *next_tbl; 1149 unsigned int i; 1150 1151 cancel_work_sync(&ht->run_work); 1152 1153 mutex_lock(&ht->mutex); 1154 tbl = rht_dereference(ht->tbl, ht); 1155 restart: 1156 if (free_fn) { 1157 for (i = 0; i < tbl->size; i++) { 1158 struct rhash_head *pos, *next; 1159 1160 cond_resched(); 1161 for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), 1162 next = !rht_is_a_nulls(pos) ? 1163 rht_dereference(pos->next, ht) : NULL; 1164 !rht_is_a_nulls(pos); 1165 pos = next, 1166 next = !rht_is_a_nulls(pos) ? 1167 rht_dereference(pos->next, ht) : NULL) 1168 rhashtable_free_one(ht, pos, free_fn, arg); 1169 } 1170 } 1171 1172 next_tbl = rht_dereference(tbl->future_tbl, ht); 1173 bucket_table_free(tbl); 1174 if (next_tbl) { 1175 tbl = next_tbl; 1176 goto restart; 1177 } 1178 mutex_unlock(&ht->mutex); 1179 } 1180 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1181 1182 void rhashtable_destroy(struct rhashtable *ht) 1183 { 1184 return rhashtable_free_and_destroy(ht, NULL, NULL); 1185 } 1186 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1187 1188 struct rhash_lock_head __rcu **__rht_bucket_nested( 1189 const struct bucket_table *tbl, unsigned int hash) 1190 { 1191 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1192 unsigned int index = hash & ((1 << tbl->nest) - 1); 1193 unsigned int size = tbl->size >> tbl->nest; 1194 unsigned int subhash = hash; 1195 union nested_table *ntbl; 1196 1197 ntbl = nested_table_top(tbl); 1198 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1199 subhash >>= tbl->nest; 1200 1201 while (ntbl && size > (1 << shift)) { 1202 index = subhash & ((1 << shift) - 1); 1203 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1204 tbl, hash); 1205 size >>= shift; 1206 subhash >>= shift; 1207 } 1208 1209 if (!ntbl) 1210 return NULL; 1211 1212 return &ntbl[subhash].bucket; 1213 1214 } 1215 EXPORT_SYMBOL_GPL(__rht_bucket_nested); 1216 1217 struct rhash_lock_head __rcu **rht_bucket_nested( 1218 const struct bucket_table *tbl, unsigned int hash) 1219 { 1220 static struct rhash_lock_head __rcu *rhnull; 1221 1222 if (!rhnull) 1223 INIT_RHT_NULLS_HEAD(rhnull); 1224 return __rht_bucket_nested(tbl, hash) ?: &rhnull; 1225 } 1226 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1227 1228 struct rhash_lock_head __rcu **rht_bucket_nested_insert( 1229 struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) 1230 { 1231 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1232 unsigned int index = hash & ((1 << tbl->nest) - 1); 1233 unsigned int size = tbl->size >> tbl->nest; 1234 union nested_table *ntbl; 1235 1236 ntbl = nested_table_top(tbl); 1237 hash >>= tbl->nest; 1238 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1239 size <= (1 << shift)); 1240 1241 while (ntbl && size > (1 << shift)) { 1242 index = hash & ((1 << shift) - 1); 1243 size >>= shift; 1244 hash >>= shift; 1245 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1246 size <= (1 << shift)); 1247 } 1248 1249 if (!ntbl) 1250 return NULL; 1251 1252 return &ntbl[hash].bucket; 1253 1254 } 1255 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1256