xref: /linux/kernel/futex/requeue.c (revision 2cea0ed9796381b142f46bd8de97bb6b54b1df61)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/plist.h>
4 #include <linux/sched/signal.h>
5 
6 #include "futex.h"
7 #include "../locking/rtmutex_common.h"
8 
9 /*
10  * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
11  * underlying rtmutex. The task which is about to be requeued could have
12  * just woken up (timeout, signal). After the wake up the task has to
13  * acquire hash bucket lock, which is held by the requeue code.  As a task
14  * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
15  * and the hash bucket lock blocking would collide and corrupt state.
16  *
17  * On !PREEMPT_RT this is not a problem and everything could be serialized
18  * on hash bucket lock, but aside of having the benefit of common code,
19  * this allows to avoid doing the requeue when the task is already on the
20  * way out and taking the hash bucket lock of the original uaddr1 when the
21  * requeue has been completed.
22  *
23  * The following state transitions are valid:
24  *
25  * On the waiter side:
26  *   Q_REQUEUE_PI_NONE		-> Q_REQUEUE_PI_IGNORE
27  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_WAIT
28  *
29  * On the requeue side:
30  *   Q_REQUEUE_PI_NONE		-> Q_REQUEUE_PI_INPROGRESS
31  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_DONE/LOCKED
32  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_NONE (requeue failed)
33  *   Q_REQUEUE_PI_WAIT		-> Q_REQUEUE_PI_DONE/LOCKED
34  *   Q_REQUEUE_PI_WAIT		-> Q_REQUEUE_PI_IGNORE (requeue failed)
35  *
36  * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
37  * signals that the waiter is already on the way out. It also means that
38  * the waiter is still on the 'wait' futex, i.e. uaddr1.
39  *
40  * The waiter side signals early wakeup to the requeue side either through
41  * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
42  * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
43  * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
44  * which means the wakeup is interleaving with a requeue in progress it has
45  * to wait for the requeue side to change the state. Either to DONE/LOCKED
46  * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
47  * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
48  * the requeue side when the requeue attempt failed via deadlock detection
49  * and therefore the waiter q is still on the uaddr1 futex.
50  */
51 enum {
52 	Q_REQUEUE_PI_NONE		=  0,
53 	Q_REQUEUE_PI_IGNORE,
54 	Q_REQUEUE_PI_IN_PROGRESS,
55 	Q_REQUEUE_PI_WAIT,
56 	Q_REQUEUE_PI_DONE,
57 	Q_REQUEUE_PI_LOCKED,
58 };
59 
60 const struct futex_q futex_q_init = {
61 	/* list gets initialized in futex_queue()*/
62 	.wake		= futex_wake_mark,
63 	.key		= FUTEX_KEY_INIT,
64 	.bitset		= FUTEX_BITSET_MATCH_ANY,
65 	.requeue_state	= ATOMIC_INIT(Q_REQUEUE_PI_NONE),
66 };
67 
68 /**
69  * requeue_futex() - Requeue a futex_q from one hb to another
70  * @q:		the futex_q to requeue
71  * @hb1:	the source hash_bucket
72  * @hb2:	the target hash_bucket
73  * @key2:	the new key for the requeued futex_q
74  */
75 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)76 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
77 		   struct futex_hash_bucket *hb2, union futex_key *key2)
78 {
79 
80 	/*
81 	 * If key1 and key2 hash to the same bucket, no need to
82 	 * requeue.
83 	 */
84 	if (likely(&hb1->chain != &hb2->chain)) {
85 		plist_del(&q->list, &hb1->chain);
86 		futex_hb_waiters_dec(hb1);
87 		futex_hb_waiters_inc(hb2);
88 		plist_add(&q->list, &hb2->chain);
89 		q->lock_ptr = &hb2->lock;
90 		/*
91 		 * hb1 and hb2 belong to the same futex_hash_bucket_private
92 		 * because if we managed get a reference on hb1 then it can't be
93 		 * replaced. Therefore we avoid put(hb1)+get(hb2) here.
94 		 */
95 	}
96 	q->key = *key2;
97 }
98 
futex_requeue_pi_prepare(struct futex_q * q,struct futex_pi_state * pi_state)99 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
100 					    struct futex_pi_state *pi_state)
101 {
102 	int old, new;
103 
104 	/*
105 	 * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
106 	 * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
107 	 * ignore the waiter.
108 	 */
109 	old = atomic_read_acquire(&q->requeue_state);
110 	do {
111 		if (old == Q_REQUEUE_PI_IGNORE)
112 			return false;
113 
114 		/*
115 		 * futex_proxy_trylock_atomic() might have set it to
116 		 * IN_PROGRESS and a interleaved early wake to WAIT.
117 		 *
118 		 * It was considered to have an extra state for that
119 		 * trylock, but that would just add more conditionals
120 		 * all over the place for a dubious value.
121 		 */
122 		if (old != Q_REQUEUE_PI_NONE)
123 			break;
124 
125 		new = Q_REQUEUE_PI_IN_PROGRESS;
126 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
127 
128 	q->pi_state = pi_state;
129 	return true;
130 }
131 
futex_requeue_pi_complete(struct futex_q * q,int locked)132 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
133 {
134 	int old, new;
135 
136 	old = atomic_read_acquire(&q->requeue_state);
137 	do {
138 		if (old == Q_REQUEUE_PI_IGNORE)
139 			return;
140 
141 		if (locked >= 0) {
142 			/* Requeue succeeded. Set DONE or LOCKED */
143 			WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
144 				     old != Q_REQUEUE_PI_WAIT);
145 			new = Q_REQUEUE_PI_DONE + locked;
146 		} else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
147 			/* Deadlock, no early wakeup interleave */
148 			new = Q_REQUEUE_PI_NONE;
149 		} else {
150 			/* Deadlock, early wakeup interleave. */
151 			WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
152 			new = Q_REQUEUE_PI_IGNORE;
153 		}
154 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
155 
156 #ifdef CONFIG_PREEMPT_RT
157 	/* If the waiter interleaved with the requeue let it know */
158 	if (unlikely(old == Q_REQUEUE_PI_WAIT))
159 		rcuwait_wake_up(&q->requeue_wait);
160 #endif
161 }
162 
futex_requeue_pi_wakeup_sync(struct futex_q * q)163 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
164 {
165 	int old, new;
166 
167 	old = atomic_read_acquire(&q->requeue_state);
168 	do {
169 		/* Is requeue done already? */
170 		if (old >= Q_REQUEUE_PI_DONE)
171 			return old;
172 
173 		/*
174 		 * If not done, then tell the requeue code to either ignore
175 		 * the waiter or to wake it up once the requeue is done.
176 		 */
177 		new = Q_REQUEUE_PI_WAIT;
178 		if (old == Q_REQUEUE_PI_NONE)
179 			new = Q_REQUEUE_PI_IGNORE;
180 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
181 
182 	/* If the requeue was in progress, wait for it to complete */
183 	if (old == Q_REQUEUE_PI_IN_PROGRESS) {
184 #ifdef CONFIG_PREEMPT_RT
185 		rcuwait_wait_event(&q->requeue_wait,
186 				   atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
187 				   TASK_UNINTERRUPTIBLE);
188 #else
189 		(void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
190 #endif
191 	}
192 
193 	/*
194 	 * Requeue is now either prohibited or complete. Reread state
195 	 * because during the wait above it might have changed. Nothing
196 	 * will modify q->requeue_state after this point.
197 	 */
198 	return atomic_read(&q->requeue_state);
199 }
200 
201 /**
202  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
203  * @q:		the futex_q
204  * @key:	the key of the requeue target futex
205  * @hb:		the hash_bucket of the requeue target futex
206  *
207  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
208  * target futex if it is uncontended or via a lock steal.
209  *
210  * 1) Set @q::key to the requeue target futex key so the waiter can detect
211  *    the wakeup on the right futex.
212  *
213  * 2) Dequeue @q from the hash bucket.
214  *
215  * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
216  *    acquisition.
217  *
218  * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
219  *    the waiter has to fixup the pi state.
220  *
221  * 5) Complete the requeue state so the waiter can make progress. After
222  *    this point the waiter task can return from the syscall immediately in
223  *    case that the pi state does not have to be fixed up.
224  *
225  * 6) Wake the waiter task.
226  *
227  * Must be called with both q->lock_ptr and hb->lock held.
228  */
229 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)230 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
231 			   struct futex_hash_bucket *hb)
232 {
233 	struct task_struct *task;
234 
235 	q->key = *key;
236 	__futex_unqueue(q);
237 
238 	WARN_ON(!q->rt_waiter);
239 	q->rt_waiter = NULL;
240 	/*
241 	 * Acquire a reference for the waiter to ensure valid
242 	 * futex_q::lock_ptr.
243 	 */
244 	futex_hash_get(hb);
245 	q->drop_hb_ref = true;
246 	q->lock_ptr = &hb->lock;
247 	task = READ_ONCE(q->task);
248 
249 	/* Signal locked state to the waiter */
250 	futex_requeue_pi_complete(q, 1);
251 	wake_up_state(task, TASK_NORMAL);
252 }
253 
254 /**
255  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
256  * @pifutex:		the user address of the to futex
257  * @hb1:		the from futex hash bucket, must be locked by the caller
258  * @hb2:		the to futex hash bucket, must be locked by the caller
259  * @key1:		the from futex key
260  * @key2:		the to futex key
261  * @ps:			address to store the pi_state pointer
262  * @exiting:		Pointer to store the task pointer of the owner task
263  *			which is in the middle of exiting
264  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
265  *
266  * Try and get the lock on behalf of the top waiter if we can do it atomically.
267  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
268  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
269  * hb1 and hb2 must be held by the caller.
270  *
271  * @exiting is only set when the return value is -EBUSY. If so, this holds
272  * a refcount on the exiting task on return and the caller needs to drop it
273  * after waiting for the exit to complete.
274  *
275  * Return:
276  *  -  0 - failed to acquire the lock atomically;
277  *  - >0 - acquired the lock, return value is vpid of the top_waiter
278  *  - <0 - error
279  */
280 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)281 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
282 			   struct futex_hash_bucket *hb2, union futex_key *key1,
283 			   union futex_key *key2, struct futex_pi_state **ps,
284 			   struct task_struct **exiting, int set_waiters)
285 {
286 	struct futex_q *top_waiter;
287 	u32 curval;
288 	int ret;
289 
290 	if (futex_get_value_locked(&curval, pifutex))
291 		return -EFAULT;
292 
293 	if (unlikely(should_fail_futex(true)))
294 		return -EFAULT;
295 
296 	/*
297 	 * Find the top_waiter and determine if there are additional waiters.
298 	 * If the caller intends to requeue more than 1 waiter to pifutex,
299 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
300 	 * as we have means to handle the possible fault.  If not, don't set
301 	 * the bit unnecessarily as it will force the subsequent unlock to enter
302 	 * the kernel.
303 	 */
304 	top_waiter = futex_top_waiter(hb1, key1);
305 
306 	/* There are no waiters, nothing for us to do. */
307 	if (!top_waiter)
308 		return 0;
309 
310 	/*
311 	 * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
312 	 * and waiting on the 'waitqueue' futex which is always !PI.
313 	 */
314 	if (!top_waiter->rt_waiter || top_waiter->pi_state)
315 		return -EINVAL;
316 
317 	/* Ensure we requeue to the expected futex. */
318 	if (!futex_match(top_waiter->requeue_pi_key, key2))
319 		return -EINVAL;
320 
321 	/* Ensure that this does not race against an early wakeup */
322 	if (!futex_requeue_pi_prepare(top_waiter, NULL))
323 		return -EAGAIN;
324 
325 	/*
326 	 * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
327 	 * in the contended case or if @set_waiters is true.
328 	 *
329 	 * In the contended case PI state is attached to the lock owner. If
330 	 * the user space lock can be acquired then PI state is attached to
331 	 * the new owner (@top_waiter->task) when @set_waiters is true.
332 	 */
333 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
334 				   exiting, set_waiters);
335 	if (ret == 1) {
336 		/*
337 		 * Lock was acquired in user space and PI state was
338 		 * attached to @top_waiter->task. That means state is fully
339 		 * consistent and the waiter can return to user space
340 		 * immediately after the wakeup.
341 		 */
342 		requeue_pi_wake_futex(top_waiter, key2, hb2);
343 	} else if (ret < 0) {
344 		/* Rewind top_waiter::requeue_state */
345 		futex_requeue_pi_complete(top_waiter, ret);
346 	} else {
347 		/*
348 		 * futex_lock_pi_atomic() did not acquire the user space
349 		 * futex, but managed to establish the proxy lock and pi
350 		 * state. top_waiter::requeue_state cannot be fixed up here
351 		 * because the waiter is not enqueued on the rtmutex
352 		 * yet. This is handled at the callsite depending on the
353 		 * result of rt_mutex_start_proxy_lock() which is
354 		 * guaranteed to be reached with this function returning 0.
355 		 */
356 	}
357 	return ret;
358 }
359 
360 /**
361  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
362  * @uaddr1:	source futex user address
363  * @flags1:	futex flags (FLAGS_SHARED, etc.)
364  * @uaddr2:	target futex user address
365  * @flags2:	futex flags (FLAGS_SHARED, etc.)
366  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
367  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
368  * @cmpval:	@uaddr1 expected value (or %NULL)
369  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
370  *		pi futex (pi to pi requeue is not supported)
371  *
372  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
373  * uaddr2 atomically on behalf of the top waiter.
374  *
375  * Return:
376  *  - >=0 - on success, the number of tasks requeued or woken;
377  *  -  <0 - on error
378  */
futex_requeue(u32 __user * uaddr1,unsigned int flags1,u32 __user * uaddr2,unsigned int flags2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)379 int futex_requeue(u32 __user *uaddr1, unsigned int flags1,
380 		  u32 __user *uaddr2, unsigned int flags2,
381 		  int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi)
382 {
383 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
384 	int task_count = 0, ret;
385 	struct futex_pi_state *pi_state = NULL;
386 	struct futex_q *this, *next;
387 	DEFINE_WAKE_Q(wake_q);
388 
389 	if (nr_wake < 0 || nr_requeue < 0)
390 		return -EINVAL;
391 
392 	/*
393 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
394 	 * consequently the compiler knows requeue_pi is always false past
395 	 * this point which will optimize away all the conditional code
396 	 * further down.
397 	 */
398 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
399 		return -ENOSYS;
400 
401 	if (requeue_pi) {
402 		/*
403 		 * Requeue PI only works on two distinct uaddrs. This
404 		 * check is only valid for private futexes. See below.
405 		 */
406 		if (uaddr1 == uaddr2)
407 			return -EINVAL;
408 
409 		/*
410 		 * futex_requeue() allows the caller to define the number
411 		 * of waiters to wake up via the @nr_wake argument. With
412 		 * REQUEUE_PI, waking up more than one waiter is creating
413 		 * more problems than it solves. Waking up a waiter makes
414 		 * only sense if the PI futex @uaddr2 is uncontended as
415 		 * this allows the requeue code to acquire the futex
416 		 * @uaddr2 before waking the waiter. The waiter can then
417 		 * return to user space without further action. A secondary
418 		 * wakeup would just make the futex_wait_requeue_pi()
419 		 * handling more complex, because that code would have to
420 		 * look up pi_state and do more or less all the handling
421 		 * which the requeue code has to do for the to be requeued
422 		 * waiters. So restrict the number of waiters to wake to
423 		 * one, and only wake it up when the PI futex is
424 		 * uncontended. Otherwise requeue it and let the unlock of
425 		 * the PI futex handle the wakeup.
426 		 *
427 		 * All REQUEUE_PI users, e.g. pthread_cond_signal() and
428 		 * pthread_cond_broadcast() must use nr_wake=1.
429 		 */
430 		if (nr_wake != 1)
431 			return -EINVAL;
432 
433 		/*
434 		 * requeue_pi requires a pi_state, try to allocate it now
435 		 * without any locks in case it fails.
436 		 */
437 		if (refill_pi_state_cache())
438 			return -ENOMEM;
439 	}
440 
441 retry:
442 	ret = get_futex_key(uaddr1, flags1, &key1, FUTEX_READ);
443 	if (unlikely(ret != 0))
444 		return ret;
445 	ret = get_futex_key(uaddr2, flags2, &key2,
446 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
447 	if (unlikely(ret != 0))
448 		return ret;
449 
450 	/*
451 	 * The check above which compares uaddrs is not sufficient for
452 	 * shared futexes. We need to compare the keys:
453 	 */
454 	if (requeue_pi && futex_match(&key1, &key2))
455 		return -EINVAL;
456 
457 retry_private:
458 	if (1) {
459 		CLASS(hb, hb1)(&key1);
460 		CLASS(hb, hb2)(&key2);
461 
462 		futex_hb_waiters_inc(hb2);
463 		double_lock_hb(hb1, hb2);
464 
465 		if (likely(cmpval != NULL)) {
466 			u32 curval;
467 
468 			ret = futex_get_value_locked(&curval, uaddr1);
469 
470 			if (unlikely(ret)) {
471 				futex_hb_waiters_dec(hb2);
472 				double_unlock_hb(hb1, hb2);
473 
474 				ret = get_user(curval, uaddr1);
475 				if (ret)
476 					return ret;
477 
478 				if (!(flags1 & FLAGS_SHARED))
479 					goto retry_private;
480 
481 				goto retry;
482 			}
483 			if (curval != *cmpval) {
484 				ret = -EAGAIN;
485 				goto out_unlock;
486 			}
487 		}
488 
489 		if (requeue_pi) {
490 			struct task_struct *exiting = NULL;
491 
492 			/*
493 			 * Attempt to acquire uaddr2 and wake the top waiter. If we
494 			 * intend to requeue waiters, force setting the FUTEX_WAITERS
495 			 * bit.  We force this here where we are able to easily handle
496 			 * faults rather in the requeue loop below.
497 			 *
498 			 * Updates topwaiter::requeue_state if a top waiter exists.
499 			 */
500 			ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
501 							 &key2, &pi_state,
502 							 &exiting, nr_requeue);
503 
504 			/*
505 			 * At this point the top_waiter has either taken uaddr2 or
506 			 * is waiting on it. In both cases pi_state has been
507 			 * established and an initial refcount on it. In case of an
508 			 * error there's nothing.
509 			 *
510 			 * The top waiter's requeue_state is up to date:
511 			 *
512 			 *  - If the lock was acquired atomically (ret == 1), then
513 			 *    the state is Q_REQUEUE_PI_LOCKED.
514 			 *
515 			 *    The top waiter has been dequeued and woken up and can
516 			 *    return to user space immediately. The kernel/user
517 			 *    space state is consistent. In case that there must be
518 			 *    more waiters requeued the WAITERS bit in the user
519 			 *    space futex is set so the top waiter task has to go
520 			 *    into the syscall slowpath to unlock the futex. This
521 			 *    will block until this requeue operation has been
522 			 *    completed and the hash bucket locks have been
523 			 *    dropped.
524 			 *
525 			 *  - If the trylock failed with an error (ret < 0) then
526 			 *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
527 			 *    happened", or Q_REQUEUE_PI_IGNORE when there was an
528 			 *    interleaved early wakeup.
529 			 *
530 			 *  - If the trylock did not succeed (ret == 0) then the
531 			 *    state is either Q_REQUEUE_PI_IN_PROGRESS or
532 			 *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
533 			 *    This will be cleaned up in the loop below, which
534 			 *    cannot fail because futex_proxy_trylock_atomic() did
535 			 *    the same sanity checks for requeue_pi as the loop
536 			 *    below does.
537 			 */
538 			switch (ret) {
539 			case 0:
540 				/* We hold a reference on the pi state. */
541 				break;
542 
543 			case 1:
544 				/*
545 				 * futex_proxy_trylock_atomic() acquired the user space
546 				 * futex. Adjust task_count.
547 				 */
548 				task_count++;
549 				ret = 0;
550 				break;
551 
552 				/*
553 				 * If the above failed, then pi_state is NULL and
554 				 * waiter::requeue_state is correct.
555 				 */
556 			case -EFAULT:
557 				futex_hb_waiters_dec(hb2);
558 				double_unlock_hb(hb1, hb2);
559 				ret = fault_in_user_writeable(uaddr2);
560 				if (!ret)
561 					goto retry;
562 				return ret;
563 			case -EBUSY:
564 			case -EAGAIN:
565 				/*
566 				 * Two reasons for this:
567 				 * - EBUSY: Owner is exiting and we just wait for the
568 				 *   exit to complete.
569 				 * - EAGAIN: The user space value changed.
570 				 */
571 				futex_hb_waiters_dec(hb2);
572 				double_unlock_hb(hb1, hb2);
573 				/*
574 				 * Handle the case where the owner is in the middle of
575 				 * exiting. Wait for the exit to complete otherwise
576 				 * this task might loop forever, aka. live lock.
577 				 */
578 				wait_for_owner_exiting(ret, exiting);
579 				cond_resched();
580 				goto retry;
581 			default:
582 				goto out_unlock;
583 			}
584 		}
585 
586 		plist_for_each_entry_safe(this, next, &hb1->chain, list) {
587 			if (task_count - nr_wake >= nr_requeue)
588 				break;
589 
590 			if (!futex_match(&this->key, &key1))
591 				continue;
592 
593 			/*
594 			 * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
595 			 * be paired with each other and no other futex ops.
596 			 *
597 			 * We should never be requeueing a futex_q with a pi_state,
598 			 * which is awaiting a futex_unlock_pi().
599 			 */
600 			if ((requeue_pi && !this->rt_waiter) ||
601 			    (!requeue_pi && this->rt_waiter) ||
602 			    this->pi_state) {
603 				ret = -EINVAL;
604 				break;
605 			}
606 
607 			/* Plain futexes just wake or requeue and are done */
608 			if (!requeue_pi) {
609 				if (++task_count <= nr_wake)
610 					this->wake(&wake_q, this);
611 				else
612 					requeue_futex(this, hb1, hb2, &key2);
613 				continue;
614 			}
615 
616 			/* Ensure we requeue to the expected futex for requeue_pi. */
617 			if (!futex_match(this->requeue_pi_key, &key2)) {
618 				ret = -EINVAL;
619 				break;
620 			}
621 
622 			/*
623 			 * Requeue nr_requeue waiters and possibly one more in the case
624 			 * of requeue_pi if we couldn't acquire the lock atomically.
625 			 *
626 			 * Prepare the waiter to take the rt_mutex. Take a refcount
627 			 * on the pi_state and store the pointer in the futex_q
628 			 * object of the waiter.
629 			 */
630 			get_pi_state(pi_state);
631 
632 			/* Don't requeue when the waiter is already on the way out. */
633 			if (!futex_requeue_pi_prepare(this, pi_state)) {
634 				/*
635 				 * Early woken waiter signaled that it is on the
636 				 * way out. Drop the pi_state reference and try the
637 				 * next waiter. @this->pi_state is still NULL.
638 				 */
639 				put_pi_state(pi_state);
640 				continue;
641 			}
642 
643 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
644 							this->rt_waiter,
645 							this->task);
646 
647 			if (ret == 1) {
648 				/*
649 				 * We got the lock. We do neither drop the refcount
650 				 * on pi_state nor clear this->pi_state because the
651 				 * waiter needs the pi_state for cleaning up the
652 				 * user space value. It will drop the refcount
653 				 * after doing so. this::requeue_state is updated
654 				 * in the wakeup as well.
655 				 */
656 				requeue_pi_wake_futex(this, &key2, hb2);
657 				task_count++;
658 			} else if (!ret) {
659 				/* Waiter is queued, move it to hb2 */
660 				requeue_futex(this, hb1, hb2, &key2);
661 				futex_requeue_pi_complete(this, 0);
662 				task_count++;
663 			} else {
664 				/*
665 				 * rt_mutex_start_proxy_lock() detected a potential
666 				 * deadlock when we tried to queue that waiter.
667 				 * Drop the pi_state reference which we took above
668 				 * and remove the pointer to the state from the
669 				 * waiters futex_q object.
670 				 */
671 				this->pi_state = NULL;
672 				put_pi_state(pi_state);
673 				futex_requeue_pi_complete(this, ret);
674 				/*
675 				 * We stop queueing more waiters and let user space
676 				 * deal with the mess.
677 				 */
678 				break;
679 			}
680 		}
681 
682 		/*
683 		 * We took an extra initial reference to the pi_state in
684 		 * futex_proxy_trylock_atomic(). We need to drop it here again.
685 		 */
686 		put_pi_state(pi_state);
687 
688 out_unlock:
689 		futex_hb_waiters_dec(hb2);
690 		double_unlock_hb(hb1, hb2);
691 	}
692 	wake_up_q(&wake_q);
693 	return ret ? ret : task_count;
694 }
695 
696 /**
697  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
698  * @hb:		the hash_bucket futex_q was original enqueued on
699  * @q:		the futex_q woken while waiting to be requeued
700  * @timeout:	the timeout associated with the wait (NULL if none)
701  *
702  * Determine the cause for the early wakeup.
703  *
704  * Return:
705  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
706  */
707 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)708 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
709 				   struct futex_q *q,
710 				   struct hrtimer_sleeper *timeout)
711 {
712 	int ret;
713 
714 	/*
715 	 * With the hb lock held, we avoid races while we process the wakeup.
716 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
717 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
718 	 * It can't be requeued from uaddr2 to something else since we don't
719 	 * support a PI aware source futex for requeue.
720 	 */
721 	WARN_ON_ONCE(&hb->lock != q->lock_ptr);
722 
723 	/*
724 	 * We were woken prior to requeue by a timeout or a signal.
725 	 * Unqueue the futex_q and determine which it was.
726 	 */
727 	plist_del(&q->list, &hb->chain);
728 	futex_hb_waiters_dec(hb);
729 
730 	/* Handle spurious wakeups gracefully */
731 	ret = -EWOULDBLOCK;
732 	if (timeout && !timeout->task)
733 		ret = -ETIMEDOUT;
734 	else if (signal_pending(current))
735 		ret = -ERESTARTNOINTR;
736 	return ret;
737 }
738 
739 /**
740  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
741  * @uaddr:	the futex we initially wait on (non-pi)
742  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
743  *		the same type, no requeueing from private to shared, etc.
744  * @val:	the expected value of uaddr
745  * @abs_time:	absolute timeout
746  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
747  * @uaddr2:	the pi futex we will take prior to returning to user-space
748  *
749  * The caller will wait on uaddr and will be requeued by futex_requeue() to
750  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
751  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
752  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
753  * without one, the pi logic would not know which task to boost/deboost, if
754  * there was a need to.
755  *
756  * We call schedule in futex_wait_queue() when we enqueue and return there
757  * via the following--
758  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
759  * 2) wakeup on uaddr2 after a requeue
760  * 3) signal
761  * 4) timeout
762  *
763  * If 3, cleanup and return -ERESTARTNOINTR.
764  *
765  * If 2, we may then block on trying to take the rt_mutex and return via:
766  * 5) successful lock
767  * 6) signal
768  * 7) timeout
769  * 8) other lock acquisition failure
770  *
771  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
772  *
773  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
774  *
775  * Return:
776  *  -  0 - On success;
777  *  - <0 - On error
778  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)779 int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
780 			  u32 val, ktime_t *abs_time, u32 bitset,
781 			  u32 __user *uaddr2)
782 {
783 	struct hrtimer_sleeper timeout, *to;
784 	struct rt_mutex_waiter rt_waiter;
785 	union futex_key key2 = FUTEX_KEY_INIT;
786 	struct futex_q q = futex_q_init;
787 	struct rt_mutex_base *pi_mutex;
788 	int res, ret;
789 
790 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
791 		return -ENOSYS;
792 
793 	if (uaddr == uaddr2)
794 		return -EINVAL;
795 
796 	if (!bitset)
797 		return -EINVAL;
798 
799 	to = futex_setup_timer(abs_time, &timeout, flags,
800 			       current->timer_slack_ns);
801 
802 	/*
803 	 * The waiter is allocated on our stack, manipulated by the requeue
804 	 * code while we sleep on uaddr.
805 	 */
806 	rt_mutex_init_waiter(&rt_waiter);
807 
808 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
809 	if (unlikely(ret != 0))
810 		goto out;
811 
812 	q.bitset = bitset;
813 	q.rt_waiter = &rt_waiter;
814 	q.requeue_pi_key = &key2;
815 
816 	/*
817 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
818 	 * is initialized.
819 	 */
820 	ret = futex_wait_setup(uaddr, val, flags, &q, &key2, current);
821 	if (ret)
822 		goto out;
823 
824 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
825 	futex_do_wait(&q, to);
826 
827 	switch (futex_requeue_pi_wakeup_sync(&q)) {
828 	case Q_REQUEUE_PI_IGNORE:
829 		{
830 			CLASS(hb, hb)(&q.key);
831 			/* The waiter is still on uaddr1 */
832 			spin_lock(&hb->lock);
833 			ret = handle_early_requeue_pi_wakeup(hb, &q, to);
834 			spin_unlock(&hb->lock);
835 		}
836 		break;
837 
838 	case Q_REQUEUE_PI_LOCKED:
839 		/* The requeue acquired the lock */
840 		if (q.pi_state && (q.pi_state->owner != current)) {
841 			futex_q_lockptr_lock(&q);
842 			ret = fixup_pi_owner(uaddr2, &q, true);
843 			/*
844 			 * Drop the reference to the pi state which the
845 			 * requeue_pi() code acquired for us.
846 			 */
847 			put_pi_state(q.pi_state);
848 			spin_unlock(q.lock_ptr);
849 			/*
850 			 * Adjust the return value. It's either -EFAULT or
851 			 * success (1) but the caller expects 0 for success.
852 			 */
853 			ret = ret < 0 ? ret : 0;
854 		}
855 		break;
856 
857 	case Q_REQUEUE_PI_DONE:
858 		/* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
859 		pi_mutex = &q.pi_state->pi_mutex;
860 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
861 
862 		/*
863 		 * See futex_unlock_pi()'s cleanup: comment.
864 		 */
865 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
866 			ret = 0;
867 
868 		futex_q_lockptr_lock(&q);
869 		debug_rt_mutex_free_waiter(&rt_waiter);
870 		/*
871 		 * Fixup the pi_state owner and possibly acquire the lock if we
872 		 * haven't already.
873 		 */
874 		res = fixup_pi_owner(uaddr2, &q, !ret);
875 		/*
876 		 * If fixup_pi_owner() returned an error, propagate that.  If it
877 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
878 		 */
879 		if (res)
880 			ret = (res < 0) ? res : 0;
881 
882 		futex_unqueue_pi(&q);
883 		spin_unlock(q.lock_ptr);
884 
885 		if (ret == -EINTR) {
886 			/*
887 			 * We've already been requeued, but cannot restart
888 			 * by calling futex_lock_pi() directly. We could
889 			 * restart this syscall, but it would detect that
890 			 * the user space "val" changed and return
891 			 * -EWOULDBLOCK.  Save the overhead of the restart
892 			 * and return -EWOULDBLOCK directly.
893 			 */
894 			ret = -EWOULDBLOCK;
895 		}
896 		break;
897 	default:
898 		BUG();
899 	}
900 	if (q.drop_hb_ref) {
901 		CLASS(hb, hb)(&q.key);
902 		/* Additional reference from requeue_pi_wake_futex() */
903 		futex_hash_put(hb);
904 	}
905 
906 out:
907 	if (to) {
908 		hrtimer_cancel(&to->timer);
909 		destroy_hrtimer_on_stack(&to->timer);
910 	}
911 	return ret;
912 }
913 
914