1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 #include "md-cluster.h"
40
41 #define UNSUPPORTED_MDDEV_FLAGS \
42 ((1L << MD_HAS_JOURNAL) | \
43 (1L << MD_JOURNAL_CLEAN) | \
44 (1L << MD_HAS_PPL) | \
45 (1L << MD_HAS_MULTIPLE_PPLS))
46
47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 static void raid1_free(struct mddev *mddev, void *priv);
50
51 #define RAID_1_10_NAME "raid1"
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61 {
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79 return ret;
80 }
81
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
get_resync_r1bio(struct bio * bio)125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 return get_resync_pages(bio)->raid_bio;
128 }
129
r1bio_pool_alloc(gfp_t gfp_flags,void * data)130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
r1buf_pool_alloc(gfp_t gfp_flags,void * data)146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 if (!bio)
170 goto out_free_bio;
171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
179 */
180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 need_pages = pi->raid_disks;
182 else
183 need_pages = 1;
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
187 bio = r1_bio->bios[j];
188
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
205 out_free_pages:
206 while (--j >= 0)
207 resync_free_pages(&rps[j]);
208
209 out_free_bio:
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(r1_bio->bios[j]);
213 }
214 kfree(rps);
215
216 out_free_r1bio:
217 rbio_pool_free(r1_bio, data);
218 return NULL;
219 }
220
r1buf_pool_free(void * __r1_bio,void * data)221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 struct pool_info *pi = data;
224 int i;
225 struct r1bio *r1bio = __r1_bio;
226 struct resync_pages *rp = NULL;
227
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(r1bio->bios[i]);
230 resync_free_pages(rp);
231 bio_uninit(r1bio->bios[i]);
232 kfree(r1bio->bios[i]);
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(rp);
237
238 rbio_pool_free(r1bio, data);
239 }
240
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 int i;
244
245 for (i = 0; i < conf->raid_disks * 2; i++) {
246 struct bio **bio = r1_bio->bios + i;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251 }
252
free_r1bio(struct r1bio * r1_bio)253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 struct r1conf *conf = r1_bio->mddev->private;
256
257 put_all_bios(conf, r1_bio);
258 mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260
put_buf(struct r1bio * r1_bio)261 static void put_buf(struct r1bio *r1_bio)
262 {
263 struct r1conf *conf = r1_bio->mddev->private;
264 sector_t sect = r1_bio->sector;
265 int i;
266
267 for (i = 0; i < conf->raid_disks * 2; i++) {
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 }
272
273 mempool_free(r1_bio, &conf->r1buf_pool);
274
275 lower_barrier(conf, sect);
276 }
277
reschedule_retry(struct r1bio * r1_bio)278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 unsigned long flags;
281 struct mddev *mddev = r1_bio->mddev;
282 struct r1conf *conf = mddev->private;
283 int idx;
284
285 idx = sector_to_idx(r1_bio->sector);
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(&r1_bio->retry_list, &conf->retry_list);
288 atomic_inc(&conf->nr_queued[idx]);
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290
291 wake_up(&conf->wait_barrier);
292 md_wakeup_thread(mddev->thread);
293 }
294
295 /*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
call_bio_endio(struct r1bio * r1_bio)300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 struct bio *bio = r1_bio->master_bio;
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 bio->bi_status = BLK_STS_IOERR;
306
307 bio_endio(bio);
308 }
309
raid_end_bio_io(struct r1bio * r1_bio)310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312 struct bio *bio = r1_bio->master_bio;
313 struct r1conf *conf = r1_bio->mddev->private;
314 sector_t sector = r1_bio->sector;
315
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
322
323 call_bio_endio(r1_bio);
324 }
325
326 free_r1bio(r1_bio);
327 /*
328 * Wake up any possible resync thread that waits for the device
329 * to go idle. All I/Os, even write-behind writes, are done.
330 */
331 allow_barrier(conf, sector);
332 }
333
334 /*
335 * Update disk head position estimator based on IRQ completion info.
336 */
update_head_pos(int disk,struct r1bio * r1_bio)337 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338 {
339 struct r1conf *conf = r1_bio->mddev->private;
340
341 conf->mirrors[disk].head_position =
342 r1_bio->sector + (r1_bio->sectors);
343 }
344
345 /*
346 * Find the disk number which triggered given bio
347 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 {
350 int mirror;
351 struct r1conf *conf = r1_bio->mddev->private;
352 int raid_disks = conf->raid_disks;
353
354 for (mirror = 0; mirror < raid_disks * 2; mirror++)
355 if (r1_bio->bios[mirror] == bio)
356 break;
357
358 BUG_ON(mirror == raid_disks * 2);
359 update_head_pos(mirror, r1_bio);
360
361 return mirror;
362 }
363
raid1_end_read_request(struct bio * bio)364 static void raid1_end_read_request(struct bio *bio)
365 {
366 int uptodate = !bio->bi_status;
367 struct r1bio *r1_bio = bio->bi_private;
368 struct r1conf *conf = r1_bio->mddev->private;
369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370
371 /*
372 * this branch is our 'one mirror IO has finished' event handler:
373 */
374 update_head_pos(r1_bio->read_disk, r1_bio);
375
376 if (uptodate)
377 set_bit(R1BIO_Uptodate, &r1_bio->state);
378 else if (test_bit(FailFast, &rdev->flags) &&
379 test_bit(R1BIO_FailFast, &r1_bio->state))
380 /* This was a fail-fast read so we definitely
381 * want to retry */
382 ;
383 else {
384 /* If all other devices have failed, we want to return
385 * the error upwards rather than fail the last device.
386 * Here we redefine "uptodate" to mean "Don't want to retry"
387 */
388 unsigned long flags;
389 spin_lock_irqsave(&conf->device_lock, flags);
390 if (r1_bio->mddev->degraded == conf->raid_disks ||
391 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 test_bit(In_sync, &rdev->flags)))
393 uptodate = 1;
394 spin_unlock_irqrestore(&conf->device_lock, flags);
395 }
396
397 if (uptodate) {
398 raid_end_bio_io(r1_bio);
399 rdev_dec_pending(rdev, conf->mddev);
400 } else {
401 /*
402 * oops, read error:
403 */
404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 mdname(conf->mddev),
406 rdev->bdev,
407 (unsigned long long)r1_bio->sector);
408 set_bit(R1BIO_ReadError, &r1_bio->state);
409 reschedule_retry(r1_bio);
410 /* don't drop the reference on read_disk yet */
411 }
412 }
413
close_write(struct r1bio * r1_bio)414 static void close_write(struct r1bio *r1_bio)
415 {
416 struct mddev *mddev = r1_bio->mddev;
417
418 /* it really is the end of this request */
419 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
420 bio_free_pages(r1_bio->behind_master_bio);
421 bio_put(r1_bio->behind_master_bio);
422 r1_bio->behind_master_bio = NULL;
423 }
424
425 if (test_bit(R1BIO_BehindIO, &r1_bio->state))
426 mddev->bitmap_ops->end_behind_write(mddev);
427 md_write_end(mddev);
428 }
429
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
443 }
444 }
445
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_status && !discard_error) {
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
487 } else {
488 /*
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
497 */
498 r1_bio->bios[mirror] = NULL;
499 to_put = bio;
500 /*
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
506 * check this here.
507 */
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
510 set_bit(R1BIO_Uptodate, &r1_bio->state);
511
512 /* Maybe we can clear some bad blocks. */
513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 !discard_error) {
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
517 }
518 }
519
520 if (behind) {
521 if (test_bit(CollisionCheck, &rdev->flags))
522 remove_serial(rdev, lo, hi);
523 if (test_bit(WriteMostly, &rdev->flags))
524 atomic_dec(&r1_bio->behind_remaining);
525
526 /*
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
532 */
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
538 pr_debug("raid1: behind end write sectors"
539 " %llu-%llu\n",
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
542 call_bio_endio(r1_bio);
543 }
544 }
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
547 if (r1_bio->bios[mirror] == NULL)
548 rdev_dec_pending(rdev, conf->mddev);
549
550 /*
551 * Let's see if all mirrored write operations have finished
552 * already.
553 */
554 r1_bio_write_done(r1_bio);
555
556 if (to_put)
557 bio_put(to_put);
558 }
559
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 sector_t sectors)
562 {
563 sector_t len;
564
565 WARN_ON(sectors == 0);
566 /*
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
569 */
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 start_sector;
572
573 if (len > sectors)
574 len = sectors;
575
576 return len;
577 }
578
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)579 static void update_read_sectors(struct r1conf *conf, int disk,
580 sector_t this_sector, int len)
581 {
582 struct raid1_info *info = &conf->mirrors[disk];
583
584 atomic_inc(&info->rdev->nr_pending);
585 if (info->next_seq_sect != this_sector)
586 info->seq_start = this_sector;
587 info->next_seq_sect = this_sector + len;
588 }
589
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 int *max_sectors)
592 {
593 sector_t this_sector = r1_bio->sector;
594 int len = r1_bio->sectors;
595 int disk;
596
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 struct md_rdev *rdev;
599 int read_len;
600
601 if (r1_bio->bios[disk] == IO_BLOCKED)
602 continue;
603
604 rdev = conf->mirrors[disk].rdev;
605 if (!rdev || test_bit(Faulty, &rdev->flags))
606 continue;
607
608 /* choose the first disk even if it has some bad blocks. */
609 read_len = raid1_check_read_range(rdev, this_sector, &len);
610 if (read_len > 0) {
611 update_read_sectors(conf, disk, this_sector, read_len);
612 *max_sectors = read_len;
613 return disk;
614 }
615 }
616
617 return -1;
618 }
619
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
621 {
622 return !test_bit(In_sync, &rdev->flags) &&
623 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
624 }
625
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
627 int *max_sectors)
628 {
629 sector_t this_sector = r1_bio->sector;
630 int best_disk = -1;
631 int best_len = 0;
632 int disk;
633
634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 struct md_rdev *rdev;
636 int len;
637 int read_len;
638
639 if (r1_bio->bios[disk] == IO_BLOCKED)
640 continue;
641
642 rdev = conf->mirrors[disk].rdev;
643 if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 rdev_in_recovery(rdev, r1_bio) ||
645 test_bit(WriteMostly, &rdev->flags))
646 continue;
647
648 /* keep track of the disk with the most readable sectors. */
649 len = r1_bio->sectors;
650 read_len = raid1_check_read_range(rdev, this_sector, &len);
651 if (read_len > best_len) {
652 best_disk = disk;
653 best_len = read_len;
654 }
655 }
656
657 if (best_disk != -1) {
658 *max_sectors = best_len;
659 update_read_sectors(conf, best_disk, this_sector, best_len);
660 }
661
662 return best_disk;
663 }
664
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
666 int *max_sectors)
667 {
668 sector_t this_sector = r1_bio->sector;
669 int bb_disk = -1;
670 int bb_read_len = 0;
671 int disk;
672
673 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 struct md_rdev *rdev;
675 int len;
676 int read_len;
677
678 if (r1_bio->bios[disk] == IO_BLOCKED)
679 continue;
680
681 rdev = conf->mirrors[disk].rdev;
682 if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 !test_bit(WriteMostly, &rdev->flags) ||
684 rdev_in_recovery(rdev, r1_bio))
685 continue;
686
687 /* there are no bad blocks, we can use this disk */
688 len = r1_bio->sectors;
689 read_len = raid1_check_read_range(rdev, this_sector, &len);
690 if (read_len == r1_bio->sectors) {
691 *max_sectors = read_len;
692 update_read_sectors(conf, disk, this_sector, read_len);
693 return disk;
694 }
695
696 /*
697 * there are partial bad blocks, choose the rdev with largest
698 * read length.
699 */
700 if (read_len > bb_read_len) {
701 bb_disk = disk;
702 bb_read_len = read_len;
703 }
704 }
705
706 if (bb_disk != -1) {
707 *max_sectors = bb_read_len;
708 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
709 }
710
711 return bb_disk;
712 }
713
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
715 {
716 /* TODO: address issues with this check and concurrency. */
717 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 conf->mirrors[disk].head_position == r1_bio->sector;
719 }
720
721 /*
722 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723 * disk. If yes, choose the idle disk.
724 */
should_choose_next(struct r1conf * conf,int disk)725 static bool should_choose_next(struct r1conf *conf, int disk)
726 {
727 struct raid1_info *mirror = &conf->mirrors[disk];
728 int opt_iosize;
729
730 if (!test_bit(Nonrot, &mirror->rdev->flags))
731 return false;
732
733 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 mirror->next_seq_sect > opt_iosize &&
736 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
737 }
738
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
740 {
741 if (!rdev || test_bit(Faulty, &rdev->flags))
742 return false;
743
744 if (rdev_in_recovery(rdev, r1_bio))
745 return false;
746
747 /* don't read from slow disk unless have to */
748 if (test_bit(WriteMostly, &rdev->flags))
749 return false;
750
751 /* don't split IO for bad blocks unless have to */
752 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
753 return false;
754
755 return true;
756 }
757
758 struct read_balance_ctl {
759 sector_t closest_dist;
760 int closest_dist_disk;
761 int min_pending;
762 int min_pending_disk;
763 int sequential_disk;
764 int readable_disks;
765 };
766
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
768 {
769 int disk;
770 struct read_balance_ctl ctl = {
771 .closest_dist_disk = -1,
772 .closest_dist = MaxSector,
773 .min_pending_disk = -1,
774 .min_pending = UINT_MAX,
775 .sequential_disk = -1,
776 };
777
778 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 struct md_rdev *rdev;
780 sector_t dist;
781 unsigned int pending;
782
783 if (r1_bio->bios[disk] == IO_BLOCKED)
784 continue;
785
786 rdev = conf->mirrors[disk].rdev;
787 if (!rdev_readable(rdev, r1_bio))
788 continue;
789
790 /* At least two disks to choose from so failfast is OK */
791 if (ctl.readable_disks++ == 1)
792 set_bit(R1BIO_FailFast, &r1_bio->state);
793
794 pending = atomic_read(&rdev->nr_pending);
795 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
796
797 /* Don't change to another disk for sequential reads */
798 if (is_sequential(conf, disk, r1_bio)) {
799 if (!should_choose_next(conf, disk))
800 return disk;
801
802 /*
803 * Add 'pending' to avoid choosing this disk if
804 * there is other idle disk.
805 */
806 pending++;
807 /*
808 * If there is no other idle disk, this disk
809 * will be chosen.
810 */
811 ctl.sequential_disk = disk;
812 }
813
814 if (ctl.min_pending > pending) {
815 ctl.min_pending = pending;
816 ctl.min_pending_disk = disk;
817 }
818
819 if (ctl.closest_dist > dist) {
820 ctl.closest_dist = dist;
821 ctl.closest_dist_disk = disk;
822 }
823 }
824
825 /*
826 * sequential IO size exceeds optimal iosize, however, there is no other
827 * idle disk, so choose the sequential disk.
828 */
829 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 return ctl.sequential_disk;
831
832 /*
833 * If all disks are rotational, choose the closest disk. If any disk is
834 * non-rotational, choose the disk with less pending request even the
835 * disk is rotational, which might/might not be optimal for raids with
836 * mixed ratation/non-rotational disks depending on workload.
837 */
838 if (ctl.min_pending_disk != -1 &&
839 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 return ctl.min_pending_disk;
841 else
842 return ctl.closest_dist_disk;
843 }
844
845 /*
846 * This routine returns the disk from which the requested read should be done.
847 *
848 * 1) If resync is in progress, find the first usable disk and use it even if it
849 * has some bad blocks.
850 *
851 * 2) Now that there is no resync, loop through all disks and skipping slow
852 * disks and disks with bad blocks for now. Only pay attention to key disk
853 * choice.
854 *
855 * 3) If we've made it this far, now look for disks with bad blocks and choose
856 * the one with most number of sectors.
857 *
858 * 4) If we are all the way at the end, we have no choice but to use a disk even
859 * if it is write mostly.
860 *
861 * The rdev for the device selected will have nr_pending incremented.
862 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
864 int *max_sectors)
865 {
866 int disk;
867
868 clear_bit(R1BIO_FailFast, &r1_bio->state);
869
870 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
871 r1_bio->sectors))
872 return choose_first_rdev(conf, r1_bio, max_sectors);
873
874 disk = choose_best_rdev(conf, r1_bio);
875 if (disk >= 0) {
876 *max_sectors = r1_bio->sectors;
877 update_read_sectors(conf, disk, r1_bio->sector,
878 r1_bio->sectors);
879 return disk;
880 }
881
882 /*
883 * If we are here it means we didn't find a perfectly good disk so
884 * now spend a bit more time trying to find one with the most good
885 * sectors.
886 */
887 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
888 if (disk >= 0)
889 return disk;
890
891 return choose_slow_rdev(conf, r1_bio, max_sectors);
892 }
893
wake_up_barrier(struct r1conf * conf)894 static void wake_up_barrier(struct r1conf *conf)
895 {
896 if (wq_has_sleeper(&conf->wait_barrier))
897 wake_up(&conf->wait_barrier);
898 }
899
flush_bio_list(struct r1conf * conf,struct bio * bio)900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
901 {
902 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 raid1_prepare_flush_writes(conf->mddev);
904 wake_up_barrier(conf);
905
906 while (bio) { /* submit pending writes */
907 struct bio *next = bio->bi_next;
908
909 raid1_submit_write(bio);
910 bio = next;
911 cond_resched();
912 }
913 }
914
flush_pending_writes(struct r1conf * conf)915 static void flush_pending_writes(struct r1conf *conf)
916 {
917 /* Any writes that have been queued but are awaiting
918 * bitmap updates get flushed here.
919 */
920 spin_lock_irq(&conf->device_lock);
921
922 if (conf->pending_bio_list.head) {
923 struct blk_plug plug;
924 struct bio *bio;
925
926 bio = bio_list_get(&conf->pending_bio_list);
927 spin_unlock_irq(&conf->device_lock);
928
929 /*
930 * As this is called in a wait_event() loop (see freeze_array),
931 * current->state might be TASK_UNINTERRUPTIBLE which will
932 * cause a warning when we prepare to wait again. As it is
933 * rare that this path is taken, it is perfectly safe to force
934 * us to go around the wait_event() loop again, so the warning
935 * is a false-positive. Silence the warning by resetting
936 * thread state
937 */
938 __set_current_state(TASK_RUNNING);
939 blk_start_plug(&plug);
940 flush_bio_list(conf, bio);
941 blk_finish_plug(&plug);
942 } else
943 spin_unlock_irq(&conf->device_lock);
944 }
945
946 /* Barriers....
947 * Sometimes we need to suspend IO while we do something else,
948 * either some resync/recovery, or reconfigure the array.
949 * To do this we raise a 'barrier'.
950 * The 'barrier' is a counter that can be raised multiple times
951 * to count how many activities are happening which preclude
952 * normal IO.
953 * We can only raise the barrier if there is no pending IO.
954 * i.e. if nr_pending == 0.
955 * We choose only to raise the barrier if no-one is waiting for the
956 * barrier to go down. This means that as soon as an IO request
957 * is ready, no other operations which require a barrier will start
958 * until the IO request has had a chance.
959 *
960 * So: regular IO calls 'wait_barrier'. When that returns there
961 * is no backgroup IO happening, It must arrange to call
962 * allow_barrier when it has finished its IO.
963 * backgroup IO calls must call raise_barrier. Once that returns
964 * there is no normal IO happeing. It must arrange to call
965 * lower_barrier when the particular background IO completes.
966 *
967 * If resync/recovery is interrupted, returns -EINTR;
968 * Otherwise, returns 0.
969 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
971 {
972 int idx = sector_to_idx(sector_nr);
973
974 spin_lock_irq(&conf->resync_lock);
975
976 /* Wait until no block IO is waiting */
977 wait_event_lock_irq(conf->wait_barrier,
978 !atomic_read(&conf->nr_waiting[idx]),
979 conf->resync_lock);
980
981 /* block any new IO from starting */
982 atomic_inc(&conf->barrier[idx]);
983 /*
984 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 * be fetched before conf->barrier[idx] is increased. Otherwise
989 * there will be a race between raise_barrier() and _wait_barrier().
990 */
991 smp_mb__after_atomic();
992
993 /* For these conditions we must wait:
994 * A: while the array is in frozen state
995 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 * existing in corresponding I/O barrier bucket.
997 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 * max resync count which allowed on current I/O barrier bucket.
999 */
1000 wait_event_lock_irq(conf->wait_barrier,
1001 (!conf->array_frozen &&
1002 !atomic_read(&conf->nr_pending[idx]) &&
1003 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1005 conf->resync_lock);
1006
1007 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 atomic_dec(&conf->barrier[idx]);
1009 spin_unlock_irq(&conf->resync_lock);
1010 wake_up(&conf->wait_barrier);
1011 return -EINTR;
1012 }
1013
1014 atomic_inc(&conf->nr_sync_pending);
1015 spin_unlock_irq(&conf->resync_lock);
1016
1017 return 0;
1018 }
1019
lower_barrier(struct r1conf * conf,sector_t sector_nr)1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 int idx = sector_to_idx(sector_nr);
1023
1024 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1025
1026 atomic_dec(&conf->barrier[idx]);
1027 atomic_dec(&conf->nr_sync_pending);
1028 wake_up(&conf->wait_barrier);
1029 }
1030
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1032 {
1033 bool ret = true;
1034
1035 /*
1036 * We need to increase conf->nr_pending[idx] very early here,
1037 * then raise_barrier() can be blocked when it waits for
1038 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 * conf->resync_lock when there is no barrier raised in same
1040 * barrier unit bucket. Also if the array is frozen, I/O
1041 * should be blocked until array is unfrozen.
1042 */
1043 atomic_inc(&conf->nr_pending[idx]);
1044 /*
1045 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 * will be a race between _wait_barrier() and raise_barrier().
1051 */
1052 smp_mb__after_atomic();
1053
1054 /*
1055 * Don't worry about checking two atomic_t variables at same time
1056 * here. If during we check conf->barrier[idx], the array is
1057 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 * 0, it is safe to return and make the I/O continue. Because the
1059 * array is frozen, all I/O returned here will eventually complete
1060 * or be queued, no race will happen. See code comment in
1061 * frozen_array().
1062 */
1063 if (!READ_ONCE(conf->array_frozen) &&
1064 !atomic_read(&conf->barrier[idx]))
1065 return ret;
1066
1067 /*
1068 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 * should be decreased before waiting for barrier to drop.
1070 * Otherwise, we may encounter a race condition because
1071 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 * to be 0 at same time.
1073 */
1074 spin_lock_irq(&conf->resync_lock);
1075 atomic_inc(&conf->nr_waiting[idx]);
1076 atomic_dec(&conf->nr_pending[idx]);
1077 /*
1078 * In case freeze_array() is waiting for
1079 * get_unqueued_pending() == extra
1080 */
1081 wake_up_barrier(conf);
1082 /* Wait for the barrier in same barrier unit bucket to drop. */
1083
1084 /* Return false when nowait flag is set */
1085 if (nowait) {
1086 ret = false;
1087 } else {
1088 wait_event_lock_irq(conf->wait_barrier,
1089 !conf->array_frozen &&
1090 !atomic_read(&conf->barrier[idx]),
1091 conf->resync_lock);
1092 atomic_inc(&conf->nr_pending[idx]);
1093 }
1094
1095 atomic_dec(&conf->nr_waiting[idx]);
1096 spin_unlock_irq(&conf->resync_lock);
1097 return ret;
1098 }
1099
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1101 {
1102 int idx = sector_to_idx(sector_nr);
1103 bool ret = true;
1104
1105 /*
1106 * Very similar to _wait_barrier(). The difference is, for read
1107 * I/O we don't need wait for sync I/O, but if the whole array
1108 * is frozen, the read I/O still has to wait until the array is
1109 * unfrozen. Since there is no ordering requirement with
1110 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1111 */
1112 atomic_inc(&conf->nr_pending[idx]);
1113
1114 if (!READ_ONCE(conf->array_frozen))
1115 return ret;
1116
1117 spin_lock_irq(&conf->resync_lock);
1118 atomic_inc(&conf->nr_waiting[idx]);
1119 atomic_dec(&conf->nr_pending[idx]);
1120 /*
1121 * In case freeze_array() is waiting for
1122 * get_unqueued_pending() == extra
1123 */
1124 wake_up_barrier(conf);
1125 /* Wait for array to be unfrozen */
1126
1127 /* Return false when nowait flag is set */
1128 if (nowait) {
1129 /* Return false when nowait flag is set */
1130 ret = false;
1131 } else {
1132 wait_event_lock_irq(conf->wait_barrier,
1133 !conf->array_frozen,
1134 conf->resync_lock);
1135 atomic_inc(&conf->nr_pending[idx]);
1136 }
1137
1138 atomic_dec(&conf->nr_waiting[idx]);
1139 spin_unlock_irq(&conf->resync_lock);
1140 return ret;
1141 }
1142
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1144 {
1145 int idx = sector_to_idx(sector_nr);
1146
1147 return _wait_barrier(conf, idx, nowait);
1148 }
1149
_allow_barrier(struct r1conf * conf,int idx)1150 static void _allow_barrier(struct r1conf *conf, int idx)
1151 {
1152 atomic_dec(&conf->nr_pending[idx]);
1153 wake_up_barrier(conf);
1154 }
1155
allow_barrier(struct r1conf * conf,sector_t sector_nr)1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1157 {
1158 int idx = sector_to_idx(sector_nr);
1159
1160 _allow_barrier(conf, idx);
1161 }
1162
1163 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1164 static int get_unqueued_pending(struct r1conf *conf)
1165 {
1166 int idx, ret;
1167
1168 ret = atomic_read(&conf->nr_sync_pending);
1169 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 ret += atomic_read(&conf->nr_pending[idx]) -
1171 atomic_read(&conf->nr_queued[idx]);
1172
1173 return ret;
1174 }
1175
freeze_array(struct r1conf * conf,int extra)1176 static void freeze_array(struct r1conf *conf, int extra)
1177 {
1178 /* Stop sync I/O and normal I/O and wait for everything to
1179 * go quiet.
1180 * This is called in two situations:
1181 * 1) management command handlers (reshape, remove disk, quiesce).
1182 * 2) one normal I/O request failed.
1183
1184 * After array_frozen is set to 1, new sync IO will be blocked at
1185 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 * queued. When everything goes quite, there are only queued I/Os left.
1188
1189 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 * barrier bucket index which this I/O request hits. When all sync and
1191 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 * in handle_read_error(), we may call freeze_array() before trying to
1194 * fix the read error. In this case, the error read I/O is not queued,
1195 * so get_unqueued_pending() == 1.
1196 *
1197 * Therefore before this function returns, we need to wait until
1198 * get_unqueued_pendings(conf) gets equal to extra. For
1199 * normal I/O context, extra is 1, in rested situations extra is 0.
1200 */
1201 spin_lock_irq(&conf->resync_lock);
1202 conf->array_frozen = 1;
1203 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 wait_event_lock_irq_cmd(
1205 conf->wait_barrier,
1206 get_unqueued_pending(conf) == extra,
1207 conf->resync_lock,
1208 flush_pending_writes(conf));
1209 spin_unlock_irq(&conf->resync_lock);
1210 }
unfreeze_array(struct r1conf * conf)1211 static void unfreeze_array(struct r1conf *conf)
1212 {
1213 /* reverse the effect of the freeze */
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->array_frozen = 0;
1216 spin_unlock_irq(&conf->resync_lock);
1217 wake_up(&conf->wait_barrier);
1218 }
1219
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1221 struct bio *bio)
1222 {
1223 int size = bio->bi_iter.bi_size;
1224 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 int i = 0;
1226 struct bio *behind_bio = NULL;
1227
1228 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1229 &r1_bio->mddev->bio_set);
1230
1231 /* discard op, we don't support writezero/writesame yet */
1232 if (!bio_has_data(bio)) {
1233 behind_bio->bi_iter.bi_size = size;
1234 goto skip_copy;
1235 }
1236
1237 while (i < vcnt && size) {
1238 struct page *page;
1239 int len = min_t(int, PAGE_SIZE, size);
1240
1241 page = alloc_page(GFP_NOIO);
1242 if (unlikely(!page))
1243 goto free_pages;
1244
1245 if (!bio_add_page(behind_bio, page, len, 0)) {
1246 put_page(page);
1247 goto free_pages;
1248 }
1249
1250 size -= len;
1251 i++;
1252 }
1253
1254 bio_copy_data(behind_bio, bio);
1255 skip_copy:
1256 r1_bio->behind_master_bio = behind_bio;
1257 set_bit(R1BIO_BehindIO, &r1_bio->state);
1258
1259 return;
1260
1261 free_pages:
1262 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 bio->bi_iter.bi_size);
1264 bio_free_pages(behind_bio);
1265 bio_put(behind_bio);
1266 }
1267
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1269 {
1270 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1271 cb);
1272 struct mddev *mddev = plug->cb.data;
1273 struct r1conf *conf = mddev->private;
1274 struct bio *bio;
1275
1276 if (from_schedule) {
1277 spin_lock_irq(&conf->device_lock);
1278 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 spin_unlock_irq(&conf->device_lock);
1280 wake_up_barrier(conf);
1281 md_wakeup_thread(mddev->thread);
1282 kfree(plug);
1283 return;
1284 }
1285
1286 /* we aren't scheduling, so we can do the write-out directly. */
1287 bio = bio_list_get(&plug->pending);
1288 flush_bio_list(conf, bio);
1289 kfree(plug);
1290 }
1291
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1293 {
1294 r1_bio->master_bio = bio;
1295 r1_bio->sectors = bio_sectors(bio);
1296 r1_bio->state = 0;
1297 r1_bio->mddev = mddev;
1298 r1_bio->sector = bio->bi_iter.bi_sector;
1299 }
1300
1301 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1303 {
1304 struct r1conf *conf = mddev->private;
1305 struct r1bio *r1_bio;
1306
1307 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1308 /* Ensure no bio records IO_BLOCKED */
1309 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1310 init_r1bio(r1_bio, mddev, bio);
1311 return r1_bio;
1312 }
1313
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1314 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1315 int max_read_sectors, struct r1bio *r1_bio)
1316 {
1317 struct r1conf *conf = mddev->private;
1318 struct raid1_info *mirror;
1319 struct bio *read_bio;
1320 int max_sectors;
1321 int rdisk, error;
1322 bool r1bio_existed = !!r1_bio;
1323
1324 /*
1325 * If r1_bio is set, we are blocking the raid1d thread
1326 * so there is a tiny risk of deadlock. So ask for
1327 * emergency memory if needed.
1328 */
1329 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1330
1331 /*
1332 * Still need barrier for READ in case that whole
1333 * array is frozen.
1334 */
1335 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1336 bio->bi_opf & REQ_NOWAIT)) {
1337 bio_wouldblock_error(bio);
1338 return;
1339 }
1340
1341 if (!r1_bio)
1342 r1_bio = alloc_r1bio(mddev, bio);
1343 else
1344 init_r1bio(r1_bio, mddev, bio);
1345 r1_bio->sectors = max_read_sectors;
1346
1347 /*
1348 * make_request() can abort the operation when read-ahead is being
1349 * used and no empty request is available.
1350 */
1351 rdisk = read_balance(conf, r1_bio, &max_sectors);
1352 if (rdisk < 0) {
1353 /* couldn't find anywhere to read from */
1354 if (r1bio_existed)
1355 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1356 mdname(mddev),
1357 conf->mirrors[r1_bio->read_disk].rdev->bdev,
1358 r1_bio->sector);
1359 raid_end_bio_io(r1_bio);
1360 return;
1361 }
1362 mirror = conf->mirrors + rdisk;
1363
1364 if (r1bio_existed)
1365 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1366 mdname(mddev),
1367 (unsigned long long)r1_bio->sector,
1368 mirror->rdev->bdev);
1369
1370 if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1371 /*
1372 * Reading from a write-mostly device must take care not to
1373 * over-take any writes that are 'behind'
1374 */
1375 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1376 mddev->bitmap_ops->wait_behind_writes(mddev);
1377 }
1378
1379 if (max_sectors < bio_sectors(bio)) {
1380 struct bio *split = bio_split(bio, max_sectors,
1381 gfp, &conf->bio_split);
1382
1383 if (IS_ERR(split)) {
1384 error = PTR_ERR(split);
1385 goto err_handle;
1386 }
1387 bio_chain(split, bio);
1388 submit_bio_noacct(bio);
1389 bio = split;
1390 r1_bio->master_bio = bio;
1391 r1_bio->sectors = max_sectors;
1392 }
1393
1394 r1_bio->read_disk = rdisk;
1395 if (!r1bio_existed) {
1396 md_account_bio(mddev, &bio);
1397 r1_bio->master_bio = bio;
1398 }
1399 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1400 &mddev->bio_set);
1401
1402 r1_bio->bios[rdisk] = read_bio;
1403
1404 read_bio->bi_iter.bi_sector = r1_bio->sector +
1405 mirror->rdev->data_offset;
1406 read_bio->bi_end_io = raid1_end_read_request;
1407 if (test_bit(FailFast, &mirror->rdev->flags) &&
1408 test_bit(R1BIO_FailFast, &r1_bio->state))
1409 read_bio->bi_opf |= MD_FAILFAST;
1410 read_bio->bi_private = r1_bio;
1411 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1412 submit_bio_noacct(read_bio);
1413 return;
1414
1415 err_handle:
1416 atomic_dec(&mirror->rdev->nr_pending);
1417 bio->bi_status = errno_to_blk_status(error);
1418 set_bit(R1BIO_Uptodate, &r1_bio->state);
1419 raid_end_bio_io(r1_bio);
1420 }
1421
wait_blocked_rdev(struct mddev * mddev,struct bio * bio)1422 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1423 {
1424 struct r1conf *conf = mddev->private;
1425 int disks = conf->raid_disks * 2;
1426 int i;
1427
1428 retry:
1429 for (i = 0; i < disks; i++) {
1430 struct md_rdev *rdev = conf->mirrors[i].rdev;
1431
1432 if (!rdev)
1433 continue;
1434
1435 /* don't write here until the bad block is acknowledged */
1436 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1437 rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1438 bio_sectors(bio)) < 0)
1439 set_bit(BlockedBadBlocks, &rdev->flags);
1440
1441 if (rdev_blocked(rdev)) {
1442 if (bio->bi_opf & REQ_NOWAIT)
1443 return false;
1444
1445 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1446 rdev->raid_disk);
1447 atomic_inc(&rdev->nr_pending);
1448 md_wait_for_blocked_rdev(rdev, rdev->mddev);
1449 goto retry;
1450 }
1451 }
1452
1453 return true;
1454 }
1455
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1456 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1457 int max_write_sectors)
1458 {
1459 struct r1conf *conf = mddev->private;
1460 struct r1bio *r1_bio;
1461 int i, disks, k, error;
1462 unsigned long flags;
1463 int first_clone;
1464 int max_sectors;
1465 bool write_behind = false;
1466 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1467
1468 if (mddev_is_clustered(mddev) &&
1469 mddev->cluster_ops->area_resyncing(mddev, WRITE,
1470 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1471
1472 DEFINE_WAIT(w);
1473 if (bio->bi_opf & REQ_NOWAIT) {
1474 bio_wouldblock_error(bio);
1475 return;
1476 }
1477 for (;;) {
1478 prepare_to_wait(&conf->wait_barrier,
1479 &w, TASK_IDLE);
1480 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1481 bio->bi_iter.bi_sector,
1482 bio_end_sector(bio)))
1483 break;
1484 schedule();
1485 }
1486 finish_wait(&conf->wait_barrier, &w);
1487 }
1488
1489 /*
1490 * Register the new request and wait if the reconstruction
1491 * thread has put up a bar for new requests.
1492 * Continue immediately if no resync is active currently.
1493 */
1494 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1495 bio->bi_opf & REQ_NOWAIT)) {
1496 bio_wouldblock_error(bio);
1497 return;
1498 }
1499
1500 if (!wait_blocked_rdev(mddev, bio)) {
1501 bio_wouldblock_error(bio);
1502 return;
1503 }
1504
1505 r1_bio = alloc_r1bio(mddev, bio);
1506 r1_bio->sectors = max_write_sectors;
1507
1508 /* first select target devices under rcu_lock and
1509 * inc refcount on their rdev. Record them by setting
1510 * bios[x] to bio
1511 * If there are known/acknowledged bad blocks on any device on
1512 * which we have seen a write error, we want to avoid writing those
1513 * blocks.
1514 * This potentially requires several writes to write around
1515 * the bad blocks. Each set of writes gets it's own r1bio
1516 * with a set of bios attached.
1517 */
1518
1519 disks = conf->raid_disks * 2;
1520 max_sectors = r1_bio->sectors;
1521 for (i = 0; i < disks; i++) {
1522 struct md_rdev *rdev = conf->mirrors[i].rdev;
1523
1524 /*
1525 * The write-behind io is only attempted on drives marked as
1526 * write-mostly, which means we could allocate write behind
1527 * bio later.
1528 */
1529 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1530 write_behind = true;
1531
1532 r1_bio->bios[i] = NULL;
1533 if (!rdev || test_bit(Faulty, &rdev->flags))
1534 continue;
1535
1536 atomic_inc(&rdev->nr_pending);
1537 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1538 sector_t first_bad;
1539 sector_t bad_sectors;
1540 int is_bad;
1541
1542 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1543 &first_bad, &bad_sectors);
1544 if (is_bad && first_bad <= r1_bio->sector) {
1545 /* Cannot write here at all */
1546 bad_sectors -= (r1_bio->sector - first_bad);
1547 if (bad_sectors < max_sectors)
1548 /* mustn't write more than bad_sectors
1549 * to other devices yet
1550 */
1551 max_sectors = bad_sectors;
1552 rdev_dec_pending(rdev, mddev);
1553 continue;
1554 }
1555 if (is_bad) {
1556 int good_sectors;
1557
1558 /*
1559 * We cannot atomically write this, so just
1560 * error in that case. It could be possible to
1561 * atomically write other mirrors, but the
1562 * complexity of supporting that is not worth
1563 * the benefit.
1564 */
1565 if (bio->bi_opf & REQ_ATOMIC) {
1566 error = -EIO;
1567 goto err_handle;
1568 }
1569
1570 good_sectors = first_bad - r1_bio->sector;
1571 if (good_sectors < max_sectors)
1572 max_sectors = good_sectors;
1573 }
1574 }
1575 r1_bio->bios[i] = bio;
1576 }
1577
1578 /*
1579 * When using a bitmap, we may call alloc_behind_master_bio below.
1580 * alloc_behind_master_bio allocates a copy of the data payload a page
1581 * at a time and thus needs a new bio that can fit the whole payload
1582 * this bio in page sized chunks.
1583 */
1584 if (write_behind && mddev->bitmap)
1585 max_sectors = min_t(int, max_sectors,
1586 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1587 if (max_sectors < bio_sectors(bio)) {
1588 struct bio *split = bio_split(bio, max_sectors,
1589 GFP_NOIO, &conf->bio_split);
1590
1591 if (IS_ERR(split)) {
1592 error = PTR_ERR(split);
1593 goto err_handle;
1594 }
1595 bio_chain(split, bio);
1596 submit_bio_noacct(bio);
1597 bio = split;
1598 r1_bio->master_bio = bio;
1599 r1_bio->sectors = max_sectors;
1600 }
1601
1602 md_account_bio(mddev, &bio);
1603 r1_bio->master_bio = bio;
1604 atomic_set(&r1_bio->remaining, 1);
1605 atomic_set(&r1_bio->behind_remaining, 0);
1606
1607 first_clone = 1;
1608
1609 for (i = 0; i < disks; i++) {
1610 struct bio *mbio = NULL;
1611 struct md_rdev *rdev = conf->mirrors[i].rdev;
1612 if (!r1_bio->bios[i])
1613 continue;
1614
1615 if (first_clone) {
1616 unsigned long max_write_behind =
1617 mddev->bitmap_info.max_write_behind;
1618 struct md_bitmap_stats stats;
1619 int err;
1620
1621 /* do behind I/O ?
1622 * Not if there are too many, or cannot
1623 * allocate memory, or a reader on WriteMostly
1624 * is waiting for behind writes to flush */
1625 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1626 if (!err && write_behind && !stats.behind_wait &&
1627 stats.behind_writes < max_write_behind)
1628 alloc_behind_master_bio(r1_bio, bio);
1629
1630 if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1631 mddev->bitmap_ops->start_behind_write(mddev);
1632 first_clone = 0;
1633 }
1634
1635 if (r1_bio->behind_master_bio) {
1636 mbio = bio_alloc_clone(rdev->bdev,
1637 r1_bio->behind_master_bio,
1638 GFP_NOIO, &mddev->bio_set);
1639 if (test_bit(CollisionCheck, &rdev->flags))
1640 wait_for_serialization(rdev, r1_bio);
1641 if (test_bit(WriteMostly, &rdev->flags))
1642 atomic_inc(&r1_bio->behind_remaining);
1643 } else {
1644 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1645 &mddev->bio_set);
1646
1647 if (mddev->serialize_policy)
1648 wait_for_serialization(rdev, r1_bio);
1649 }
1650
1651 r1_bio->bios[i] = mbio;
1652
1653 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1654 mbio->bi_end_io = raid1_end_write_request;
1655 if (test_bit(FailFast, &rdev->flags) &&
1656 !test_bit(WriteMostly, &rdev->flags) &&
1657 conf->raid_disks - mddev->degraded > 1)
1658 mbio->bi_opf |= MD_FAILFAST;
1659 mbio->bi_private = r1_bio;
1660
1661 atomic_inc(&r1_bio->remaining);
1662 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1663 /* flush_pending_writes() needs access to the rdev so...*/
1664 mbio->bi_bdev = (void *)rdev;
1665 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1666 spin_lock_irqsave(&conf->device_lock, flags);
1667 bio_list_add(&conf->pending_bio_list, mbio);
1668 spin_unlock_irqrestore(&conf->device_lock, flags);
1669 md_wakeup_thread(mddev->thread);
1670 }
1671 }
1672
1673 r1_bio_write_done(r1_bio);
1674
1675 /* In case raid1d snuck in to freeze_array */
1676 wake_up_barrier(conf);
1677 return;
1678 err_handle:
1679 for (k = 0; k < i; k++) {
1680 if (r1_bio->bios[k]) {
1681 rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1682 r1_bio->bios[k] = NULL;
1683 }
1684 }
1685
1686 bio->bi_status = errno_to_blk_status(error);
1687 set_bit(R1BIO_Uptodate, &r1_bio->state);
1688 raid_end_bio_io(r1_bio);
1689 }
1690
raid1_make_request(struct mddev * mddev,struct bio * bio)1691 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1692 {
1693 sector_t sectors;
1694
1695 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1696 && md_flush_request(mddev, bio))
1697 return true;
1698
1699 /*
1700 * There is a limit to the maximum size, but
1701 * the read/write handler might find a lower limit
1702 * due to bad blocks. To avoid multiple splits,
1703 * we pass the maximum number of sectors down
1704 * and let the lower level perform the split.
1705 */
1706 sectors = align_to_barrier_unit_end(
1707 bio->bi_iter.bi_sector, bio_sectors(bio));
1708
1709 if (bio_data_dir(bio) == READ)
1710 raid1_read_request(mddev, bio, sectors, NULL);
1711 else {
1712 md_write_start(mddev,bio);
1713 raid1_write_request(mddev, bio, sectors);
1714 }
1715 return true;
1716 }
1717
raid1_status(struct seq_file * seq,struct mddev * mddev)1718 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1719 {
1720 struct r1conf *conf = mddev->private;
1721 int i;
1722
1723 lockdep_assert_held(&mddev->lock);
1724
1725 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1726 conf->raid_disks - mddev->degraded);
1727 for (i = 0; i < conf->raid_disks; i++) {
1728 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1729
1730 seq_printf(seq, "%s",
1731 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1732 }
1733 seq_printf(seq, "]");
1734 }
1735
1736 /**
1737 * raid1_error() - RAID1 error handler.
1738 * @mddev: affected md device.
1739 * @rdev: member device to fail.
1740 *
1741 * The routine acknowledges &rdev failure and determines new @mddev state.
1742 * If it failed, then:
1743 * - &MD_BROKEN flag is set in &mddev->flags.
1744 * - recovery is disabled.
1745 * Otherwise, it must be degraded:
1746 * - recovery is interrupted.
1747 * - &mddev->degraded is bumped.
1748 *
1749 * @rdev is marked as &Faulty excluding case when array is failed and
1750 * &mddev->fail_last_dev is off.
1751 */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1752 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754 struct r1conf *conf = mddev->private;
1755 unsigned long flags;
1756
1757 spin_lock_irqsave(&conf->device_lock, flags);
1758
1759 if (test_bit(In_sync, &rdev->flags) &&
1760 (conf->raid_disks - mddev->degraded) == 1) {
1761 set_bit(MD_BROKEN, &mddev->flags);
1762
1763 if (!mddev->fail_last_dev) {
1764 conf->recovery_disabled = mddev->recovery_disabled;
1765 spin_unlock_irqrestore(&conf->device_lock, flags);
1766 return;
1767 }
1768 }
1769 set_bit(Blocked, &rdev->flags);
1770 if (test_and_clear_bit(In_sync, &rdev->flags))
1771 mddev->degraded++;
1772 set_bit(Faulty, &rdev->flags);
1773 spin_unlock_irqrestore(&conf->device_lock, flags);
1774 /*
1775 * if recovery is running, make sure it aborts.
1776 */
1777 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1778 set_mask_bits(&mddev->sb_flags, 0,
1779 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1780 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1781 "md/raid1:%s: Operation continuing on %d devices.\n",
1782 mdname(mddev), rdev->bdev,
1783 mdname(mddev), conf->raid_disks - mddev->degraded);
1784 }
1785
print_conf(struct r1conf * conf)1786 static void print_conf(struct r1conf *conf)
1787 {
1788 int i;
1789
1790 pr_debug("RAID1 conf printout:\n");
1791 if (!conf) {
1792 pr_debug("(!conf)\n");
1793 return;
1794 }
1795 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1796 conf->raid_disks);
1797
1798 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1799 for (i = 0; i < conf->raid_disks; i++) {
1800 struct md_rdev *rdev = conf->mirrors[i].rdev;
1801 if (rdev)
1802 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1803 i, !test_bit(In_sync, &rdev->flags),
1804 !test_bit(Faulty, &rdev->flags),
1805 rdev->bdev);
1806 }
1807 }
1808
close_sync(struct r1conf * conf)1809 static void close_sync(struct r1conf *conf)
1810 {
1811 int idx;
1812
1813 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1814 _wait_barrier(conf, idx, false);
1815 _allow_barrier(conf, idx);
1816 }
1817
1818 mempool_exit(&conf->r1buf_pool);
1819 }
1820
raid1_spare_active(struct mddev * mddev)1821 static int raid1_spare_active(struct mddev *mddev)
1822 {
1823 int i;
1824 struct r1conf *conf = mddev->private;
1825 int count = 0;
1826 unsigned long flags;
1827
1828 /*
1829 * Find all failed disks within the RAID1 configuration
1830 * and mark them readable.
1831 * Called under mddev lock, so rcu protection not needed.
1832 * device_lock used to avoid races with raid1_end_read_request
1833 * which expects 'In_sync' flags and ->degraded to be consistent.
1834 */
1835 spin_lock_irqsave(&conf->device_lock, flags);
1836 for (i = 0; i < conf->raid_disks; i++) {
1837 struct md_rdev *rdev = conf->mirrors[i].rdev;
1838 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1839 if (repl
1840 && !test_bit(Candidate, &repl->flags)
1841 && repl->recovery_offset == MaxSector
1842 && !test_bit(Faulty, &repl->flags)
1843 && !test_and_set_bit(In_sync, &repl->flags)) {
1844 /* replacement has just become active */
1845 if (!rdev ||
1846 !test_and_clear_bit(In_sync, &rdev->flags))
1847 count++;
1848 if (rdev) {
1849 /* Replaced device not technically
1850 * faulty, but we need to be sure
1851 * it gets removed and never re-added
1852 */
1853 set_bit(Faulty, &rdev->flags);
1854 sysfs_notify_dirent_safe(
1855 rdev->sysfs_state);
1856 }
1857 }
1858 if (rdev
1859 && rdev->recovery_offset == MaxSector
1860 && !test_bit(Faulty, &rdev->flags)
1861 && !test_and_set_bit(In_sync, &rdev->flags)) {
1862 count++;
1863 sysfs_notify_dirent_safe(rdev->sysfs_state);
1864 }
1865 }
1866 mddev->degraded -= count;
1867 spin_unlock_irqrestore(&conf->device_lock, flags);
1868
1869 print_conf(conf);
1870 return count;
1871 }
1872
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1873 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1874 bool replacement)
1875 {
1876 struct raid1_info *info = conf->mirrors + disk;
1877
1878 if (replacement)
1879 info += conf->raid_disks;
1880
1881 if (info->rdev)
1882 return false;
1883
1884 if (bdev_nonrot(rdev->bdev)) {
1885 set_bit(Nonrot, &rdev->flags);
1886 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1887 }
1888
1889 rdev->raid_disk = disk;
1890 info->head_position = 0;
1891 info->seq_start = MaxSector;
1892 WRITE_ONCE(info->rdev, rdev);
1893
1894 return true;
1895 }
1896
raid1_remove_conf(struct r1conf * conf,int disk)1897 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1898 {
1899 struct raid1_info *info = conf->mirrors + disk;
1900 struct md_rdev *rdev = info->rdev;
1901
1902 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1903 atomic_read(&rdev->nr_pending))
1904 return false;
1905
1906 /* Only remove non-faulty devices if recovery is not possible. */
1907 if (!test_bit(Faulty, &rdev->flags) &&
1908 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1909 rdev->mddev->degraded < conf->raid_disks)
1910 return false;
1911
1912 if (test_and_clear_bit(Nonrot, &rdev->flags))
1913 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1914
1915 WRITE_ONCE(info->rdev, NULL);
1916 return true;
1917 }
1918
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1919 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1920 {
1921 struct r1conf *conf = mddev->private;
1922 int err = -EEXIST;
1923 int mirror = 0, repl_slot = -1;
1924 struct raid1_info *p;
1925 int first = 0;
1926 int last = conf->raid_disks - 1;
1927
1928 if (mddev->recovery_disabled == conf->recovery_disabled)
1929 return -EBUSY;
1930
1931 if (rdev->raid_disk >= 0)
1932 first = last = rdev->raid_disk;
1933
1934 /*
1935 * find the disk ... but prefer rdev->saved_raid_disk
1936 * if possible.
1937 */
1938 if (rdev->saved_raid_disk >= 0 &&
1939 rdev->saved_raid_disk >= first &&
1940 rdev->saved_raid_disk < conf->raid_disks &&
1941 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1942 first = last = rdev->saved_raid_disk;
1943
1944 for (mirror = first; mirror <= last; mirror++) {
1945 p = conf->mirrors + mirror;
1946 if (!p->rdev) {
1947 err = mddev_stack_new_rdev(mddev, rdev);
1948 if (err)
1949 return err;
1950
1951 raid1_add_conf(conf, rdev, mirror, false);
1952 /* As all devices are equivalent, we don't need a full recovery
1953 * if this was recently any drive of the array
1954 */
1955 if (rdev->saved_raid_disk < 0)
1956 conf->fullsync = 1;
1957 break;
1958 }
1959 if (test_bit(WantReplacement, &p->rdev->flags) &&
1960 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1961 repl_slot = mirror;
1962 }
1963
1964 if (err && repl_slot >= 0) {
1965 /* Add this device as a replacement */
1966 clear_bit(In_sync, &rdev->flags);
1967 set_bit(Replacement, &rdev->flags);
1968 raid1_add_conf(conf, rdev, repl_slot, true);
1969 err = 0;
1970 conf->fullsync = 1;
1971 }
1972
1973 print_conf(conf);
1974 return err;
1975 }
1976
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1977 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1978 {
1979 struct r1conf *conf = mddev->private;
1980 int err = 0;
1981 int number = rdev->raid_disk;
1982 struct raid1_info *p = conf->mirrors + number;
1983
1984 if (unlikely(number >= conf->raid_disks))
1985 goto abort;
1986
1987 if (rdev != p->rdev) {
1988 number += conf->raid_disks;
1989 p = conf->mirrors + number;
1990 }
1991
1992 print_conf(conf);
1993 if (rdev == p->rdev) {
1994 if (!raid1_remove_conf(conf, number)) {
1995 err = -EBUSY;
1996 goto abort;
1997 }
1998
1999 if (number < conf->raid_disks &&
2000 conf->mirrors[conf->raid_disks + number].rdev) {
2001 /* We just removed a device that is being replaced.
2002 * Move down the replacement. We drain all IO before
2003 * doing this to avoid confusion.
2004 */
2005 struct md_rdev *repl =
2006 conf->mirrors[conf->raid_disks + number].rdev;
2007 freeze_array(conf, 0);
2008 if (atomic_read(&repl->nr_pending)) {
2009 /* It means that some queued IO of retry_list
2010 * hold repl. Thus, we cannot set replacement
2011 * as NULL, avoiding rdev NULL pointer
2012 * dereference in sync_request_write and
2013 * handle_write_finished.
2014 */
2015 err = -EBUSY;
2016 unfreeze_array(conf);
2017 goto abort;
2018 }
2019 clear_bit(Replacement, &repl->flags);
2020 WRITE_ONCE(p->rdev, repl);
2021 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2022 unfreeze_array(conf);
2023 }
2024
2025 clear_bit(WantReplacement, &rdev->flags);
2026 err = md_integrity_register(mddev);
2027 }
2028 abort:
2029
2030 print_conf(conf);
2031 return err;
2032 }
2033
end_sync_read(struct bio * bio)2034 static void end_sync_read(struct bio *bio)
2035 {
2036 struct r1bio *r1_bio = get_resync_r1bio(bio);
2037
2038 update_head_pos(r1_bio->read_disk, r1_bio);
2039
2040 /*
2041 * we have read a block, now it needs to be re-written,
2042 * or re-read if the read failed.
2043 * We don't do much here, just schedule handling by raid1d
2044 */
2045 if (!bio->bi_status)
2046 set_bit(R1BIO_Uptodate, &r1_bio->state);
2047
2048 if (atomic_dec_and_test(&r1_bio->remaining))
2049 reschedule_retry(r1_bio);
2050 }
2051
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2052 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2053 {
2054 sector_t sync_blocks = 0;
2055 sector_t s = r1_bio->sector;
2056 long sectors_to_go = r1_bio->sectors;
2057
2058 /* make sure these bits don't get cleared. */
2059 do {
2060 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2061 s += sync_blocks;
2062 sectors_to_go -= sync_blocks;
2063 } while (sectors_to_go > 0);
2064 }
2065
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2066 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2067 {
2068 if (atomic_dec_and_test(&r1_bio->remaining)) {
2069 struct mddev *mddev = r1_bio->mddev;
2070 int s = r1_bio->sectors;
2071
2072 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2073 test_bit(R1BIO_WriteError, &r1_bio->state))
2074 reschedule_retry(r1_bio);
2075 else {
2076 put_buf(r1_bio);
2077 md_done_sync(mddev, s, uptodate);
2078 }
2079 }
2080 }
2081
end_sync_write(struct bio * bio)2082 static void end_sync_write(struct bio *bio)
2083 {
2084 int uptodate = !bio->bi_status;
2085 struct r1bio *r1_bio = get_resync_r1bio(bio);
2086 struct mddev *mddev = r1_bio->mddev;
2087 struct r1conf *conf = mddev->private;
2088 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2089
2090 if (!uptodate) {
2091 abort_sync_write(mddev, r1_bio);
2092 set_bit(WriteErrorSeen, &rdev->flags);
2093 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2094 set_bit(MD_RECOVERY_NEEDED, &
2095 mddev->recovery);
2096 set_bit(R1BIO_WriteError, &r1_bio->state);
2097 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2098 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2099 r1_bio->sector, r1_bio->sectors)) {
2100 set_bit(R1BIO_MadeGood, &r1_bio->state);
2101 }
2102
2103 put_sync_write_buf(r1_bio, uptodate);
2104 }
2105
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2106 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2107 int sectors, struct page *page, blk_opf_t rw)
2108 {
2109 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2110 /* success */
2111 return 1;
2112 if (rw == REQ_OP_WRITE) {
2113 set_bit(WriteErrorSeen, &rdev->flags);
2114 if (!test_and_set_bit(WantReplacement,
2115 &rdev->flags))
2116 set_bit(MD_RECOVERY_NEEDED, &
2117 rdev->mddev->recovery);
2118 }
2119 /* need to record an error - either for the block or the device */
2120 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2121 md_error(rdev->mddev, rdev);
2122 return 0;
2123 }
2124
fix_sync_read_error(struct r1bio * r1_bio)2125 static int fix_sync_read_error(struct r1bio *r1_bio)
2126 {
2127 /* Try some synchronous reads of other devices to get
2128 * good data, much like with normal read errors. Only
2129 * read into the pages we already have so we don't
2130 * need to re-issue the read request.
2131 * We don't need to freeze the array, because being in an
2132 * active sync request, there is no normal IO, and
2133 * no overlapping syncs.
2134 * We don't need to check is_badblock() again as we
2135 * made sure that anything with a bad block in range
2136 * will have bi_end_io clear.
2137 */
2138 struct mddev *mddev = r1_bio->mddev;
2139 struct r1conf *conf = mddev->private;
2140 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2141 struct page **pages = get_resync_pages(bio)->pages;
2142 sector_t sect = r1_bio->sector;
2143 int sectors = r1_bio->sectors;
2144 int idx = 0;
2145 struct md_rdev *rdev;
2146
2147 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2148 if (test_bit(FailFast, &rdev->flags)) {
2149 /* Don't try recovering from here - just fail it
2150 * ... unless it is the last working device of course */
2151 md_error(mddev, rdev);
2152 if (test_bit(Faulty, &rdev->flags))
2153 /* Don't try to read from here, but make sure
2154 * put_buf does it's thing
2155 */
2156 bio->bi_end_io = end_sync_write;
2157 }
2158
2159 while(sectors) {
2160 int s = sectors;
2161 int d = r1_bio->read_disk;
2162 int success = 0;
2163 int start;
2164
2165 if (s > (PAGE_SIZE>>9))
2166 s = PAGE_SIZE >> 9;
2167 do {
2168 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2169 /* No rcu protection needed here devices
2170 * can only be removed when no resync is
2171 * active, and resync is currently active
2172 */
2173 rdev = conf->mirrors[d].rdev;
2174 if (sync_page_io(rdev, sect, s<<9,
2175 pages[idx],
2176 REQ_OP_READ, false)) {
2177 success = 1;
2178 break;
2179 }
2180 }
2181 d++;
2182 if (d == conf->raid_disks * 2)
2183 d = 0;
2184 } while (!success && d != r1_bio->read_disk);
2185
2186 if (!success) {
2187 int abort = 0;
2188 /* Cannot read from anywhere, this block is lost.
2189 * Record a bad block on each device. If that doesn't
2190 * work just disable and interrupt the recovery.
2191 * Don't fail devices as that won't really help.
2192 */
2193 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2194 mdname(mddev), bio->bi_bdev,
2195 (unsigned long long)r1_bio->sector);
2196 for (d = 0; d < conf->raid_disks * 2; d++) {
2197 rdev = conf->mirrors[d].rdev;
2198 if (!rdev || test_bit(Faulty, &rdev->flags))
2199 continue;
2200 if (!rdev_set_badblocks(rdev, sect, s, 0))
2201 abort = 1;
2202 }
2203 if (abort) {
2204 conf->recovery_disabled =
2205 mddev->recovery_disabled;
2206 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2207 md_done_sync(mddev, r1_bio->sectors, 0);
2208 put_buf(r1_bio);
2209 return 0;
2210 }
2211 /* Try next page */
2212 sectors -= s;
2213 sect += s;
2214 idx++;
2215 continue;
2216 }
2217
2218 start = d;
2219 /* write it back and re-read */
2220 while (d != r1_bio->read_disk) {
2221 if (d == 0)
2222 d = conf->raid_disks * 2;
2223 d--;
2224 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2225 continue;
2226 rdev = conf->mirrors[d].rdev;
2227 if (r1_sync_page_io(rdev, sect, s,
2228 pages[idx],
2229 REQ_OP_WRITE) == 0) {
2230 r1_bio->bios[d]->bi_end_io = NULL;
2231 rdev_dec_pending(rdev, mddev);
2232 }
2233 }
2234 d = start;
2235 while (d != r1_bio->read_disk) {
2236 if (d == 0)
2237 d = conf->raid_disks * 2;
2238 d--;
2239 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2240 continue;
2241 rdev = conf->mirrors[d].rdev;
2242 if (r1_sync_page_io(rdev, sect, s,
2243 pages[idx],
2244 REQ_OP_READ) != 0)
2245 atomic_add(s, &rdev->corrected_errors);
2246 }
2247 sectors -= s;
2248 sect += s;
2249 idx ++;
2250 }
2251 set_bit(R1BIO_Uptodate, &r1_bio->state);
2252 bio->bi_status = 0;
2253 return 1;
2254 }
2255
process_checks(struct r1bio * r1_bio)2256 static void process_checks(struct r1bio *r1_bio)
2257 {
2258 /* We have read all readable devices. If we haven't
2259 * got the block, then there is no hope left.
2260 * If we have, then we want to do a comparison
2261 * and skip the write if everything is the same.
2262 * If any blocks failed to read, then we need to
2263 * attempt an over-write
2264 */
2265 struct mddev *mddev = r1_bio->mddev;
2266 struct r1conf *conf = mddev->private;
2267 int primary;
2268 int i;
2269 int vcnt;
2270
2271 /* Fix variable parts of all bios */
2272 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2273 for (i = 0; i < conf->raid_disks * 2; i++) {
2274 blk_status_t status;
2275 struct bio *b = r1_bio->bios[i];
2276 struct resync_pages *rp = get_resync_pages(b);
2277 if (b->bi_end_io != end_sync_read)
2278 continue;
2279 /* fixup the bio for reuse, but preserve errno */
2280 status = b->bi_status;
2281 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2282 b->bi_status = status;
2283 b->bi_iter.bi_sector = r1_bio->sector +
2284 conf->mirrors[i].rdev->data_offset;
2285 b->bi_end_io = end_sync_read;
2286 rp->raid_bio = r1_bio;
2287 b->bi_private = rp;
2288
2289 /* initialize bvec table again */
2290 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2291 }
2292 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2293 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2294 !r1_bio->bios[primary]->bi_status) {
2295 r1_bio->bios[primary]->bi_end_io = NULL;
2296 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2297 break;
2298 }
2299 r1_bio->read_disk = primary;
2300 for (i = 0; i < conf->raid_disks * 2; i++) {
2301 int j = 0;
2302 struct bio *pbio = r1_bio->bios[primary];
2303 struct bio *sbio = r1_bio->bios[i];
2304 blk_status_t status = sbio->bi_status;
2305 struct page **ppages = get_resync_pages(pbio)->pages;
2306 struct page **spages = get_resync_pages(sbio)->pages;
2307 struct bio_vec *bi;
2308 int page_len[RESYNC_PAGES] = { 0 };
2309 struct bvec_iter_all iter_all;
2310
2311 if (sbio->bi_end_io != end_sync_read)
2312 continue;
2313 /* Now we can 'fixup' the error value */
2314 sbio->bi_status = 0;
2315
2316 bio_for_each_segment_all(bi, sbio, iter_all)
2317 page_len[j++] = bi->bv_len;
2318
2319 if (!status) {
2320 for (j = vcnt; j-- ; ) {
2321 if (memcmp(page_address(ppages[j]),
2322 page_address(spages[j]),
2323 page_len[j]))
2324 break;
2325 }
2326 } else
2327 j = 0;
2328 if (j >= 0)
2329 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2330 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2331 && !status)) {
2332 /* No need to write to this device. */
2333 sbio->bi_end_io = NULL;
2334 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2335 continue;
2336 }
2337
2338 bio_copy_data(sbio, pbio);
2339 }
2340 }
2341
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2342 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2343 {
2344 struct r1conf *conf = mddev->private;
2345 int i;
2346 int disks = conf->raid_disks * 2;
2347 struct bio *wbio;
2348
2349 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2350 /* ouch - failed to read all of that. */
2351 if (!fix_sync_read_error(r1_bio))
2352 return;
2353
2354 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2355 process_checks(r1_bio);
2356
2357 /*
2358 * schedule writes
2359 */
2360 atomic_set(&r1_bio->remaining, 1);
2361 for (i = 0; i < disks ; i++) {
2362 wbio = r1_bio->bios[i];
2363 if (wbio->bi_end_io == NULL ||
2364 (wbio->bi_end_io == end_sync_read &&
2365 (i == r1_bio->read_disk ||
2366 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2367 continue;
2368 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2369 abort_sync_write(mddev, r1_bio);
2370 continue;
2371 }
2372
2373 wbio->bi_opf = REQ_OP_WRITE;
2374 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2375 wbio->bi_opf |= MD_FAILFAST;
2376
2377 wbio->bi_end_io = end_sync_write;
2378 atomic_inc(&r1_bio->remaining);
2379 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2380
2381 submit_bio_noacct(wbio);
2382 }
2383
2384 put_sync_write_buf(r1_bio, 1);
2385 }
2386
2387 /*
2388 * This is a kernel thread which:
2389 *
2390 * 1. Retries failed read operations on working mirrors.
2391 * 2. Updates the raid superblock when problems encounter.
2392 * 3. Performs writes following reads for array synchronising.
2393 */
2394
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2395 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2396 {
2397 sector_t sect = r1_bio->sector;
2398 int sectors = r1_bio->sectors;
2399 int read_disk = r1_bio->read_disk;
2400 struct mddev *mddev = conf->mddev;
2401 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2402
2403 if (exceed_read_errors(mddev, rdev)) {
2404 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2405 return;
2406 }
2407
2408 while(sectors) {
2409 int s = sectors;
2410 int d = read_disk;
2411 int success = 0;
2412 int start;
2413
2414 if (s > (PAGE_SIZE>>9))
2415 s = PAGE_SIZE >> 9;
2416
2417 do {
2418 rdev = conf->mirrors[d].rdev;
2419 if (rdev &&
2420 (test_bit(In_sync, &rdev->flags) ||
2421 (!test_bit(Faulty, &rdev->flags) &&
2422 rdev->recovery_offset >= sect + s)) &&
2423 rdev_has_badblock(rdev, sect, s) == 0) {
2424 atomic_inc(&rdev->nr_pending);
2425 if (sync_page_io(rdev, sect, s<<9,
2426 conf->tmppage, REQ_OP_READ, false))
2427 success = 1;
2428 rdev_dec_pending(rdev, mddev);
2429 if (success)
2430 break;
2431 }
2432
2433 d++;
2434 if (d == conf->raid_disks * 2)
2435 d = 0;
2436 } while (d != read_disk);
2437
2438 if (!success) {
2439 /* Cannot read from anywhere - mark it bad */
2440 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2441 if (!rdev_set_badblocks(rdev, sect, s, 0))
2442 md_error(mddev, rdev);
2443 break;
2444 }
2445 /* write it back and re-read */
2446 start = d;
2447 while (d != read_disk) {
2448 if (d==0)
2449 d = conf->raid_disks * 2;
2450 d--;
2451 rdev = conf->mirrors[d].rdev;
2452 if (rdev &&
2453 !test_bit(Faulty, &rdev->flags)) {
2454 atomic_inc(&rdev->nr_pending);
2455 r1_sync_page_io(rdev, sect, s,
2456 conf->tmppage, REQ_OP_WRITE);
2457 rdev_dec_pending(rdev, mddev);
2458 }
2459 }
2460 d = start;
2461 while (d != read_disk) {
2462 if (d==0)
2463 d = conf->raid_disks * 2;
2464 d--;
2465 rdev = conf->mirrors[d].rdev;
2466 if (rdev &&
2467 !test_bit(Faulty, &rdev->flags)) {
2468 atomic_inc(&rdev->nr_pending);
2469 if (r1_sync_page_io(rdev, sect, s,
2470 conf->tmppage, REQ_OP_READ)) {
2471 atomic_add(s, &rdev->corrected_errors);
2472 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2473 mdname(mddev), s,
2474 (unsigned long long)(sect +
2475 rdev->data_offset),
2476 rdev->bdev);
2477 }
2478 rdev_dec_pending(rdev, mddev);
2479 }
2480 }
2481 sectors -= s;
2482 sect += s;
2483 }
2484 }
2485
narrow_write_error(struct r1bio * r1_bio,int i)2486 static bool narrow_write_error(struct r1bio *r1_bio, int i)
2487 {
2488 struct mddev *mddev = r1_bio->mddev;
2489 struct r1conf *conf = mddev->private;
2490 struct md_rdev *rdev = conf->mirrors[i].rdev;
2491
2492 /* bio has the data to be written to device 'i' where
2493 * we just recently had a write error.
2494 * We repeatedly clone the bio and trim down to one block,
2495 * then try the write. Where the write fails we record
2496 * a bad block.
2497 * It is conceivable that the bio doesn't exactly align with
2498 * blocks. We must handle this somehow.
2499 *
2500 * We currently own a reference on the rdev.
2501 */
2502
2503 int block_sectors;
2504 sector_t sector;
2505 int sectors;
2506 int sect_to_write = r1_bio->sectors;
2507 bool ok = true;
2508
2509 if (rdev->badblocks.shift < 0)
2510 return false;
2511
2512 block_sectors = roundup(1 << rdev->badblocks.shift,
2513 bdev_logical_block_size(rdev->bdev) >> 9);
2514 sector = r1_bio->sector;
2515 sectors = ((sector + block_sectors)
2516 & ~(sector_t)(block_sectors - 1))
2517 - sector;
2518
2519 while (sect_to_write) {
2520 struct bio *wbio;
2521 if (sectors > sect_to_write)
2522 sectors = sect_to_write;
2523 /* Write at 'sector' for 'sectors'*/
2524
2525 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2526 wbio = bio_alloc_clone(rdev->bdev,
2527 r1_bio->behind_master_bio,
2528 GFP_NOIO, &mddev->bio_set);
2529 } else {
2530 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2531 GFP_NOIO, &mddev->bio_set);
2532 }
2533
2534 wbio->bi_opf = REQ_OP_WRITE;
2535 wbio->bi_iter.bi_sector = r1_bio->sector;
2536 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2537
2538 bio_trim(wbio, sector - r1_bio->sector, sectors);
2539 wbio->bi_iter.bi_sector += rdev->data_offset;
2540
2541 if (submit_bio_wait(wbio) < 0)
2542 /* failure! */
2543 ok = rdev_set_badblocks(rdev, sector,
2544 sectors, 0)
2545 && ok;
2546
2547 bio_put(wbio);
2548 sect_to_write -= sectors;
2549 sector += sectors;
2550 sectors = block_sectors;
2551 }
2552 return ok;
2553 }
2554
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2555 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2556 {
2557 int m;
2558 int s = r1_bio->sectors;
2559 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2560 struct md_rdev *rdev = conf->mirrors[m].rdev;
2561 struct bio *bio = r1_bio->bios[m];
2562 if (bio->bi_end_io == NULL)
2563 continue;
2564 if (!bio->bi_status &&
2565 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2566 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2567 }
2568 if (bio->bi_status &&
2569 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2570 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2571 md_error(conf->mddev, rdev);
2572 }
2573 }
2574 put_buf(r1_bio);
2575 md_done_sync(conf->mddev, s, 1);
2576 }
2577
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2578 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2579 {
2580 int m, idx;
2581 bool fail = false;
2582
2583 for (m = 0; m < conf->raid_disks * 2 ; m++)
2584 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2585 struct md_rdev *rdev = conf->mirrors[m].rdev;
2586 rdev_clear_badblocks(rdev,
2587 r1_bio->sector,
2588 r1_bio->sectors, 0);
2589 rdev_dec_pending(rdev, conf->mddev);
2590 } else if (r1_bio->bios[m] != NULL) {
2591 /* This drive got a write error. We need to
2592 * narrow down and record precise write
2593 * errors.
2594 */
2595 fail = true;
2596 if (!narrow_write_error(r1_bio, m))
2597 md_error(conf->mddev,
2598 conf->mirrors[m].rdev);
2599 /* an I/O failed, we can't clear the bitmap */
2600 rdev_dec_pending(conf->mirrors[m].rdev,
2601 conf->mddev);
2602 }
2603 if (fail) {
2604 spin_lock_irq(&conf->device_lock);
2605 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2606 idx = sector_to_idx(r1_bio->sector);
2607 atomic_inc(&conf->nr_queued[idx]);
2608 spin_unlock_irq(&conf->device_lock);
2609 /*
2610 * In case freeze_array() is waiting for condition
2611 * get_unqueued_pending() == extra to be true.
2612 */
2613 wake_up(&conf->wait_barrier);
2614 md_wakeup_thread(conf->mddev->thread);
2615 } else {
2616 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2617 close_write(r1_bio);
2618 raid_end_bio_io(r1_bio);
2619 }
2620 }
2621
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2622 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2623 {
2624 struct mddev *mddev = conf->mddev;
2625 struct bio *bio;
2626 struct md_rdev *rdev;
2627 sector_t sector;
2628
2629 clear_bit(R1BIO_ReadError, &r1_bio->state);
2630 /* we got a read error. Maybe the drive is bad. Maybe just
2631 * the block and we can fix it.
2632 * We freeze all other IO, and try reading the block from
2633 * other devices. When we find one, we re-write
2634 * and check it that fixes the read error.
2635 * This is all done synchronously while the array is
2636 * frozen
2637 */
2638
2639 bio = r1_bio->bios[r1_bio->read_disk];
2640 bio_put(bio);
2641 r1_bio->bios[r1_bio->read_disk] = NULL;
2642
2643 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2644 if (mddev->ro == 0
2645 && !test_bit(FailFast, &rdev->flags)) {
2646 freeze_array(conf, 1);
2647 fix_read_error(conf, r1_bio);
2648 unfreeze_array(conf);
2649 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2650 md_error(mddev, rdev);
2651 } else {
2652 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2653 }
2654
2655 rdev_dec_pending(rdev, conf->mddev);
2656 sector = r1_bio->sector;
2657 bio = r1_bio->master_bio;
2658
2659 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2660 r1_bio->state = 0;
2661 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2662 allow_barrier(conf, sector);
2663 }
2664
raid1d(struct md_thread * thread)2665 static void raid1d(struct md_thread *thread)
2666 {
2667 struct mddev *mddev = thread->mddev;
2668 struct r1bio *r1_bio;
2669 unsigned long flags;
2670 struct r1conf *conf = mddev->private;
2671 struct list_head *head = &conf->retry_list;
2672 struct blk_plug plug;
2673 int idx;
2674
2675 md_check_recovery(mddev);
2676
2677 if (!list_empty_careful(&conf->bio_end_io_list) &&
2678 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2679 LIST_HEAD(tmp);
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2682 list_splice_init(&conf->bio_end_io_list, &tmp);
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 while (!list_empty(&tmp)) {
2685 r1_bio = list_first_entry(&tmp, struct r1bio,
2686 retry_list);
2687 list_del(&r1_bio->retry_list);
2688 idx = sector_to_idx(r1_bio->sector);
2689 atomic_dec(&conf->nr_queued[idx]);
2690 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2691 close_write(r1_bio);
2692 raid_end_bio_io(r1_bio);
2693 }
2694 }
2695
2696 blk_start_plug(&plug);
2697 for (;;) {
2698
2699 flush_pending_writes(conf);
2700
2701 spin_lock_irqsave(&conf->device_lock, flags);
2702 if (list_empty(head)) {
2703 spin_unlock_irqrestore(&conf->device_lock, flags);
2704 break;
2705 }
2706 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2707 list_del(head->prev);
2708 idx = sector_to_idx(r1_bio->sector);
2709 atomic_dec(&conf->nr_queued[idx]);
2710 spin_unlock_irqrestore(&conf->device_lock, flags);
2711
2712 mddev = r1_bio->mddev;
2713 conf = mddev->private;
2714 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2715 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2716 test_bit(R1BIO_WriteError, &r1_bio->state))
2717 handle_sync_write_finished(conf, r1_bio);
2718 else
2719 sync_request_write(mddev, r1_bio);
2720 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2721 test_bit(R1BIO_WriteError, &r1_bio->state))
2722 handle_write_finished(conf, r1_bio);
2723 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2724 handle_read_error(conf, r1_bio);
2725 else
2726 WARN_ON_ONCE(1);
2727
2728 cond_resched();
2729 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2730 md_check_recovery(mddev);
2731 }
2732 blk_finish_plug(&plug);
2733 }
2734
init_resync(struct r1conf * conf)2735 static int init_resync(struct r1conf *conf)
2736 {
2737 int buffs;
2738
2739 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2740 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2741
2742 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2743 r1buf_pool_free, conf->poolinfo);
2744 }
2745
raid1_alloc_init_r1buf(struct r1conf * conf)2746 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2747 {
2748 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2749 struct resync_pages *rps;
2750 struct bio *bio;
2751 int i;
2752
2753 for (i = conf->poolinfo->raid_disks; i--; ) {
2754 bio = r1bio->bios[i];
2755 rps = bio->bi_private;
2756 bio_reset(bio, NULL, 0);
2757 bio->bi_private = rps;
2758 }
2759 r1bio->master_bio = NULL;
2760 return r1bio;
2761 }
2762
2763 /*
2764 * perform a "sync" on one "block"
2765 *
2766 * We need to make sure that no normal I/O request - particularly write
2767 * requests - conflict with active sync requests.
2768 *
2769 * This is achieved by tracking pending requests and a 'barrier' concept
2770 * that can be installed to exclude normal IO requests.
2771 */
2772
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2773 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2774 sector_t max_sector, int *skipped)
2775 {
2776 struct r1conf *conf = mddev->private;
2777 struct r1bio *r1_bio;
2778 struct bio *bio;
2779 sector_t nr_sectors;
2780 int disk = -1;
2781 int i;
2782 int wonly = -1;
2783 int write_targets = 0, read_targets = 0;
2784 sector_t sync_blocks;
2785 bool still_degraded = false;
2786 int good_sectors = RESYNC_SECTORS;
2787 int min_bad = 0; /* number of sectors that are bad in all devices */
2788 int idx = sector_to_idx(sector_nr);
2789 int page_idx = 0;
2790
2791 if (!mempool_initialized(&conf->r1buf_pool))
2792 if (init_resync(conf))
2793 return 0;
2794
2795 if (sector_nr >= max_sector) {
2796 /* If we aborted, we need to abort the
2797 * sync on the 'current' bitmap chunk (there will
2798 * only be one in raid1 resync.
2799 * We can find the current addess in mddev->curr_resync
2800 */
2801 if (mddev->curr_resync < max_sector) /* aborted */
2802 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2803 &sync_blocks);
2804 else /* completed sync */
2805 conf->fullsync = 0;
2806
2807 mddev->bitmap_ops->close_sync(mddev);
2808 close_sync(conf);
2809
2810 if (mddev_is_clustered(mddev)) {
2811 conf->cluster_sync_low = 0;
2812 conf->cluster_sync_high = 0;
2813 }
2814 return 0;
2815 }
2816
2817 if (mddev->bitmap == NULL &&
2818 mddev->recovery_cp == MaxSector &&
2819 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2820 conf->fullsync == 0) {
2821 *skipped = 1;
2822 return max_sector - sector_nr;
2823 }
2824 /* before building a request, check if we can skip these blocks..
2825 * This call the bitmap_start_sync doesn't actually record anything
2826 */
2827 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2828 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2829 /* We can skip this block, and probably several more */
2830 *skipped = 1;
2831 return sync_blocks;
2832 }
2833
2834 /*
2835 * If there is non-resync activity waiting for a turn, then let it
2836 * though before starting on this new sync request.
2837 */
2838 if (atomic_read(&conf->nr_waiting[idx]))
2839 schedule_timeout_uninterruptible(1);
2840
2841 /* we are incrementing sector_nr below. To be safe, we check against
2842 * sector_nr + two times RESYNC_SECTORS
2843 */
2844
2845 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2846 mddev_is_clustered(mddev) &&
2847 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2848
2849 if (raise_barrier(conf, sector_nr))
2850 return 0;
2851
2852 r1_bio = raid1_alloc_init_r1buf(conf);
2853
2854 /*
2855 * If we get a correctably read error during resync or recovery,
2856 * we might want to read from a different device. So we
2857 * flag all drives that could conceivably be read from for READ,
2858 * and any others (which will be non-In_sync devices) for WRITE.
2859 * If a read fails, we try reading from something else for which READ
2860 * is OK.
2861 */
2862
2863 r1_bio->mddev = mddev;
2864 r1_bio->sector = sector_nr;
2865 r1_bio->state = 0;
2866 set_bit(R1BIO_IsSync, &r1_bio->state);
2867 /* make sure good_sectors won't go across barrier unit boundary */
2868 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2869
2870 for (i = 0; i < conf->raid_disks * 2; i++) {
2871 struct md_rdev *rdev;
2872 bio = r1_bio->bios[i];
2873
2874 rdev = conf->mirrors[i].rdev;
2875 if (rdev == NULL ||
2876 test_bit(Faulty, &rdev->flags)) {
2877 if (i < conf->raid_disks)
2878 still_degraded = true;
2879 } else if (!test_bit(In_sync, &rdev->flags)) {
2880 bio->bi_opf = REQ_OP_WRITE;
2881 bio->bi_end_io = end_sync_write;
2882 write_targets ++;
2883 } else {
2884 /* may need to read from here */
2885 sector_t first_bad = MaxSector;
2886 sector_t bad_sectors;
2887
2888 if (is_badblock(rdev, sector_nr, good_sectors,
2889 &first_bad, &bad_sectors)) {
2890 if (first_bad > sector_nr)
2891 good_sectors = first_bad - sector_nr;
2892 else {
2893 bad_sectors -= (sector_nr - first_bad);
2894 if (min_bad == 0 ||
2895 min_bad > bad_sectors)
2896 min_bad = bad_sectors;
2897 }
2898 }
2899 if (sector_nr < first_bad) {
2900 if (test_bit(WriteMostly, &rdev->flags)) {
2901 if (wonly < 0)
2902 wonly = i;
2903 } else {
2904 if (disk < 0)
2905 disk = i;
2906 }
2907 bio->bi_opf = REQ_OP_READ;
2908 bio->bi_end_io = end_sync_read;
2909 read_targets++;
2910 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2911 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2912 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2913 /*
2914 * The device is suitable for reading (InSync),
2915 * but has bad block(s) here. Let's try to correct them,
2916 * if we are doing resync or repair. Otherwise, leave
2917 * this device alone for this sync request.
2918 */
2919 bio->bi_opf = REQ_OP_WRITE;
2920 bio->bi_end_io = end_sync_write;
2921 write_targets++;
2922 }
2923 }
2924 if (rdev && bio->bi_end_io) {
2925 atomic_inc(&rdev->nr_pending);
2926 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2927 bio_set_dev(bio, rdev->bdev);
2928 if (test_bit(FailFast, &rdev->flags))
2929 bio->bi_opf |= MD_FAILFAST;
2930 }
2931 }
2932 if (disk < 0)
2933 disk = wonly;
2934 r1_bio->read_disk = disk;
2935
2936 if (read_targets == 0 && min_bad > 0) {
2937 /* These sectors are bad on all InSync devices, so we
2938 * need to mark them bad on all write targets
2939 */
2940 int ok = 1;
2941 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2942 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2943 struct md_rdev *rdev = conf->mirrors[i].rdev;
2944 ok = rdev_set_badblocks(rdev, sector_nr,
2945 min_bad, 0
2946 ) && ok;
2947 }
2948 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2949 *skipped = 1;
2950 put_buf(r1_bio);
2951
2952 if (!ok) {
2953 /* Cannot record the badblocks, so need to
2954 * abort the resync.
2955 * If there are multiple read targets, could just
2956 * fail the really bad ones ???
2957 */
2958 conf->recovery_disabled = mddev->recovery_disabled;
2959 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2960 return 0;
2961 } else
2962 return min_bad;
2963
2964 }
2965 if (min_bad > 0 && min_bad < good_sectors) {
2966 /* only resync enough to reach the next bad->good
2967 * transition */
2968 good_sectors = min_bad;
2969 }
2970
2971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2972 /* extra read targets are also write targets */
2973 write_targets += read_targets-1;
2974
2975 if (write_targets == 0 || read_targets == 0) {
2976 /* There is nowhere to write, so all non-sync
2977 * drives must be failed - so we are finished
2978 */
2979 sector_t rv;
2980 if (min_bad > 0)
2981 max_sector = sector_nr + min_bad;
2982 rv = max_sector - sector_nr;
2983 *skipped = 1;
2984 put_buf(r1_bio);
2985 return rv;
2986 }
2987
2988 if (max_sector > mddev->resync_max)
2989 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990 if (max_sector > sector_nr + good_sectors)
2991 max_sector = sector_nr + good_sectors;
2992 nr_sectors = 0;
2993 sync_blocks = 0;
2994 do {
2995 struct page *page;
2996 int len = PAGE_SIZE;
2997 if (sector_nr + (len>>9) > max_sector)
2998 len = (max_sector - sector_nr) << 9;
2999 if (len == 0)
3000 break;
3001 if (sync_blocks == 0) {
3002 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3003 &sync_blocks, still_degraded) &&
3004 !conf->fullsync &&
3005 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3006 break;
3007 if ((len >> 9) > sync_blocks)
3008 len = sync_blocks<<9;
3009 }
3010
3011 for (i = 0 ; i < conf->raid_disks * 2; i++) {
3012 struct resync_pages *rp;
3013
3014 bio = r1_bio->bios[i];
3015 rp = get_resync_pages(bio);
3016 if (bio->bi_end_io) {
3017 page = resync_fetch_page(rp, page_idx);
3018
3019 /*
3020 * won't fail because the vec table is big
3021 * enough to hold all these pages
3022 */
3023 __bio_add_page(bio, page, len, 0);
3024 }
3025 }
3026 nr_sectors += len>>9;
3027 sector_nr += len>>9;
3028 sync_blocks -= (len>>9);
3029 } while (++page_idx < RESYNC_PAGES);
3030
3031 r1_bio->sectors = nr_sectors;
3032
3033 if (mddev_is_clustered(mddev) &&
3034 conf->cluster_sync_high < sector_nr + nr_sectors) {
3035 conf->cluster_sync_low = mddev->curr_resync_completed;
3036 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3037 /* Send resync message */
3038 mddev->cluster_ops->resync_info_update(mddev,
3039 conf->cluster_sync_low,
3040 conf->cluster_sync_high);
3041 }
3042
3043 /* For a user-requested sync, we read all readable devices and do a
3044 * compare
3045 */
3046 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3047 atomic_set(&r1_bio->remaining, read_targets);
3048 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3049 bio = r1_bio->bios[i];
3050 if (bio->bi_end_io == end_sync_read) {
3051 read_targets--;
3052 md_sync_acct_bio(bio, nr_sectors);
3053 if (read_targets == 1)
3054 bio->bi_opf &= ~MD_FAILFAST;
3055 submit_bio_noacct(bio);
3056 }
3057 }
3058 } else {
3059 atomic_set(&r1_bio->remaining, 1);
3060 bio = r1_bio->bios[r1_bio->read_disk];
3061 md_sync_acct_bio(bio, nr_sectors);
3062 if (read_targets == 1)
3063 bio->bi_opf &= ~MD_FAILFAST;
3064 submit_bio_noacct(bio);
3065 }
3066 return nr_sectors;
3067 }
3068
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3069 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3070 {
3071 if (sectors)
3072 return sectors;
3073
3074 return mddev->dev_sectors;
3075 }
3076
setup_conf(struct mddev * mddev)3077 static struct r1conf *setup_conf(struct mddev *mddev)
3078 {
3079 struct r1conf *conf;
3080 int i;
3081 struct raid1_info *disk;
3082 struct md_rdev *rdev;
3083 int err = -ENOMEM;
3084
3085 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3086 if (!conf)
3087 goto abort;
3088
3089 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3090 sizeof(atomic_t), GFP_KERNEL);
3091 if (!conf->nr_pending)
3092 goto abort;
3093
3094 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3095 sizeof(atomic_t), GFP_KERNEL);
3096 if (!conf->nr_waiting)
3097 goto abort;
3098
3099 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3100 sizeof(atomic_t), GFP_KERNEL);
3101 if (!conf->nr_queued)
3102 goto abort;
3103
3104 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3105 sizeof(atomic_t), GFP_KERNEL);
3106 if (!conf->barrier)
3107 goto abort;
3108
3109 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3110 mddev->raid_disks, 2),
3111 GFP_KERNEL);
3112 if (!conf->mirrors)
3113 goto abort;
3114
3115 conf->tmppage = alloc_page(GFP_KERNEL);
3116 if (!conf->tmppage)
3117 goto abort;
3118
3119 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3120 if (!conf->poolinfo)
3121 goto abort;
3122 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3123 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3124 rbio_pool_free, conf->poolinfo);
3125 if (err)
3126 goto abort;
3127
3128 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3129 if (err)
3130 goto abort;
3131
3132 conf->poolinfo->mddev = mddev;
3133
3134 err = -EINVAL;
3135 spin_lock_init(&conf->device_lock);
3136 conf->raid_disks = mddev->raid_disks;
3137 rdev_for_each(rdev, mddev) {
3138 int disk_idx = rdev->raid_disk;
3139
3140 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3141 continue;
3142
3143 if (!raid1_add_conf(conf, rdev, disk_idx,
3144 test_bit(Replacement, &rdev->flags)))
3145 goto abort;
3146 }
3147 conf->mddev = mddev;
3148 INIT_LIST_HEAD(&conf->retry_list);
3149 INIT_LIST_HEAD(&conf->bio_end_io_list);
3150
3151 spin_lock_init(&conf->resync_lock);
3152 init_waitqueue_head(&conf->wait_barrier);
3153
3154 bio_list_init(&conf->pending_bio_list);
3155 conf->recovery_disabled = mddev->recovery_disabled - 1;
3156
3157 err = -EIO;
3158 for (i = 0; i < conf->raid_disks * 2; i++) {
3159
3160 disk = conf->mirrors + i;
3161
3162 if (i < conf->raid_disks &&
3163 disk[conf->raid_disks].rdev) {
3164 /* This slot has a replacement. */
3165 if (!disk->rdev) {
3166 /* No original, just make the replacement
3167 * a recovering spare
3168 */
3169 disk->rdev =
3170 disk[conf->raid_disks].rdev;
3171 disk[conf->raid_disks].rdev = NULL;
3172 } else if (!test_bit(In_sync, &disk->rdev->flags))
3173 /* Original is not in_sync - bad */
3174 goto abort;
3175 }
3176
3177 if (!disk->rdev ||
3178 !test_bit(In_sync, &disk->rdev->flags)) {
3179 disk->head_position = 0;
3180 if (disk->rdev &&
3181 (disk->rdev->saved_raid_disk < 0))
3182 conf->fullsync = 1;
3183 }
3184 }
3185
3186 err = -ENOMEM;
3187 rcu_assign_pointer(conf->thread,
3188 md_register_thread(raid1d, mddev, "raid1"));
3189 if (!conf->thread)
3190 goto abort;
3191
3192 return conf;
3193
3194 abort:
3195 if (conf) {
3196 mempool_exit(&conf->r1bio_pool);
3197 kfree(conf->mirrors);
3198 safe_put_page(conf->tmppage);
3199 kfree(conf->poolinfo);
3200 kfree(conf->nr_pending);
3201 kfree(conf->nr_waiting);
3202 kfree(conf->nr_queued);
3203 kfree(conf->barrier);
3204 bioset_exit(&conf->bio_split);
3205 kfree(conf);
3206 }
3207 return ERR_PTR(err);
3208 }
3209
raid1_set_limits(struct mddev * mddev)3210 static int raid1_set_limits(struct mddev *mddev)
3211 {
3212 struct queue_limits lim;
3213 int err;
3214
3215 md_init_stacking_limits(&lim);
3216 lim.max_write_zeroes_sectors = 0;
3217 lim.features |= BLK_FEAT_ATOMIC_WRITES;
3218 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3219 if (err)
3220 return err;
3221 return queue_limits_set(mddev->gendisk->queue, &lim);
3222 }
3223
raid1_run(struct mddev * mddev)3224 static int raid1_run(struct mddev *mddev)
3225 {
3226 struct r1conf *conf;
3227 int i;
3228 int ret;
3229
3230 if (mddev->level != 1) {
3231 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3232 mdname(mddev), mddev->level);
3233 return -EIO;
3234 }
3235 if (mddev->reshape_position != MaxSector) {
3236 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3237 mdname(mddev));
3238 return -EIO;
3239 }
3240
3241 /*
3242 * copy the already verified devices into our private RAID1
3243 * bookkeeping area. [whatever we allocate in run(),
3244 * should be freed in raid1_free()]
3245 */
3246 if (mddev->private == NULL)
3247 conf = setup_conf(mddev);
3248 else
3249 conf = mddev->private;
3250
3251 if (IS_ERR(conf))
3252 return PTR_ERR(conf);
3253
3254 if (!mddev_is_dm(mddev)) {
3255 ret = raid1_set_limits(mddev);
3256 if (ret) {
3257 if (!mddev->private)
3258 raid1_free(mddev, conf);
3259 return ret;
3260 }
3261 }
3262
3263 mddev->degraded = 0;
3264 for (i = 0; i < conf->raid_disks; i++)
3265 if (conf->mirrors[i].rdev == NULL ||
3266 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3267 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3268 mddev->degraded++;
3269 /*
3270 * RAID1 needs at least one disk in active
3271 */
3272 if (conf->raid_disks - mddev->degraded < 1) {
3273 md_unregister_thread(mddev, &conf->thread);
3274 if (!mddev->private)
3275 raid1_free(mddev, conf);
3276 return -EINVAL;
3277 }
3278
3279 if (conf->raid_disks - mddev->degraded == 1)
3280 mddev->recovery_cp = MaxSector;
3281
3282 if (mddev->recovery_cp != MaxSector)
3283 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3284 mdname(mddev));
3285 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3286 mdname(mddev), mddev->raid_disks - mddev->degraded,
3287 mddev->raid_disks);
3288
3289 /*
3290 * Ok, everything is just fine now
3291 */
3292 rcu_assign_pointer(mddev->thread, conf->thread);
3293 rcu_assign_pointer(conf->thread, NULL);
3294 mddev->private = conf;
3295 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3296
3297 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3298
3299 ret = md_integrity_register(mddev);
3300 if (ret)
3301 md_unregister_thread(mddev, &mddev->thread);
3302 return ret;
3303 }
3304
raid1_free(struct mddev * mddev,void * priv)3305 static void raid1_free(struct mddev *mddev, void *priv)
3306 {
3307 struct r1conf *conf = priv;
3308
3309 mempool_exit(&conf->r1bio_pool);
3310 kfree(conf->mirrors);
3311 safe_put_page(conf->tmppage);
3312 kfree(conf->poolinfo);
3313 kfree(conf->nr_pending);
3314 kfree(conf->nr_waiting);
3315 kfree(conf->nr_queued);
3316 kfree(conf->barrier);
3317 bioset_exit(&conf->bio_split);
3318 kfree(conf);
3319 }
3320
raid1_resize(struct mddev * mddev,sector_t sectors)3321 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3322 {
3323 /* no resync is happening, and there is enough space
3324 * on all devices, so we can resize.
3325 * We need to make sure resync covers any new space.
3326 * If the array is shrinking we should possibly wait until
3327 * any io in the removed space completes, but it hardly seems
3328 * worth it.
3329 */
3330 sector_t newsize = raid1_size(mddev, sectors, 0);
3331 int ret;
3332
3333 if (mddev->external_size &&
3334 mddev->array_sectors > newsize)
3335 return -EINVAL;
3336
3337 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3338 if (ret)
3339 return ret;
3340
3341 md_set_array_sectors(mddev, newsize);
3342 if (sectors > mddev->dev_sectors &&
3343 mddev->recovery_cp > mddev->dev_sectors) {
3344 mddev->recovery_cp = mddev->dev_sectors;
3345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346 }
3347 mddev->dev_sectors = sectors;
3348 mddev->resync_max_sectors = sectors;
3349 return 0;
3350 }
3351
raid1_reshape(struct mddev * mddev)3352 static int raid1_reshape(struct mddev *mddev)
3353 {
3354 /* We need to:
3355 * 1/ resize the r1bio_pool
3356 * 2/ resize conf->mirrors
3357 *
3358 * We allocate a new r1bio_pool if we can.
3359 * Then raise a device barrier and wait until all IO stops.
3360 * Then resize conf->mirrors and swap in the new r1bio pool.
3361 *
3362 * At the same time, we "pack" the devices so that all the missing
3363 * devices have the higher raid_disk numbers.
3364 */
3365 mempool_t newpool, oldpool;
3366 struct pool_info *newpoolinfo;
3367 struct raid1_info *newmirrors;
3368 struct r1conf *conf = mddev->private;
3369 int cnt, raid_disks;
3370 unsigned long flags;
3371 int d, d2;
3372 int ret;
3373
3374 memset(&newpool, 0, sizeof(newpool));
3375 memset(&oldpool, 0, sizeof(oldpool));
3376
3377 /* Cannot change chunk_size, layout, or level */
3378 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3379 mddev->layout != mddev->new_layout ||
3380 mddev->level != mddev->new_level) {
3381 mddev->new_chunk_sectors = mddev->chunk_sectors;
3382 mddev->new_layout = mddev->layout;
3383 mddev->new_level = mddev->level;
3384 return -EINVAL;
3385 }
3386
3387 if (!mddev_is_clustered(mddev))
3388 md_allow_write(mddev);
3389
3390 raid_disks = mddev->raid_disks + mddev->delta_disks;
3391
3392 if (raid_disks < conf->raid_disks) {
3393 cnt=0;
3394 for (d= 0; d < conf->raid_disks; d++)
3395 if (conf->mirrors[d].rdev)
3396 cnt++;
3397 if (cnt > raid_disks)
3398 return -EBUSY;
3399 }
3400
3401 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3402 if (!newpoolinfo)
3403 return -ENOMEM;
3404 newpoolinfo->mddev = mddev;
3405 newpoolinfo->raid_disks = raid_disks * 2;
3406
3407 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3408 rbio_pool_free, newpoolinfo);
3409 if (ret) {
3410 kfree(newpoolinfo);
3411 return ret;
3412 }
3413 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3414 raid_disks, 2),
3415 GFP_KERNEL);
3416 if (!newmirrors) {
3417 kfree(newpoolinfo);
3418 mempool_exit(&newpool);
3419 return -ENOMEM;
3420 }
3421
3422 freeze_array(conf, 0);
3423
3424 /* ok, everything is stopped */
3425 oldpool = conf->r1bio_pool;
3426 conf->r1bio_pool = newpool;
3427
3428 for (d = d2 = 0; d < conf->raid_disks; d++) {
3429 struct md_rdev *rdev = conf->mirrors[d].rdev;
3430 if (rdev && rdev->raid_disk != d2) {
3431 sysfs_unlink_rdev(mddev, rdev);
3432 rdev->raid_disk = d2;
3433 sysfs_unlink_rdev(mddev, rdev);
3434 if (sysfs_link_rdev(mddev, rdev))
3435 pr_warn("md/raid1:%s: cannot register rd%d\n",
3436 mdname(mddev), rdev->raid_disk);
3437 }
3438 if (rdev)
3439 newmirrors[d2++].rdev = rdev;
3440 }
3441 kfree(conf->mirrors);
3442 conf->mirrors = newmirrors;
3443 kfree(conf->poolinfo);
3444 conf->poolinfo = newpoolinfo;
3445
3446 spin_lock_irqsave(&conf->device_lock, flags);
3447 mddev->degraded += (raid_disks - conf->raid_disks);
3448 spin_unlock_irqrestore(&conf->device_lock, flags);
3449 conf->raid_disks = mddev->raid_disks = raid_disks;
3450 mddev->delta_disks = 0;
3451
3452 unfreeze_array(conf);
3453
3454 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3455 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3456 md_wakeup_thread(mddev->thread);
3457
3458 mempool_exit(&oldpool);
3459 return 0;
3460 }
3461
raid1_quiesce(struct mddev * mddev,int quiesce)3462 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3463 {
3464 struct r1conf *conf = mddev->private;
3465
3466 if (quiesce)
3467 freeze_array(conf, 0);
3468 else
3469 unfreeze_array(conf);
3470 }
3471
raid1_takeover(struct mddev * mddev)3472 static void *raid1_takeover(struct mddev *mddev)
3473 {
3474 /* raid1 can take over:
3475 * raid5 with 2 devices, any layout or chunk size
3476 */
3477 if (mddev->level == 5 && mddev->raid_disks == 2) {
3478 struct r1conf *conf;
3479 mddev->new_level = 1;
3480 mddev->new_layout = 0;
3481 mddev->new_chunk_sectors = 0;
3482 conf = setup_conf(mddev);
3483 if (!IS_ERR(conf)) {
3484 /* Array must appear to be quiesced */
3485 conf->array_frozen = 1;
3486 mddev_clear_unsupported_flags(mddev,
3487 UNSUPPORTED_MDDEV_FLAGS);
3488 }
3489 return conf;
3490 }
3491 return ERR_PTR(-EINVAL);
3492 }
3493
3494 static struct md_personality raid1_personality =
3495 {
3496 .head = {
3497 .type = MD_PERSONALITY,
3498 .id = ID_RAID1,
3499 .name = "raid1",
3500 .owner = THIS_MODULE,
3501 },
3502
3503 .make_request = raid1_make_request,
3504 .run = raid1_run,
3505 .free = raid1_free,
3506 .status = raid1_status,
3507 .error_handler = raid1_error,
3508 .hot_add_disk = raid1_add_disk,
3509 .hot_remove_disk= raid1_remove_disk,
3510 .spare_active = raid1_spare_active,
3511 .sync_request = raid1_sync_request,
3512 .resize = raid1_resize,
3513 .size = raid1_size,
3514 .check_reshape = raid1_reshape,
3515 .quiesce = raid1_quiesce,
3516 .takeover = raid1_takeover,
3517 };
3518
raid1_init(void)3519 static int __init raid1_init(void)
3520 {
3521 return register_md_submodule(&raid1_personality.head);
3522 }
3523
raid1_exit(void)3524 static void __exit raid1_exit(void)
3525 {
3526 unregister_md_submodule(&raid1_personality.head);
3527 }
3528
3529 module_init(raid1_init);
3530 module_exit(raid1_exit);
3531 MODULE_LICENSE("GPL");
3532 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3533 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3534 MODULE_ALIAS("md-raid1");
3535 MODULE_ALIAS("md-level-1");
3536