xref: /linux/drivers/md/raid1.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 #include "md-cluster.h"
40 
41 #define UNSUPPORTED_MDDEV_FLAGS		\
42 	((1L << MD_HAS_JOURNAL) |	\
43 	 (1L << MD_JOURNAL_CLEAN) |	\
44 	 (1L << MD_HAS_PPL) |		\
45 	 (1L << MD_HAS_MULTIPLE_PPLS))
46 
47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 static void raid1_free(struct mddev *mddev, void *priv);
50 
51 #define RAID_1_10_NAME "raid1"
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
get_resync_r1bio(struct bio * bio)125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
r1buf_pool_free(void * __r1_bio,void * data)221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
free_r1bio(struct r1bio * r1_bio)253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
put_buf(struct r1bio * r1_bio)261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
reschedule_retry(struct r1bio * r1_bio)278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
call_bio_endio(struct r1bio * r1_bio)300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	bio_endio(bio);
308 }
309 
raid_end_bio_io(struct r1bio * r1_bio)310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312 	struct bio *bio = r1_bio->master_bio;
313 	struct r1conf *conf = r1_bio->mddev->private;
314 	sector_t sector = r1_bio->sector;
315 
316 	/* if nobody has done the final endio yet, do it now */
317 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 			 (unsigned long long) bio->bi_iter.bi_sector,
321 			 (unsigned long long) bio_end_sector(bio) - 1);
322 
323 		call_bio_endio(r1_bio);
324 	}
325 
326 	free_r1bio(r1_bio);
327 	/*
328 	 * Wake up any possible resync thread that waits for the device
329 	 * to go idle.  All I/Os, even write-behind writes, are done.
330 	 */
331 	allow_barrier(conf, sector);
332 }
333 
334 /*
335  * Update disk head position estimator based on IRQ completion info.
336  */
update_head_pos(int disk,struct r1bio * r1_bio)337 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338 {
339 	struct r1conf *conf = r1_bio->mddev->private;
340 
341 	conf->mirrors[disk].head_position =
342 		r1_bio->sector + (r1_bio->sectors);
343 }
344 
345 /*
346  * Find the disk number which triggered given bio
347  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 {
350 	int mirror;
351 	struct r1conf *conf = r1_bio->mddev->private;
352 	int raid_disks = conf->raid_disks;
353 
354 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
355 		if (r1_bio->bios[mirror] == bio)
356 			break;
357 
358 	BUG_ON(mirror == raid_disks * 2);
359 	update_head_pos(mirror, r1_bio);
360 
361 	return mirror;
362 }
363 
raid1_end_read_request(struct bio * bio)364 static void raid1_end_read_request(struct bio *bio)
365 {
366 	int uptodate = !bio->bi_status;
367 	struct r1bio *r1_bio = bio->bi_private;
368 	struct r1conf *conf = r1_bio->mddev->private;
369 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370 
371 	/*
372 	 * this branch is our 'one mirror IO has finished' event handler:
373 	 */
374 	update_head_pos(r1_bio->read_disk, r1_bio);
375 
376 	if (uptodate)
377 		set_bit(R1BIO_Uptodate, &r1_bio->state);
378 	else if (test_bit(FailFast, &rdev->flags) &&
379 		 test_bit(R1BIO_FailFast, &r1_bio->state))
380 		/* This was a fail-fast read so we definitely
381 		 * want to retry */
382 		;
383 	else {
384 		/* If all other devices have failed, we want to return
385 		 * the error upwards rather than fail the last device.
386 		 * Here we redefine "uptodate" to mean "Don't want to retry"
387 		 */
388 		unsigned long flags;
389 		spin_lock_irqsave(&conf->device_lock, flags);
390 		if (r1_bio->mddev->degraded == conf->raid_disks ||
391 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 		     test_bit(In_sync, &rdev->flags)))
393 			uptodate = 1;
394 		spin_unlock_irqrestore(&conf->device_lock, flags);
395 	}
396 
397 	if (uptodate) {
398 		raid_end_bio_io(r1_bio);
399 		rdev_dec_pending(rdev, conf->mddev);
400 	} else {
401 		/*
402 		 * oops, read error:
403 		 */
404 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 				   mdname(conf->mddev),
406 				   rdev->bdev,
407 				   (unsigned long long)r1_bio->sector);
408 		set_bit(R1BIO_ReadError, &r1_bio->state);
409 		reschedule_retry(r1_bio);
410 		/* don't drop the reference on read_disk yet */
411 	}
412 }
413 
close_write(struct r1bio * r1_bio)414 static void close_write(struct r1bio *r1_bio)
415 {
416 	struct mddev *mddev = r1_bio->mddev;
417 
418 	/* it really is the end of this request */
419 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
420 		bio_free_pages(r1_bio->behind_master_bio);
421 		bio_put(r1_bio->behind_master_bio);
422 		r1_bio->behind_master_bio = NULL;
423 	}
424 
425 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
426 		mddev->bitmap_ops->end_behind_write(mddev);
427 	md_write_end(mddev);
428 }
429 
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	bool discard_error;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 
458 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !discard_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		r1_bio->bios[mirror] = NULL;
499 		to_put = bio;
500 		/*
501 		 * Do not set R1BIO_Uptodate if the current device is
502 		 * rebuilding or Faulty. This is because we cannot use
503 		 * such device for properly reading the data back (we could
504 		 * potentially use it, if the current write would have felt
505 		 * before rdev->recovery_offset, but for simplicity we don't
506 		 * check this here.
507 		 */
508 		if (test_bit(In_sync, &rdev->flags) &&
509 		    !test_bit(Faulty, &rdev->flags))
510 			set_bit(R1BIO_Uptodate, &r1_bio->state);
511 
512 		/* Maybe we can clear some bad blocks. */
513 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 		    !discard_error) {
515 			r1_bio->bios[mirror] = IO_MADE_GOOD;
516 			set_bit(R1BIO_MadeGood, &r1_bio->state);
517 		}
518 	}
519 
520 	if (behind) {
521 		if (test_bit(CollisionCheck, &rdev->flags))
522 			remove_serial(rdev, lo, hi);
523 		if (test_bit(WriteMostly, &rdev->flags))
524 			atomic_dec(&r1_bio->behind_remaining);
525 
526 		/*
527 		 * In behind mode, we ACK the master bio once the I/O
528 		 * has safely reached all non-writemostly
529 		 * disks. Setting the Returned bit ensures that this
530 		 * gets done only once -- we don't ever want to return
531 		 * -EIO here, instead we'll wait
532 		 */
533 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 			/* Maybe we can return now */
536 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 				struct bio *mbio = r1_bio->master_bio;
538 				pr_debug("raid1: behind end write sectors"
539 					 " %llu-%llu\n",
540 					 (unsigned long long) mbio->bi_iter.bi_sector,
541 					 (unsigned long long) bio_end_sector(mbio) - 1);
542 				call_bio_endio(r1_bio);
543 			}
544 		}
545 	} else if (rdev->mddev->serialize_policy)
546 		remove_serial(rdev, lo, hi);
547 	if (r1_bio->bios[mirror] == NULL)
548 		rdev_dec_pending(rdev, conf->mddev);
549 
550 	/*
551 	 * Let's see if all mirrored write operations have finished
552 	 * already.
553 	 */
554 	r1_bio_write_done(r1_bio);
555 
556 	if (to_put)
557 		bio_put(to_put);
558 }
559 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 					  sector_t sectors)
562 {
563 	sector_t len;
564 
565 	WARN_ON(sectors == 0);
566 	/*
567 	 * len is the number of sectors from start_sector to end of the
568 	 * barrier unit which start_sector belongs to.
569 	 */
570 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 	      start_sector;
572 
573 	if (len > sectors)
574 		len = sectors;
575 
576 	return len;
577 }
578 
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)579 static void update_read_sectors(struct r1conf *conf, int disk,
580 				sector_t this_sector, int len)
581 {
582 	struct raid1_info *info = &conf->mirrors[disk];
583 
584 	atomic_inc(&info->rdev->nr_pending);
585 	if (info->next_seq_sect != this_sector)
586 		info->seq_start = this_sector;
587 	info->next_seq_sect = this_sector + len;
588 }
589 
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 			     int *max_sectors)
592 {
593 	sector_t this_sector = r1_bio->sector;
594 	int len = r1_bio->sectors;
595 	int disk;
596 
597 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 		struct md_rdev *rdev;
599 		int read_len;
600 
601 		if (r1_bio->bios[disk] == IO_BLOCKED)
602 			continue;
603 
604 		rdev = conf->mirrors[disk].rdev;
605 		if (!rdev || test_bit(Faulty, &rdev->flags))
606 			continue;
607 
608 		/* choose the first disk even if it has some bad blocks. */
609 		read_len = raid1_check_read_range(rdev, this_sector, &len);
610 		if (read_len > 0) {
611 			update_read_sectors(conf, disk, this_sector, read_len);
612 			*max_sectors = read_len;
613 			return disk;
614 		}
615 	}
616 
617 	return -1;
618 }
619 
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
621 {
622 	return !test_bit(In_sync, &rdev->flags) &&
623 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
624 }
625 
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
627 			  int *max_sectors)
628 {
629 	sector_t this_sector = r1_bio->sector;
630 	int best_disk = -1;
631 	int best_len = 0;
632 	int disk;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		struct md_rdev *rdev;
636 		int len;
637 		int read_len;
638 
639 		if (r1_bio->bios[disk] == IO_BLOCKED)
640 			continue;
641 
642 		rdev = conf->mirrors[disk].rdev;
643 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 		    rdev_in_recovery(rdev, r1_bio) ||
645 		    test_bit(WriteMostly, &rdev->flags))
646 			continue;
647 
648 		/* keep track of the disk with the most readable sectors. */
649 		len = r1_bio->sectors;
650 		read_len = raid1_check_read_range(rdev, this_sector, &len);
651 		if (read_len > best_len) {
652 			best_disk = disk;
653 			best_len = read_len;
654 		}
655 	}
656 
657 	if (best_disk != -1) {
658 		*max_sectors = best_len;
659 		update_read_sectors(conf, best_disk, this_sector, best_len);
660 	}
661 
662 	return best_disk;
663 }
664 
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
666 			    int *max_sectors)
667 {
668 	sector_t this_sector = r1_bio->sector;
669 	int bb_disk = -1;
670 	int bb_read_len = 0;
671 	int disk;
672 
673 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 		struct md_rdev *rdev;
675 		int len;
676 		int read_len;
677 
678 		if (r1_bio->bios[disk] == IO_BLOCKED)
679 			continue;
680 
681 		rdev = conf->mirrors[disk].rdev;
682 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 		    !test_bit(WriteMostly, &rdev->flags) ||
684 		    rdev_in_recovery(rdev, r1_bio))
685 			continue;
686 
687 		/* there are no bad blocks, we can use this disk */
688 		len = r1_bio->sectors;
689 		read_len = raid1_check_read_range(rdev, this_sector, &len);
690 		if (read_len == r1_bio->sectors) {
691 			*max_sectors = read_len;
692 			update_read_sectors(conf, disk, this_sector, read_len);
693 			return disk;
694 		}
695 
696 		/*
697 		 * there are partial bad blocks, choose the rdev with largest
698 		 * read length.
699 		 */
700 		if (read_len > bb_read_len) {
701 			bb_disk = disk;
702 			bb_read_len = read_len;
703 		}
704 	}
705 
706 	if (bb_disk != -1) {
707 		*max_sectors = bb_read_len;
708 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
709 	}
710 
711 	return bb_disk;
712 }
713 
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
715 {
716 	/* TODO: address issues with this check and concurrency. */
717 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 	       conf->mirrors[disk].head_position == r1_bio->sector;
719 }
720 
721 /*
722  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723  * disk. If yes, choose the idle disk.
724  */
should_choose_next(struct r1conf * conf,int disk)725 static bool should_choose_next(struct r1conf *conf, int disk)
726 {
727 	struct raid1_info *mirror = &conf->mirrors[disk];
728 	int opt_iosize;
729 
730 	if (!test_bit(Nonrot, &mirror->rdev->flags))
731 		return false;
732 
733 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 	       mirror->next_seq_sect > opt_iosize &&
736 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
737 }
738 
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
740 {
741 	if (!rdev || test_bit(Faulty, &rdev->flags))
742 		return false;
743 
744 	if (rdev_in_recovery(rdev, r1_bio))
745 		return false;
746 
747 	/* don't read from slow disk unless have to */
748 	if (test_bit(WriteMostly, &rdev->flags))
749 		return false;
750 
751 	/* don't split IO for bad blocks unless have to */
752 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
753 		return false;
754 
755 	return true;
756 }
757 
758 struct read_balance_ctl {
759 	sector_t closest_dist;
760 	int closest_dist_disk;
761 	int min_pending;
762 	int min_pending_disk;
763 	int sequential_disk;
764 	int readable_disks;
765 };
766 
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
768 {
769 	int disk;
770 	struct read_balance_ctl ctl = {
771 		.closest_dist_disk      = -1,
772 		.closest_dist           = MaxSector,
773 		.min_pending_disk       = -1,
774 		.min_pending            = UINT_MAX,
775 		.sequential_disk	= -1,
776 	};
777 
778 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 		struct md_rdev *rdev;
780 		sector_t dist;
781 		unsigned int pending;
782 
783 		if (r1_bio->bios[disk] == IO_BLOCKED)
784 			continue;
785 
786 		rdev = conf->mirrors[disk].rdev;
787 		if (!rdev_readable(rdev, r1_bio))
788 			continue;
789 
790 		/* At least two disks to choose from so failfast is OK */
791 		if (ctl.readable_disks++ == 1)
792 			set_bit(R1BIO_FailFast, &r1_bio->state);
793 
794 		pending = atomic_read(&rdev->nr_pending);
795 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
796 
797 		/* Don't change to another disk for sequential reads */
798 		if (is_sequential(conf, disk, r1_bio)) {
799 			if (!should_choose_next(conf, disk))
800 				return disk;
801 
802 			/*
803 			 * Add 'pending' to avoid choosing this disk if
804 			 * there is other idle disk.
805 			 */
806 			pending++;
807 			/*
808 			 * If there is no other idle disk, this disk
809 			 * will be chosen.
810 			 */
811 			ctl.sequential_disk = disk;
812 		}
813 
814 		if (ctl.min_pending > pending) {
815 			ctl.min_pending = pending;
816 			ctl.min_pending_disk = disk;
817 		}
818 
819 		if (ctl.closest_dist > dist) {
820 			ctl.closest_dist = dist;
821 			ctl.closest_dist_disk = disk;
822 		}
823 	}
824 
825 	/*
826 	 * sequential IO size exceeds optimal iosize, however, there is no other
827 	 * idle disk, so choose the sequential disk.
828 	 */
829 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 		return ctl.sequential_disk;
831 
832 	/*
833 	 * If all disks are rotational, choose the closest disk. If any disk is
834 	 * non-rotational, choose the disk with less pending request even the
835 	 * disk is rotational, which might/might not be optimal for raids with
836 	 * mixed ratation/non-rotational disks depending on workload.
837 	 */
838 	if (ctl.min_pending_disk != -1 &&
839 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 		return ctl.min_pending_disk;
841 	else
842 		return ctl.closest_dist_disk;
843 }
844 
845 /*
846  * This routine returns the disk from which the requested read should be done.
847  *
848  * 1) If resync is in progress, find the first usable disk and use it even if it
849  * has some bad blocks.
850  *
851  * 2) Now that there is no resync, loop through all disks and skipping slow
852  * disks and disks with bad blocks for now. Only pay attention to key disk
853  * choice.
854  *
855  * 3) If we've made it this far, now look for disks with bad blocks and choose
856  * the one with most number of sectors.
857  *
858  * 4) If we are all the way at the end, we have no choice but to use a disk even
859  * if it is write mostly.
860  *
861  * The rdev for the device selected will have nr_pending incremented.
862  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
864 			int *max_sectors)
865 {
866 	int disk;
867 
868 	clear_bit(R1BIO_FailFast, &r1_bio->state);
869 
870 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
871 				    r1_bio->sectors))
872 		return choose_first_rdev(conf, r1_bio, max_sectors);
873 
874 	disk = choose_best_rdev(conf, r1_bio);
875 	if (disk >= 0) {
876 		*max_sectors = r1_bio->sectors;
877 		update_read_sectors(conf, disk, r1_bio->sector,
878 				    r1_bio->sectors);
879 		return disk;
880 	}
881 
882 	/*
883 	 * If we are here it means we didn't find a perfectly good disk so
884 	 * now spend a bit more time trying to find one with the most good
885 	 * sectors.
886 	 */
887 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
888 	if (disk >= 0)
889 		return disk;
890 
891 	return choose_slow_rdev(conf, r1_bio, max_sectors);
892 }
893 
wake_up_barrier(struct r1conf * conf)894 static void wake_up_barrier(struct r1conf *conf)
895 {
896 	if (wq_has_sleeper(&conf->wait_barrier))
897 		wake_up(&conf->wait_barrier);
898 }
899 
flush_bio_list(struct r1conf * conf,struct bio * bio)900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
901 {
902 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 	raid1_prepare_flush_writes(conf->mddev);
904 	wake_up_barrier(conf);
905 
906 	while (bio) { /* submit pending writes */
907 		struct bio *next = bio->bi_next;
908 
909 		raid1_submit_write(bio);
910 		bio = next;
911 		cond_resched();
912 	}
913 }
914 
flush_pending_writes(struct r1conf * conf)915 static void flush_pending_writes(struct r1conf *conf)
916 {
917 	/* Any writes that have been queued but are awaiting
918 	 * bitmap updates get flushed here.
919 	 */
920 	spin_lock_irq(&conf->device_lock);
921 
922 	if (conf->pending_bio_list.head) {
923 		struct blk_plug plug;
924 		struct bio *bio;
925 
926 		bio = bio_list_get(&conf->pending_bio_list);
927 		spin_unlock_irq(&conf->device_lock);
928 
929 		/*
930 		 * As this is called in a wait_event() loop (see freeze_array),
931 		 * current->state might be TASK_UNINTERRUPTIBLE which will
932 		 * cause a warning when we prepare to wait again.  As it is
933 		 * rare that this path is taken, it is perfectly safe to force
934 		 * us to go around the wait_event() loop again, so the warning
935 		 * is a false-positive.  Silence the warning by resetting
936 		 * thread state
937 		 */
938 		__set_current_state(TASK_RUNNING);
939 		blk_start_plug(&plug);
940 		flush_bio_list(conf, bio);
941 		blk_finish_plug(&plug);
942 	} else
943 		spin_unlock_irq(&conf->device_lock);
944 }
945 
946 /* Barriers....
947  * Sometimes we need to suspend IO while we do something else,
948  * either some resync/recovery, or reconfigure the array.
949  * To do this we raise a 'barrier'.
950  * The 'barrier' is a counter that can be raised multiple times
951  * to count how many activities are happening which preclude
952  * normal IO.
953  * We can only raise the barrier if there is no pending IO.
954  * i.e. if nr_pending == 0.
955  * We choose only to raise the barrier if no-one is waiting for the
956  * barrier to go down.  This means that as soon as an IO request
957  * is ready, no other operations which require a barrier will start
958  * until the IO request has had a chance.
959  *
960  * So: regular IO calls 'wait_barrier'.  When that returns there
961  *    is no backgroup IO happening,  It must arrange to call
962  *    allow_barrier when it has finished its IO.
963  * backgroup IO calls must call raise_barrier.  Once that returns
964  *    there is no normal IO happeing.  It must arrange to call
965  *    lower_barrier when the particular background IO completes.
966  *
967  * If resync/recovery is interrupted, returns -EINTR;
968  * Otherwise, returns 0.
969  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
971 {
972 	int idx = sector_to_idx(sector_nr);
973 
974 	spin_lock_irq(&conf->resync_lock);
975 
976 	/* Wait until no block IO is waiting */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !atomic_read(&conf->nr_waiting[idx]),
979 			    conf->resync_lock);
980 
981 	/* block any new IO from starting */
982 	atomic_inc(&conf->barrier[idx]);
983 	/*
984 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 	 * be fetched before conf->barrier[idx] is increased. Otherwise
989 	 * there will be a race between raise_barrier() and _wait_barrier().
990 	 */
991 	smp_mb__after_atomic();
992 
993 	/* For these conditions we must wait:
994 	 * A: while the array is in frozen state
995 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 	 *    existing in corresponding I/O barrier bucket.
997 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 	 *    max resync count which allowed on current I/O barrier bucket.
999 	 */
1000 	wait_event_lock_irq(conf->wait_barrier,
1001 			    (!conf->array_frozen &&
1002 			     !atomic_read(&conf->nr_pending[idx]) &&
1003 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1005 			    conf->resync_lock);
1006 
1007 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 		atomic_dec(&conf->barrier[idx]);
1009 		spin_unlock_irq(&conf->resync_lock);
1010 		wake_up(&conf->wait_barrier);
1011 		return -EINTR;
1012 	}
1013 
1014 	atomic_inc(&conf->nr_sync_pending);
1015 	spin_unlock_irq(&conf->resync_lock);
1016 
1017 	return 0;
1018 }
1019 
lower_barrier(struct r1conf * conf,sector_t sector_nr)1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 	int idx = sector_to_idx(sector_nr);
1023 
1024 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1025 
1026 	atomic_dec(&conf->barrier[idx]);
1027 	atomic_dec(&conf->nr_sync_pending);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1032 {
1033 	bool ret = true;
1034 
1035 	/*
1036 	 * We need to increase conf->nr_pending[idx] very early here,
1037 	 * then raise_barrier() can be blocked when it waits for
1038 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 	 * conf->resync_lock when there is no barrier raised in same
1040 	 * barrier unit bucket. Also if the array is frozen, I/O
1041 	 * should be blocked until array is unfrozen.
1042 	 */
1043 	atomic_inc(&conf->nr_pending[idx]);
1044 	/*
1045 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 	 * will be a race between _wait_barrier() and raise_barrier().
1051 	 */
1052 	smp_mb__after_atomic();
1053 
1054 	/*
1055 	 * Don't worry about checking two atomic_t variables at same time
1056 	 * here. If during we check conf->barrier[idx], the array is
1057 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 	 * 0, it is safe to return and make the I/O continue. Because the
1059 	 * array is frozen, all I/O returned here will eventually complete
1060 	 * or be queued, no race will happen. See code comment in
1061 	 * frozen_array().
1062 	 */
1063 	if (!READ_ONCE(conf->array_frozen) &&
1064 	    !atomic_read(&conf->barrier[idx]))
1065 		return ret;
1066 
1067 	/*
1068 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 	 * should be decreased before waiting for barrier to drop.
1070 	 * Otherwise, we may encounter a race condition because
1071 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 	 * to be 0 at same time.
1073 	 */
1074 	spin_lock_irq(&conf->resync_lock);
1075 	atomic_inc(&conf->nr_waiting[idx]);
1076 	atomic_dec(&conf->nr_pending[idx]);
1077 	/*
1078 	 * In case freeze_array() is waiting for
1079 	 * get_unqueued_pending() == extra
1080 	 */
1081 	wake_up_barrier(conf);
1082 	/* Wait for the barrier in same barrier unit bucket to drop. */
1083 
1084 	/* Return false when nowait flag is set */
1085 	if (nowait) {
1086 		ret = false;
1087 	} else {
1088 		wait_event_lock_irq(conf->wait_barrier,
1089 				!conf->array_frozen &&
1090 				!atomic_read(&conf->barrier[idx]),
1091 				conf->resync_lock);
1092 		atomic_inc(&conf->nr_pending[idx]);
1093 	}
1094 
1095 	atomic_dec(&conf->nr_waiting[idx]);
1096 	spin_unlock_irq(&conf->resync_lock);
1097 	return ret;
1098 }
1099 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1101 {
1102 	int idx = sector_to_idx(sector_nr);
1103 	bool ret = true;
1104 
1105 	/*
1106 	 * Very similar to _wait_barrier(). The difference is, for read
1107 	 * I/O we don't need wait for sync I/O, but if the whole array
1108 	 * is frozen, the read I/O still has to wait until the array is
1109 	 * unfrozen. Since there is no ordering requirement with
1110 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1111 	 */
1112 	atomic_inc(&conf->nr_pending[idx]);
1113 
1114 	if (!READ_ONCE(conf->array_frozen))
1115 		return ret;
1116 
1117 	spin_lock_irq(&conf->resync_lock);
1118 	atomic_inc(&conf->nr_waiting[idx]);
1119 	atomic_dec(&conf->nr_pending[idx]);
1120 	/*
1121 	 * In case freeze_array() is waiting for
1122 	 * get_unqueued_pending() == extra
1123 	 */
1124 	wake_up_barrier(conf);
1125 	/* Wait for array to be unfrozen */
1126 
1127 	/* Return false when nowait flag is set */
1128 	if (nowait) {
1129 		/* Return false when nowait flag is set */
1130 		ret = false;
1131 	} else {
1132 		wait_event_lock_irq(conf->wait_barrier,
1133 				!conf->array_frozen,
1134 				conf->resync_lock);
1135 		atomic_inc(&conf->nr_pending[idx]);
1136 	}
1137 
1138 	atomic_dec(&conf->nr_waiting[idx]);
1139 	spin_unlock_irq(&conf->resync_lock);
1140 	return ret;
1141 }
1142 
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1144 {
1145 	int idx = sector_to_idx(sector_nr);
1146 
1147 	return _wait_barrier(conf, idx, nowait);
1148 }
1149 
_allow_barrier(struct r1conf * conf,int idx)1150 static void _allow_barrier(struct r1conf *conf, int idx)
1151 {
1152 	atomic_dec(&conf->nr_pending[idx]);
1153 	wake_up_barrier(conf);
1154 }
1155 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1157 {
1158 	int idx = sector_to_idx(sector_nr);
1159 
1160 	_allow_barrier(conf, idx);
1161 }
1162 
1163 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1164 static int get_unqueued_pending(struct r1conf *conf)
1165 {
1166 	int idx, ret;
1167 
1168 	ret = atomic_read(&conf->nr_sync_pending);
1169 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 		ret += atomic_read(&conf->nr_pending[idx]) -
1171 			atomic_read(&conf->nr_queued[idx]);
1172 
1173 	return ret;
1174 }
1175 
freeze_array(struct r1conf * conf,int extra)1176 static void freeze_array(struct r1conf *conf, int extra)
1177 {
1178 	/* Stop sync I/O and normal I/O and wait for everything to
1179 	 * go quiet.
1180 	 * This is called in two situations:
1181 	 * 1) management command handlers (reshape, remove disk, quiesce).
1182 	 * 2) one normal I/O request failed.
1183 
1184 	 * After array_frozen is set to 1, new sync IO will be blocked at
1185 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 	 * queued. When everything goes quite, there are only queued I/Os left.
1188 
1189 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 	 * barrier bucket index which this I/O request hits. When all sync and
1191 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 	 * in handle_read_error(), we may call freeze_array() before trying to
1194 	 * fix the read error. In this case, the error read I/O is not queued,
1195 	 * so get_unqueued_pending() == 1.
1196 	 *
1197 	 * Therefore before this function returns, we need to wait until
1198 	 * get_unqueued_pendings(conf) gets equal to extra. For
1199 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1200 	 */
1201 	spin_lock_irq(&conf->resync_lock);
1202 	conf->array_frozen = 1;
1203 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 	wait_event_lock_irq_cmd(
1205 		conf->wait_barrier,
1206 		get_unqueued_pending(conf) == extra,
1207 		conf->resync_lock,
1208 		flush_pending_writes(conf));
1209 	spin_unlock_irq(&conf->resync_lock);
1210 }
unfreeze_array(struct r1conf * conf)1211 static void unfreeze_array(struct r1conf *conf)
1212 {
1213 	/* reverse the effect of the freeze */
1214 	spin_lock_irq(&conf->resync_lock);
1215 	conf->array_frozen = 0;
1216 	spin_unlock_irq(&conf->resync_lock);
1217 	wake_up(&conf->wait_barrier);
1218 }
1219 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1221 					   struct bio *bio)
1222 {
1223 	int size = bio->bi_iter.bi_size;
1224 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 	int i = 0;
1226 	struct bio *behind_bio = NULL;
1227 
1228 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1229 				      &r1_bio->mddev->bio_set);
1230 
1231 	/* discard op, we don't support writezero/writesame yet */
1232 	if (!bio_has_data(bio)) {
1233 		behind_bio->bi_iter.bi_size = size;
1234 		goto skip_copy;
1235 	}
1236 
1237 	while (i < vcnt && size) {
1238 		struct page *page;
1239 		int len = min_t(int, PAGE_SIZE, size);
1240 
1241 		page = alloc_page(GFP_NOIO);
1242 		if (unlikely(!page))
1243 			goto free_pages;
1244 
1245 		if (!bio_add_page(behind_bio, page, len, 0)) {
1246 			put_page(page);
1247 			goto free_pages;
1248 		}
1249 
1250 		size -= len;
1251 		i++;
1252 	}
1253 
1254 	bio_copy_data(behind_bio, bio);
1255 skip_copy:
1256 	r1_bio->behind_master_bio = behind_bio;
1257 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1258 
1259 	return;
1260 
1261 free_pages:
1262 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 		 bio->bi_iter.bi_size);
1264 	bio_free_pages(behind_bio);
1265 	bio_put(behind_bio);
1266 }
1267 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1269 {
1270 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1271 						  cb);
1272 	struct mddev *mddev = plug->cb.data;
1273 	struct r1conf *conf = mddev->private;
1274 	struct bio *bio;
1275 
1276 	if (from_schedule) {
1277 		spin_lock_irq(&conf->device_lock);
1278 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 		spin_unlock_irq(&conf->device_lock);
1280 		wake_up_barrier(conf);
1281 		md_wakeup_thread(mddev->thread);
1282 		kfree(plug);
1283 		return;
1284 	}
1285 
1286 	/* we aren't scheduling, so we can do the write-out directly. */
1287 	bio = bio_list_get(&plug->pending);
1288 	flush_bio_list(conf, bio);
1289 	kfree(plug);
1290 }
1291 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1293 {
1294 	r1_bio->master_bio = bio;
1295 	r1_bio->sectors = bio_sectors(bio);
1296 	r1_bio->state = 0;
1297 	r1_bio->mddev = mddev;
1298 	r1_bio->sector = bio->bi_iter.bi_sector;
1299 }
1300 
1301 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1303 {
1304 	struct r1conf *conf = mddev->private;
1305 	struct r1bio *r1_bio;
1306 
1307 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1308 	/* Ensure no bio records IO_BLOCKED */
1309 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1310 	init_r1bio(r1_bio, mddev, bio);
1311 	return r1_bio;
1312 }
1313 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1314 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1315 			       int max_read_sectors, struct r1bio *r1_bio)
1316 {
1317 	struct r1conf *conf = mddev->private;
1318 	struct raid1_info *mirror;
1319 	struct bio *read_bio;
1320 	int max_sectors;
1321 	int rdisk, error;
1322 	bool r1bio_existed = !!r1_bio;
1323 
1324 	/*
1325 	 * If r1_bio is set, we are blocking the raid1d thread
1326 	 * so there is a tiny risk of deadlock.  So ask for
1327 	 * emergency memory if needed.
1328 	 */
1329 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1330 
1331 	/*
1332 	 * Still need barrier for READ in case that whole
1333 	 * array is frozen.
1334 	 */
1335 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1336 				bio->bi_opf & REQ_NOWAIT)) {
1337 		bio_wouldblock_error(bio);
1338 		return;
1339 	}
1340 
1341 	if (!r1_bio)
1342 		r1_bio = alloc_r1bio(mddev, bio);
1343 	else
1344 		init_r1bio(r1_bio, mddev, bio);
1345 	r1_bio->sectors = max_read_sectors;
1346 
1347 	/*
1348 	 * make_request() can abort the operation when read-ahead is being
1349 	 * used and no empty request is available.
1350 	 */
1351 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1352 	if (rdisk < 0) {
1353 		/* couldn't find anywhere to read from */
1354 		if (r1bio_existed)
1355 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1356 					    mdname(mddev),
1357 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1358 					    r1_bio->sector);
1359 		raid_end_bio_io(r1_bio);
1360 		return;
1361 	}
1362 	mirror = conf->mirrors + rdisk;
1363 
1364 	if (r1bio_existed)
1365 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1366 				    mdname(mddev),
1367 				    (unsigned long long)r1_bio->sector,
1368 				    mirror->rdev->bdev);
1369 
1370 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1371 		/*
1372 		 * Reading from a write-mostly device must take care not to
1373 		 * over-take any writes that are 'behind'
1374 		 */
1375 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1376 		mddev->bitmap_ops->wait_behind_writes(mddev);
1377 	}
1378 
1379 	if (max_sectors < bio_sectors(bio)) {
1380 		struct bio *split = bio_split(bio, max_sectors,
1381 					      gfp, &conf->bio_split);
1382 
1383 		if (IS_ERR(split)) {
1384 			error = PTR_ERR(split);
1385 			goto err_handle;
1386 		}
1387 		bio_chain(split, bio);
1388 		submit_bio_noacct(bio);
1389 		bio = split;
1390 		r1_bio->master_bio = bio;
1391 		r1_bio->sectors = max_sectors;
1392 	}
1393 
1394 	r1_bio->read_disk = rdisk;
1395 	if (!r1bio_existed) {
1396 		md_account_bio(mddev, &bio);
1397 		r1_bio->master_bio = bio;
1398 	}
1399 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1400 				   &mddev->bio_set);
1401 
1402 	r1_bio->bios[rdisk] = read_bio;
1403 
1404 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1405 		mirror->rdev->data_offset;
1406 	read_bio->bi_end_io = raid1_end_read_request;
1407 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1408 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1409 	        read_bio->bi_opf |= MD_FAILFAST;
1410 	read_bio->bi_private = r1_bio;
1411 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1412 	submit_bio_noacct(read_bio);
1413 	return;
1414 
1415 err_handle:
1416 	atomic_dec(&mirror->rdev->nr_pending);
1417 	bio->bi_status = errno_to_blk_status(error);
1418 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1419 	raid_end_bio_io(r1_bio);
1420 }
1421 
wait_blocked_rdev(struct mddev * mddev,struct bio * bio)1422 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1423 {
1424 	struct r1conf *conf = mddev->private;
1425 	int disks = conf->raid_disks * 2;
1426 	int i;
1427 
1428 retry:
1429 	for (i = 0; i < disks; i++) {
1430 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1431 
1432 		if (!rdev)
1433 			continue;
1434 
1435 		/* don't write here until the bad block is acknowledged */
1436 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1437 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1438 				      bio_sectors(bio)) < 0)
1439 			set_bit(BlockedBadBlocks, &rdev->flags);
1440 
1441 		if (rdev_blocked(rdev)) {
1442 			if (bio->bi_opf & REQ_NOWAIT)
1443 				return false;
1444 
1445 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1446 					    rdev->raid_disk);
1447 			atomic_inc(&rdev->nr_pending);
1448 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1449 			goto retry;
1450 		}
1451 	}
1452 
1453 	return true;
1454 }
1455 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1456 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1457 				int max_write_sectors)
1458 {
1459 	struct r1conf *conf = mddev->private;
1460 	struct r1bio *r1_bio;
1461 	int i, disks, k, error;
1462 	unsigned long flags;
1463 	int first_clone;
1464 	int max_sectors;
1465 	bool write_behind = false;
1466 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1467 
1468 	if (mddev_is_clustered(mddev) &&
1469 	    mddev->cluster_ops->area_resyncing(mddev, WRITE,
1470 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1471 
1472 		DEFINE_WAIT(w);
1473 		if (bio->bi_opf & REQ_NOWAIT) {
1474 			bio_wouldblock_error(bio);
1475 			return;
1476 		}
1477 		for (;;) {
1478 			prepare_to_wait(&conf->wait_barrier,
1479 					&w, TASK_IDLE);
1480 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1481 							bio->bi_iter.bi_sector,
1482 							bio_end_sector(bio)))
1483 				break;
1484 			schedule();
1485 		}
1486 		finish_wait(&conf->wait_barrier, &w);
1487 	}
1488 
1489 	/*
1490 	 * Register the new request and wait if the reconstruction
1491 	 * thread has put up a bar for new requests.
1492 	 * Continue immediately if no resync is active currently.
1493 	 */
1494 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1495 				bio->bi_opf & REQ_NOWAIT)) {
1496 		bio_wouldblock_error(bio);
1497 		return;
1498 	}
1499 
1500 	if (!wait_blocked_rdev(mddev, bio)) {
1501 		bio_wouldblock_error(bio);
1502 		return;
1503 	}
1504 
1505 	r1_bio = alloc_r1bio(mddev, bio);
1506 	r1_bio->sectors = max_write_sectors;
1507 
1508 	/* first select target devices under rcu_lock and
1509 	 * inc refcount on their rdev.  Record them by setting
1510 	 * bios[x] to bio
1511 	 * If there are known/acknowledged bad blocks on any device on
1512 	 * which we have seen a write error, we want to avoid writing those
1513 	 * blocks.
1514 	 * This potentially requires several writes to write around
1515 	 * the bad blocks.  Each set of writes gets it's own r1bio
1516 	 * with a set of bios attached.
1517 	 */
1518 
1519 	disks = conf->raid_disks * 2;
1520 	max_sectors = r1_bio->sectors;
1521 	for (i = 0;  i < disks; i++) {
1522 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1523 
1524 		/*
1525 		 * The write-behind io is only attempted on drives marked as
1526 		 * write-mostly, which means we could allocate write behind
1527 		 * bio later.
1528 		 */
1529 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1530 			write_behind = true;
1531 
1532 		r1_bio->bios[i] = NULL;
1533 		if (!rdev || test_bit(Faulty, &rdev->flags))
1534 			continue;
1535 
1536 		atomic_inc(&rdev->nr_pending);
1537 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1538 			sector_t first_bad;
1539 			sector_t bad_sectors;
1540 			int is_bad;
1541 
1542 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1543 					     &first_bad, &bad_sectors);
1544 			if (is_bad && first_bad <= r1_bio->sector) {
1545 				/* Cannot write here at all */
1546 				bad_sectors -= (r1_bio->sector - first_bad);
1547 				if (bad_sectors < max_sectors)
1548 					/* mustn't write more than bad_sectors
1549 					 * to other devices yet
1550 					 */
1551 					max_sectors = bad_sectors;
1552 				rdev_dec_pending(rdev, mddev);
1553 				continue;
1554 			}
1555 			if (is_bad) {
1556 				int good_sectors;
1557 
1558 				/*
1559 				 * We cannot atomically write this, so just
1560 				 * error in that case. It could be possible to
1561 				 * atomically write other mirrors, but the
1562 				 * complexity of supporting that is not worth
1563 				 * the benefit.
1564 				 */
1565 				if (bio->bi_opf & REQ_ATOMIC) {
1566 					error = -EIO;
1567 					goto err_handle;
1568 				}
1569 
1570 				good_sectors = first_bad - r1_bio->sector;
1571 				if (good_sectors < max_sectors)
1572 					max_sectors = good_sectors;
1573 			}
1574 		}
1575 		r1_bio->bios[i] = bio;
1576 	}
1577 
1578 	/*
1579 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1580 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1581 	 * at a time and thus needs a new bio that can fit the whole payload
1582 	 * this bio in page sized chunks.
1583 	 */
1584 	if (write_behind && mddev->bitmap)
1585 		max_sectors = min_t(int, max_sectors,
1586 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1587 	if (max_sectors < bio_sectors(bio)) {
1588 		struct bio *split = bio_split(bio, max_sectors,
1589 					      GFP_NOIO, &conf->bio_split);
1590 
1591 		if (IS_ERR(split)) {
1592 			error = PTR_ERR(split);
1593 			goto err_handle;
1594 		}
1595 		bio_chain(split, bio);
1596 		submit_bio_noacct(bio);
1597 		bio = split;
1598 		r1_bio->master_bio = bio;
1599 		r1_bio->sectors = max_sectors;
1600 	}
1601 
1602 	md_account_bio(mddev, &bio);
1603 	r1_bio->master_bio = bio;
1604 	atomic_set(&r1_bio->remaining, 1);
1605 	atomic_set(&r1_bio->behind_remaining, 0);
1606 
1607 	first_clone = 1;
1608 
1609 	for (i = 0; i < disks; i++) {
1610 		struct bio *mbio = NULL;
1611 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1612 		if (!r1_bio->bios[i])
1613 			continue;
1614 
1615 		if (first_clone) {
1616 			unsigned long max_write_behind =
1617 				mddev->bitmap_info.max_write_behind;
1618 			struct md_bitmap_stats stats;
1619 			int err;
1620 
1621 			/* do behind I/O ?
1622 			 * Not if there are too many, or cannot
1623 			 * allocate memory, or a reader on WriteMostly
1624 			 * is waiting for behind writes to flush */
1625 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1626 			if (!err && write_behind && !stats.behind_wait &&
1627 			    stats.behind_writes < max_write_behind)
1628 				alloc_behind_master_bio(r1_bio, bio);
1629 
1630 			if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1631 				mddev->bitmap_ops->start_behind_write(mddev);
1632 			first_clone = 0;
1633 		}
1634 
1635 		if (r1_bio->behind_master_bio) {
1636 			mbio = bio_alloc_clone(rdev->bdev,
1637 					       r1_bio->behind_master_bio,
1638 					       GFP_NOIO, &mddev->bio_set);
1639 			if (test_bit(CollisionCheck, &rdev->flags))
1640 				wait_for_serialization(rdev, r1_bio);
1641 			if (test_bit(WriteMostly, &rdev->flags))
1642 				atomic_inc(&r1_bio->behind_remaining);
1643 		} else {
1644 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1645 					       &mddev->bio_set);
1646 
1647 			if (mddev->serialize_policy)
1648 				wait_for_serialization(rdev, r1_bio);
1649 		}
1650 
1651 		r1_bio->bios[i] = mbio;
1652 
1653 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1654 		mbio->bi_end_io	= raid1_end_write_request;
1655 		if (test_bit(FailFast, &rdev->flags) &&
1656 		    !test_bit(WriteMostly, &rdev->flags) &&
1657 		    conf->raid_disks - mddev->degraded > 1)
1658 			mbio->bi_opf |= MD_FAILFAST;
1659 		mbio->bi_private = r1_bio;
1660 
1661 		atomic_inc(&r1_bio->remaining);
1662 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1663 		/* flush_pending_writes() needs access to the rdev so...*/
1664 		mbio->bi_bdev = (void *)rdev;
1665 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1666 			spin_lock_irqsave(&conf->device_lock, flags);
1667 			bio_list_add(&conf->pending_bio_list, mbio);
1668 			spin_unlock_irqrestore(&conf->device_lock, flags);
1669 			md_wakeup_thread(mddev->thread);
1670 		}
1671 	}
1672 
1673 	r1_bio_write_done(r1_bio);
1674 
1675 	/* In case raid1d snuck in to freeze_array */
1676 	wake_up_barrier(conf);
1677 	return;
1678 err_handle:
1679 	for (k = 0; k < i; k++) {
1680 		if (r1_bio->bios[k]) {
1681 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1682 			r1_bio->bios[k] = NULL;
1683 		}
1684 	}
1685 
1686 	bio->bi_status = errno_to_blk_status(error);
1687 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1688 	raid_end_bio_io(r1_bio);
1689 }
1690 
raid1_make_request(struct mddev * mddev,struct bio * bio)1691 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1692 {
1693 	sector_t sectors;
1694 
1695 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1696 	    && md_flush_request(mddev, bio))
1697 		return true;
1698 
1699 	/*
1700 	 * There is a limit to the maximum size, but
1701 	 * the read/write handler might find a lower limit
1702 	 * due to bad blocks.  To avoid multiple splits,
1703 	 * we pass the maximum number of sectors down
1704 	 * and let the lower level perform the split.
1705 	 */
1706 	sectors = align_to_barrier_unit_end(
1707 		bio->bi_iter.bi_sector, bio_sectors(bio));
1708 
1709 	if (bio_data_dir(bio) == READ)
1710 		raid1_read_request(mddev, bio, sectors, NULL);
1711 	else {
1712 		md_write_start(mddev,bio);
1713 		raid1_write_request(mddev, bio, sectors);
1714 	}
1715 	return true;
1716 }
1717 
raid1_status(struct seq_file * seq,struct mddev * mddev)1718 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1719 {
1720 	struct r1conf *conf = mddev->private;
1721 	int i;
1722 
1723 	lockdep_assert_held(&mddev->lock);
1724 
1725 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1726 		   conf->raid_disks - mddev->degraded);
1727 	for (i = 0; i < conf->raid_disks; i++) {
1728 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1729 
1730 		seq_printf(seq, "%s",
1731 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1732 	}
1733 	seq_printf(seq, "]");
1734 }
1735 
1736 /**
1737  * raid1_error() - RAID1 error handler.
1738  * @mddev: affected md device.
1739  * @rdev: member device to fail.
1740  *
1741  * The routine acknowledges &rdev failure and determines new @mddev state.
1742  * If it failed, then:
1743  *	- &MD_BROKEN flag is set in &mddev->flags.
1744  *	- recovery is disabled.
1745  * Otherwise, it must be degraded:
1746  *	- recovery is interrupted.
1747  *	- &mddev->degraded is bumped.
1748  *
1749  * @rdev is marked as &Faulty excluding case when array is failed and
1750  * &mddev->fail_last_dev is off.
1751  */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1752 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754 	struct r1conf *conf = mddev->private;
1755 	unsigned long flags;
1756 
1757 	spin_lock_irqsave(&conf->device_lock, flags);
1758 
1759 	if (test_bit(In_sync, &rdev->flags) &&
1760 	    (conf->raid_disks - mddev->degraded) == 1) {
1761 		set_bit(MD_BROKEN, &mddev->flags);
1762 
1763 		if (!mddev->fail_last_dev) {
1764 			conf->recovery_disabled = mddev->recovery_disabled;
1765 			spin_unlock_irqrestore(&conf->device_lock, flags);
1766 			return;
1767 		}
1768 	}
1769 	set_bit(Blocked, &rdev->flags);
1770 	if (test_and_clear_bit(In_sync, &rdev->flags))
1771 		mddev->degraded++;
1772 	set_bit(Faulty, &rdev->flags);
1773 	spin_unlock_irqrestore(&conf->device_lock, flags);
1774 	/*
1775 	 * if recovery is running, make sure it aborts.
1776 	 */
1777 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1778 	set_mask_bits(&mddev->sb_flags, 0,
1779 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1780 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1781 		"md/raid1:%s: Operation continuing on %d devices.\n",
1782 		mdname(mddev), rdev->bdev,
1783 		mdname(mddev), conf->raid_disks - mddev->degraded);
1784 }
1785 
print_conf(struct r1conf * conf)1786 static void print_conf(struct r1conf *conf)
1787 {
1788 	int i;
1789 
1790 	pr_debug("RAID1 conf printout:\n");
1791 	if (!conf) {
1792 		pr_debug("(!conf)\n");
1793 		return;
1794 	}
1795 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1796 		 conf->raid_disks);
1797 
1798 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1799 	for (i = 0; i < conf->raid_disks; i++) {
1800 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1801 		if (rdev)
1802 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1803 				 i, !test_bit(In_sync, &rdev->flags),
1804 				 !test_bit(Faulty, &rdev->flags),
1805 				 rdev->bdev);
1806 	}
1807 }
1808 
close_sync(struct r1conf * conf)1809 static void close_sync(struct r1conf *conf)
1810 {
1811 	int idx;
1812 
1813 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1814 		_wait_barrier(conf, idx, false);
1815 		_allow_barrier(conf, idx);
1816 	}
1817 
1818 	mempool_exit(&conf->r1buf_pool);
1819 }
1820 
raid1_spare_active(struct mddev * mddev)1821 static int raid1_spare_active(struct mddev *mddev)
1822 {
1823 	int i;
1824 	struct r1conf *conf = mddev->private;
1825 	int count = 0;
1826 	unsigned long flags;
1827 
1828 	/*
1829 	 * Find all failed disks within the RAID1 configuration
1830 	 * and mark them readable.
1831 	 * Called under mddev lock, so rcu protection not needed.
1832 	 * device_lock used to avoid races with raid1_end_read_request
1833 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1834 	 */
1835 	spin_lock_irqsave(&conf->device_lock, flags);
1836 	for (i = 0; i < conf->raid_disks; i++) {
1837 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1838 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1839 		if (repl
1840 		    && !test_bit(Candidate, &repl->flags)
1841 		    && repl->recovery_offset == MaxSector
1842 		    && !test_bit(Faulty, &repl->flags)
1843 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1844 			/* replacement has just become active */
1845 			if (!rdev ||
1846 			    !test_and_clear_bit(In_sync, &rdev->flags))
1847 				count++;
1848 			if (rdev) {
1849 				/* Replaced device not technically
1850 				 * faulty, but we need to be sure
1851 				 * it gets removed and never re-added
1852 				 */
1853 				set_bit(Faulty, &rdev->flags);
1854 				sysfs_notify_dirent_safe(
1855 					rdev->sysfs_state);
1856 			}
1857 		}
1858 		if (rdev
1859 		    && rdev->recovery_offset == MaxSector
1860 		    && !test_bit(Faulty, &rdev->flags)
1861 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1862 			count++;
1863 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1864 		}
1865 	}
1866 	mddev->degraded -= count;
1867 	spin_unlock_irqrestore(&conf->device_lock, flags);
1868 
1869 	print_conf(conf);
1870 	return count;
1871 }
1872 
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1873 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1874 			   bool replacement)
1875 {
1876 	struct raid1_info *info = conf->mirrors + disk;
1877 
1878 	if (replacement)
1879 		info += conf->raid_disks;
1880 
1881 	if (info->rdev)
1882 		return false;
1883 
1884 	if (bdev_nonrot(rdev->bdev)) {
1885 		set_bit(Nonrot, &rdev->flags);
1886 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1887 	}
1888 
1889 	rdev->raid_disk = disk;
1890 	info->head_position = 0;
1891 	info->seq_start = MaxSector;
1892 	WRITE_ONCE(info->rdev, rdev);
1893 
1894 	return true;
1895 }
1896 
raid1_remove_conf(struct r1conf * conf,int disk)1897 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1898 {
1899 	struct raid1_info *info = conf->mirrors + disk;
1900 	struct md_rdev *rdev = info->rdev;
1901 
1902 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1903 	    atomic_read(&rdev->nr_pending))
1904 		return false;
1905 
1906 	/* Only remove non-faulty devices if recovery is not possible. */
1907 	if (!test_bit(Faulty, &rdev->flags) &&
1908 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1909 	    rdev->mddev->degraded < conf->raid_disks)
1910 		return false;
1911 
1912 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1913 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1914 
1915 	WRITE_ONCE(info->rdev, NULL);
1916 	return true;
1917 }
1918 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1919 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1920 {
1921 	struct r1conf *conf = mddev->private;
1922 	int err = -EEXIST;
1923 	int mirror = 0, repl_slot = -1;
1924 	struct raid1_info *p;
1925 	int first = 0;
1926 	int last = conf->raid_disks - 1;
1927 
1928 	if (mddev->recovery_disabled == conf->recovery_disabled)
1929 		return -EBUSY;
1930 
1931 	if (rdev->raid_disk >= 0)
1932 		first = last = rdev->raid_disk;
1933 
1934 	/*
1935 	 * find the disk ... but prefer rdev->saved_raid_disk
1936 	 * if possible.
1937 	 */
1938 	if (rdev->saved_raid_disk >= 0 &&
1939 	    rdev->saved_raid_disk >= first &&
1940 	    rdev->saved_raid_disk < conf->raid_disks &&
1941 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1942 		first = last = rdev->saved_raid_disk;
1943 
1944 	for (mirror = first; mirror <= last; mirror++) {
1945 		p = conf->mirrors + mirror;
1946 		if (!p->rdev) {
1947 			err = mddev_stack_new_rdev(mddev, rdev);
1948 			if (err)
1949 				return err;
1950 
1951 			raid1_add_conf(conf, rdev, mirror, false);
1952 			/* As all devices are equivalent, we don't need a full recovery
1953 			 * if this was recently any drive of the array
1954 			 */
1955 			if (rdev->saved_raid_disk < 0)
1956 				conf->fullsync = 1;
1957 			break;
1958 		}
1959 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1960 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1961 			repl_slot = mirror;
1962 	}
1963 
1964 	if (err && repl_slot >= 0) {
1965 		/* Add this device as a replacement */
1966 		clear_bit(In_sync, &rdev->flags);
1967 		set_bit(Replacement, &rdev->flags);
1968 		raid1_add_conf(conf, rdev, repl_slot, true);
1969 		err = 0;
1970 		conf->fullsync = 1;
1971 	}
1972 
1973 	print_conf(conf);
1974 	return err;
1975 }
1976 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1977 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1978 {
1979 	struct r1conf *conf = mddev->private;
1980 	int err = 0;
1981 	int number = rdev->raid_disk;
1982 	struct raid1_info *p = conf->mirrors + number;
1983 
1984 	if (unlikely(number >= conf->raid_disks))
1985 		goto abort;
1986 
1987 	if (rdev != p->rdev) {
1988 		number += conf->raid_disks;
1989 		p = conf->mirrors + number;
1990 	}
1991 
1992 	print_conf(conf);
1993 	if (rdev == p->rdev) {
1994 		if (!raid1_remove_conf(conf, number)) {
1995 			err = -EBUSY;
1996 			goto abort;
1997 		}
1998 
1999 		if (number < conf->raid_disks &&
2000 		    conf->mirrors[conf->raid_disks + number].rdev) {
2001 			/* We just removed a device that is being replaced.
2002 			 * Move down the replacement.  We drain all IO before
2003 			 * doing this to avoid confusion.
2004 			 */
2005 			struct md_rdev *repl =
2006 				conf->mirrors[conf->raid_disks + number].rdev;
2007 			freeze_array(conf, 0);
2008 			if (atomic_read(&repl->nr_pending)) {
2009 				/* It means that some queued IO of retry_list
2010 				 * hold repl. Thus, we cannot set replacement
2011 				 * as NULL, avoiding rdev NULL pointer
2012 				 * dereference in sync_request_write and
2013 				 * handle_write_finished.
2014 				 */
2015 				err = -EBUSY;
2016 				unfreeze_array(conf);
2017 				goto abort;
2018 			}
2019 			clear_bit(Replacement, &repl->flags);
2020 			WRITE_ONCE(p->rdev, repl);
2021 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2022 			unfreeze_array(conf);
2023 		}
2024 
2025 		clear_bit(WantReplacement, &rdev->flags);
2026 		err = md_integrity_register(mddev);
2027 	}
2028 abort:
2029 
2030 	print_conf(conf);
2031 	return err;
2032 }
2033 
end_sync_read(struct bio * bio)2034 static void end_sync_read(struct bio *bio)
2035 {
2036 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2037 
2038 	update_head_pos(r1_bio->read_disk, r1_bio);
2039 
2040 	/*
2041 	 * we have read a block, now it needs to be re-written,
2042 	 * or re-read if the read failed.
2043 	 * We don't do much here, just schedule handling by raid1d
2044 	 */
2045 	if (!bio->bi_status)
2046 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2047 
2048 	if (atomic_dec_and_test(&r1_bio->remaining))
2049 		reschedule_retry(r1_bio);
2050 }
2051 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2052 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2053 {
2054 	sector_t sync_blocks = 0;
2055 	sector_t s = r1_bio->sector;
2056 	long sectors_to_go = r1_bio->sectors;
2057 
2058 	/* make sure these bits don't get cleared. */
2059 	do {
2060 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2061 		s += sync_blocks;
2062 		sectors_to_go -= sync_blocks;
2063 	} while (sectors_to_go > 0);
2064 }
2065 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2066 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2067 {
2068 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2069 		struct mddev *mddev = r1_bio->mddev;
2070 		int s = r1_bio->sectors;
2071 
2072 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2073 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2074 			reschedule_retry(r1_bio);
2075 		else {
2076 			put_buf(r1_bio);
2077 			md_done_sync(mddev, s, uptodate);
2078 		}
2079 	}
2080 }
2081 
end_sync_write(struct bio * bio)2082 static void end_sync_write(struct bio *bio)
2083 {
2084 	int uptodate = !bio->bi_status;
2085 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2086 	struct mddev *mddev = r1_bio->mddev;
2087 	struct r1conf *conf = mddev->private;
2088 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2089 
2090 	if (!uptodate) {
2091 		abort_sync_write(mddev, r1_bio);
2092 		set_bit(WriteErrorSeen, &rdev->flags);
2093 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2094 			set_bit(MD_RECOVERY_NEEDED, &
2095 				mddev->recovery);
2096 		set_bit(R1BIO_WriteError, &r1_bio->state);
2097 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2098 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2099 				      r1_bio->sector, r1_bio->sectors)) {
2100 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2101 	}
2102 
2103 	put_sync_write_buf(r1_bio, uptodate);
2104 }
2105 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2106 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2107 			   int sectors, struct page *page, blk_opf_t rw)
2108 {
2109 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2110 		/* success */
2111 		return 1;
2112 	if (rw == REQ_OP_WRITE) {
2113 		set_bit(WriteErrorSeen, &rdev->flags);
2114 		if (!test_and_set_bit(WantReplacement,
2115 				      &rdev->flags))
2116 			set_bit(MD_RECOVERY_NEEDED, &
2117 				rdev->mddev->recovery);
2118 	}
2119 	/* need to record an error - either for the block or the device */
2120 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2121 		md_error(rdev->mddev, rdev);
2122 	return 0;
2123 }
2124 
fix_sync_read_error(struct r1bio * r1_bio)2125 static int fix_sync_read_error(struct r1bio *r1_bio)
2126 {
2127 	/* Try some synchronous reads of other devices to get
2128 	 * good data, much like with normal read errors.  Only
2129 	 * read into the pages we already have so we don't
2130 	 * need to re-issue the read request.
2131 	 * We don't need to freeze the array, because being in an
2132 	 * active sync request, there is no normal IO, and
2133 	 * no overlapping syncs.
2134 	 * We don't need to check is_badblock() again as we
2135 	 * made sure that anything with a bad block in range
2136 	 * will have bi_end_io clear.
2137 	 */
2138 	struct mddev *mddev = r1_bio->mddev;
2139 	struct r1conf *conf = mddev->private;
2140 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2141 	struct page **pages = get_resync_pages(bio)->pages;
2142 	sector_t sect = r1_bio->sector;
2143 	int sectors = r1_bio->sectors;
2144 	int idx = 0;
2145 	struct md_rdev *rdev;
2146 
2147 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2148 	if (test_bit(FailFast, &rdev->flags)) {
2149 		/* Don't try recovering from here - just fail it
2150 		 * ... unless it is the last working device of course */
2151 		md_error(mddev, rdev);
2152 		if (test_bit(Faulty, &rdev->flags))
2153 			/* Don't try to read from here, but make sure
2154 			 * put_buf does it's thing
2155 			 */
2156 			bio->bi_end_io = end_sync_write;
2157 	}
2158 
2159 	while(sectors) {
2160 		int s = sectors;
2161 		int d = r1_bio->read_disk;
2162 		int success = 0;
2163 		int start;
2164 
2165 		if (s > (PAGE_SIZE>>9))
2166 			s = PAGE_SIZE >> 9;
2167 		do {
2168 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2169 				/* No rcu protection needed here devices
2170 				 * can only be removed when no resync is
2171 				 * active, and resync is currently active
2172 				 */
2173 				rdev = conf->mirrors[d].rdev;
2174 				if (sync_page_io(rdev, sect, s<<9,
2175 						 pages[idx],
2176 						 REQ_OP_READ, false)) {
2177 					success = 1;
2178 					break;
2179 				}
2180 			}
2181 			d++;
2182 			if (d == conf->raid_disks * 2)
2183 				d = 0;
2184 		} while (!success && d != r1_bio->read_disk);
2185 
2186 		if (!success) {
2187 			int abort = 0;
2188 			/* Cannot read from anywhere, this block is lost.
2189 			 * Record a bad block on each device.  If that doesn't
2190 			 * work just disable and interrupt the recovery.
2191 			 * Don't fail devices as that won't really help.
2192 			 */
2193 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2194 					    mdname(mddev), bio->bi_bdev,
2195 					    (unsigned long long)r1_bio->sector);
2196 			for (d = 0; d < conf->raid_disks * 2; d++) {
2197 				rdev = conf->mirrors[d].rdev;
2198 				if (!rdev || test_bit(Faulty, &rdev->flags))
2199 					continue;
2200 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2201 					abort = 1;
2202 			}
2203 			if (abort) {
2204 				conf->recovery_disabled =
2205 					mddev->recovery_disabled;
2206 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2207 				md_done_sync(mddev, r1_bio->sectors, 0);
2208 				put_buf(r1_bio);
2209 				return 0;
2210 			}
2211 			/* Try next page */
2212 			sectors -= s;
2213 			sect += s;
2214 			idx++;
2215 			continue;
2216 		}
2217 
2218 		start = d;
2219 		/* write it back and re-read */
2220 		while (d != r1_bio->read_disk) {
2221 			if (d == 0)
2222 				d = conf->raid_disks * 2;
2223 			d--;
2224 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2225 				continue;
2226 			rdev = conf->mirrors[d].rdev;
2227 			if (r1_sync_page_io(rdev, sect, s,
2228 					    pages[idx],
2229 					    REQ_OP_WRITE) == 0) {
2230 				r1_bio->bios[d]->bi_end_io = NULL;
2231 				rdev_dec_pending(rdev, mddev);
2232 			}
2233 		}
2234 		d = start;
2235 		while (d != r1_bio->read_disk) {
2236 			if (d == 0)
2237 				d = conf->raid_disks * 2;
2238 			d--;
2239 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2240 				continue;
2241 			rdev = conf->mirrors[d].rdev;
2242 			if (r1_sync_page_io(rdev, sect, s,
2243 					    pages[idx],
2244 					    REQ_OP_READ) != 0)
2245 				atomic_add(s, &rdev->corrected_errors);
2246 		}
2247 		sectors -= s;
2248 		sect += s;
2249 		idx ++;
2250 	}
2251 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2252 	bio->bi_status = 0;
2253 	return 1;
2254 }
2255 
process_checks(struct r1bio * r1_bio)2256 static void process_checks(struct r1bio *r1_bio)
2257 {
2258 	/* We have read all readable devices.  If we haven't
2259 	 * got the block, then there is no hope left.
2260 	 * If we have, then we want to do a comparison
2261 	 * and skip the write if everything is the same.
2262 	 * If any blocks failed to read, then we need to
2263 	 * attempt an over-write
2264 	 */
2265 	struct mddev *mddev = r1_bio->mddev;
2266 	struct r1conf *conf = mddev->private;
2267 	int primary;
2268 	int i;
2269 	int vcnt;
2270 
2271 	/* Fix variable parts of all bios */
2272 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2273 	for (i = 0; i < conf->raid_disks * 2; i++) {
2274 		blk_status_t status;
2275 		struct bio *b = r1_bio->bios[i];
2276 		struct resync_pages *rp = get_resync_pages(b);
2277 		if (b->bi_end_io != end_sync_read)
2278 			continue;
2279 		/* fixup the bio for reuse, but preserve errno */
2280 		status = b->bi_status;
2281 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2282 		b->bi_status = status;
2283 		b->bi_iter.bi_sector = r1_bio->sector +
2284 			conf->mirrors[i].rdev->data_offset;
2285 		b->bi_end_io = end_sync_read;
2286 		rp->raid_bio = r1_bio;
2287 		b->bi_private = rp;
2288 
2289 		/* initialize bvec table again */
2290 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2291 	}
2292 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2293 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2294 		    !r1_bio->bios[primary]->bi_status) {
2295 			r1_bio->bios[primary]->bi_end_io = NULL;
2296 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2297 			break;
2298 		}
2299 	r1_bio->read_disk = primary;
2300 	for (i = 0; i < conf->raid_disks * 2; i++) {
2301 		int j = 0;
2302 		struct bio *pbio = r1_bio->bios[primary];
2303 		struct bio *sbio = r1_bio->bios[i];
2304 		blk_status_t status = sbio->bi_status;
2305 		struct page **ppages = get_resync_pages(pbio)->pages;
2306 		struct page **spages = get_resync_pages(sbio)->pages;
2307 		struct bio_vec *bi;
2308 		int page_len[RESYNC_PAGES] = { 0 };
2309 		struct bvec_iter_all iter_all;
2310 
2311 		if (sbio->bi_end_io != end_sync_read)
2312 			continue;
2313 		/* Now we can 'fixup' the error value */
2314 		sbio->bi_status = 0;
2315 
2316 		bio_for_each_segment_all(bi, sbio, iter_all)
2317 			page_len[j++] = bi->bv_len;
2318 
2319 		if (!status) {
2320 			for (j = vcnt; j-- ; ) {
2321 				if (memcmp(page_address(ppages[j]),
2322 					   page_address(spages[j]),
2323 					   page_len[j]))
2324 					break;
2325 			}
2326 		} else
2327 			j = 0;
2328 		if (j >= 0)
2329 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2330 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2331 			      && !status)) {
2332 			/* No need to write to this device. */
2333 			sbio->bi_end_io = NULL;
2334 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2335 			continue;
2336 		}
2337 
2338 		bio_copy_data(sbio, pbio);
2339 	}
2340 }
2341 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2342 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2343 {
2344 	struct r1conf *conf = mddev->private;
2345 	int i;
2346 	int disks = conf->raid_disks * 2;
2347 	struct bio *wbio;
2348 
2349 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2350 		/* ouch - failed to read all of that. */
2351 		if (!fix_sync_read_error(r1_bio))
2352 			return;
2353 
2354 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2355 		process_checks(r1_bio);
2356 
2357 	/*
2358 	 * schedule writes
2359 	 */
2360 	atomic_set(&r1_bio->remaining, 1);
2361 	for (i = 0; i < disks ; i++) {
2362 		wbio = r1_bio->bios[i];
2363 		if (wbio->bi_end_io == NULL ||
2364 		    (wbio->bi_end_io == end_sync_read &&
2365 		     (i == r1_bio->read_disk ||
2366 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2367 			continue;
2368 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2369 			abort_sync_write(mddev, r1_bio);
2370 			continue;
2371 		}
2372 
2373 		wbio->bi_opf = REQ_OP_WRITE;
2374 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2375 			wbio->bi_opf |= MD_FAILFAST;
2376 
2377 		wbio->bi_end_io = end_sync_write;
2378 		atomic_inc(&r1_bio->remaining);
2379 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2380 
2381 		submit_bio_noacct(wbio);
2382 	}
2383 
2384 	put_sync_write_buf(r1_bio, 1);
2385 }
2386 
2387 /*
2388  * This is a kernel thread which:
2389  *
2390  *	1.	Retries failed read operations on working mirrors.
2391  *	2.	Updates the raid superblock when problems encounter.
2392  *	3.	Performs writes following reads for array synchronising.
2393  */
2394 
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2395 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2396 {
2397 	sector_t sect = r1_bio->sector;
2398 	int sectors = r1_bio->sectors;
2399 	int read_disk = r1_bio->read_disk;
2400 	struct mddev *mddev = conf->mddev;
2401 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2402 
2403 	if (exceed_read_errors(mddev, rdev)) {
2404 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2405 		return;
2406 	}
2407 
2408 	while(sectors) {
2409 		int s = sectors;
2410 		int d = read_disk;
2411 		int success = 0;
2412 		int start;
2413 
2414 		if (s > (PAGE_SIZE>>9))
2415 			s = PAGE_SIZE >> 9;
2416 
2417 		do {
2418 			rdev = conf->mirrors[d].rdev;
2419 			if (rdev &&
2420 			    (test_bit(In_sync, &rdev->flags) ||
2421 			     (!test_bit(Faulty, &rdev->flags) &&
2422 			      rdev->recovery_offset >= sect + s)) &&
2423 			    rdev_has_badblock(rdev, sect, s) == 0) {
2424 				atomic_inc(&rdev->nr_pending);
2425 				if (sync_page_io(rdev, sect, s<<9,
2426 					 conf->tmppage, REQ_OP_READ, false))
2427 					success = 1;
2428 				rdev_dec_pending(rdev, mddev);
2429 				if (success)
2430 					break;
2431 			}
2432 
2433 			d++;
2434 			if (d == conf->raid_disks * 2)
2435 				d = 0;
2436 		} while (d != read_disk);
2437 
2438 		if (!success) {
2439 			/* Cannot read from anywhere - mark it bad */
2440 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2441 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2442 				md_error(mddev, rdev);
2443 			break;
2444 		}
2445 		/* write it back and re-read */
2446 		start = d;
2447 		while (d != read_disk) {
2448 			if (d==0)
2449 				d = conf->raid_disks * 2;
2450 			d--;
2451 			rdev = conf->mirrors[d].rdev;
2452 			if (rdev &&
2453 			    !test_bit(Faulty, &rdev->flags)) {
2454 				atomic_inc(&rdev->nr_pending);
2455 				r1_sync_page_io(rdev, sect, s,
2456 						conf->tmppage, REQ_OP_WRITE);
2457 				rdev_dec_pending(rdev, mddev);
2458 			}
2459 		}
2460 		d = start;
2461 		while (d != read_disk) {
2462 			if (d==0)
2463 				d = conf->raid_disks * 2;
2464 			d--;
2465 			rdev = conf->mirrors[d].rdev;
2466 			if (rdev &&
2467 			    !test_bit(Faulty, &rdev->flags)) {
2468 				atomic_inc(&rdev->nr_pending);
2469 				if (r1_sync_page_io(rdev, sect, s,
2470 						conf->tmppage, REQ_OP_READ)) {
2471 					atomic_add(s, &rdev->corrected_errors);
2472 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2473 						mdname(mddev), s,
2474 						(unsigned long long)(sect +
2475 								     rdev->data_offset),
2476 						rdev->bdev);
2477 				}
2478 				rdev_dec_pending(rdev, mddev);
2479 			}
2480 		}
2481 		sectors -= s;
2482 		sect += s;
2483 	}
2484 }
2485 
narrow_write_error(struct r1bio * r1_bio,int i)2486 static bool narrow_write_error(struct r1bio *r1_bio, int i)
2487 {
2488 	struct mddev *mddev = r1_bio->mddev;
2489 	struct r1conf *conf = mddev->private;
2490 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2491 
2492 	/* bio has the data to be written to device 'i' where
2493 	 * we just recently had a write error.
2494 	 * We repeatedly clone the bio and trim down to one block,
2495 	 * then try the write.  Where the write fails we record
2496 	 * a bad block.
2497 	 * It is conceivable that the bio doesn't exactly align with
2498 	 * blocks.  We must handle this somehow.
2499 	 *
2500 	 * We currently own a reference on the rdev.
2501 	 */
2502 
2503 	int block_sectors;
2504 	sector_t sector;
2505 	int sectors;
2506 	int sect_to_write = r1_bio->sectors;
2507 	bool ok = true;
2508 
2509 	if (rdev->badblocks.shift < 0)
2510 		return false;
2511 
2512 	block_sectors = roundup(1 << rdev->badblocks.shift,
2513 				bdev_logical_block_size(rdev->bdev) >> 9);
2514 	sector = r1_bio->sector;
2515 	sectors = ((sector + block_sectors)
2516 		   & ~(sector_t)(block_sectors - 1))
2517 		- sector;
2518 
2519 	while (sect_to_write) {
2520 		struct bio *wbio;
2521 		if (sectors > sect_to_write)
2522 			sectors = sect_to_write;
2523 		/* Write at 'sector' for 'sectors'*/
2524 
2525 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2526 			wbio = bio_alloc_clone(rdev->bdev,
2527 					       r1_bio->behind_master_bio,
2528 					       GFP_NOIO, &mddev->bio_set);
2529 		} else {
2530 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2531 					       GFP_NOIO, &mddev->bio_set);
2532 		}
2533 
2534 		wbio->bi_opf = REQ_OP_WRITE;
2535 		wbio->bi_iter.bi_sector = r1_bio->sector;
2536 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2537 
2538 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2539 		wbio->bi_iter.bi_sector += rdev->data_offset;
2540 
2541 		if (submit_bio_wait(wbio) < 0)
2542 			/* failure! */
2543 			ok = rdev_set_badblocks(rdev, sector,
2544 						sectors, 0)
2545 				&& ok;
2546 
2547 		bio_put(wbio);
2548 		sect_to_write -= sectors;
2549 		sector += sectors;
2550 		sectors = block_sectors;
2551 	}
2552 	return ok;
2553 }
2554 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2555 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2556 {
2557 	int m;
2558 	int s = r1_bio->sectors;
2559 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2560 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2561 		struct bio *bio = r1_bio->bios[m];
2562 		if (bio->bi_end_io == NULL)
2563 			continue;
2564 		if (!bio->bi_status &&
2565 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2566 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2567 		}
2568 		if (bio->bi_status &&
2569 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2570 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2571 				md_error(conf->mddev, rdev);
2572 		}
2573 	}
2574 	put_buf(r1_bio);
2575 	md_done_sync(conf->mddev, s, 1);
2576 }
2577 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2578 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2579 {
2580 	int m, idx;
2581 	bool fail = false;
2582 
2583 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2584 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2585 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2586 			rdev_clear_badblocks(rdev,
2587 					     r1_bio->sector,
2588 					     r1_bio->sectors, 0);
2589 			rdev_dec_pending(rdev, conf->mddev);
2590 		} else if (r1_bio->bios[m] != NULL) {
2591 			/* This drive got a write error.  We need to
2592 			 * narrow down and record precise write
2593 			 * errors.
2594 			 */
2595 			fail = true;
2596 			if (!narrow_write_error(r1_bio, m))
2597 				md_error(conf->mddev,
2598 					 conf->mirrors[m].rdev);
2599 				/* an I/O failed, we can't clear the bitmap */
2600 			rdev_dec_pending(conf->mirrors[m].rdev,
2601 					 conf->mddev);
2602 		}
2603 	if (fail) {
2604 		spin_lock_irq(&conf->device_lock);
2605 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2606 		idx = sector_to_idx(r1_bio->sector);
2607 		atomic_inc(&conf->nr_queued[idx]);
2608 		spin_unlock_irq(&conf->device_lock);
2609 		/*
2610 		 * In case freeze_array() is waiting for condition
2611 		 * get_unqueued_pending() == extra to be true.
2612 		 */
2613 		wake_up(&conf->wait_barrier);
2614 		md_wakeup_thread(conf->mddev->thread);
2615 	} else {
2616 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2617 			close_write(r1_bio);
2618 		raid_end_bio_io(r1_bio);
2619 	}
2620 }
2621 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2622 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2623 {
2624 	struct mddev *mddev = conf->mddev;
2625 	struct bio *bio;
2626 	struct md_rdev *rdev;
2627 	sector_t sector;
2628 
2629 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2630 	/* we got a read error. Maybe the drive is bad.  Maybe just
2631 	 * the block and we can fix it.
2632 	 * We freeze all other IO, and try reading the block from
2633 	 * other devices.  When we find one, we re-write
2634 	 * and check it that fixes the read error.
2635 	 * This is all done synchronously while the array is
2636 	 * frozen
2637 	 */
2638 
2639 	bio = r1_bio->bios[r1_bio->read_disk];
2640 	bio_put(bio);
2641 	r1_bio->bios[r1_bio->read_disk] = NULL;
2642 
2643 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2644 	if (mddev->ro == 0
2645 	    && !test_bit(FailFast, &rdev->flags)) {
2646 		freeze_array(conf, 1);
2647 		fix_read_error(conf, r1_bio);
2648 		unfreeze_array(conf);
2649 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2650 		md_error(mddev, rdev);
2651 	} else {
2652 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2653 	}
2654 
2655 	rdev_dec_pending(rdev, conf->mddev);
2656 	sector = r1_bio->sector;
2657 	bio = r1_bio->master_bio;
2658 
2659 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2660 	r1_bio->state = 0;
2661 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2662 	allow_barrier(conf, sector);
2663 }
2664 
raid1d(struct md_thread * thread)2665 static void raid1d(struct md_thread *thread)
2666 {
2667 	struct mddev *mddev = thread->mddev;
2668 	struct r1bio *r1_bio;
2669 	unsigned long flags;
2670 	struct r1conf *conf = mddev->private;
2671 	struct list_head *head = &conf->retry_list;
2672 	struct blk_plug plug;
2673 	int idx;
2674 
2675 	md_check_recovery(mddev);
2676 
2677 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2678 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2679 		LIST_HEAD(tmp);
2680 		spin_lock_irqsave(&conf->device_lock, flags);
2681 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2682 			list_splice_init(&conf->bio_end_io_list, &tmp);
2683 		spin_unlock_irqrestore(&conf->device_lock, flags);
2684 		while (!list_empty(&tmp)) {
2685 			r1_bio = list_first_entry(&tmp, struct r1bio,
2686 						  retry_list);
2687 			list_del(&r1_bio->retry_list);
2688 			idx = sector_to_idx(r1_bio->sector);
2689 			atomic_dec(&conf->nr_queued[idx]);
2690 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2691 				close_write(r1_bio);
2692 			raid_end_bio_io(r1_bio);
2693 		}
2694 	}
2695 
2696 	blk_start_plug(&plug);
2697 	for (;;) {
2698 
2699 		flush_pending_writes(conf);
2700 
2701 		spin_lock_irqsave(&conf->device_lock, flags);
2702 		if (list_empty(head)) {
2703 			spin_unlock_irqrestore(&conf->device_lock, flags);
2704 			break;
2705 		}
2706 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2707 		list_del(head->prev);
2708 		idx = sector_to_idx(r1_bio->sector);
2709 		atomic_dec(&conf->nr_queued[idx]);
2710 		spin_unlock_irqrestore(&conf->device_lock, flags);
2711 
2712 		mddev = r1_bio->mddev;
2713 		conf = mddev->private;
2714 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2715 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2716 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2717 				handle_sync_write_finished(conf, r1_bio);
2718 			else
2719 				sync_request_write(mddev, r1_bio);
2720 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2721 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2722 			handle_write_finished(conf, r1_bio);
2723 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2724 			handle_read_error(conf, r1_bio);
2725 		else
2726 			WARN_ON_ONCE(1);
2727 
2728 		cond_resched();
2729 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2730 			md_check_recovery(mddev);
2731 	}
2732 	blk_finish_plug(&plug);
2733 }
2734 
init_resync(struct r1conf * conf)2735 static int init_resync(struct r1conf *conf)
2736 {
2737 	int buffs;
2738 
2739 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2740 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2741 
2742 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2743 			    r1buf_pool_free, conf->poolinfo);
2744 }
2745 
raid1_alloc_init_r1buf(struct r1conf * conf)2746 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2747 {
2748 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2749 	struct resync_pages *rps;
2750 	struct bio *bio;
2751 	int i;
2752 
2753 	for (i = conf->poolinfo->raid_disks; i--; ) {
2754 		bio = r1bio->bios[i];
2755 		rps = bio->bi_private;
2756 		bio_reset(bio, NULL, 0);
2757 		bio->bi_private = rps;
2758 	}
2759 	r1bio->master_bio = NULL;
2760 	return r1bio;
2761 }
2762 
2763 /*
2764  * perform a "sync" on one "block"
2765  *
2766  * We need to make sure that no normal I/O request - particularly write
2767  * requests - conflict with active sync requests.
2768  *
2769  * This is achieved by tracking pending requests and a 'barrier' concept
2770  * that can be installed to exclude normal IO requests.
2771  */
2772 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2773 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2774 				   sector_t max_sector, int *skipped)
2775 {
2776 	struct r1conf *conf = mddev->private;
2777 	struct r1bio *r1_bio;
2778 	struct bio *bio;
2779 	sector_t nr_sectors;
2780 	int disk = -1;
2781 	int i;
2782 	int wonly = -1;
2783 	int write_targets = 0, read_targets = 0;
2784 	sector_t sync_blocks;
2785 	bool still_degraded = false;
2786 	int good_sectors = RESYNC_SECTORS;
2787 	int min_bad = 0; /* number of sectors that are bad in all devices */
2788 	int idx = sector_to_idx(sector_nr);
2789 	int page_idx = 0;
2790 
2791 	if (!mempool_initialized(&conf->r1buf_pool))
2792 		if (init_resync(conf))
2793 			return 0;
2794 
2795 	if (sector_nr >= max_sector) {
2796 		/* If we aborted, we need to abort the
2797 		 * sync on the 'current' bitmap chunk (there will
2798 		 * only be one in raid1 resync.
2799 		 * We can find the current addess in mddev->curr_resync
2800 		 */
2801 		if (mddev->curr_resync < max_sector) /* aborted */
2802 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2803 						    &sync_blocks);
2804 		else /* completed sync */
2805 			conf->fullsync = 0;
2806 
2807 		mddev->bitmap_ops->close_sync(mddev);
2808 		close_sync(conf);
2809 
2810 		if (mddev_is_clustered(mddev)) {
2811 			conf->cluster_sync_low = 0;
2812 			conf->cluster_sync_high = 0;
2813 		}
2814 		return 0;
2815 	}
2816 
2817 	if (mddev->bitmap == NULL &&
2818 	    mddev->recovery_cp == MaxSector &&
2819 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2820 	    conf->fullsync == 0) {
2821 		*skipped = 1;
2822 		return max_sector - sector_nr;
2823 	}
2824 	/* before building a request, check if we can skip these blocks..
2825 	 * This call the bitmap_start_sync doesn't actually record anything
2826 	 */
2827 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2828 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2829 		/* We can skip this block, and probably several more */
2830 		*skipped = 1;
2831 		return sync_blocks;
2832 	}
2833 
2834 	/*
2835 	 * If there is non-resync activity waiting for a turn, then let it
2836 	 * though before starting on this new sync request.
2837 	 */
2838 	if (atomic_read(&conf->nr_waiting[idx]))
2839 		schedule_timeout_uninterruptible(1);
2840 
2841 	/* we are incrementing sector_nr below. To be safe, we check against
2842 	 * sector_nr + two times RESYNC_SECTORS
2843 	 */
2844 
2845 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2846 		mddev_is_clustered(mddev) &&
2847 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2848 
2849 	if (raise_barrier(conf, sector_nr))
2850 		return 0;
2851 
2852 	r1_bio = raid1_alloc_init_r1buf(conf);
2853 
2854 	/*
2855 	 * If we get a correctably read error during resync or recovery,
2856 	 * we might want to read from a different device.  So we
2857 	 * flag all drives that could conceivably be read from for READ,
2858 	 * and any others (which will be non-In_sync devices) for WRITE.
2859 	 * If a read fails, we try reading from something else for which READ
2860 	 * is OK.
2861 	 */
2862 
2863 	r1_bio->mddev = mddev;
2864 	r1_bio->sector = sector_nr;
2865 	r1_bio->state = 0;
2866 	set_bit(R1BIO_IsSync, &r1_bio->state);
2867 	/* make sure good_sectors won't go across barrier unit boundary */
2868 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2869 
2870 	for (i = 0; i < conf->raid_disks * 2; i++) {
2871 		struct md_rdev *rdev;
2872 		bio = r1_bio->bios[i];
2873 
2874 		rdev = conf->mirrors[i].rdev;
2875 		if (rdev == NULL ||
2876 		    test_bit(Faulty, &rdev->flags)) {
2877 			if (i < conf->raid_disks)
2878 				still_degraded = true;
2879 		} else if (!test_bit(In_sync, &rdev->flags)) {
2880 			bio->bi_opf = REQ_OP_WRITE;
2881 			bio->bi_end_io = end_sync_write;
2882 			write_targets ++;
2883 		} else {
2884 			/* may need to read from here */
2885 			sector_t first_bad = MaxSector;
2886 			sector_t bad_sectors;
2887 
2888 			if (is_badblock(rdev, sector_nr, good_sectors,
2889 					&first_bad, &bad_sectors)) {
2890 				if (first_bad > sector_nr)
2891 					good_sectors = first_bad - sector_nr;
2892 				else {
2893 					bad_sectors -= (sector_nr - first_bad);
2894 					if (min_bad == 0 ||
2895 					    min_bad > bad_sectors)
2896 						min_bad = bad_sectors;
2897 				}
2898 			}
2899 			if (sector_nr < first_bad) {
2900 				if (test_bit(WriteMostly, &rdev->flags)) {
2901 					if (wonly < 0)
2902 						wonly = i;
2903 				} else {
2904 					if (disk < 0)
2905 						disk = i;
2906 				}
2907 				bio->bi_opf = REQ_OP_READ;
2908 				bio->bi_end_io = end_sync_read;
2909 				read_targets++;
2910 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2911 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2912 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2913 				/*
2914 				 * The device is suitable for reading (InSync),
2915 				 * but has bad block(s) here. Let's try to correct them,
2916 				 * if we are doing resync or repair. Otherwise, leave
2917 				 * this device alone for this sync request.
2918 				 */
2919 				bio->bi_opf = REQ_OP_WRITE;
2920 				bio->bi_end_io = end_sync_write;
2921 				write_targets++;
2922 			}
2923 		}
2924 		if (rdev && bio->bi_end_io) {
2925 			atomic_inc(&rdev->nr_pending);
2926 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2927 			bio_set_dev(bio, rdev->bdev);
2928 			if (test_bit(FailFast, &rdev->flags))
2929 				bio->bi_opf |= MD_FAILFAST;
2930 		}
2931 	}
2932 	if (disk < 0)
2933 		disk = wonly;
2934 	r1_bio->read_disk = disk;
2935 
2936 	if (read_targets == 0 && min_bad > 0) {
2937 		/* These sectors are bad on all InSync devices, so we
2938 		 * need to mark them bad on all write targets
2939 		 */
2940 		int ok = 1;
2941 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2942 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2943 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2944 				ok = rdev_set_badblocks(rdev, sector_nr,
2945 							min_bad, 0
2946 					) && ok;
2947 			}
2948 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2949 		*skipped = 1;
2950 		put_buf(r1_bio);
2951 
2952 		if (!ok) {
2953 			/* Cannot record the badblocks, so need to
2954 			 * abort the resync.
2955 			 * If there are multiple read targets, could just
2956 			 * fail the really bad ones ???
2957 			 */
2958 			conf->recovery_disabled = mddev->recovery_disabled;
2959 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2960 			return 0;
2961 		} else
2962 			return min_bad;
2963 
2964 	}
2965 	if (min_bad > 0 && min_bad < good_sectors) {
2966 		/* only resync enough to reach the next bad->good
2967 		 * transition */
2968 		good_sectors = min_bad;
2969 	}
2970 
2971 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2972 		/* extra read targets are also write targets */
2973 		write_targets += read_targets-1;
2974 
2975 	if (write_targets == 0 || read_targets == 0) {
2976 		/* There is nowhere to write, so all non-sync
2977 		 * drives must be failed - so we are finished
2978 		 */
2979 		sector_t rv;
2980 		if (min_bad > 0)
2981 			max_sector = sector_nr + min_bad;
2982 		rv = max_sector - sector_nr;
2983 		*skipped = 1;
2984 		put_buf(r1_bio);
2985 		return rv;
2986 	}
2987 
2988 	if (max_sector > mddev->resync_max)
2989 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990 	if (max_sector > sector_nr + good_sectors)
2991 		max_sector = sector_nr + good_sectors;
2992 	nr_sectors = 0;
2993 	sync_blocks = 0;
2994 	do {
2995 		struct page *page;
2996 		int len = PAGE_SIZE;
2997 		if (sector_nr + (len>>9) > max_sector)
2998 			len = (max_sector - sector_nr) << 9;
2999 		if (len == 0)
3000 			break;
3001 		if (sync_blocks == 0) {
3002 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3003 						&sync_blocks, still_degraded) &&
3004 			    !conf->fullsync &&
3005 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3006 				break;
3007 			if ((len >> 9) > sync_blocks)
3008 				len = sync_blocks<<9;
3009 		}
3010 
3011 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3012 			struct resync_pages *rp;
3013 
3014 			bio = r1_bio->bios[i];
3015 			rp = get_resync_pages(bio);
3016 			if (bio->bi_end_io) {
3017 				page = resync_fetch_page(rp, page_idx);
3018 
3019 				/*
3020 				 * won't fail because the vec table is big
3021 				 * enough to hold all these pages
3022 				 */
3023 				__bio_add_page(bio, page, len, 0);
3024 			}
3025 		}
3026 		nr_sectors += len>>9;
3027 		sector_nr += len>>9;
3028 		sync_blocks -= (len>>9);
3029 	} while (++page_idx < RESYNC_PAGES);
3030 
3031 	r1_bio->sectors = nr_sectors;
3032 
3033 	if (mddev_is_clustered(mddev) &&
3034 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3035 		conf->cluster_sync_low = mddev->curr_resync_completed;
3036 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3037 		/* Send resync message */
3038 		mddev->cluster_ops->resync_info_update(mddev,
3039 						       conf->cluster_sync_low,
3040 						       conf->cluster_sync_high);
3041 	}
3042 
3043 	/* For a user-requested sync, we read all readable devices and do a
3044 	 * compare
3045 	 */
3046 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3047 		atomic_set(&r1_bio->remaining, read_targets);
3048 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3049 			bio = r1_bio->bios[i];
3050 			if (bio->bi_end_io == end_sync_read) {
3051 				read_targets--;
3052 				md_sync_acct_bio(bio, nr_sectors);
3053 				if (read_targets == 1)
3054 					bio->bi_opf &= ~MD_FAILFAST;
3055 				submit_bio_noacct(bio);
3056 			}
3057 		}
3058 	} else {
3059 		atomic_set(&r1_bio->remaining, 1);
3060 		bio = r1_bio->bios[r1_bio->read_disk];
3061 		md_sync_acct_bio(bio, nr_sectors);
3062 		if (read_targets == 1)
3063 			bio->bi_opf &= ~MD_FAILFAST;
3064 		submit_bio_noacct(bio);
3065 	}
3066 	return nr_sectors;
3067 }
3068 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3069 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3070 {
3071 	if (sectors)
3072 		return sectors;
3073 
3074 	return mddev->dev_sectors;
3075 }
3076 
setup_conf(struct mddev * mddev)3077 static struct r1conf *setup_conf(struct mddev *mddev)
3078 {
3079 	struct r1conf *conf;
3080 	int i;
3081 	struct raid1_info *disk;
3082 	struct md_rdev *rdev;
3083 	int err = -ENOMEM;
3084 
3085 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3086 	if (!conf)
3087 		goto abort;
3088 
3089 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3090 				   sizeof(atomic_t), GFP_KERNEL);
3091 	if (!conf->nr_pending)
3092 		goto abort;
3093 
3094 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3095 				   sizeof(atomic_t), GFP_KERNEL);
3096 	if (!conf->nr_waiting)
3097 		goto abort;
3098 
3099 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3100 				  sizeof(atomic_t), GFP_KERNEL);
3101 	if (!conf->nr_queued)
3102 		goto abort;
3103 
3104 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3105 				sizeof(atomic_t), GFP_KERNEL);
3106 	if (!conf->barrier)
3107 		goto abort;
3108 
3109 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3110 					    mddev->raid_disks, 2),
3111 				GFP_KERNEL);
3112 	if (!conf->mirrors)
3113 		goto abort;
3114 
3115 	conf->tmppage = alloc_page(GFP_KERNEL);
3116 	if (!conf->tmppage)
3117 		goto abort;
3118 
3119 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3120 	if (!conf->poolinfo)
3121 		goto abort;
3122 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3123 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3124 			   rbio_pool_free, conf->poolinfo);
3125 	if (err)
3126 		goto abort;
3127 
3128 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3129 	if (err)
3130 		goto abort;
3131 
3132 	conf->poolinfo->mddev = mddev;
3133 
3134 	err = -EINVAL;
3135 	spin_lock_init(&conf->device_lock);
3136 	conf->raid_disks = mddev->raid_disks;
3137 	rdev_for_each(rdev, mddev) {
3138 		int disk_idx = rdev->raid_disk;
3139 
3140 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3141 			continue;
3142 
3143 		if (!raid1_add_conf(conf, rdev, disk_idx,
3144 				    test_bit(Replacement, &rdev->flags)))
3145 			goto abort;
3146 	}
3147 	conf->mddev = mddev;
3148 	INIT_LIST_HEAD(&conf->retry_list);
3149 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3150 
3151 	spin_lock_init(&conf->resync_lock);
3152 	init_waitqueue_head(&conf->wait_barrier);
3153 
3154 	bio_list_init(&conf->pending_bio_list);
3155 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3156 
3157 	err = -EIO;
3158 	for (i = 0; i < conf->raid_disks * 2; i++) {
3159 
3160 		disk = conf->mirrors + i;
3161 
3162 		if (i < conf->raid_disks &&
3163 		    disk[conf->raid_disks].rdev) {
3164 			/* This slot has a replacement. */
3165 			if (!disk->rdev) {
3166 				/* No original, just make the replacement
3167 				 * a recovering spare
3168 				 */
3169 				disk->rdev =
3170 					disk[conf->raid_disks].rdev;
3171 				disk[conf->raid_disks].rdev = NULL;
3172 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3173 				/* Original is not in_sync - bad */
3174 				goto abort;
3175 		}
3176 
3177 		if (!disk->rdev ||
3178 		    !test_bit(In_sync, &disk->rdev->flags)) {
3179 			disk->head_position = 0;
3180 			if (disk->rdev &&
3181 			    (disk->rdev->saved_raid_disk < 0))
3182 				conf->fullsync = 1;
3183 		}
3184 	}
3185 
3186 	err = -ENOMEM;
3187 	rcu_assign_pointer(conf->thread,
3188 			   md_register_thread(raid1d, mddev, "raid1"));
3189 	if (!conf->thread)
3190 		goto abort;
3191 
3192 	return conf;
3193 
3194  abort:
3195 	if (conf) {
3196 		mempool_exit(&conf->r1bio_pool);
3197 		kfree(conf->mirrors);
3198 		safe_put_page(conf->tmppage);
3199 		kfree(conf->poolinfo);
3200 		kfree(conf->nr_pending);
3201 		kfree(conf->nr_waiting);
3202 		kfree(conf->nr_queued);
3203 		kfree(conf->barrier);
3204 		bioset_exit(&conf->bio_split);
3205 		kfree(conf);
3206 	}
3207 	return ERR_PTR(err);
3208 }
3209 
raid1_set_limits(struct mddev * mddev)3210 static int raid1_set_limits(struct mddev *mddev)
3211 {
3212 	struct queue_limits lim;
3213 	int err;
3214 
3215 	md_init_stacking_limits(&lim);
3216 	lim.max_write_zeroes_sectors = 0;
3217 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
3218 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3219 	if (err)
3220 		return err;
3221 	return queue_limits_set(mddev->gendisk->queue, &lim);
3222 }
3223 
raid1_run(struct mddev * mddev)3224 static int raid1_run(struct mddev *mddev)
3225 {
3226 	struct r1conf *conf;
3227 	int i;
3228 	int ret;
3229 
3230 	if (mddev->level != 1) {
3231 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3232 			mdname(mddev), mddev->level);
3233 		return -EIO;
3234 	}
3235 	if (mddev->reshape_position != MaxSector) {
3236 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3237 			mdname(mddev));
3238 		return -EIO;
3239 	}
3240 
3241 	/*
3242 	 * copy the already verified devices into our private RAID1
3243 	 * bookkeeping area. [whatever we allocate in run(),
3244 	 * should be freed in raid1_free()]
3245 	 */
3246 	if (mddev->private == NULL)
3247 		conf = setup_conf(mddev);
3248 	else
3249 		conf = mddev->private;
3250 
3251 	if (IS_ERR(conf))
3252 		return PTR_ERR(conf);
3253 
3254 	if (!mddev_is_dm(mddev)) {
3255 		ret = raid1_set_limits(mddev);
3256 		if (ret) {
3257 			if (!mddev->private)
3258 				raid1_free(mddev, conf);
3259 			return ret;
3260 		}
3261 	}
3262 
3263 	mddev->degraded = 0;
3264 	for (i = 0; i < conf->raid_disks; i++)
3265 		if (conf->mirrors[i].rdev == NULL ||
3266 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3267 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3268 			mddev->degraded++;
3269 	/*
3270 	 * RAID1 needs at least one disk in active
3271 	 */
3272 	if (conf->raid_disks - mddev->degraded < 1) {
3273 		md_unregister_thread(mddev, &conf->thread);
3274 		if (!mddev->private)
3275 			raid1_free(mddev, conf);
3276 		return -EINVAL;
3277 	}
3278 
3279 	if (conf->raid_disks - mddev->degraded == 1)
3280 		mddev->recovery_cp = MaxSector;
3281 
3282 	if (mddev->recovery_cp != MaxSector)
3283 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3284 			mdname(mddev));
3285 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3286 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3287 		mddev->raid_disks);
3288 
3289 	/*
3290 	 * Ok, everything is just fine now
3291 	 */
3292 	rcu_assign_pointer(mddev->thread, conf->thread);
3293 	rcu_assign_pointer(conf->thread, NULL);
3294 	mddev->private = conf;
3295 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3296 
3297 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3298 
3299 	ret = md_integrity_register(mddev);
3300 	if (ret)
3301 		md_unregister_thread(mddev, &mddev->thread);
3302 	return ret;
3303 }
3304 
raid1_free(struct mddev * mddev,void * priv)3305 static void raid1_free(struct mddev *mddev, void *priv)
3306 {
3307 	struct r1conf *conf = priv;
3308 
3309 	mempool_exit(&conf->r1bio_pool);
3310 	kfree(conf->mirrors);
3311 	safe_put_page(conf->tmppage);
3312 	kfree(conf->poolinfo);
3313 	kfree(conf->nr_pending);
3314 	kfree(conf->nr_waiting);
3315 	kfree(conf->nr_queued);
3316 	kfree(conf->barrier);
3317 	bioset_exit(&conf->bio_split);
3318 	kfree(conf);
3319 }
3320 
raid1_resize(struct mddev * mddev,sector_t sectors)3321 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3322 {
3323 	/* no resync is happening, and there is enough space
3324 	 * on all devices, so we can resize.
3325 	 * We need to make sure resync covers any new space.
3326 	 * If the array is shrinking we should possibly wait until
3327 	 * any io in the removed space completes, but it hardly seems
3328 	 * worth it.
3329 	 */
3330 	sector_t newsize = raid1_size(mddev, sectors, 0);
3331 	int ret;
3332 
3333 	if (mddev->external_size &&
3334 	    mddev->array_sectors > newsize)
3335 		return -EINVAL;
3336 
3337 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3338 	if (ret)
3339 		return ret;
3340 
3341 	md_set_array_sectors(mddev, newsize);
3342 	if (sectors > mddev->dev_sectors &&
3343 	    mddev->recovery_cp > mddev->dev_sectors) {
3344 		mddev->recovery_cp = mddev->dev_sectors;
3345 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346 	}
3347 	mddev->dev_sectors = sectors;
3348 	mddev->resync_max_sectors = sectors;
3349 	return 0;
3350 }
3351 
raid1_reshape(struct mddev * mddev)3352 static int raid1_reshape(struct mddev *mddev)
3353 {
3354 	/* We need to:
3355 	 * 1/ resize the r1bio_pool
3356 	 * 2/ resize conf->mirrors
3357 	 *
3358 	 * We allocate a new r1bio_pool if we can.
3359 	 * Then raise a device barrier and wait until all IO stops.
3360 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3361 	 *
3362 	 * At the same time, we "pack" the devices so that all the missing
3363 	 * devices have the higher raid_disk numbers.
3364 	 */
3365 	mempool_t newpool, oldpool;
3366 	struct pool_info *newpoolinfo;
3367 	struct raid1_info *newmirrors;
3368 	struct r1conf *conf = mddev->private;
3369 	int cnt, raid_disks;
3370 	unsigned long flags;
3371 	int d, d2;
3372 	int ret;
3373 
3374 	memset(&newpool, 0, sizeof(newpool));
3375 	memset(&oldpool, 0, sizeof(oldpool));
3376 
3377 	/* Cannot change chunk_size, layout, or level */
3378 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3379 	    mddev->layout != mddev->new_layout ||
3380 	    mddev->level != mddev->new_level) {
3381 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3382 		mddev->new_layout = mddev->layout;
3383 		mddev->new_level = mddev->level;
3384 		return -EINVAL;
3385 	}
3386 
3387 	if (!mddev_is_clustered(mddev))
3388 		md_allow_write(mddev);
3389 
3390 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3391 
3392 	if (raid_disks < conf->raid_disks) {
3393 		cnt=0;
3394 		for (d= 0; d < conf->raid_disks; d++)
3395 			if (conf->mirrors[d].rdev)
3396 				cnt++;
3397 		if (cnt > raid_disks)
3398 			return -EBUSY;
3399 	}
3400 
3401 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3402 	if (!newpoolinfo)
3403 		return -ENOMEM;
3404 	newpoolinfo->mddev = mddev;
3405 	newpoolinfo->raid_disks = raid_disks * 2;
3406 
3407 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3408 			   rbio_pool_free, newpoolinfo);
3409 	if (ret) {
3410 		kfree(newpoolinfo);
3411 		return ret;
3412 	}
3413 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3414 					 raid_disks, 2),
3415 			     GFP_KERNEL);
3416 	if (!newmirrors) {
3417 		kfree(newpoolinfo);
3418 		mempool_exit(&newpool);
3419 		return -ENOMEM;
3420 	}
3421 
3422 	freeze_array(conf, 0);
3423 
3424 	/* ok, everything is stopped */
3425 	oldpool = conf->r1bio_pool;
3426 	conf->r1bio_pool = newpool;
3427 
3428 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3429 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3430 		if (rdev && rdev->raid_disk != d2) {
3431 			sysfs_unlink_rdev(mddev, rdev);
3432 			rdev->raid_disk = d2;
3433 			sysfs_unlink_rdev(mddev, rdev);
3434 			if (sysfs_link_rdev(mddev, rdev))
3435 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3436 					mdname(mddev), rdev->raid_disk);
3437 		}
3438 		if (rdev)
3439 			newmirrors[d2++].rdev = rdev;
3440 	}
3441 	kfree(conf->mirrors);
3442 	conf->mirrors = newmirrors;
3443 	kfree(conf->poolinfo);
3444 	conf->poolinfo = newpoolinfo;
3445 
3446 	spin_lock_irqsave(&conf->device_lock, flags);
3447 	mddev->degraded += (raid_disks - conf->raid_disks);
3448 	spin_unlock_irqrestore(&conf->device_lock, flags);
3449 	conf->raid_disks = mddev->raid_disks = raid_disks;
3450 	mddev->delta_disks = 0;
3451 
3452 	unfreeze_array(conf);
3453 
3454 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3455 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3456 	md_wakeup_thread(mddev->thread);
3457 
3458 	mempool_exit(&oldpool);
3459 	return 0;
3460 }
3461 
raid1_quiesce(struct mddev * mddev,int quiesce)3462 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3463 {
3464 	struct r1conf *conf = mddev->private;
3465 
3466 	if (quiesce)
3467 		freeze_array(conf, 0);
3468 	else
3469 		unfreeze_array(conf);
3470 }
3471 
raid1_takeover(struct mddev * mddev)3472 static void *raid1_takeover(struct mddev *mddev)
3473 {
3474 	/* raid1 can take over:
3475 	 *  raid5 with 2 devices, any layout or chunk size
3476 	 */
3477 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3478 		struct r1conf *conf;
3479 		mddev->new_level = 1;
3480 		mddev->new_layout = 0;
3481 		mddev->new_chunk_sectors = 0;
3482 		conf = setup_conf(mddev);
3483 		if (!IS_ERR(conf)) {
3484 			/* Array must appear to be quiesced */
3485 			conf->array_frozen = 1;
3486 			mddev_clear_unsupported_flags(mddev,
3487 				UNSUPPORTED_MDDEV_FLAGS);
3488 		}
3489 		return conf;
3490 	}
3491 	return ERR_PTR(-EINVAL);
3492 }
3493 
3494 static struct md_personality raid1_personality =
3495 {
3496 	.head = {
3497 		.type	= MD_PERSONALITY,
3498 		.id	= ID_RAID1,
3499 		.name	= "raid1",
3500 		.owner	= THIS_MODULE,
3501 	},
3502 
3503 	.make_request	= raid1_make_request,
3504 	.run		= raid1_run,
3505 	.free		= raid1_free,
3506 	.status		= raid1_status,
3507 	.error_handler	= raid1_error,
3508 	.hot_add_disk	= raid1_add_disk,
3509 	.hot_remove_disk= raid1_remove_disk,
3510 	.spare_active	= raid1_spare_active,
3511 	.sync_request	= raid1_sync_request,
3512 	.resize		= raid1_resize,
3513 	.size		= raid1_size,
3514 	.check_reshape	= raid1_reshape,
3515 	.quiesce	= raid1_quiesce,
3516 	.takeover	= raid1_takeover,
3517 };
3518 
raid1_init(void)3519 static int __init raid1_init(void)
3520 {
3521 	return register_md_submodule(&raid1_personality.head);
3522 }
3523 
raid1_exit(void)3524 static void __exit raid1_exit(void)
3525 {
3526 	unregister_md_submodule(&raid1_personality.head);
3527 }
3528 
3529 module_init(raid1_init);
3530 module_exit(raid1_exit);
3531 MODULE_LICENSE("GPL");
3532 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3533 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3534 MODULE_ALIAS("md-raid1");
3535 MODULE_ALIAS("md-level-1");
3536