xref: /linux/kernel/printk/printk_ringbuffer.h (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #ifndef _KERNEL_PRINTK_RINGBUFFER_H
4 #define _KERNEL_PRINTK_RINGBUFFER_H
5 
6 #include <linux/atomic.h>
7 #include <linux/bits.h>
8 #include <linux/dev_printk.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 
12 /*
13  * Meta information about each stored message.
14  *
15  * All fields are set by the printk code except for @seq, which is
16  * set by the ringbuffer code.
17  */
18 struct printk_info {
19 	u64	seq;		/* sequence number */
20 	u64	ts_nsec;	/* timestamp in nanoseconds */
21 	u16	text_len;	/* length of text message */
22 	u8	facility;	/* syslog facility */
23 	u8	flags:5;	/* internal record flags */
24 	u8	level:3;	/* syslog level */
25 	u32	caller_id;	/* thread id or processor id */
26 
27 	struct dev_printk_info	dev_info;
28 };
29 
30 /*
31  * A structure providing the buffers, used by writers and readers.
32  *
33  * Writers:
34  * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling
35  * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to
36  * buffers reserved for that writer.
37  *
38  * Readers:
39  * Using prb_rec_init_rd(), a reader sets all fields before calling
40  * prb_read_valid(). Note that the reader provides the @info and @text_buf,
41  * buffers. On success, the struct pointed to by @info will be filled and
42  * the char array pointed to by @text_buf will be filled with text data.
43  */
44 struct printk_record {
45 	struct printk_info	*info;
46 	char			*text_buf;
47 	unsigned int		text_buf_size;
48 };
49 
50 /* Specifies the logical position and span of a data block. */
51 struct prb_data_blk_lpos {
52 	unsigned long	begin;
53 	unsigned long	next;
54 };
55 
56 /*
57  * A descriptor: the complete meta-data for a record.
58  *
59  * @state_var: A bitwise combination of descriptor ID and descriptor state.
60  */
61 struct prb_desc {
62 	atomic_long_t			state_var;
63 	struct prb_data_blk_lpos	text_blk_lpos;
64 };
65 
66 /* A ringbuffer of "ID + data" elements. */
67 struct prb_data_ring {
68 	unsigned int	size_bits;
69 	char		*data;
70 	atomic_long_t	head_lpos;
71 	atomic_long_t	tail_lpos;
72 };
73 
74 /* A ringbuffer of "struct prb_desc" elements. */
75 struct prb_desc_ring {
76 	unsigned int		count_bits;
77 	struct prb_desc		*descs;
78 	struct printk_info	*infos;
79 	atomic_long_t		head_id;
80 	atomic_long_t		tail_id;
81 	atomic_long_t		last_finalized_seq;
82 };
83 
84 /*
85  * The high level structure representing the printk ringbuffer.
86  *
87  * @fail: Count of failed prb_reserve() calls where not even a data-less
88  *        record was created.
89  */
90 struct printk_ringbuffer {
91 	struct prb_desc_ring	desc_ring;
92 	struct prb_data_ring	text_data_ring;
93 	atomic_long_t		fail;
94 };
95 
96 /*
97  * Used by writers as a reserve/commit handle.
98  *
99  * @rb:         Ringbuffer where the entry is reserved.
100  * @irqflags:   Saved irq flags to restore on entry commit.
101  * @id:         ID of the reserved descriptor.
102  * @text_space: Total occupied buffer space in the text data ring, including
103  *              ID, alignment padding, and wrapping data blocks.
104  *
105  * This structure is an opaque handle for writers. Its contents are only
106  * to be used by the ringbuffer implementation.
107  */
108 struct prb_reserved_entry {
109 	struct printk_ringbuffer	*rb;
110 	unsigned long			irqflags;
111 	unsigned long			id;
112 	unsigned int			text_space;
113 };
114 
115 /* The possible responses of a descriptor state-query. */
116 enum desc_state {
117 	desc_miss	=  -1,	/* ID mismatch (pseudo state) */
118 	desc_reserved	= 0x0,	/* reserved, in use by writer */
119 	desc_committed	= 0x1,	/* committed by writer, could get reopened */
120 	desc_finalized	= 0x2,	/* committed, no further modification allowed */
121 	desc_reusable	= 0x3,	/* free, not yet used by any writer */
122 };
123 
124 #define _DATA_SIZE(sz_bits)	(1UL << (sz_bits))
125 #define _DESCS_COUNT(ct_bits)	(1U << (ct_bits))
126 #define DESC_SV_BITS		BITS_PER_LONG
127 #define DESC_FLAGS_SHIFT	(DESC_SV_BITS - 2)
128 #define DESC_FLAGS_MASK		(3UL << DESC_FLAGS_SHIFT)
129 #define DESC_STATE(sv)		(3UL & (sv >> DESC_FLAGS_SHIFT))
130 #define DESC_SV(id, state)	(((unsigned long)state << DESC_FLAGS_SHIFT) | id)
131 #define DESC_ID_MASK		(~DESC_FLAGS_MASK)
132 #define DESC_ID(sv)		((sv) & DESC_ID_MASK)
133 
134 /*
135  * Special data block logical position values (for fields of
136  * @prb_desc.text_blk_lpos).
137  *
138  * - Bit0 is used to identify if the record has no data block. (Implemented in
139  *   the LPOS_DATALESS() macro.)
140  *
141  * - Bit1 specifies the reason for not having a data block.
142  *
143  * These special values could never be real lpos values because of the
144  * meta data and alignment padding of data blocks. (See to_blk_size() for
145  * details.)
146  */
147 #define FAILED_LPOS		0x1
148 #define EMPTY_LINE_LPOS		0x3
149 
150 #define FAILED_BLK_LPOS	\
151 {				\
152 	.begin	= FAILED_LPOS,	\
153 	.next	= FAILED_LPOS,	\
154 }
155 
156 /*
157  * Descriptor Bootstrap
158  *
159  * The descriptor array is minimally initialized to allow immediate usage
160  * by readers and writers. The requirements that the descriptor array
161  * initialization must satisfy:
162  *
163  *   Req1
164  *     The tail must point to an existing (committed or reusable) descriptor.
165  *     This is required by the implementation of prb_first_seq().
166  *
167  *   Req2
168  *     Readers must see that the ringbuffer is initially empty.
169  *
170  *   Req3
171  *     The first record reserved by a writer is assigned sequence number 0.
172  *
173  * To satisfy Req1, the tail initially points to a descriptor that is
174  * minimally initialized (having no data block, i.e. data-less with the
175  * data block's lpos @begin and @next values set to FAILED_LPOS).
176  *
177  * To satisfy Req2, the initial tail descriptor is initialized to the
178  * reusable state. Readers recognize reusable descriptors as existing
179  * records, but skip over them.
180  *
181  * To satisfy Req3, the last descriptor in the array is used as the initial
182  * head (and tail) descriptor. This allows the first record reserved by a
183  * writer (head + 1) to be the first descriptor in the array. (Only the first
184  * descriptor in the array could have a valid sequence number of 0.)
185  *
186  * The first time a descriptor is reserved, it is assigned a sequence number
187  * with the value of the array index. A "first time reserved" descriptor can
188  * be recognized because it has a sequence number of 0 but does not have an
189  * index of 0. (Only the first descriptor in the array could have a valid
190  * sequence number of 0.) After the first reservation, all future reservations
191  * (recycling) simply involve incrementing the sequence number by the array
192  * count.
193  *
194  *   Hack #1
195  *     Only the first descriptor in the array is allowed to have the sequence
196  *     number 0. In this case it is not possible to recognize if it is being
197  *     reserved the first time (set to index value) or has been reserved
198  *     previously (increment by the array count). This is handled by _always_
199  *     incrementing the sequence number by the array count when reserving the
200  *     first descriptor in the array. In order to satisfy Req3, the sequence
201  *     number of the first descriptor in the array is initialized to minus
202  *     the array count. Then, upon the first reservation, it is incremented
203  *     to 0, thus satisfying Req3.
204  *
205  *   Hack #2
206  *     prb_first_seq() can be called at any time by readers to retrieve the
207  *     sequence number of the tail descriptor. However, due to Req2 and Req3,
208  *     initially there are no records to report the sequence number of
209  *     (sequence numbers are u64 and there is nothing less than 0). To handle
210  *     this, the sequence number of the initial tail descriptor is initialized
211  *     to 0. Technically this is incorrect, because there is no record with
212  *     sequence number 0 (yet) and the tail descriptor is not the first
213  *     descriptor in the array. But it allows prb_read_valid() to correctly
214  *     report the existence of a record for _any_ given sequence number at all
215  *     times. Bootstrapping is complete when the tail is pushed the first
216  *     time, thus finally pointing to the first descriptor reserved by a
217  *     writer, which has the assigned sequence number 0.
218  */
219 
220 /*
221  * Initiating Logical Value Overflows
222  *
223  * Both logical position (lpos) and ID values can be mapped to array indexes
224  * but may experience overflows during the lifetime of the system. To ensure
225  * that printk_ringbuffer can handle the overflows for these types, initial
226  * values are chosen that map to the correct initial array indexes, but will
227  * result in overflows soon.
228  *
229  *   BLK0_LPOS
230  *     The initial @head_lpos and @tail_lpos for data rings. It is at index
231  *     0 and the lpos value is such that it will overflow on the first wrap.
232  *
233  *   DESC0_ID
234  *     The initial @head_id and @tail_id for the desc ring. It is at the last
235  *     index of the descriptor array (see Req3 above) and the ID value is such
236  *     that it will overflow on the second wrap.
237  */
238 #define BLK0_LPOS(sz_bits)	(-(_DATA_SIZE(sz_bits)))
239 #define DESC0_ID(ct_bits)	DESC_ID(-(_DESCS_COUNT(ct_bits) + 1))
240 #define DESC0_SV(ct_bits)	DESC_SV(DESC0_ID(ct_bits), desc_reusable)
241 
242 /*
243  * Define a ringbuffer with an external text data buffer. The same as
244  * DEFINE_PRINTKRB() but requires specifying an external buffer for the
245  * text data.
246  *
247  * Note: The specified external buffer must be of the size:
248  *       2 ^ (descbits + avgtextbits)
249  */
250 #define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf)			\
251 static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = {				\
252 	/* the initial head and tail */								\
253 	[_DESCS_COUNT(descbits) - 1] = {							\
254 		/* reusable */									\
255 		.state_var	= ATOMIC_INIT(DESC0_SV(descbits)),				\
256 		/* no associated data block */							\
257 		.text_blk_lpos	= FAILED_BLK_LPOS,						\
258 	},											\
259 };												\
260 static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = {				\
261 	/* this will be the first record reserved by a writer */				\
262 	[0] = {											\
263 		/* will be incremented to 0 on the first reservation */				\
264 		.seq = -(u64)_DESCS_COUNT(descbits),						\
265 	},											\
266 	/* the initial head and tail */								\
267 	[_DESCS_COUNT(descbits) - 1] = {							\
268 		/* reports the first seq value during the bootstrap phase */			\
269 		.seq = 0,									\
270 	},											\
271 };												\
272 static struct printk_ringbuffer name = {							\
273 	.desc_ring = {										\
274 		.count_bits	= descbits,							\
275 		.descs		= &_##name##_descs[0],						\
276 		.infos		= &_##name##_infos[0],						\
277 		.head_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
278 		.tail_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
279 		.last_finalized_seq = ATOMIC_INIT(0),						\
280 	},											\
281 	.text_data_ring = {									\
282 		.size_bits	= (avgtextbits) + (descbits),					\
283 		.data		= text_buf,							\
284 		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
285 		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
286 	},											\
287 	.fail			= ATOMIC_LONG_INIT(0),						\
288 }
289 
290 /**
291  * DEFINE_PRINTKRB() - Define a ringbuffer.
292  *
293  * @name:        The name of the ringbuffer variable.
294  * @descbits:    The number of descriptors as a power-of-2 value.
295  * @avgtextbits: The average text data size per record as a power-of-2 value.
296  *
297  * This is a macro for defining a ringbuffer and all internal structures
298  * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a
299  * variant where the text data buffer can be specified externally.
300  */
301 #define DEFINE_PRINTKRB(name, descbits, avgtextbits)				\
302 static char _##name##_text[1U << ((avgtextbits) + (descbits))]			\
303 			__aligned(__alignof__(unsigned long));			\
304 _DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0])
305 
306 /* Writer Interface */
307 
308 /**
309  * prb_rec_init_wr() - Initialize a buffer for writing records.
310  *
311  * @r:             The record to initialize.
312  * @text_buf_size: The needed text buffer size.
313  */
prb_rec_init_wr(struct printk_record * r,unsigned int text_buf_size)314 static inline void prb_rec_init_wr(struct printk_record *r,
315 				   unsigned int text_buf_size)
316 {
317 	r->info = NULL;
318 	r->text_buf = NULL;
319 	r->text_buf_size = text_buf_size;
320 }
321 
322 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
323 		 struct printk_record *r);
324 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
325 			 struct printk_record *r, u32 caller_id, unsigned int max_size);
326 void prb_commit(struct prb_reserved_entry *e);
327 void prb_final_commit(struct prb_reserved_entry *e);
328 
329 void prb_init(struct printk_ringbuffer *rb,
330 	      char *text_buf, unsigned int text_buf_size,
331 	      struct prb_desc *descs, unsigned int descs_count_bits,
332 	      struct printk_info *infos);
333 unsigned int prb_record_text_space(struct prb_reserved_entry *e);
334 
335 /* Reader Interface */
336 
337 /**
338  * prb_rec_init_rd() - Initialize a buffer for reading records.
339  *
340  * @r:             The record to initialize.
341  * @info:          A buffer to store record meta-data.
342  * @text_buf:      A buffer to store text data.
343  * @text_buf_size: The size of @text_buf.
344  *
345  * Initialize all the fields that a reader is interested in. All arguments
346  * (except @r) are optional. Only record data for arguments that are
347  * non-NULL or non-zero will be read.
348  */
prb_rec_init_rd(struct printk_record * r,struct printk_info * info,char * text_buf,unsigned int text_buf_size)349 static inline void prb_rec_init_rd(struct printk_record *r,
350 				   struct printk_info *info,
351 				   char *text_buf, unsigned int text_buf_size)
352 {
353 	r->info = info;
354 	r->text_buf = text_buf;
355 	r->text_buf_size = text_buf_size;
356 }
357 
358 /**
359  * prb_for_each_record() - Iterate over the records of a ringbuffer.
360  *
361  * @from: The sequence number to begin with.
362  * @rb:   The ringbuffer to iterate over.
363  * @s:    A u64 to store the sequence number on each iteration.
364  * @r:    A printk_record to store the record on each iteration.
365  *
366  * This is a macro for conveniently iterating over a ringbuffer.
367  * Note that @s may not be the sequence number of the record on each
368  * iteration. For the sequence number, @r->info->seq should be checked.
369  *
370  * Context: Any context.
371  */
372 #define prb_for_each_record(from, rb, s, r) \
373 for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1)
374 
375 /**
376  * prb_for_each_info() - Iterate over the meta data of a ringbuffer.
377  *
378  * @from: The sequence number to begin with.
379  * @rb:   The ringbuffer to iterate over.
380  * @s:    A u64 to store the sequence number on each iteration.
381  * @i:    A printk_info to store the record meta data on each iteration.
382  * @lc:   An unsigned int to store the text line count of each record.
383  *
384  * This is a macro for conveniently iterating over a ringbuffer.
385  * Note that @s may not be the sequence number of the record on each
386  * iteration. For the sequence number, @r->info->seq should be checked.
387  *
388  * Context: Any context.
389  */
390 #define prb_for_each_info(from, rb, s, i, lc) \
391 for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1)
392 
393 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
394 		    struct printk_record *r);
395 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
396 			 struct printk_info *info, unsigned int *line_count);
397 
398 u64 prb_first_seq(struct printk_ringbuffer *rb);
399 u64 prb_first_valid_seq(struct printk_ringbuffer *rb);
400 u64 prb_next_seq(struct printk_ringbuffer *rb);
401 u64 prb_next_reserve_seq(struct printk_ringbuffer *rb);
402 
403 #ifdef CONFIG_64BIT
404 
405 #define __u64seq_to_ulseq(u64seq) (u64seq)
406 #define __ulseq_to_u64seq(rb, ulseq) (ulseq)
407 #define ULSEQ_MAX(rb) (-1)
408 
409 #else /* CONFIG_64BIT */
410 
411 #define __u64seq_to_ulseq(u64seq) ((u32)u64seq)
412 #define ULSEQ_MAX(rb) __u64seq_to_ulseq(prb_first_seq(rb) + 0x80000000UL)
413 
__ulseq_to_u64seq(struct printk_ringbuffer * rb,u32 ulseq)414 static inline u64 __ulseq_to_u64seq(struct printk_ringbuffer *rb, u32 ulseq)
415 {
416 	u64 rb_first_seq = prb_first_seq(rb);
417 	u64 seq;
418 
419 	/*
420 	 * The provided sequence is only the lower 32 bits of the ringbuffer
421 	 * sequence. It needs to be expanded to 64bit. Get the first sequence
422 	 * number from the ringbuffer and fold it.
423 	 *
424 	 * Having a 32bit representation in the console is sufficient.
425 	 * If a console ever gets more than 2^31 records behind
426 	 * the ringbuffer then this is the least of the problems.
427 	 *
428 	 * Also the access to the ring buffer is always safe.
429 	 */
430 	seq = rb_first_seq - (s32)((u32)rb_first_seq - ulseq);
431 
432 	return seq;
433 }
434 
435 #endif /* CONFIG_64BIT */
436 
437 #endif /* _KERNEL_PRINTK_RINGBUFFER_H */
438