xref: /linux/fs/pnode.c (revision a82ba839915926f8713183fd023c6d9357bae26c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/pnode.c
4  *
5  * (C) Copyright IBM Corporation 2005.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  */
8 #include <linux/mnt_namespace.h>
9 #include <linux/mount.h>
10 #include <linux/fs.h>
11 #include <linux/nsproxy.h>
12 #include <uapi/linux/mount.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
next_peer(struct mount * p)17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
first_slave(struct mount * p)22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
last_slave(struct mount * p)27 static inline struct mount *last_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31 
next_slave(struct mount * p)32 static inline struct mount *next_slave(struct mount *p)
33 {
34 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36 
get_peer_under_root(struct mount * mnt,struct mnt_namespace * ns,const struct path * root)37 static struct mount *get_peer_under_root(struct mount *mnt,
38 					 struct mnt_namespace *ns,
39 					 const struct path *root)
40 {
41 	struct mount *m = mnt;
42 
43 	do {
44 		/* Check the namespace first for optimization */
45 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 			return m;
47 
48 		m = next_peer(m);
49 	} while (m != mnt);
50 
51 	return NULL;
52 }
53 
54 /*
55  * Get ID of closest dominating peer group having a representative
56  * under the given root.
57  *
58  * Caller must hold namespace_sem
59  */
get_dominating_id(struct mount * mnt,const struct path * root)60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 	struct mount *m;
63 
64 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 		if (d)
67 			return d->mnt_group_id;
68 	}
69 
70 	return 0;
71 }
72 
do_make_slave(struct mount * mnt)73 static int do_make_slave(struct mount *mnt)
74 {
75 	struct mount *master, *slave_mnt;
76 
77 	if (list_empty(&mnt->mnt_share)) {
78 		if (IS_MNT_SHARED(mnt)) {
79 			mnt_release_group_id(mnt);
80 			CLEAR_MNT_SHARED(mnt);
81 		}
82 		master = mnt->mnt_master;
83 		if (!master) {
84 			struct list_head *p = &mnt->mnt_slave_list;
85 			while (!list_empty(p)) {
86 				slave_mnt = list_first_entry(p,
87 						struct mount, mnt_slave);
88 				list_del_init(&slave_mnt->mnt_slave);
89 				slave_mnt->mnt_master = NULL;
90 			}
91 			return 0;
92 		}
93 	} else {
94 		struct mount *m;
95 		/*
96 		 * slave 'mnt' to a peer mount that has the
97 		 * same root dentry. If none is available then
98 		 * slave it to anything that is available.
99 		 */
100 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 				master = m;
103 				break;
104 			}
105 		}
106 		list_del_init(&mnt->mnt_share);
107 		mnt->mnt_group_id = 0;
108 		CLEAR_MNT_SHARED(mnt);
109 	}
110 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 		slave_mnt->mnt_master = master;
112 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	mnt->mnt_master = master;
116 	return 0;
117 }
118 
119 /*
120  * vfsmount lock must be held for write
121  */
change_mnt_propagation(struct mount * mnt,int type)122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 	if (type == MS_SHARED) {
125 		set_mnt_shared(mnt);
126 		return;
127 	}
128 	do_make_slave(mnt);
129 	if (type != MS_SLAVE) {
130 		list_del_init(&mnt->mnt_slave);
131 		mnt->mnt_master = NULL;
132 		if (type == MS_UNBINDABLE)
133 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 		else
135 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 	}
137 }
138 
139 /*
140  * get the next mount in the propagation tree.
141  * @m: the mount seen last
142  * @origin: the original mount from where the tree walk initiated
143  *
144  * Note that peer groups form contiguous segments of slave lists.
145  * We rely on that in get_source() to be able to find out if
146  * vfsmount found while iterating with propagation_next() is
147  * a peer of one we'd found earlier.
148  */
propagation_next(struct mount * m,struct mount * origin)149 static struct mount *propagation_next(struct mount *m,
150 					 struct mount *origin)
151 {
152 	/* are there any slaves of this mount? */
153 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 		return first_slave(m);
155 
156 	while (1) {
157 		struct mount *master = m->mnt_master;
158 
159 		if (master == origin->mnt_master) {
160 			struct mount *next = next_peer(m);
161 			return (next == origin) ? NULL : next;
162 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163 			return next_slave(m);
164 
165 		/* back at master */
166 		m = master;
167 	}
168 }
169 
skip_propagation_subtree(struct mount * m,struct mount * origin)170 static struct mount *skip_propagation_subtree(struct mount *m,
171 						struct mount *origin)
172 {
173 	/*
174 	 * Advance m such that propagation_next will not return
175 	 * the slaves of m.
176 	 */
177 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 		m = last_slave(m);
179 
180 	return m;
181 }
182 
next_group(struct mount * m,struct mount * origin)183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 	while (1) {
186 		while (1) {
187 			struct mount *next;
188 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 				return first_slave(m);
190 			next = next_peer(m);
191 			if (m->mnt_group_id == origin->mnt_group_id) {
192 				if (next == origin)
193 					return NULL;
194 			} else if (m->mnt_slave.next != &next->mnt_slave)
195 				break;
196 			m = next;
197 		}
198 		/* m is the last peer */
199 		while (1) {
200 			struct mount *master = m->mnt_master;
201 			if (m->mnt_slave.next != &master->mnt_slave_list)
202 				return next_slave(m);
203 			m = next_peer(master);
204 			if (master->mnt_group_id == origin->mnt_group_id)
205 				break;
206 			if (master->mnt_slave.next == &m->mnt_slave)
207 				break;
208 			m = master;
209 		}
210 		if (m == origin)
211 			return NULL;
212 	}
213 }
214 
215 /* all accesses are serialized by namespace_sem */
216 static struct mount *last_dest, *first_source, *last_source, *dest_master;
217 static struct hlist_head *list;
218 
peers(const struct mount * m1,const struct mount * m2)219 static inline bool peers(const struct mount *m1, const struct mount *m2)
220 {
221 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
222 }
223 
propagate_one(struct mount * m,struct mountpoint * dest_mp)224 static int propagate_one(struct mount *m, struct mountpoint *dest_mp)
225 {
226 	struct mount *child;
227 	int type;
228 	/* skip ones added by this propagate_mnt() */
229 	if (IS_MNT_NEW(m))
230 		return 0;
231 	/* skip if mountpoint isn't visible in m */
232 	if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root))
233 		return 0;
234 	/* skip if m is in the anon_ns */
235 	if (is_anon_ns(m->mnt_ns))
236 		return 0;
237 
238 	if (peers(m, last_dest)) {
239 		type = CL_MAKE_SHARED;
240 	} else {
241 		struct mount *n, *p;
242 		bool done;
243 		for (n = m; ; n = p) {
244 			p = n->mnt_master;
245 			if (p == dest_master || IS_MNT_MARKED(p))
246 				break;
247 		}
248 		do {
249 			struct mount *parent = last_source->mnt_parent;
250 			if (peers(last_source, first_source))
251 				break;
252 			done = parent->mnt_master == p;
253 			if (done && peers(n, parent))
254 				break;
255 			last_source = last_source->mnt_master;
256 		} while (!done);
257 
258 		type = CL_SLAVE;
259 		/* beginning of peer group among the slaves? */
260 		if (IS_MNT_SHARED(m))
261 			type |= CL_MAKE_SHARED;
262 	}
263 
264 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
265 	if (IS_ERR(child))
266 		return PTR_ERR(child);
267 	read_seqlock_excl(&mount_lock);
268 	mnt_set_mountpoint(m, dest_mp, child);
269 	if (m->mnt_master != dest_master)
270 		SET_MNT_MARK(m->mnt_master);
271 	read_sequnlock_excl(&mount_lock);
272 	last_dest = m;
273 	last_source = child;
274 	hlist_add_head(&child->mnt_hash, list);
275 	return count_mounts(m->mnt_ns, child);
276 }
277 
278 /*
279  * mount 'source_mnt' under the destination 'dest_mnt' at
280  * dentry 'dest_dentry'. And propagate that mount to
281  * all the peer and slave mounts of 'dest_mnt'.
282  * Link all the new mounts into a propagation tree headed at
283  * source_mnt. Also link all the new mounts using ->mnt_list
284  * headed at source_mnt's ->mnt_list
285  *
286  * @dest_mnt: destination mount.
287  * @dest_dentry: destination dentry.
288  * @source_mnt: source mount.
289  * @tree_list : list of heads of trees to be attached.
290  */
propagate_mnt(struct mount * dest_mnt,struct mountpoint * dest_mp,struct mount * source_mnt,struct hlist_head * tree_list)291 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
292 		    struct mount *source_mnt, struct hlist_head *tree_list)
293 {
294 	struct mount *m, *n;
295 	int ret = 0;
296 
297 	/*
298 	 * we don't want to bother passing tons of arguments to
299 	 * propagate_one(); everything is serialized by namespace_sem,
300 	 * so globals will do just fine.
301 	 */
302 	last_dest = dest_mnt;
303 	first_source = source_mnt;
304 	last_source = source_mnt;
305 	list = tree_list;
306 	dest_master = dest_mnt->mnt_master;
307 
308 	/* all peers of dest_mnt, except dest_mnt itself */
309 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
310 		ret = propagate_one(n, dest_mp);
311 		if (ret)
312 			goto out;
313 	}
314 
315 	/* all slave groups */
316 	for (m = next_group(dest_mnt, dest_mnt); m;
317 			m = next_group(m, dest_mnt)) {
318 		/* everything in that slave group */
319 		n = m;
320 		do {
321 			ret = propagate_one(n, dest_mp);
322 			if (ret)
323 				goto out;
324 			n = next_peer(n);
325 		} while (n != m);
326 	}
327 out:
328 	read_seqlock_excl(&mount_lock);
329 	hlist_for_each_entry(n, tree_list, mnt_hash) {
330 		m = n->mnt_parent;
331 		if (m->mnt_master != dest_mnt->mnt_master)
332 			CLEAR_MNT_MARK(m->mnt_master);
333 	}
334 	read_sequnlock_excl(&mount_lock);
335 	return ret;
336 }
337 
find_topper(struct mount * mnt)338 static struct mount *find_topper(struct mount *mnt)
339 {
340 	/* If there is exactly one mount covering mnt completely return it. */
341 	struct mount *child;
342 
343 	if (!list_is_singular(&mnt->mnt_mounts))
344 		return NULL;
345 
346 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
347 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
348 		return NULL;
349 
350 	return child;
351 }
352 
353 /*
354  * return true if the refcount is greater than count
355  */
do_refcount_check(struct mount * mnt,int count)356 static inline int do_refcount_check(struct mount *mnt, int count)
357 {
358 	return mnt_get_count(mnt) > count;
359 }
360 
361 /**
362  * propagation_would_overmount - check whether propagation from @from
363  *                               would overmount @to
364  * @from: shared mount
365  * @to:   mount to check
366  * @mp:   future mountpoint of @to on @from
367  *
368  * If @from propagates mounts to @to, @from and @to must either be peers
369  * or one of the masters in the hierarchy of masters of @to must be a
370  * peer of @from.
371  *
372  * If the root of the @to mount is equal to the future mountpoint @mp of
373  * the @to mount on @from then @to will be overmounted by whatever is
374  * propagated to it.
375  *
376  * Context: This function expects namespace_lock() to be held and that
377  *          @mp is stable.
378  * Return: If @from overmounts @to, true is returned, false if not.
379  */
propagation_would_overmount(const struct mount * from,const struct mount * to,const struct mountpoint * mp)380 bool propagation_would_overmount(const struct mount *from,
381 				 const struct mount *to,
382 				 const struct mountpoint *mp)
383 {
384 	if (!IS_MNT_SHARED(from))
385 		return false;
386 
387 	if (to->mnt.mnt_root != mp->m_dentry)
388 		return false;
389 
390 	for (const struct mount *m = to; m; m = m->mnt_master) {
391 		if (peers(from, m))
392 			return true;
393 	}
394 
395 	return false;
396 }
397 
398 /*
399  * check if the mount 'mnt' can be unmounted successfully.
400  * @mnt: the mount to be checked for unmount
401  * NOTE: unmounting 'mnt' would naturally propagate to all
402  * other mounts its parent propagates to.
403  * Check if any of these mounts that **do not have submounts**
404  * have more references than 'refcnt'. If so return busy.
405  *
406  * vfsmount lock must be held for write
407  */
propagate_mount_busy(struct mount * mnt,int refcnt)408 int propagate_mount_busy(struct mount *mnt, int refcnt)
409 {
410 	struct mount *m, *child, *topper;
411 	struct mount *parent = mnt->mnt_parent;
412 
413 	if (mnt == parent)
414 		return do_refcount_check(mnt, refcnt);
415 
416 	/*
417 	 * quickly check if the current mount can be unmounted.
418 	 * If not, we don't have to go checking for all other
419 	 * mounts
420 	 */
421 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
422 		return 1;
423 
424 	for (m = propagation_next(parent, parent); m;
425 	     		m = propagation_next(m, parent)) {
426 		int count = 1;
427 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
428 		if (!child)
429 			continue;
430 
431 		/* Is there exactly one mount on the child that covers
432 		 * it completely whose reference should be ignored?
433 		 */
434 		topper = find_topper(child);
435 		if (topper)
436 			count += 1;
437 		else if (!list_empty(&child->mnt_mounts))
438 			continue;
439 
440 		if (do_refcount_check(child, count))
441 			return 1;
442 	}
443 	return 0;
444 }
445 
446 /*
447  * Clear MNT_LOCKED when it can be shown to be safe.
448  *
449  * mount_lock lock must be held for write
450  */
propagate_mount_unlock(struct mount * mnt)451 void propagate_mount_unlock(struct mount *mnt)
452 {
453 	struct mount *parent = mnt->mnt_parent;
454 	struct mount *m, *child;
455 
456 	BUG_ON(parent == mnt);
457 
458 	for (m = propagation_next(parent, parent); m;
459 			m = propagation_next(m, parent)) {
460 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
461 		if (child)
462 			child->mnt.mnt_flags &= ~MNT_LOCKED;
463 	}
464 }
465 
umount_one(struct mount * mnt,struct list_head * to_umount)466 static void umount_one(struct mount *mnt, struct list_head *to_umount)
467 {
468 	CLEAR_MNT_MARK(mnt);
469 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
470 	list_del_init(&mnt->mnt_child);
471 	list_del_init(&mnt->mnt_umounting);
472 	move_from_ns(mnt, to_umount);
473 }
474 
475 /*
476  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
477  * parent propagates to.
478  */
__propagate_umount(struct mount * mnt,struct list_head * to_umount,struct list_head * to_restore)479 static bool __propagate_umount(struct mount *mnt,
480 			       struct list_head *to_umount,
481 			       struct list_head *to_restore)
482 {
483 	bool progress = false;
484 	struct mount *child;
485 
486 	/*
487 	 * The state of the parent won't change if this mount is
488 	 * already unmounted or marked as without children.
489 	 */
490 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
491 		goto out;
492 
493 	/* Verify topper is the only grandchild that has not been
494 	 * speculatively unmounted.
495 	 */
496 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
497 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
498 			continue;
499 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
500 			continue;
501 		/* Found a mounted child */
502 		goto children;
503 	}
504 
505 	/* Mark mounts that can be unmounted if not locked */
506 	SET_MNT_MARK(mnt);
507 	progress = true;
508 
509 	/* If a mount is without children and not locked umount it. */
510 	if (!IS_MNT_LOCKED(mnt)) {
511 		umount_one(mnt, to_umount);
512 	} else {
513 children:
514 		list_move_tail(&mnt->mnt_umounting, to_restore);
515 	}
516 out:
517 	return progress;
518 }
519 
umount_list(struct list_head * to_umount,struct list_head * to_restore)520 static void umount_list(struct list_head *to_umount,
521 			struct list_head *to_restore)
522 {
523 	struct mount *mnt, *child, *tmp;
524 	list_for_each_entry(mnt, to_umount, mnt_list) {
525 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
526 			/* topper? */
527 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
528 				list_move_tail(&child->mnt_umounting, to_restore);
529 			else
530 				umount_one(child, to_umount);
531 		}
532 	}
533 }
534 
restore_mounts(struct list_head * to_restore)535 static void restore_mounts(struct list_head *to_restore)
536 {
537 	/* Restore mounts to a clean working state */
538 	while (!list_empty(to_restore)) {
539 		struct mount *mnt, *parent;
540 		struct mountpoint *mp;
541 
542 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
543 		CLEAR_MNT_MARK(mnt);
544 		list_del_init(&mnt->mnt_umounting);
545 
546 		/* Should this mount be reparented? */
547 		mp = mnt->mnt_mp;
548 		parent = mnt->mnt_parent;
549 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
550 			mp = parent->mnt_mp;
551 			parent = parent->mnt_parent;
552 		}
553 		if (parent != mnt->mnt_parent) {
554 			mnt_change_mountpoint(parent, mp, mnt);
555 			mnt_notify_add(mnt);
556 		}
557 	}
558 }
559 
cleanup_umount_visitations(struct list_head * visited)560 static void cleanup_umount_visitations(struct list_head *visited)
561 {
562 	while (!list_empty(visited)) {
563 		struct mount *mnt =
564 			list_first_entry(visited, struct mount, mnt_umounting);
565 		list_del_init(&mnt->mnt_umounting);
566 	}
567 }
568 
569 /*
570  * collect all mounts that receive propagation from the mount in @list,
571  * and return these additional mounts in the same list.
572  * @list: the list of mounts to be unmounted.
573  *
574  * vfsmount lock must be held for write
575  */
propagate_umount(struct list_head * list)576 int propagate_umount(struct list_head *list)
577 {
578 	struct mount *mnt;
579 	LIST_HEAD(to_restore);
580 	LIST_HEAD(to_umount);
581 	LIST_HEAD(visited);
582 
583 	/* Find candidates for unmounting */
584 	list_for_each_entry_reverse(mnt, list, mnt_list) {
585 		struct mount *parent = mnt->mnt_parent;
586 		struct mount *m;
587 
588 		/*
589 		 * If this mount has already been visited it is known that it's
590 		 * entire peer group and all of their slaves in the propagation
591 		 * tree for the mountpoint has already been visited and there is
592 		 * no need to visit them again.
593 		 */
594 		if (!list_empty(&mnt->mnt_umounting))
595 			continue;
596 
597 		list_add_tail(&mnt->mnt_umounting, &visited);
598 		for (m = propagation_next(parent, parent); m;
599 		     m = propagation_next(m, parent)) {
600 			struct mount *child = __lookup_mnt(&m->mnt,
601 							   mnt->mnt_mountpoint);
602 			if (!child)
603 				continue;
604 
605 			if (!list_empty(&child->mnt_umounting)) {
606 				/*
607 				 * If the child has already been visited it is
608 				 * know that it's entire peer group and all of
609 				 * their slaves in the propgation tree for the
610 				 * mountpoint has already been visited and there
611 				 * is no need to visit this subtree again.
612 				 */
613 				m = skip_propagation_subtree(m, parent);
614 				continue;
615 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
616 				/*
617 				 * We have come across a partially unmounted
618 				 * mount in a list that has not been visited
619 				 * yet. Remember it has been visited and
620 				 * continue about our merry way.
621 				 */
622 				list_add_tail(&child->mnt_umounting, &visited);
623 				continue;
624 			}
625 
626 			/* Check the child and parents while progress is made */
627 			while (__propagate_umount(child,
628 						  &to_umount, &to_restore)) {
629 				/* Is the parent a umount candidate? */
630 				child = child->mnt_parent;
631 				if (list_empty(&child->mnt_umounting))
632 					break;
633 			}
634 		}
635 	}
636 
637 	umount_list(&to_umount, &to_restore);
638 	restore_mounts(&to_restore);
639 	cleanup_umount_visitations(&visited);
640 	list_splice_tail(&to_umount, list);
641 
642 	return 0;
643 }
644