1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #define VERSION "0.23"
3 /* ns83820.c by Benjamin LaHaise with contributions.
4 *
5 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 *
7 * $Revision: 1.34.2.23 $
8 *
9 * Copyright 2001 Benjamin LaHaise.
10 * Copyright 2001, 2002 Red Hat.
11 *
12 * Mmmm, chocolate vanilla mocha...
13 *
14 * ChangeLog
15 * =========
16 * 20010414 0.1 - created
17 * 20010622 0.2 - basic rx and tx.
18 * 20010711 0.3 - added duplex and link state detection support.
19 * 20010713 0.4 - zero copy, no hangs.
20 * 0.5 - 64 bit dma support (davem will hate me for this)
21 * - disable jumbo frames to avoid tx hangs
22 * - work around tx deadlocks on my 1.02 card via
23 * fiddling with TXCFG
24 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
25 * 20010816 0.7 - misc cleanups
26 * 20010826 0.8 - fix critical zero copy bugs
27 * 0.9 - internal experiment
28 * 20010827 0.10 - fix ia64 unaligned access.
29 * 20010906 0.11 - accept all packets with checksum errors as
30 * otherwise fragments get lost
31 * - fix >> 32 bugs
32 * 0.12 - add statistics counters
33 * - add allmulti/promisc support
34 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
35 * 20011204 0.13a - optical transceiver support added
36 * by Michael Clark <michael@metaparadigm.com>
37 * 20011205 0.13b - call register_netdev earlier in initialization
38 * suppress duplicate link status messages
39 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
40 * 20011204 0.15 get ppc (big endian) working
41 * 20011218 0.16 various cleanups
42 * 20020310 0.17 speedups
43 * 20020610 0.18 - actually use the pci dma api for highmem
44 * - remove pci latency register fiddling
45 * 0.19 - better bist support
46 * - add ihr and reset_phy parameters
47 * - gmii bus probing
48 * - fix missed txok introduced during performance
49 * tuning
50 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
51 * 20040828 0.21 - add hardware vlan accleration
52 * by Neil Horman <nhorman@redhat.com>
53 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
54 * - removal of dead code from Adrian Bunk
55 * - fix half duplex collision behaviour
56 * Driver Overview
57 * ===============
58 *
59 * This driver was originally written for the National Semiconductor
60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
61 * this code will turn out to be a) clean, b) correct, and c) fast.
62 * With that in mind, I'm aiming to split the code up as much as
63 * reasonably possible. At present there are X major sections that
64 * break down into a) packet receive, b) packet transmit, c) link
65 * management, d) initialization and configuration. Where possible,
66 * these code paths are designed to run in parallel.
67 *
68 * This driver has been tested and found to work with the following
69 * cards (in no particular order):
70 *
71 * Cameo SOHO-GA2000T SOHO-GA2500T
72 * D-Link DGE-500T
73 * PureData PDP8023Z-TG
74 * SMC SMC9452TX SMC9462TX
75 * Netgear GA621
76 *
77 * Special thanks to SMC for providing hardware to test this driver on.
78 *
79 * Reports of success or failure would be greatly appreciated.
80 */
81 //#define dprintk printk
82 #define dprintk(x...) do { } while (0)
83
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/types.h>
87 #include <linux/pci.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/delay.h>
92 #include <linux/workqueue.h>
93 #include <linux/init.h>
94 #include <linux/interrupt.h>
95 #include <linux/ip.h> /* for iph */
96 #include <linux/in.h> /* for IPPROTO_... */
97 #include <linux/compiler.h>
98 #include <linux/prefetch.h>
99 #include <linux/ethtool.h>
100 #include <linux/sched.h>
101 #include <linux/timer.h>
102 #include <linux/if_vlan.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/jiffies.h>
105 #include <linux/slab.h>
106
107 #include <asm/io.h>
108 #include <linux/uaccess.h>
109
110 #define DRV_NAME "ns83820"
111
112 /* Global parameters. See module_param near the bottom. */
113 static int ihr = 2;
114 static int reset_phy = 0;
115 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
116
117 /* Dprintk is used for more interesting debug events */
118 #undef Dprintk
119 #define Dprintk dprintk
120
121 /* tunables */
122 #define RX_BUF_SIZE 1500 /* 8192 */
123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
124 #define NS83820_VLAN_ACCEL_SUPPORT
125 #endif
126
127 /* Must not exceed ~65000. */
128 #define NR_RX_DESC 64
129 #define NR_TX_DESC 128
130
131 /* not tunable */
132 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
133
134 #define MIN_TX_DESC_FREE 8
135
136 /* register defines */
137 #define CFGCS 0x04
138
139 #define CR_TXE 0x00000001
140 #define CR_TXD 0x00000002
141 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
142 * The Receive engine skips one descriptor and moves
143 * onto the next one!! */
144 #define CR_RXE 0x00000004
145 #define CR_RXD 0x00000008
146 #define CR_TXR 0x00000010
147 #define CR_RXR 0x00000020
148 #define CR_SWI 0x00000080
149 #define CR_RST 0x00000100
150
151 #define PTSCR_EEBIST_FAIL 0x00000001
152 #define PTSCR_EEBIST_EN 0x00000002
153 #define PTSCR_EELOAD_EN 0x00000004
154 #define PTSCR_RBIST_FAIL 0x000001b8
155 #define PTSCR_RBIST_DONE 0x00000200
156 #define PTSCR_RBIST_EN 0x00000400
157 #define PTSCR_RBIST_RST 0x00002000
158
159 #define MEAR_EEDI 0x00000001
160 #define MEAR_EEDO 0x00000002
161 #define MEAR_EECLK 0x00000004
162 #define MEAR_EESEL 0x00000008
163 #define MEAR_MDIO 0x00000010
164 #define MEAR_MDDIR 0x00000020
165 #define MEAR_MDC 0x00000040
166
167 #define ISR_TXDESC3 0x40000000
168 #define ISR_TXDESC2 0x20000000
169 #define ISR_TXDESC1 0x10000000
170 #define ISR_TXDESC0 0x08000000
171 #define ISR_RXDESC3 0x04000000
172 #define ISR_RXDESC2 0x02000000
173 #define ISR_RXDESC1 0x01000000
174 #define ISR_RXDESC0 0x00800000
175 #define ISR_TXRCMP 0x00400000
176 #define ISR_RXRCMP 0x00200000
177 #define ISR_DPERR 0x00100000
178 #define ISR_SSERR 0x00080000
179 #define ISR_RMABT 0x00040000
180 #define ISR_RTABT 0x00020000
181 #define ISR_RXSOVR 0x00010000
182 #define ISR_HIBINT 0x00008000
183 #define ISR_PHY 0x00004000
184 #define ISR_PME 0x00002000
185 #define ISR_SWI 0x00001000
186 #define ISR_MIB 0x00000800
187 #define ISR_TXURN 0x00000400
188 #define ISR_TXIDLE 0x00000200
189 #define ISR_TXERR 0x00000100
190 #define ISR_TXDESC 0x00000080
191 #define ISR_TXOK 0x00000040
192 #define ISR_RXORN 0x00000020
193 #define ISR_RXIDLE 0x00000010
194 #define ISR_RXEARLY 0x00000008
195 #define ISR_RXERR 0x00000004
196 #define ISR_RXDESC 0x00000002
197 #define ISR_RXOK 0x00000001
198
199 #define TXCFG_CSI 0x80000000
200 #define TXCFG_HBI 0x40000000
201 #define TXCFG_MLB 0x20000000
202 #define TXCFG_ATP 0x10000000
203 #define TXCFG_ECRETRY 0x00800000
204 #define TXCFG_BRST_DIS 0x00080000
205 #define TXCFG_MXDMA1024 0x00000000
206 #define TXCFG_MXDMA512 0x00700000
207 #define TXCFG_MXDMA256 0x00600000
208 #define TXCFG_MXDMA128 0x00500000
209 #define TXCFG_MXDMA64 0x00400000
210 #define TXCFG_MXDMA32 0x00300000
211 #define TXCFG_MXDMA16 0x00200000
212 #define TXCFG_MXDMA8 0x00100000
213
214 #define CFG_LNKSTS 0x80000000
215 #define CFG_SPDSTS 0x60000000
216 #define CFG_SPDSTS1 0x40000000
217 #define CFG_SPDSTS0 0x20000000
218 #define CFG_DUPSTS 0x10000000
219 #define CFG_TBI_EN 0x01000000
220 #define CFG_MODE_1000 0x00400000
221 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
222 * Read the Phy response and then configure the MAC accordingly */
223 #define CFG_AUTO_1000 0x00200000
224 #define CFG_PINT_CTL 0x001c0000
225 #define CFG_PINT_DUPSTS 0x00100000
226 #define CFG_PINT_LNKSTS 0x00080000
227 #define CFG_PINT_SPDSTS 0x00040000
228 #define CFG_TMRTEST 0x00020000
229 #define CFG_MRM_DIS 0x00010000
230 #define CFG_MWI_DIS 0x00008000
231 #define CFG_T64ADDR 0x00004000
232 #define CFG_PCI64_DET 0x00002000
233 #define CFG_DATA64_EN 0x00001000
234 #define CFG_M64ADDR 0x00000800
235 #define CFG_PHY_RST 0x00000400
236 #define CFG_PHY_DIS 0x00000200
237 #define CFG_EXTSTS_EN 0x00000100
238 #define CFG_REQALG 0x00000080
239 #define CFG_SB 0x00000040
240 #define CFG_POW 0x00000020
241 #define CFG_EXD 0x00000010
242 #define CFG_PESEL 0x00000008
243 #define CFG_BROM_DIS 0x00000004
244 #define CFG_EXT_125 0x00000002
245 #define CFG_BEM 0x00000001
246
247 #define EXTSTS_UDPPKT 0x00200000
248 #define EXTSTS_TCPPKT 0x00080000
249 #define EXTSTS_IPPKT 0x00020000
250 #define EXTSTS_VPKT 0x00010000
251 #define EXTSTS_VTG_MASK 0x0000ffff
252
253 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
254
255 #define MIBC_MIBS 0x00000008
256 #define MIBC_ACLR 0x00000004
257 #define MIBC_FRZ 0x00000002
258 #define MIBC_WRN 0x00000001
259
260 #define PCR_PSEN (1 << 31)
261 #define PCR_PS_MCAST (1 << 30)
262 #define PCR_PS_DA (1 << 29)
263 #define PCR_STHI_8 (3 << 23)
264 #define PCR_STLO_4 (1 << 23)
265 #define PCR_FFHI_8K (3 << 21)
266 #define PCR_FFLO_4K (1 << 21)
267 #define PCR_PAUSE_CNT 0xFFFE
268
269 #define RXCFG_AEP 0x80000000
270 #define RXCFG_ARP 0x40000000
271 #define RXCFG_STRIPCRC 0x20000000
272 #define RXCFG_RX_FD 0x10000000
273 #define RXCFG_ALP 0x08000000
274 #define RXCFG_AIRL 0x04000000
275 #define RXCFG_MXDMA512 0x00700000
276 #define RXCFG_DRTH 0x0000003e
277 #define RXCFG_DRTH0 0x00000002
278
279 #define RFCR_RFEN 0x80000000
280 #define RFCR_AAB 0x40000000
281 #define RFCR_AAM 0x20000000
282 #define RFCR_AAU 0x10000000
283 #define RFCR_APM 0x08000000
284 #define RFCR_APAT 0x07800000
285 #define RFCR_APAT3 0x04000000
286 #define RFCR_APAT2 0x02000000
287 #define RFCR_APAT1 0x01000000
288 #define RFCR_APAT0 0x00800000
289 #define RFCR_AARP 0x00400000
290 #define RFCR_MHEN 0x00200000
291 #define RFCR_UHEN 0x00100000
292 #define RFCR_ULM 0x00080000
293
294 #define VRCR_RUDPE 0x00000080
295 #define VRCR_RTCPE 0x00000040
296 #define VRCR_RIPE 0x00000020
297 #define VRCR_IPEN 0x00000010
298 #define VRCR_DUTF 0x00000008
299 #define VRCR_DVTF 0x00000004
300 #define VRCR_VTREN 0x00000002
301 #define VRCR_VTDEN 0x00000001
302
303 #define VTCR_PPCHK 0x00000008
304 #define VTCR_GCHK 0x00000004
305 #define VTCR_VPPTI 0x00000002
306 #define VTCR_VGTI 0x00000001
307
308 #define CR 0x00
309 #define CFG 0x04
310 #define MEAR 0x08
311 #define PTSCR 0x0c
312 #define ISR 0x10
313 #define IMR 0x14
314 #define IER 0x18
315 #define IHR 0x1c
316 #define TXDP 0x20
317 #define TXDP_HI 0x24
318 #define TXCFG 0x28
319 #define GPIOR 0x2c
320 #define RXDP 0x30
321 #define RXDP_HI 0x34
322 #define RXCFG 0x38
323 #define PQCR 0x3c
324 #define WCSR 0x40
325 #define PCR 0x44
326 #define RFCR 0x48
327 #define RFDR 0x4c
328
329 #define SRR 0x58
330
331 #define VRCR 0xbc
332 #define VTCR 0xc0
333 #define VDR 0xc4
334 #define CCSR 0xcc
335
336 #define TBICR 0xe0
337 #define TBISR 0xe4
338 #define TANAR 0xe8
339 #define TANLPAR 0xec
340 #define TANER 0xf0
341 #define TESR 0xf4
342
343 #define TBICR_MR_AN_ENABLE 0x00001000
344 #define TBICR_MR_RESTART_AN 0x00000200
345
346 #define TBISR_MR_LINK_STATUS 0x00000020
347 #define TBISR_MR_AN_COMPLETE 0x00000004
348
349 #define TANAR_PS2 0x00000100
350 #define TANAR_PS1 0x00000080
351 #define TANAR_HALF_DUP 0x00000040
352 #define TANAR_FULL_DUP 0x00000020
353
354 #define GPIOR_GP5_OE 0x00000200
355 #define GPIOR_GP4_OE 0x00000100
356 #define GPIOR_GP3_OE 0x00000080
357 #define GPIOR_GP2_OE 0x00000040
358 #define GPIOR_GP1_OE 0x00000020
359 #define GPIOR_GP3_OUT 0x00000004
360 #define GPIOR_GP1_OUT 0x00000001
361
362 #define LINK_AUTONEGOTIATE 0x01
363 #define LINK_DOWN 0x02
364 #define LINK_UP 0x04
365
366 #define HW_ADDR_LEN sizeof(dma_addr_t)
367 #define desc_addr_set(desc, addr) \
368 do { \
369 ((desc)[0] = cpu_to_le32(addr)); \
370 if (HW_ADDR_LEN == 8) \
371 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
372 } while(0)
373 #define desc_addr_get(desc) \
374 (le32_to_cpu((desc)[0]) | \
375 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
376
377 #define DESC_LINK 0
378 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
379 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
380 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
381
382 #define CMDSTS_OWN 0x80000000
383 #define CMDSTS_MORE 0x40000000
384 #define CMDSTS_INTR 0x20000000
385 #define CMDSTS_ERR 0x10000000
386 #define CMDSTS_OK 0x08000000
387 #define CMDSTS_RUNT 0x00200000
388 #define CMDSTS_LEN_MASK 0x0000ffff
389
390 #define CMDSTS_DEST_MASK 0x01800000
391 #define CMDSTS_DEST_SELF 0x00800000
392 #define CMDSTS_DEST_MULTI 0x01000000
393
394 #define DESC_SIZE 8 /* Should be cache line sized */
395
396 struct rx_info {
397 spinlock_t lock;
398 int up;
399 unsigned long idle;
400
401 struct sk_buff *skbs[NR_RX_DESC];
402
403 __le32 *next_rx_desc;
404 u16 next_rx, next_empty;
405
406 __le32 *descs;
407 dma_addr_t phy_descs;
408 };
409
410
411 struct ns83820 {
412 u8 __iomem *base;
413
414 struct pci_dev *pci_dev;
415 struct net_device *ndev;
416
417 struct rx_info rx_info;
418 struct tasklet_struct rx_tasklet;
419
420 unsigned ihr;
421 struct work_struct tq_refill;
422
423 /* protects everything below. irqsave when using. */
424 spinlock_t misc_lock;
425
426 u32 CFG_cache;
427
428 u32 MEAR_cache;
429 u32 IMR_cache;
430
431 unsigned linkstate;
432
433 spinlock_t tx_lock;
434
435 u16 tx_done_idx;
436 u16 tx_idx;
437 volatile u16 tx_free_idx; /* idx of free desc chain */
438 u16 tx_intr_idx;
439
440 atomic_t nr_tx_skbs;
441 struct sk_buff *tx_skbs[NR_TX_DESC];
442
443 char pad[16] __attribute__((aligned(16)));
444 __le32 *tx_descs;
445 dma_addr_t tx_phy_descs;
446
447 struct timer_list tx_watchdog;
448 };
449
PRIV(struct net_device * dev)450 static inline struct ns83820 *PRIV(struct net_device *dev)
451 {
452 return netdev_priv(dev);
453 }
454
455 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
456
kick_rx(struct net_device * ndev)457 static inline void kick_rx(struct net_device *ndev)
458 {
459 struct ns83820 *dev = PRIV(ndev);
460 dprintk("kick_rx: maybe kicking\n");
461 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
462 dprintk("actually kicking\n");
463 writel(dev->rx_info.phy_descs +
464 (4 * DESC_SIZE * dev->rx_info.next_rx),
465 dev->base + RXDP);
466 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
467 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
468 ndev->name);
469 __kick_rx(dev);
470 }
471 }
472
473 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
474 #define start_tx_okay(dev) \
475 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
476
477 /* Packet Receiver
478 *
479 * The hardware supports linked lists of receive descriptors for
480 * which ownership is transferred back and forth by means of an
481 * ownership bit. While the hardware does support the use of a
482 * ring for receive descriptors, we only make use of a chain in
483 * an attempt to reduce bus traffic under heavy load scenarios.
484 * This will also make bugs a bit more obvious. The current code
485 * only makes use of a single rx chain; I hope to implement
486 * priority based rx for version 1.0. Goal: even under overload
487 * conditions, still route realtime traffic with as low jitter as
488 * possible.
489 */
build_rx_desc(struct ns83820 * dev,__le32 * desc,dma_addr_t link,dma_addr_t buf,u32 cmdsts,u32 extsts)490 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
491 {
492 desc_addr_set(desc + DESC_LINK, link);
493 desc_addr_set(desc + DESC_BUFPTR, buf);
494 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
495 mb();
496 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
497 }
498
499 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
ns83820_add_rx_skb(struct ns83820 * dev,struct sk_buff * skb)500 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
501 {
502 unsigned next_empty;
503 u32 cmdsts;
504 __le32 *sg;
505 dma_addr_t buf;
506
507 next_empty = dev->rx_info.next_empty;
508
509 /* don't overrun last rx marker */
510 if (unlikely(nr_rx_empty(dev) <= 2)) {
511 kfree_skb(skb);
512 return 1;
513 }
514
515 #if 0
516 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
517 dev->rx_info.next_empty,
518 dev->rx_info.nr_used,
519 dev->rx_info.next_rx
520 );
521 #endif
522
523 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
524 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
525 dev->rx_info.skbs[next_empty] = skb;
526
527 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
528 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
529 buf = dma_map_single(&dev->pci_dev->dev, skb->data, REAL_RX_BUF_SIZE,
530 DMA_FROM_DEVICE);
531 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
532 /* update link of previous rx */
533 if (likely(next_empty != dev->rx_info.next_rx))
534 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
535
536 return 0;
537 }
538
rx_refill(struct net_device * ndev,gfp_t gfp)539 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
540 {
541 struct ns83820 *dev = PRIV(ndev);
542 unsigned i;
543 unsigned long flags = 0;
544
545 if (unlikely(nr_rx_empty(dev) <= 2))
546 return 0;
547
548 dprintk("rx_refill(%p)\n", ndev);
549 if (gfp == GFP_ATOMIC)
550 spin_lock_irqsave(&dev->rx_info.lock, flags);
551 for (i=0; i<NR_RX_DESC; i++) {
552 struct sk_buff *skb;
553 long res;
554
555 /* extra 16 bytes for alignment */
556 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
557 if (unlikely(!skb))
558 break;
559
560 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
561 if (gfp != GFP_ATOMIC)
562 spin_lock_irqsave(&dev->rx_info.lock, flags);
563 res = ns83820_add_rx_skb(dev, skb);
564 if (gfp != GFP_ATOMIC)
565 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
566 if (res) {
567 i = 1;
568 break;
569 }
570 }
571 if (gfp == GFP_ATOMIC)
572 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
573
574 return i ? 0 : -ENOMEM;
575 }
576
rx_refill_atomic(struct net_device * ndev)577 static void rx_refill_atomic(struct net_device *ndev)
578 {
579 rx_refill(ndev, GFP_ATOMIC);
580 }
581
582 /* REFILL */
queue_refill(struct work_struct * work)583 static inline void queue_refill(struct work_struct *work)
584 {
585 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
586 struct net_device *ndev = dev->ndev;
587
588 rx_refill(ndev, GFP_KERNEL);
589 if (dev->rx_info.up)
590 kick_rx(ndev);
591 }
592
clear_rx_desc(struct ns83820 * dev,unsigned i)593 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
594 {
595 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
596 }
597
phy_intr(struct net_device * ndev)598 static void phy_intr(struct net_device *ndev)
599 {
600 struct ns83820 *dev = PRIV(ndev);
601 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
602 u32 cfg, new_cfg;
603 u32 tanar, tanlpar;
604 int speed, fullduplex, newlinkstate;
605
606 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
607
608 if (dev->CFG_cache & CFG_TBI_EN) {
609 u32 __maybe_unused tbisr;
610
611 /* we have an optical transceiver */
612 tbisr = readl(dev->base + TBISR);
613 tanar = readl(dev->base + TANAR);
614 tanlpar = readl(dev->base + TANLPAR);
615 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
616 tbisr, tanar, tanlpar);
617
618 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
619 (tanar & TANAR_FULL_DUP)) ) {
620
621 /* both of us are full duplex */
622 writel(readl(dev->base + TXCFG)
623 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
624 dev->base + TXCFG);
625 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
626 dev->base + RXCFG);
627 /* Light up full duplex LED */
628 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
629 dev->base + GPIOR);
630
631 } else if (((tanlpar & TANAR_HALF_DUP) &&
632 (tanar & TANAR_HALF_DUP)) ||
633 ((tanlpar & TANAR_FULL_DUP) &&
634 (tanar & TANAR_HALF_DUP)) ||
635 ((tanlpar & TANAR_HALF_DUP) &&
636 (tanar & TANAR_FULL_DUP))) {
637
638 /* one or both of us are half duplex */
639 writel((readl(dev->base + TXCFG)
640 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
641 dev->base + TXCFG);
642 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
643 dev->base + RXCFG);
644 /* Turn off full duplex LED */
645 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
646 dev->base + GPIOR);
647 }
648
649 speed = 4; /* 1000F */
650
651 } else {
652 /* we have a copper transceiver */
653 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
654
655 if (cfg & CFG_SPDSTS1)
656 new_cfg |= CFG_MODE_1000;
657 else
658 new_cfg &= ~CFG_MODE_1000;
659
660 speed = ((cfg / CFG_SPDSTS0) & 3);
661 fullduplex = (cfg & CFG_DUPSTS);
662
663 if (fullduplex) {
664 new_cfg |= CFG_SB;
665 writel(readl(dev->base + TXCFG)
666 | TXCFG_CSI | TXCFG_HBI,
667 dev->base + TXCFG);
668 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
669 dev->base + RXCFG);
670 } else {
671 writel(readl(dev->base + TXCFG)
672 & ~(TXCFG_CSI | TXCFG_HBI),
673 dev->base + TXCFG);
674 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
675 dev->base + RXCFG);
676 }
677
678 if ((cfg & CFG_LNKSTS) &&
679 ((new_cfg ^ dev->CFG_cache) != 0)) {
680 writel(new_cfg, dev->base + CFG);
681 dev->CFG_cache = new_cfg;
682 }
683
684 dev->CFG_cache &= ~CFG_SPDSTS;
685 dev->CFG_cache |= cfg & CFG_SPDSTS;
686 }
687
688 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
689
690 if (newlinkstate & LINK_UP &&
691 dev->linkstate != newlinkstate) {
692 netif_start_queue(ndev);
693 netif_wake_queue(ndev);
694 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
695 ndev->name,
696 speeds[speed],
697 fullduplex ? "full" : "half");
698 } else if (newlinkstate & LINK_DOWN &&
699 dev->linkstate != newlinkstate) {
700 netif_stop_queue(ndev);
701 printk(KERN_INFO "%s: link now down.\n", ndev->name);
702 }
703
704 dev->linkstate = newlinkstate;
705 }
706
ns83820_setup_rx(struct net_device * ndev)707 static int ns83820_setup_rx(struct net_device *ndev)
708 {
709 struct ns83820 *dev = PRIV(ndev);
710 unsigned i;
711 int ret;
712
713 dprintk("ns83820_setup_rx(%p)\n", ndev);
714
715 dev->rx_info.idle = 1;
716 dev->rx_info.next_rx = 0;
717 dev->rx_info.next_rx_desc = dev->rx_info.descs;
718 dev->rx_info.next_empty = 0;
719
720 for (i=0; i<NR_RX_DESC; i++)
721 clear_rx_desc(dev, i);
722
723 writel(0, dev->base + RXDP_HI);
724 writel(dev->rx_info.phy_descs, dev->base + RXDP);
725
726 ret = rx_refill(ndev, GFP_KERNEL);
727 if (!ret) {
728 dprintk("starting receiver\n");
729 /* prevent the interrupt handler from stomping on us */
730 spin_lock_irq(&dev->rx_info.lock);
731
732 writel(0x0001, dev->base + CCSR);
733 writel(0, dev->base + RFCR);
734 writel(0x7fc00000, dev->base + RFCR);
735 writel(0xffc00000, dev->base + RFCR);
736
737 dev->rx_info.up = 1;
738
739 phy_intr(ndev);
740
741 /* Okay, let it rip */
742 spin_lock(&dev->misc_lock);
743 dev->IMR_cache |= ISR_PHY;
744 dev->IMR_cache |= ISR_RXRCMP;
745 //dev->IMR_cache |= ISR_RXERR;
746 //dev->IMR_cache |= ISR_RXOK;
747 dev->IMR_cache |= ISR_RXORN;
748 dev->IMR_cache |= ISR_RXSOVR;
749 dev->IMR_cache |= ISR_RXDESC;
750 dev->IMR_cache |= ISR_RXIDLE;
751 dev->IMR_cache |= ISR_TXDESC;
752 dev->IMR_cache |= ISR_TXIDLE;
753
754 writel(dev->IMR_cache, dev->base + IMR);
755 writel(1, dev->base + IER);
756 spin_unlock(&dev->misc_lock);
757
758 kick_rx(ndev);
759
760 spin_unlock_irq(&dev->rx_info.lock);
761 }
762 return ret;
763 }
764
ns83820_cleanup_rx(struct ns83820 * dev)765 static void ns83820_cleanup_rx(struct ns83820 *dev)
766 {
767 unsigned i;
768 unsigned long flags;
769
770 dprintk("ns83820_cleanup_rx(%p)\n", dev);
771
772 /* disable receive interrupts */
773 spin_lock_irqsave(&dev->misc_lock, flags);
774 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
775 writel(dev->IMR_cache, dev->base + IMR);
776 spin_unlock_irqrestore(&dev->misc_lock, flags);
777
778 /* synchronize with the interrupt handler and kill it */
779 dev->rx_info.up = 0;
780 synchronize_irq(dev->pci_dev->irq);
781
782 /* touch the pci bus... */
783 readl(dev->base + IMR);
784
785 /* assumes the transmitter is already disabled and reset */
786 writel(0, dev->base + RXDP_HI);
787 writel(0, dev->base + RXDP);
788
789 for (i=0; i<NR_RX_DESC; i++) {
790 struct sk_buff *skb = dev->rx_info.skbs[i];
791 dev->rx_info.skbs[i] = NULL;
792 clear_rx_desc(dev, i);
793 kfree_skb(skb);
794 }
795 }
796
ns83820_rx_kick(struct net_device * ndev)797 static void ns83820_rx_kick(struct net_device *ndev)
798 {
799 struct ns83820 *dev = PRIV(ndev);
800 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
801 if (dev->rx_info.up) {
802 rx_refill_atomic(ndev);
803 kick_rx(ndev);
804 }
805 }
806
807 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
808 schedule_work(&dev->tq_refill);
809 else
810 kick_rx(ndev);
811 if (dev->rx_info.idle)
812 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
813 }
814
815 /* rx_irq
816 *
817 */
rx_irq(struct net_device * ndev)818 static void rx_irq(struct net_device *ndev)
819 {
820 struct ns83820 *dev = PRIV(ndev);
821 struct rx_info *info = &dev->rx_info;
822 unsigned next_rx;
823 int len;
824 u32 cmdsts;
825 __le32 *desc;
826 unsigned long flags;
827 int nr = 0;
828
829 dprintk("rx_irq(%p)\n", ndev);
830 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
831 readl(dev->base + RXDP),
832 (long)(dev->rx_info.phy_descs),
833 (int)dev->rx_info.next_rx,
834 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
835 (int)dev->rx_info.next_empty,
836 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
837 );
838
839 spin_lock_irqsave(&info->lock, flags);
840 if (!info->up)
841 goto out;
842
843 dprintk("walking descs\n");
844 next_rx = info->next_rx;
845 desc = info->next_rx_desc;
846 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
847 (cmdsts != CMDSTS_OWN)) {
848 struct sk_buff *skb;
849 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
850 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
851
852 dprintk("cmdsts: %08x\n", cmdsts);
853 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
854 dprintk("extsts: %08x\n", extsts);
855
856 skb = info->skbs[next_rx];
857 info->skbs[next_rx] = NULL;
858 info->next_rx = (next_rx + 1) % NR_RX_DESC;
859
860 mb();
861 clear_rx_desc(dev, next_rx);
862
863 dma_unmap_single(&dev->pci_dev->dev, bufptr, RX_BUF_SIZE,
864 DMA_FROM_DEVICE);
865 len = cmdsts & CMDSTS_LEN_MASK;
866 #ifdef NS83820_VLAN_ACCEL_SUPPORT
867 /* NH: As was mentioned below, this chip is kinda
868 * brain dead about vlan tag stripping. Frames
869 * that are 64 bytes with a vlan header appended
870 * like arp frames, or pings, are flagged as Runts
871 * when the tag is stripped and hardware. This
872 * also means that the OK bit in the descriptor
873 * is cleared when the frame comes in so we have
874 * to do a specific length check here to make sure
875 * the frame would have been ok, had we not stripped
876 * the tag.
877 */
878 if (likely((CMDSTS_OK & cmdsts) ||
879 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
880 #else
881 if (likely(CMDSTS_OK & cmdsts)) {
882 #endif
883 skb_put(skb, len);
884 if (unlikely(!skb)) {
885 ndev->stats.rx_dropped++;
886 goto netdev_mangle_me_harder_failed;
887 }
888 if (cmdsts & CMDSTS_DEST_MULTI)
889 ndev->stats.multicast++;
890 ndev->stats.rx_packets++;
891 ndev->stats.rx_bytes += len;
892 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
893 skb->ip_summed = CHECKSUM_UNNECESSARY;
894 } else {
895 skb_checksum_none_assert(skb);
896 }
897 skb->protocol = eth_type_trans(skb, ndev);
898 #ifdef NS83820_VLAN_ACCEL_SUPPORT
899 if(extsts & EXTSTS_VPKT) {
900 unsigned short tag;
901
902 tag = ntohs(extsts & EXTSTS_VTG_MASK);
903 __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
904 }
905 #endif
906 netif_rx(skb);
907 } else {
908 dev_kfree_skb_irq(skb);
909 }
910
911 netdev_mangle_me_harder_failed:
912 nr++;
913 next_rx = info->next_rx;
914 desc = info->descs + (DESC_SIZE * next_rx);
915 }
916 info->next_rx = next_rx;
917 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
918
919 out:
920 if (0 && !nr) {
921 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
922 }
923
924 spin_unlock_irqrestore(&info->lock, flags);
925 }
926
927 static void rx_action(struct tasklet_struct *t)
928 {
929 struct ns83820 *dev = from_tasklet(dev, t, rx_tasklet);
930 struct net_device *ndev = dev->ndev;
931 rx_irq(ndev);
932 writel(ihr, dev->base + IHR);
933
934 spin_lock_irq(&dev->misc_lock);
935 dev->IMR_cache |= ISR_RXDESC;
936 writel(dev->IMR_cache, dev->base + IMR);
937 spin_unlock_irq(&dev->misc_lock);
938
939 rx_irq(ndev);
940 ns83820_rx_kick(ndev);
941 }
942
943 /* Packet Transmit code
944 */
945 static inline void kick_tx(struct ns83820 *dev)
946 {
947 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
948 dev, dev->tx_idx, dev->tx_free_idx);
949 writel(CR_TXE, dev->base + CR);
950 }
951
952 /* No spinlock needed on the transmit irq path as the interrupt handler is
953 * serialized.
954 */
955 static void do_tx_done(struct net_device *ndev)
956 {
957 struct ns83820 *dev = PRIV(ndev);
958 u32 cmdsts, tx_done_idx;
959 __le32 *desc;
960
961 dprintk("do_tx_done(%p)\n", ndev);
962 tx_done_idx = dev->tx_done_idx;
963 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
964
965 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
966 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
967 while ((tx_done_idx != dev->tx_free_idx) &&
968 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
969 struct sk_buff *skb;
970 unsigned len;
971 dma_addr_t addr;
972
973 if (cmdsts & CMDSTS_ERR)
974 ndev->stats.tx_errors++;
975 if (cmdsts & CMDSTS_OK)
976 ndev->stats.tx_packets++;
977 if (cmdsts & CMDSTS_OK)
978 ndev->stats.tx_bytes += cmdsts & 0xffff;
979
980 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
981 tx_done_idx, dev->tx_free_idx, cmdsts);
982 skb = dev->tx_skbs[tx_done_idx];
983 dev->tx_skbs[tx_done_idx] = NULL;
984 dprintk("done(%p)\n", skb);
985
986 len = cmdsts & CMDSTS_LEN_MASK;
987 addr = desc_addr_get(desc + DESC_BUFPTR);
988 if (skb) {
989 dma_unmap_single(&dev->pci_dev->dev, addr, len,
990 DMA_TO_DEVICE);
991 dev_consume_skb_irq(skb);
992 atomic_dec(&dev->nr_tx_skbs);
993 } else
994 dma_unmap_page(&dev->pci_dev->dev, addr, len,
995 DMA_TO_DEVICE);
996
997 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
998 dev->tx_done_idx = tx_done_idx;
999 desc[DESC_CMDSTS] = cpu_to_le32(0);
1000 mb();
1001 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1002 }
1003
1004 /* Allow network stack to resume queueing packets after we've
1005 * finished transmitting at least 1/4 of the packets in the queue.
1006 */
1007 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1008 dprintk("start_queue(%p)\n", ndev);
1009 netif_start_queue(ndev);
1010 netif_wake_queue(ndev);
1011 }
1012 }
1013
1014 static void ns83820_cleanup_tx(struct ns83820 *dev)
1015 {
1016 unsigned i;
1017
1018 for (i=0; i<NR_TX_DESC; i++) {
1019 struct sk_buff *skb = dev->tx_skbs[i];
1020 dev->tx_skbs[i] = NULL;
1021 if (skb) {
1022 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1023 dma_unmap_single(&dev->pci_dev->dev,
1024 desc_addr_get(desc + DESC_BUFPTR),
1025 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1026 DMA_TO_DEVICE);
1027 dev_kfree_skb_irq(skb);
1028 atomic_dec(&dev->nr_tx_skbs);
1029 }
1030 }
1031
1032 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1033 }
1034
1035 /* transmit routine. This code relies on the network layer serializing
1036 * its calls in, but will run happily in parallel with the interrupt
1037 * handler. This code currently has provisions for fragmenting tx buffers
1038 * while trying to track down a bug in either the zero copy code or
1039 * the tx fifo (hence the MAX_FRAG_LEN).
1040 */
1041 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1042 struct net_device *ndev)
1043 {
1044 struct ns83820 *dev = PRIV(ndev);
1045 u32 free_idx, cmdsts, extsts;
1046 int nr_free, nr_frags;
1047 unsigned tx_done_idx, last_idx;
1048 dma_addr_t buf;
1049 unsigned len;
1050 skb_frag_t *frag;
1051 int stopped = 0;
1052 int do_intr = 0;
1053 volatile __le32 *first_desc;
1054
1055 dprintk("ns83820_hard_start_xmit\n");
1056
1057 nr_frags = skb_shinfo(skb)->nr_frags;
1058 again:
1059 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1060 netif_stop_queue(ndev);
1061 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1062 return NETDEV_TX_BUSY;
1063 netif_start_queue(ndev);
1064 }
1065
1066 last_idx = free_idx = dev->tx_free_idx;
1067 tx_done_idx = dev->tx_done_idx;
1068 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1069 nr_free -= 1;
1070 if (nr_free <= nr_frags) {
1071 dprintk("stop_queue - not enough(%p)\n", ndev);
1072 netif_stop_queue(ndev);
1073
1074 /* Check again: we may have raced with a tx done irq */
1075 if (dev->tx_done_idx != tx_done_idx) {
1076 dprintk("restart queue(%p)\n", ndev);
1077 netif_start_queue(ndev);
1078 goto again;
1079 }
1080 return NETDEV_TX_BUSY;
1081 }
1082
1083 if (free_idx == dev->tx_intr_idx) {
1084 do_intr = 1;
1085 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1086 }
1087
1088 nr_free -= nr_frags;
1089 if (nr_free < MIN_TX_DESC_FREE) {
1090 dprintk("stop_queue - last entry(%p)\n", ndev);
1091 netif_stop_queue(ndev);
1092 stopped = 1;
1093 }
1094
1095 frag = skb_shinfo(skb)->frags;
1096 if (!nr_frags)
1097 frag = NULL;
1098 extsts = 0;
1099 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1100 extsts |= EXTSTS_IPPKT;
1101 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1102 extsts |= EXTSTS_TCPPKT;
1103 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1104 extsts |= EXTSTS_UDPPKT;
1105 }
1106
1107 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1108 if (skb_vlan_tag_present(skb)) {
1109 /* fetch the vlan tag info out of the
1110 * ancillary data if the vlan code
1111 * is using hw vlan acceleration
1112 */
1113 short tag = skb_vlan_tag_get(skb);
1114 extsts |= (EXTSTS_VPKT | htons(tag));
1115 }
1116 #endif
1117
1118 len = skb->len;
1119 if (nr_frags)
1120 len -= skb->data_len;
1121 buf = dma_map_single(&dev->pci_dev->dev, skb->data, len,
1122 DMA_TO_DEVICE);
1123
1124 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1125
1126 for (;;) {
1127 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1128
1129 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1130 (unsigned long long)buf);
1131 last_idx = free_idx;
1132 free_idx = (free_idx + 1) % NR_TX_DESC;
1133 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1134 desc_addr_set(desc + DESC_BUFPTR, buf);
1135 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1136
1137 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1138 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1139 cmdsts |= len;
1140 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1141
1142 if (!nr_frags)
1143 break;
1144
1145 buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1146 skb_frag_size(frag), DMA_TO_DEVICE);
1147 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1148 (long long)buf, (long) page_to_pfn(frag->page),
1149 frag->page_offset);
1150 len = skb_frag_size(frag);
1151 frag++;
1152 nr_frags--;
1153 }
1154 dprintk("done pkt\n");
1155
1156 spin_lock_irq(&dev->tx_lock);
1157 dev->tx_skbs[last_idx] = skb;
1158 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1159 dev->tx_free_idx = free_idx;
1160 atomic_inc(&dev->nr_tx_skbs);
1161 spin_unlock_irq(&dev->tx_lock);
1162
1163 kick_tx(dev);
1164
1165 /* Check again: we may have raced with a tx done irq */
1166 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1167 netif_start_queue(ndev);
1168
1169 return NETDEV_TX_OK;
1170 }
1171
1172 static void ns83820_update_stats(struct ns83820 *dev)
1173 {
1174 struct net_device *ndev = dev->ndev;
1175 u8 __iomem *base = dev->base;
1176
1177 /* the DP83820 will freeze counters, so we need to read all of them */
1178 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1179 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1180 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1181 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1182 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1183 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1184 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1185 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1186 /*ndev->stats.rx_pause_count += */ readl(base + 0x80);
1187 /*ndev->stats.tx_pause_count += */ readl(base + 0x84);
1188 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1189 }
1190
1191 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1192 {
1193 struct ns83820 *dev = PRIV(ndev);
1194
1195 /* somewhat overkill */
1196 spin_lock_irq(&dev->misc_lock);
1197 ns83820_update_stats(dev);
1198 spin_unlock_irq(&dev->misc_lock);
1199
1200 return &ndev->stats;
1201 }
1202
1203 /* Let ethtool retrieve info */
1204 static int ns83820_get_link_ksettings(struct net_device *ndev,
1205 struct ethtool_link_ksettings *cmd)
1206 {
1207 struct ns83820 *dev = PRIV(ndev);
1208 u32 cfg, tbicr;
1209 int fullduplex = 0;
1210 u32 supported;
1211
1212 /*
1213 * Here's the list of available ethtool commands from other drivers:
1214 * cmd->advertising =
1215 * ethtool_cmd_speed_set(cmd, ...)
1216 * cmd->duplex =
1217 * cmd->port = 0;
1218 * cmd->phy_address =
1219 * cmd->transceiver = 0;
1220 * cmd->autoneg =
1221 * cmd->maxtxpkt = 0;
1222 * cmd->maxrxpkt = 0;
1223 */
1224
1225 /* read current configuration */
1226 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1227 readl(dev->base + TANAR);
1228 tbicr = readl(dev->base + TBICR);
1229
1230 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1231
1232 supported = SUPPORTED_Autoneg;
1233
1234 if (dev->CFG_cache & CFG_TBI_EN) {
1235 /* we have optical interface */
1236 supported |= SUPPORTED_1000baseT_Half |
1237 SUPPORTED_1000baseT_Full |
1238 SUPPORTED_FIBRE;
1239 cmd->base.port = PORT_FIBRE;
1240 } else {
1241 /* we have copper */
1242 supported |= SUPPORTED_10baseT_Half |
1243 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1244 SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1245 SUPPORTED_1000baseT_Full |
1246 SUPPORTED_MII;
1247 cmd->base.port = PORT_MII;
1248 }
1249
1250 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1251 supported);
1252
1253 cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1254 switch (cfg / CFG_SPDSTS0 & 3) {
1255 case 2:
1256 cmd->base.speed = SPEED_1000;
1257 break;
1258 case 1:
1259 cmd->base.speed = SPEED_100;
1260 break;
1261 default:
1262 cmd->base.speed = SPEED_10;
1263 break;
1264 }
1265 cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1266 ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1267 return 0;
1268 }
1269
1270 /* Let ethool change settings*/
1271 static int ns83820_set_link_ksettings(struct net_device *ndev,
1272 const struct ethtool_link_ksettings *cmd)
1273 {
1274 struct ns83820 *dev = PRIV(ndev);
1275 u32 cfg, tanar;
1276 int have_optical = 0;
1277 int fullduplex = 0;
1278
1279 /* read current configuration */
1280 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1281 tanar = readl(dev->base + TANAR);
1282
1283 if (dev->CFG_cache & CFG_TBI_EN) {
1284 /* we have optical */
1285 have_optical = 1;
1286 fullduplex = (tanar & TANAR_FULL_DUP);
1287
1288 } else {
1289 /* we have copper */
1290 fullduplex = cfg & CFG_DUPSTS;
1291 }
1292
1293 spin_lock_irq(&dev->misc_lock);
1294 spin_lock(&dev->tx_lock);
1295
1296 /* Set duplex */
1297 if (cmd->base.duplex != fullduplex) {
1298 if (have_optical) {
1299 /*set full duplex*/
1300 if (cmd->base.duplex == DUPLEX_FULL) {
1301 /* force full duplex */
1302 writel(readl(dev->base + TXCFG)
1303 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1304 dev->base + TXCFG);
1305 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1306 dev->base + RXCFG);
1307 /* Light up full duplex LED */
1308 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1309 dev->base + GPIOR);
1310 } else {
1311 /*TODO: set half duplex */
1312 }
1313
1314 } else {
1315 /*we have copper*/
1316 /* TODO: Set duplex for copper cards */
1317 }
1318 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1319 ndev->name);
1320 }
1321
1322 /* Set autonegotiation */
1323 if (1) {
1324 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1325 /* restart auto negotiation */
1326 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1327 dev->base + TBICR);
1328 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1329 dev->linkstate = LINK_AUTONEGOTIATE;
1330
1331 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1332 ndev->name);
1333 } else {
1334 /* disable auto negotiation */
1335 writel(0x00000000, dev->base + TBICR);
1336 }
1337
1338 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1339 cmd->base.autoneg ? "ENABLED" : "DISABLED");
1340 }
1341
1342 phy_intr(ndev);
1343 spin_unlock(&dev->tx_lock);
1344 spin_unlock_irq(&dev->misc_lock);
1345
1346 return 0;
1347 }
1348 /* end ethtool get/set support -df */
1349
1350 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1351 {
1352 struct ns83820 *dev = PRIV(ndev);
1353 strscpy(info->driver, "ns83820", sizeof(info->driver));
1354 strscpy(info->version, VERSION, sizeof(info->version));
1355 strscpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1356 }
1357
1358 static u32 ns83820_get_link(struct net_device *ndev)
1359 {
1360 struct ns83820 *dev = PRIV(ndev);
1361 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1362 return cfg & CFG_LNKSTS ? 1 : 0;
1363 }
1364
1365 static const struct ethtool_ops ops = {
1366 .get_drvinfo = ns83820_get_drvinfo,
1367 .get_link = ns83820_get_link,
1368 .get_link_ksettings = ns83820_get_link_ksettings,
1369 .set_link_ksettings = ns83820_set_link_ksettings,
1370 };
1371
1372 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1373 {
1374 writel(0, dev->base + IMR);
1375 writel(0, dev->base + IER);
1376 readl(dev->base + IER);
1377 }
1378
1379 /* this function is called in irq context from the ISR */
1380 static void ns83820_mib_isr(struct ns83820 *dev)
1381 {
1382 unsigned long flags;
1383 spin_lock_irqsave(&dev->misc_lock, flags);
1384 ns83820_update_stats(dev);
1385 spin_unlock_irqrestore(&dev->misc_lock, flags);
1386 }
1387
1388 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1389 static irqreturn_t ns83820_irq(int foo, void *data)
1390 {
1391 struct net_device *ndev = data;
1392 struct ns83820 *dev = PRIV(ndev);
1393 u32 isr;
1394 dprintk("ns83820_irq(%p)\n", ndev);
1395
1396 dev->ihr = 0;
1397
1398 isr = readl(dev->base + ISR);
1399 dprintk("irq: %08x\n", isr);
1400 ns83820_do_isr(ndev, isr);
1401 return IRQ_HANDLED;
1402 }
1403
1404 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1405 {
1406 struct ns83820 *dev = PRIV(ndev);
1407 unsigned long flags;
1408
1409 #ifdef DEBUG
1410 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1411 Dprintk("odd isr? 0x%08x\n", isr);
1412 #endif
1413
1414 if (ISR_RXIDLE & isr) {
1415 dev->rx_info.idle = 1;
1416 Dprintk("oh dear, we are idle\n");
1417 ns83820_rx_kick(ndev);
1418 }
1419
1420 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1421 prefetch(dev->rx_info.next_rx_desc);
1422
1423 spin_lock_irqsave(&dev->misc_lock, flags);
1424 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1425 writel(dev->IMR_cache, dev->base + IMR);
1426 spin_unlock_irqrestore(&dev->misc_lock, flags);
1427
1428 tasklet_schedule(&dev->rx_tasklet);
1429 //rx_irq(ndev);
1430 //writel(4, dev->base + IHR);
1431 }
1432
1433 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1434 ns83820_rx_kick(ndev);
1435
1436 if (unlikely(ISR_RXSOVR & isr)) {
1437 //printk("overrun: rxsovr\n");
1438 ndev->stats.rx_fifo_errors++;
1439 }
1440
1441 if (unlikely(ISR_RXORN & isr)) {
1442 //printk("overrun: rxorn\n");
1443 ndev->stats.rx_fifo_errors++;
1444 }
1445
1446 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1447 writel(CR_RXE, dev->base + CR);
1448
1449 if (ISR_TXIDLE & isr) {
1450 u32 txdp;
1451 txdp = readl(dev->base + TXDP);
1452 dprintk("txdp: %08x\n", txdp);
1453 txdp -= dev->tx_phy_descs;
1454 dev->tx_idx = txdp / (DESC_SIZE * 4);
1455 if (dev->tx_idx >= NR_TX_DESC) {
1456 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1457 dev->tx_idx = 0;
1458 }
1459 /* The may have been a race between a pci originated read
1460 * and the descriptor update from the cpu. Just in case,
1461 * kick the transmitter if the hardware thinks it is on a
1462 * different descriptor than we are.
1463 */
1464 if (dev->tx_idx != dev->tx_free_idx)
1465 kick_tx(dev);
1466 }
1467
1468 /* Defer tx ring processing until more than a minimum amount of
1469 * work has accumulated
1470 */
1471 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1472 spin_lock_irqsave(&dev->tx_lock, flags);
1473 do_tx_done(ndev);
1474 spin_unlock_irqrestore(&dev->tx_lock, flags);
1475
1476 /* Disable TxOk if there are no outstanding tx packets.
1477 */
1478 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1479 (dev->IMR_cache & ISR_TXOK)) {
1480 spin_lock_irqsave(&dev->misc_lock, flags);
1481 dev->IMR_cache &= ~ISR_TXOK;
1482 writel(dev->IMR_cache, dev->base + IMR);
1483 spin_unlock_irqrestore(&dev->misc_lock, flags);
1484 }
1485 }
1486
1487 /* The TxIdle interrupt can come in before the transmit has
1488 * completed. Normally we reap packets off of the combination
1489 * of TxDesc and TxIdle and leave TxOk disabled (since it
1490 * occurs on every packet), but when no further irqs of this
1491 * nature are expected, we must enable TxOk.
1492 */
1493 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1494 spin_lock_irqsave(&dev->misc_lock, flags);
1495 dev->IMR_cache |= ISR_TXOK;
1496 writel(dev->IMR_cache, dev->base + IMR);
1497 spin_unlock_irqrestore(&dev->misc_lock, flags);
1498 }
1499
1500 /* MIB interrupt: one of the statistics counters is about to overflow */
1501 if (unlikely(ISR_MIB & isr))
1502 ns83820_mib_isr(dev);
1503
1504 /* PHY: Link up/down/negotiation state change */
1505 if (unlikely(ISR_PHY & isr))
1506 phy_intr(ndev);
1507
1508 #if 0 /* Still working on the interrupt mitigation strategy */
1509 if (dev->ihr)
1510 writel(dev->ihr, dev->base + IHR);
1511 #endif
1512 }
1513
1514 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1515 {
1516 Dprintk("resetting chip...\n");
1517 writel(which, dev->base + CR);
1518 do {
1519 schedule();
1520 } while (readl(dev->base + CR) & which);
1521 Dprintk("okay!\n");
1522 }
1523
1524 static int ns83820_stop(struct net_device *ndev)
1525 {
1526 struct ns83820 *dev = PRIV(ndev);
1527
1528 /* FIXME: protect against interrupt handler? */
1529 timer_delete_sync(&dev->tx_watchdog);
1530
1531 ns83820_disable_interrupts(dev);
1532
1533 dev->rx_info.up = 0;
1534 synchronize_irq(dev->pci_dev->irq);
1535
1536 ns83820_do_reset(dev, CR_RST);
1537
1538 synchronize_irq(dev->pci_dev->irq);
1539
1540 spin_lock_irq(&dev->misc_lock);
1541 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1542 spin_unlock_irq(&dev->misc_lock);
1543
1544 ns83820_cleanup_rx(dev);
1545 ns83820_cleanup_tx(dev);
1546
1547 return 0;
1548 }
1549
1550 static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1551 {
1552 struct ns83820 *dev = PRIV(ndev);
1553 u32 tx_done_idx;
1554 __le32 *desc;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&dev->tx_lock, flags);
1558
1559 tx_done_idx = dev->tx_done_idx;
1560 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1561
1562 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1563 ndev->name,
1564 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1565
1566 #if defined(DEBUG)
1567 {
1568 u32 isr;
1569 isr = readl(dev->base + ISR);
1570 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1571 ns83820_do_isr(ndev, isr);
1572 }
1573 #endif
1574
1575 do_tx_done(ndev);
1576
1577 tx_done_idx = dev->tx_done_idx;
1578 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1579
1580 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1581 ndev->name,
1582 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1583
1584 spin_unlock_irqrestore(&dev->tx_lock, flags);
1585 }
1586
1587 static void ns83820_tx_watch(struct timer_list *t)
1588 {
1589 struct ns83820 *dev = timer_container_of(dev, t, tx_watchdog);
1590 struct net_device *ndev = dev->ndev;
1591
1592 #if defined(DEBUG)
1593 printk("ns83820_tx_watch: %u %u %d\n",
1594 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1595 );
1596 #endif
1597
1598 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1599 dev->tx_done_idx != dev->tx_free_idx) {
1600 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1601 ndev->name,
1602 dev->tx_done_idx, dev->tx_free_idx,
1603 atomic_read(&dev->nr_tx_skbs));
1604 ns83820_tx_timeout(ndev, UINT_MAX);
1605 }
1606
1607 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1608 }
1609
1610 static int ns83820_open(struct net_device *ndev)
1611 {
1612 struct ns83820 *dev = PRIV(ndev);
1613 unsigned i;
1614 u32 desc;
1615 int ret;
1616
1617 dprintk("ns83820_open\n");
1618
1619 writel(0, dev->base + PQCR);
1620
1621 ret = ns83820_setup_rx(ndev);
1622 if (ret)
1623 goto failed;
1624
1625 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1626 for (i=0; i<NR_TX_DESC; i++) {
1627 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1628 = cpu_to_le32(
1629 dev->tx_phy_descs
1630 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1631 }
1632
1633 dev->tx_idx = 0;
1634 dev->tx_done_idx = 0;
1635 desc = dev->tx_phy_descs;
1636 writel(0, dev->base + TXDP_HI);
1637 writel(desc, dev->base + TXDP);
1638
1639 timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1640 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1641
1642 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1643
1644 return 0;
1645
1646 failed:
1647 ns83820_stop(ndev);
1648 return ret;
1649 }
1650
1651 static void ns83820_getmac(struct ns83820 *dev, struct net_device *ndev)
1652 {
1653 u8 mac[ETH_ALEN];
1654 unsigned i;
1655
1656 for (i=0; i<3; i++) {
1657 u32 data;
1658
1659 /* Read from the perfect match memory: this is loaded by
1660 * the chip from the EEPROM via the EELOAD self test.
1661 */
1662 writel(i*2, dev->base + RFCR);
1663 data = readl(dev->base + RFDR);
1664
1665 mac[i * 2] = data;
1666 mac[i * 2 + 1] = data >> 8;
1667 }
1668 eth_hw_addr_set(ndev, mac);
1669 }
1670
1671 static void ns83820_set_multicast(struct net_device *ndev)
1672 {
1673 struct ns83820 *dev = PRIV(ndev);
1674 u8 __iomem *rfcr = dev->base + RFCR;
1675 u32 and_mask = 0xffffffff;
1676 u32 or_mask = 0;
1677 u32 val;
1678
1679 if (ndev->flags & IFF_PROMISC)
1680 or_mask |= RFCR_AAU | RFCR_AAM;
1681 else
1682 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1683
1684 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1685 or_mask |= RFCR_AAM;
1686 else
1687 and_mask &= ~RFCR_AAM;
1688
1689 spin_lock_irq(&dev->misc_lock);
1690 val = (readl(rfcr) & and_mask) | or_mask;
1691 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1692 writel(val & ~RFCR_RFEN, rfcr);
1693 writel(val, rfcr);
1694 spin_unlock_irq(&dev->misc_lock);
1695 }
1696
1697 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1698 {
1699 struct ns83820 *dev = PRIV(ndev);
1700 int timed_out = 0;
1701 unsigned long start;
1702 u32 status;
1703 int loops = 0;
1704
1705 dprintk("%s: start %s\n", ndev->name, name);
1706
1707 start = jiffies;
1708
1709 writel(enable, dev->base + PTSCR);
1710 for (;;) {
1711 loops++;
1712 status = readl(dev->base + PTSCR);
1713 if (!(status & enable))
1714 break;
1715 if (status & done)
1716 break;
1717 if (status & fail)
1718 break;
1719 if (time_after_eq(jiffies, start + HZ)) {
1720 timed_out = 1;
1721 break;
1722 }
1723 schedule_timeout_uninterruptible(1);
1724 }
1725
1726 if (status & fail)
1727 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1728 ndev->name, name, status, fail);
1729 else if (timed_out)
1730 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1731 ndev->name, name, status);
1732
1733 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1734 }
1735
1736 #ifdef PHY_CODE_IS_FINISHED
1737 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1738 {
1739 /* drive MDC low */
1740 dev->MEAR_cache &= ~MEAR_MDC;
1741 writel(dev->MEAR_cache, dev->base + MEAR);
1742 readl(dev->base + MEAR);
1743
1744 /* enable output, set bit */
1745 dev->MEAR_cache |= MEAR_MDDIR;
1746 if (bit)
1747 dev->MEAR_cache |= MEAR_MDIO;
1748 else
1749 dev->MEAR_cache &= ~MEAR_MDIO;
1750
1751 /* set the output bit */
1752 writel(dev->MEAR_cache, dev->base + MEAR);
1753 readl(dev->base + MEAR);
1754
1755 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1756 udelay(1);
1757
1758 /* drive MDC high causing the data bit to be latched */
1759 dev->MEAR_cache |= MEAR_MDC;
1760 writel(dev->MEAR_cache, dev->base + MEAR);
1761 readl(dev->base + MEAR);
1762
1763 /* Wait again... */
1764 udelay(1);
1765 }
1766
1767 static int ns83820_mii_read_bit(struct ns83820 *dev)
1768 {
1769 int bit;
1770
1771 /* drive MDC low, disable output */
1772 dev->MEAR_cache &= ~MEAR_MDC;
1773 dev->MEAR_cache &= ~MEAR_MDDIR;
1774 writel(dev->MEAR_cache, dev->base + MEAR);
1775 readl(dev->base + MEAR);
1776
1777 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1778 udelay(1);
1779
1780 /* drive MDC high causing the data bit to be latched */
1781 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1782 dev->MEAR_cache |= MEAR_MDC;
1783 writel(dev->MEAR_cache, dev->base + MEAR);
1784
1785 /* Wait again... */
1786 udelay(1);
1787
1788 return bit;
1789 }
1790
1791 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1792 {
1793 unsigned data = 0;
1794 int i;
1795
1796 /* read some garbage so that we eventually sync up */
1797 for (i=0; i<64; i++)
1798 ns83820_mii_read_bit(dev);
1799
1800 ns83820_mii_write_bit(dev, 0); /* start */
1801 ns83820_mii_write_bit(dev, 1);
1802 ns83820_mii_write_bit(dev, 1); /* opcode read */
1803 ns83820_mii_write_bit(dev, 0);
1804
1805 /* write out the phy address: 5 bits, msb first */
1806 for (i=0; i<5; i++)
1807 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1808
1809 /* write out the register address, 5 bits, msb first */
1810 for (i=0; i<5; i++)
1811 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1812
1813 ns83820_mii_read_bit(dev); /* turn around cycles */
1814 ns83820_mii_read_bit(dev);
1815
1816 /* read in the register data, 16 bits msb first */
1817 for (i=0; i<16; i++) {
1818 data <<= 1;
1819 data |= ns83820_mii_read_bit(dev);
1820 }
1821
1822 return data;
1823 }
1824
1825 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1826 {
1827 int i;
1828
1829 /* read some garbage so that we eventually sync up */
1830 for (i=0; i<64; i++)
1831 ns83820_mii_read_bit(dev);
1832
1833 ns83820_mii_write_bit(dev, 0); /* start */
1834 ns83820_mii_write_bit(dev, 1);
1835 ns83820_mii_write_bit(dev, 0); /* opcode read */
1836 ns83820_mii_write_bit(dev, 1);
1837
1838 /* write out the phy address: 5 bits, msb first */
1839 for (i=0; i<5; i++)
1840 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1841
1842 /* write out the register address, 5 bits, msb first */
1843 for (i=0; i<5; i++)
1844 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1845
1846 ns83820_mii_read_bit(dev); /* turn around cycles */
1847 ns83820_mii_read_bit(dev);
1848
1849 /* read in the register data, 16 bits msb first */
1850 for (i=0; i<16; i++)
1851 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1852
1853 return data;
1854 }
1855
1856 static void ns83820_probe_phy(struct net_device *ndev)
1857 {
1858 struct ns83820 *dev = PRIV(ndev);
1859 int j;
1860 unsigned a, b;
1861
1862 for (j = 0; j < 0x16; j += 4) {
1863 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1864 ndev->name, j,
1865 ns83820_mii_read_reg(dev, 1, 0 + j),
1866 ns83820_mii_read_reg(dev, 1, 1 + j),
1867 ns83820_mii_read_reg(dev, 1, 2 + j),
1868 ns83820_mii_read_reg(dev, 1, 3 + j)
1869 );
1870 }
1871
1872 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1873 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1874 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1875 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1876
1877 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1878 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1879 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1880 dprintk("version: 0x%04x 0x%04x\n", a, b);
1881 }
1882 #endif
1883
1884 static const struct net_device_ops netdev_ops = {
1885 .ndo_open = ns83820_open,
1886 .ndo_stop = ns83820_stop,
1887 .ndo_start_xmit = ns83820_hard_start_xmit,
1888 .ndo_get_stats = ns83820_get_stats,
1889 .ndo_set_rx_mode = ns83820_set_multicast,
1890 .ndo_validate_addr = eth_validate_addr,
1891 .ndo_set_mac_address = eth_mac_addr,
1892 .ndo_tx_timeout = ns83820_tx_timeout,
1893 };
1894
1895 static int ns83820_init_one(struct pci_dev *pci_dev,
1896 const struct pci_device_id *id)
1897 {
1898 struct net_device *ndev;
1899 struct ns83820 *dev;
1900 long addr;
1901 int err;
1902 int using_dac = 0;
1903
1904 /* See if we can set the dma mask early on; failure is fatal. */
1905 if (sizeof(dma_addr_t) == 8 &&
1906 !dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(64))) {
1907 using_dac = 1;
1908 } else if (!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
1909 using_dac = 0;
1910 } else {
1911 dev_warn(&pci_dev->dev, "dma_set_mask failed!\n");
1912 return -ENODEV;
1913 }
1914
1915 ndev = alloc_etherdev(sizeof(struct ns83820));
1916 err = -ENOMEM;
1917 if (!ndev)
1918 goto out;
1919
1920 dev = PRIV(ndev);
1921 dev->ndev = ndev;
1922
1923 spin_lock_init(&dev->rx_info.lock);
1924 spin_lock_init(&dev->tx_lock);
1925 spin_lock_init(&dev->misc_lock);
1926 dev->pci_dev = pci_dev;
1927
1928 SET_NETDEV_DEV(ndev, &pci_dev->dev);
1929
1930 INIT_WORK(&dev->tq_refill, queue_refill);
1931 tasklet_setup(&dev->rx_tasklet, rx_action);
1932
1933 err = pci_enable_device(pci_dev);
1934 if (err) {
1935 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1936 goto out_free;
1937 }
1938
1939 pci_set_master(pci_dev);
1940 addr = pci_resource_start(pci_dev, 1);
1941 dev->base = ioremap(addr, PAGE_SIZE);
1942 dev->tx_descs = dma_alloc_coherent(&pci_dev->dev,
1943 4 * DESC_SIZE * NR_TX_DESC,
1944 &dev->tx_phy_descs, GFP_KERNEL);
1945 dev->rx_info.descs = dma_alloc_coherent(&pci_dev->dev,
1946 4 * DESC_SIZE * NR_RX_DESC,
1947 &dev->rx_info.phy_descs, GFP_KERNEL);
1948 err = -ENOMEM;
1949 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1950 goto out_disable;
1951
1952 dprintk("%p: %08lx %p: %08lx\n",
1953 dev->tx_descs, (long)dev->tx_phy_descs,
1954 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1955
1956 ns83820_disable_interrupts(dev);
1957
1958 dev->IMR_cache = 0;
1959
1960 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1961 DRV_NAME, ndev);
1962 if (err) {
1963 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1964 pci_dev->irq, err);
1965 goto out_disable;
1966 }
1967
1968 /*
1969 * FIXME: we are holding rtnl_lock() over obscenely long area only
1970 * because some of the setup code uses dev->name. It's Wrong(tm) -
1971 * we should be using driver-specific names for all that stuff.
1972 * For now that will do, but we really need to come back and kill
1973 * most of the dev_alloc_name() users later.
1974 */
1975 rtnl_lock();
1976 err = dev_alloc_name(ndev, ndev->name);
1977 if (err < 0) {
1978 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1979 goto out_free_irq;
1980 }
1981
1982 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1983 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1984 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1985
1986 ndev->netdev_ops = &netdev_ops;
1987 ndev->ethtool_ops = &ops;
1988 ndev->watchdog_timeo = 5 * HZ;
1989 pci_set_drvdata(pci_dev, ndev);
1990
1991 ns83820_do_reset(dev, CR_RST);
1992
1993 /* Must reset the ram bist before running it */
1994 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1995 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
1996 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1997 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1998 PTSCR_EEBIST_FAIL);
1999 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2000
2001 /* I love config registers */
2002 dev->CFG_cache = readl(dev->base + CFG);
2003
2004 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2005 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2006 ndev->name);
2007 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2008 if (!(dev->CFG_cache & CFG_DATA64_EN))
2009 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2010 ndev->name);
2011 } else
2012 dev->CFG_cache &= ~(CFG_DATA64_EN);
2013
2014 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2015 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2016 CFG_M64ADDR);
2017 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2018 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2019 dev->CFG_cache |= CFG_REQALG;
2020 dev->CFG_cache |= CFG_POW;
2021 dev->CFG_cache |= CFG_TMRTEST;
2022
2023 /* When compiled with 64 bit addressing, we must always enable
2024 * the 64 bit descriptor format.
2025 */
2026 if (sizeof(dma_addr_t) == 8)
2027 dev->CFG_cache |= CFG_M64ADDR;
2028 if (using_dac)
2029 dev->CFG_cache |= CFG_T64ADDR;
2030
2031 /* Big endian mode does not seem to do what the docs suggest */
2032 dev->CFG_cache &= ~CFG_BEM;
2033
2034 /* setup optical transceiver if we have one */
2035 if (dev->CFG_cache & CFG_TBI_EN) {
2036 printk(KERN_INFO "%s: enabling optical transceiver\n",
2037 ndev->name);
2038 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2039
2040 /* setup auto negotiation feature advertisement */
2041 writel(readl(dev->base + TANAR)
2042 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2043 dev->base + TANAR);
2044
2045 /* start auto negotiation */
2046 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2047 dev->base + TBICR);
2048 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2049 dev->linkstate = LINK_AUTONEGOTIATE;
2050
2051 dev->CFG_cache |= CFG_MODE_1000;
2052 }
2053
2054 writel(dev->CFG_cache, dev->base + CFG);
2055 dprintk("CFG: %08x\n", dev->CFG_cache);
2056
2057 if (reset_phy) {
2058 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2059 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2060 msleep(10);
2061 writel(dev->CFG_cache, dev->base + CFG);
2062 }
2063
2064 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2065 * the PCI layer. FIXME.
2066 */
2067 if (readl(dev->base + SRR))
2068 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2069 #endif
2070
2071 /* Note! The DMA burst size interacts with packet
2072 * transmission, such that the largest packet that
2073 * can be transmitted is 8192 - FLTH - burst size.
2074 * If only the transmit fifo was larger...
2075 */
2076 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2077 * some DELL and COMPAQ SMP systems */
2078 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2079 | ((1600 / 32) * 0x100),
2080 dev->base + TXCFG);
2081
2082 /* Flush the interrupt holdoff timer */
2083 writel(0x000, dev->base + IHR);
2084 writel(0x100, dev->base + IHR);
2085 writel(0x000, dev->base + IHR);
2086
2087 /* Set Rx to full duplex, don't accept runt, errored, long or length
2088 * range errored packets. Use 512 byte DMA.
2089 */
2090 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2091 * some DELL and COMPAQ SMP systems
2092 * Turn on ALP, only we are accepting Jumbo Packets */
2093 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2094 | RXCFG_STRIPCRC
2095 //| RXCFG_ALP
2096 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2097
2098 /* Disable priority queueing */
2099 writel(0, dev->base + PQCR);
2100
2101 /* Enable IP checksum validation and detetion of VLAN headers.
2102 * Note: do not set the reject options as at least the 0x102
2103 * revision of the chip does not properly accept IP fragments
2104 * at least for UDP.
2105 */
2106 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2107 * the MAC it calculates the packetsize AFTER stripping the VLAN
2108 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2109 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2110 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2111 * it discrards it!. These guys......
2112 * also turn on tag stripping if hardware acceleration is enabled
2113 */
2114 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2115 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2116 #else
2117 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2118 #endif
2119 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2120
2121 /* Enable per-packet TCP/UDP/IP checksumming
2122 * and per packet vlan tag insertion if
2123 * vlan hardware acceleration is enabled
2124 */
2125 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2126 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2127 #else
2128 #define VTCR_INIT_VALUE VTCR_PPCHK
2129 #endif
2130 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2131
2132 /* Ramit : Enable async and sync pause frames */
2133 /* writel(0, dev->base + PCR); */
2134 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2135 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2136 dev->base + PCR);
2137
2138 /* Disable Wake On Lan */
2139 writel(0, dev->base + WCSR);
2140
2141 ns83820_getmac(dev, ndev);
2142
2143 /* Yes, we support dumb IP checksum on transmit */
2144 ndev->features |= NETIF_F_SG;
2145 ndev->features |= NETIF_F_IP_CSUM;
2146
2147 ndev->min_mtu = 0;
2148
2149 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2150 /* We also support hardware vlan acceleration */
2151 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2152 #endif
2153
2154 if (using_dac) {
2155 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2156 ndev->name);
2157 ndev->features |= NETIF_F_HIGHDMA;
2158 }
2159
2160 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2161 ndev->name,
2162 (unsigned)readl(dev->base + SRR) >> 8,
2163 (unsigned)readl(dev->base + SRR) & 0xff,
2164 ndev->dev_addr, addr, pci_dev->irq,
2165 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2166 );
2167
2168 #ifdef PHY_CODE_IS_FINISHED
2169 ns83820_probe_phy(ndev);
2170 #endif
2171
2172 err = register_netdevice(ndev);
2173 if (err) {
2174 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2175 goto out_cleanup;
2176 }
2177 rtnl_unlock();
2178
2179 return 0;
2180
2181 out_cleanup:
2182 ns83820_disable_interrupts(dev); /* paranoia */
2183 out_free_irq:
2184 rtnl_unlock();
2185 free_irq(pci_dev->irq, ndev);
2186 out_disable:
2187 if (dev->base)
2188 iounmap(dev->base);
2189 dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2190 dev->tx_descs, dev->tx_phy_descs);
2191 dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2192 dev->rx_info.descs, dev->rx_info.phy_descs);
2193 pci_disable_device(pci_dev);
2194 out_free:
2195 free_netdev(ndev);
2196 out:
2197 return err;
2198 }
2199
2200 static void ns83820_remove_one(struct pci_dev *pci_dev)
2201 {
2202 struct net_device *ndev = pci_get_drvdata(pci_dev);
2203 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2204
2205 if (!ndev) /* paranoia */
2206 return;
2207
2208 ns83820_disable_interrupts(dev); /* paranoia */
2209
2210 unregister_netdev(ndev);
2211 free_irq(dev->pci_dev->irq, ndev);
2212 iounmap(dev->base);
2213 dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2214 dev->tx_descs, dev->tx_phy_descs);
2215 dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2216 dev->rx_info.descs, dev->rx_info.phy_descs);
2217 pci_disable_device(dev->pci_dev);
2218 free_netdev(ndev);
2219 }
2220
2221 static const struct pci_device_id ns83820_pci_tbl[] = {
2222 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2223 { 0, },
2224 };
2225
2226 static struct pci_driver driver = {
2227 .name = "ns83820",
2228 .id_table = ns83820_pci_tbl,
2229 .probe = ns83820_init_one,
2230 .remove = ns83820_remove_one,
2231 #if 0 /* FIXME: implement */
2232 .suspend = ,
2233 .resume = ,
2234 #endif
2235 };
2236
2237
2238 static int __init ns83820_init(void)
2239 {
2240 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2241 return pci_register_driver(&driver);
2242 }
2243
2244 static void __exit ns83820_exit(void)
2245 {
2246 pci_unregister_driver(&driver);
2247 }
2248
2249 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2250 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2251 MODULE_LICENSE("GPL");
2252
2253 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2254
2255 module_param(lnksts, int, 0);
2256 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2257
2258 module_param(ihr, int, 0);
2259 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2260
2261 module_param(reset_phy, int, 0);
2262 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2263
2264 module_init(ns83820_init);
2265 module_exit(ns83820_exit);
2266