1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10 /**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344
345 /**
346 * pipapo_refill() - For each set bit, set bits from selected mapping table item
347 * @map: Bitmap to be scanned for set bits
348 * @len: Length of bitmap in longs
349 * @rules: Number of rules in field
350 * @dst: Destination bitmap
351 * @mt: Mapping table containing bit set specifiers
352 * @match_only: Find a single bit and return, don't fill
353 *
354 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355 *
356 * For each bit set in map, select the bucket from mapping table with index
357 * corresponding to the position of the bit set. Use start bit and amount of
358 * bits specified in bucket to fill region in dst.
359 *
360 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361 */
pipapo_refill(unsigned long * map,unsigned int len,unsigned int rules,unsigned long * dst,const union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, unsigned int len, unsigned int rules,
363 unsigned long *dst,
364 const union nft_pipapo_map_bucket *mt, bool match_only)
365 {
366 unsigned long bitset;
367 unsigned int k;
368 int ret = -1;
369
370 for (k = 0; k < len; k++) {
371 bitset = map[k];
372 while (bitset) {
373 unsigned long t = bitset & -bitset;
374 int r = __builtin_ctzl(bitset);
375 int i = k * BITS_PER_LONG + r;
376
377 if (unlikely(i >= rules)) {
378 map[k] = 0;
379 return -1;
380 }
381
382 if (match_only) {
383 bitmap_clear(map, i, 1);
384 return i;
385 }
386
387 ret = 0;
388
389 bitmap_set(dst, mt[i].to, mt[i].n);
390
391 bitset ^= t;
392 }
393 map[k] = 0;
394 }
395
396 return ret;
397 }
398
399 /**
400 * pipapo_get_slow() - Get matching element reference given key data
401 * @m: storage containing the set elements
402 * @data: Key data to be matched against existing elements
403 * @genmask: If set, check that element is active in given genmask
404 * @tstamp: timestamp to check for expired elements
405 *
406 * For more details, see DOC: Theory of Operation.
407 *
408 * This is the main lookup function. It matches key data against either
409 * the working match set or the uncommitted copy, depending on what the
410 * caller passed to us.
411 * nft_pipapo_get (lookup from userspace/control plane) and nft_pipapo_lookup
412 * (datapath lookup) pass the active copy.
413 * The insertion path will pass the uncommitted working copy.
414 *
415 * Return: pointer to &struct nft_pipapo_elem on match, NULL otherwise.
416 */
pipapo_get_slow(const struct nft_pipapo_match * m,const u8 * data,u8 genmask,u64 tstamp)417 static struct nft_pipapo_elem *pipapo_get_slow(const struct nft_pipapo_match *m,
418 const u8 *data, u8 genmask,
419 u64 tstamp)
420 {
421 unsigned long *res_map, *fill_map, *map;
422 struct nft_pipapo_scratch *scratch;
423 const struct nft_pipapo_field *f;
424 bool map_index;
425 int i;
426
427 local_bh_disable();
428
429 scratch = *raw_cpu_ptr(m->scratch);
430 if (unlikely(!scratch))
431 goto out;
432 __local_lock_nested_bh(&scratch->bh_lock);
433
434 map_index = scratch->map_index;
435
436 map = NFT_PIPAPO_LT_ALIGN(&scratch->__map[0]);
437 res_map = map + (map_index ? m->bsize_max : 0);
438 fill_map = map + (map_index ? 0 : m->bsize_max);
439
440 pipapo_resmap_init(m, res_map);
441
442 nft_pipapo_for_each_field(f, i, m) {
443 bool last = i == m->field_count - 1;
444 int b;
445
446 /* For each bit group: select lookup table bucket depending on
447 * packet bytes value, then AND bucket value
448 */
449 if (likely(f->bb == 8))
450 pipapo_and_field_buckets_8bit(f, res_map, data);
451 else
452 pipapo_and_field_buckets_4bit(f, res_map, data);
453 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
454
455 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
456
457 /* Now populate the bitmap for the next field, unless this is
458 * the last field, in which case return the matched 'ext'
459 * pointer if any.
460 *
461 * Now res_map contains the matching bitmap, and fill_map is the
462 * bitmap for the next field.
463 */
464 next_match:
465 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
466 last);
467 if (b < 0) {
468 scratch->map_index = map_index;
469 __local_unlock_nested_bh(&scratch->bh_lock);
470 local_bh_enable();
471
472 return NULL;
473 }
474
475 if (last) {
476 struct nft_pipapo_elem *e;
477
478 e = f->mt[b].e;
479 if (unlikely(__nft_set_elem_expired(&e->ext, tstamp) ||
480 !nft_set_elem_active(&e->ext, genmask)))
481 goto next_match;
482
483 /* Last field: we're just returning the key without
484 * filling the initial bitmap for the next field, so the
485 * current inactive bitmap is clean and can be reused as
486 * *next* bitmap (not initial) for the next packet.
487 */
488 scratch->map_index = map_index;
489 __local_unlock_nested_bh(&scratch->bh_lock);
490 local_bh_enable();
491 return e;
492 }
493
494 /* Swap bitmap indices: res_map is the initial bitmap for the
495 * next field, and fill_map is guaranteed to be all-zeroes at
496 * this point.
497 */
498 map_index = !map_index;
499 swap(res_map, fill_map);
500
501 data += NFT_PIPAPO_GROUPS_PADDING(f);
502 }
503
504 __local_unlock_nested_bh(&scratch->bh_lock);
505 out:
506 local_bh_enable();
507 return NULL;
508 }
509
510 /**
511 * pipapo_get() - Get matching element reference given key data
512 * @m: Storage containing the set elements
513 * @data: Key data to be matched against existing elements
514 * @genmask: If set, check that element is active in given genmask
515 * @tstamp: Timestamp to check for expired elements
516 *
517 * This is a dispatcher function, either calling out the generic C
518 * implementation or, if available, the AVX2 one.
519 * This helper is only called from the control plane, with either RCU
520 * read lock or transaction mutex held.
521 *
522 * Return: pointer to &struct nft_pipapo_elem on match, NULL otherwise.
523 */
pipapo_get(const struct nft_pipapo_match * m,const u8 * data,u8 genmask,u64 tstamp)524 static struct nft_pipapo_elem *pipapo_get(const struct nft_pipapo_match *m,
525 const u8 *data, u8 genmask,
526 u64 tstamp)
527 {
528 struct nft_pipapo_elem *e;
529
530 local_bh_disable();
531
532 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
533 if (boot_cpu_has(X86_FEATURE_AVX2) && irq_fpu_usable()) {
534 e = pipapo_get_avx2(m, data, genmask, tstamp);
535 local_bh_enable();
536 return e;
537 }
538 #endif
539 e = pipapo_get_slow(m, data, genmask, tstamp);
540 local_bh_enable();
541 return e;
542 }
543
544 /**
545 * nft_pipapo_lookup() - Dataplane fronted for main lookup function
546 * @net: Network namespace
547 * @set: nftables API set representation
548 * @key: pointer to nft registers containing key data
549 *
550 * This function is called from the data path. It will search for
551 * an element matching the given key in the current active copy.
552 * Unlike other set types, this uses 0 instead of nft_genmask_cur().
553 *
554 * This is because new (future) elements are not reachable from
555 * priv->match, they get added to priv->clone instead.
556 * When the commit phase flips the generation bitmask, the
557 * 'now old' entries are skipped but without the 'now current'
558 * elements becoming visible. Using nft_genmask_cur() thus creates
559 * inconsistent state: matching old entries get skipped but thew
560 * newly matching entries are unreachable.
561 *
562 * GENMASK_ANY doesn't work for the same reason: old-gen entries get
563 * skipped, new-gen entries are only reachable from priv->clone.
564 *
565 * nft_pipapo_commit swaps ->clone and ->match shortly after the
566 * genbit flip. As ->clone doesn't contain the old entries in the first
567 * place, lookup will only find the now-current ones.
568 *
569 * Return: ntables API extension pointer or NULL if no match.
570 */
571 const struct nft_set_ext *
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key)572 nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
573 const u32 *key)
574 {
575 struct nft_pipapo *priv = nft_set_priv(set);
576 const struct nft_pipapo_match *m;
577 const struct nft_pipapo_elem *e;
578
579 m = rcu_dereference(priv->match);
580 e = pipapo_get_slow(m, (const u8 *)key, 0, get_jiffies_64());
581
582 return e ? &e->ext : NULL;
583 }
584
585 /**
586 * nft_pipapo_get() - Get matching element reference given key data
587 * @net: Network namespace
588 * @set: nftables API set representation
589 * @elem: nftables API element representation containing key data
590 * @flags: Unused
591 *
592 * This function is called from the control plane path under
593 * RCU read lock.
594 *
595 * Return: set element private pointer or ERR_PTR(-ENOENT).
596 */
597 static struct nft_elem_priv *
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)598 nft_pipapo_get(const struct net *net, const struct nft_set *set,
599 const struct nft_set_elem *elem, unsigned int flags)
600 {
601 struct nft_pipapo *priv = nft_set_priv(set);
602 struct nft_pipapo_match *m = rcu_dereference(priv->match);
603 struct nft_pipapo_elem *e;
604
605 e = pipapo_get(m, (const u8 *)elem->key.val.data,
606 nft_genmask_cur(net), get_jiffies_64());
607 if (!e)
608 return ERR_PTR(-ENOENT);
609
610 return &e->priv;
611 }
612
613 /**
614 * pipapo_realloc_mt() - Reallocate mapping table if needed upon resize
615 * @f: Field containing mapping table
616 * @old_rules: Amount of existing mapped rules
617 * @rules: Amount of new rules to map
618 *
619 * Return: 0 on success, negative error code on failure.
620 */
pipapo_realloc_mt(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)621 static int pipapo_realloc_mt(struct nft_pipapo_field *f,
622 unsigned int old_rules, unsigned int rules)
623 {
624 union nft_pipapo_map_bucket *new_mt = NULL, *old_mt = f->mt;
625 const unsigned int extra = PAGE_SIZE / sizeof(*new_mt);
626 unsigned int rules_alloc = rules;
627
628 might_sleep();
629
630 if (unlikely(rules == 0))
631 goto out_free;
632
633 /* growing and enough space left, no action needed */
634 if (rules > old_rules && f->rules_alloc > rules)
635 return 0;
636
637 /* downsize and extra slack has not grown too large */
638 if (rules < old_rules) {
639 unsigned int remove = f->rules_alloc - rules;
640
641 if (remove < (2u * extra))
642 return 0;
643 }
644
645 /* If set needs more than one page of memory for rules then
646 * allocate another extra page to avoid frequent reallocation.
647 */
648 if (rules > extra &&
649 check_add_overflow(rules, extra, &rules_alloc))
650 return -EOVERFLOW;
651
652 if (rules_alloc > (INT_MAX / sizeof(*new_mt)))
653 return -ENOMEM;
654
655 new_mt = kvmalloc_array(rules_alloc, sizeof(*new_mt), GFP_KERNEL_ACCOUNT);
656 if (!new_mt)
657 return -ENOMEM;
658
659 if (old_mt)
660 memcpy(new_mt, old_mt, min(old_rules, rules) * sizeof(*new_mt));
661
662 if (rules > old_rules) {
663 memset(new_mt + old_rules, 0,
664 (rules - old_rules) * sizeof(*new_mt));
665 }
666 out_free:
667 f->rules_alloc = rules_alloc;
668 f->mt = new_mt;
669
670 kvfree(old_mt);
671
672 return 0;
673 }
674
675
676 /**
677 * lt_calculate_size() - Get storage size for lookup table with overflow check
678 * @groups: Amount of bit groups
679 * @bb: Number of bits grouped together in lookup table buckets
680 * @bsize: Size of each bucket in lookup table, in longs
681 *
682 * Return: allocation size including alignment overhead, negative on overflow
683 */
lt_calculate_size(unsigned int groups,unsigned int bb,unsigned int bsize)684 static ssize_t lt_calculate_size(unsigned int groups, unsigned int bb,
685 unsigned int bsize)
686 {
687 ssize_t ret = groups * NFT_PIPAPO_BUCKETS(bb) * sizeof(long);
688
689 if (check_mul_overflow(ret, bsize, &ret))
690 return -1;
691 if (check_add_overflow(ret, NFT_PIPAPO_ALIGN_HEADROOM, &ret))
692 return -1;
693 if (ret > INT_MAX)
694 return -1;
695
696 return ret;
697 }
698
699 /**
700 * pipapo_resize() - Resize lookup or mapping table, or both
701 * @f: Field containing lookup and mapping tables
702 * @old_rules: Previous amount of rules in field
703 * @rules: New amount of rules
704 *
705 * Increase, decrease or maintain tables size depending on new amount of rules,
706 * and copy data over. In case the new size is smaller, throw away data for
707 * highest-numbered rules.
708 *
709 * Return: 0 on success, -ENOMEM on allocation failure.
710 */
pipapo_resize(struct nft_pipapo_field * f,unsigned int old_rules,unsigned int rules)711 static int pipapo_resize(struct nft_pipapo_field *f,
712 unsigned int old_rules, unsigned int rules)
713 {
714 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
715 unsigned int new_bucket_size, copy;
716 int group, bucket, err;
717 ssize_t lt_size;
718
719 if (rules >= NFT_PIPAPO_RULE0_MAX)
720 return -ENOSPC;
721
722 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
723 #ifdef NFT_PIPAPO_ALIGN
724 new_bucket_size = roundup(new_bucket_size,
725 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
726 #endif
727
728 if (new_bucket_size == f->bsize)
729 goto mt;
730
731 if (new_bucket_size > f->bsize)
732 copy = f->bsize;
733 else
734 copy = new_bucket_size;
735
736 lt_size = lt_calculate_size(f->groups, f->bb, new_bucket_size);
737 if (lt_size < 0)
738 return -ENOMEM;
739
740 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
741 if (!new_lt)
742 return -ENOMEM;
743
744 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
745 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
746
747 for (group = 0; group < f->groups; group++) {
748 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
749 memcpy(new_p, old_p, copy * sizeof(*new_p));
750 new_p += copy;
751 old_p += copy;
752
753 if (new_bucket_size > f->bsize)
754 new_p += new_bucket_size - f->bsize;
755 else
756 old_p += f->bsize - new_bucket_size;
757 }
758 }
759
760 mt:
761 err = pipapo_realloc_mt(f, old_rules, rules);
762 if (err) {
763 kvfree(new_lt);
764 return err;
765 }
766
767 if (new_lt) {
768 f->bsize = new_bucket_size;
769 f->lt = new_lt;
770 kvfree(old_lt);
771 }
772
773 return 0;
774 }
775
776 /**
777 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
778 * @f: Field containing lookup table
779 * @rule: Rule index
780 * @group: Group index
781 * @v: Value of bit group
782 */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)783 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
784 int v)
785 {
786 unsigned long *pos;
787
788 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
789 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
790 pos += f->bsize * v;
791
792 __set_bit(rule, pos);
793 }
794
795 /**
796 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
797 * @old_groups: Number of current groups
798 * @bsize: Size of one bucket, in longs
799 * @old_lt: Pointer to the current lookup table
800 * @new_lt: Pointer to the new, pre-allocated lookup table
801 *
802 * Each bucket with index b in the new lookup table, belonging to group g, is
803 * filled with the bit intersection between:
804 * - bucket with index given by the upper 4 bits of b, from group g, and
805 * - bucket with index given by the lower 4 bits of b, from group g + 1
806 *
807 * That is, given buckets from the new lookup table N(x, y) and the old lookup
808 * table O(x, y), with x bucket index, and y group index:
809 *
810 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
811 *
812 * This ensures equivalence of the matching results on lookup. Two examples in
813 * pictures:
814 *
815 * bucket
816 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
817 * 0 ^
818 * 1 | ^
819 * ... ( & ) |
820 * / \ |
821 * / \ .-( & )-.
822 * / bucket \ | |
823 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
824 * 0 / \ | |
825 * 1 \ | |
826 * 2 | --'
827 * 3 '-
828 * ...
829 */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)830 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
831 unsigned long *old_lt, unsigned long *new_lt)
832 {
833 int g, b, i;
834
835 for (g = 0; g < old_groups / 2; g++) {
836 int src_g0 = g * 2, src_g1 = g * 2 + 1;
837
838 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
839 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
840 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
841 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
842 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
843
844 for (i = 0; i < bsize; i++) {
845 *new_lt = old_lt[src_i0 * bsize + i] &
846 old_lt[src_i1 * bsize + i];
847 new_lt++;
848 }
849 }
850 }
851 }
852
853 /**
854 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
855 * @old_groups: Number of current groups
856 * @bsize: Size of one bucket, in longs
857 * @old_lt: Pointer to the current lookup table
858 * @new_lt: Pointer to the new, pre-allocated lookup table
859 *
860 * Each bucket with index b in the new lookup table, belonging to group g, is
861 * filled with the bit union of:
862 * - all the buckets with index such that the upper four bits of the lower byte
863 * equal b, from group g, with g odd
864 * - all the buckets with index such that the lower four bits equal b, from
865 * group g, with g even
866 *
867 * That is, given buckets from the new lookup table N(x, y) and the old lookup
868 * table O(x, y), with x bucket index, and y group index:
869 *
870 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
871 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
872 *
873 * where U() denotes the arbitrary union operation (binary OR of n terms). This
874 * ensures equivalence of the matching results on lookup.
875 */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)876 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
877 unsigned long *old_lt, unsigned long *new_lt)
878 {
879 int g, b, bsrc, i;
880
881 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
882 sizeof(unsigned long));
883
884 for (g = 0; g < old_groups * 2; g += 2) {
885 int src_g = g / 2;
886
887 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
888 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
889 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
890 bsrc++) {
891 if (((bsrc & 0xf0) >> 4) != b)
892 continue;
893
894 for (i = 0; i < bsize; i++)
895 new_lt[i] |= old_lt[bsrc * bsize + i];
896 }
897
898 new_lt += bsize;
899 }
900
901 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
902 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
903 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
904 bsrc++) {
905 if ((bsrc & 0x0f) != b)
906 continue;
907
908 for (i = 0; i < bsize; i++)
909 new_lt[i] |= old_lt[bsrc * bsize + i];
910 }
911
912 new_lt += bsize;
913 }
914 }
915 }
916
917 /**
918 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
919 * @f: Field containing lookup table
920 */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)921 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
922 {
923 unsigned int groups, bb;
924 unsigned long *new_lt;
925 ssize_t lt_size;
926
927 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
928 sizeof(*f->lt);
929
930 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
931 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
932 groups = f->groups * 2;
933 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
934
935 lt_size = lt_calculate_size(groups, bb, f->bsize);
936 if (lt_size < 0)
937 return;
938 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
939 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
940 groups = f->groups / 2;
941 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
942
943 lt_size = lt_calculate_size(groups, bb, f->bsize);
944 if (lt_size < 0)
945 return;
946
947 /* Don't increase group width if the resulting lookup table size
948 * would exceed the upper size threshold for a "small" set.
949 */
950 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
951 return;
952 } else {
953 return;
954 }
955
956 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
957 if (!new_lt)
958 return;
959
960 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
961 if (f->bb == 4 && bb == 8) {
962 pipapo_lt_4b_to_8b(f->groups, f->bsize,
963 NFT_PIPAPO_LT_ALIGN(f->lt),
964 NFT_PIPAPO_LT_ALIGN(new_lt));
965 } else if (f->bb == 8 && bb == 4) {
966 pipapo_lt_8b_to_4b(f->groups, f->bsize,
967 NFT_PIPAPO_LT_ALIGN(f->lt),
968 NFT_PIPAPO_LT_ALIGN(new_lt));
969 } else {
970 BUG();
971 }
972
973 f->groups = groups;
974 f->bb = bb;
975 kvfree(f->lt);
976 f->lt = new_lt;
977 }
978
979 /**
980 * pipapo_insert() - Insert new rule in field given input key and mask length
981 * @f: Field containing lookup table
982 * @k: Input key for classification, without nftables padding
983 * @mask_bits: Length of mask; matches field length for non-ranged entry
984 *
985 * Insert a new rule reference in lookup buckets corresponding to k and
986 * mask_bits.
987 *
988 * Return: 1 on success (one rule inserted), negative error code on failure.
989 */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)990 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
991 int mask_bits)
992 {
993 unsigned int rule = f->rules, group, ret, bit_offset = 0;
994
995 ret = pipapo_resize(f, f->rules, f->rules + 1);
996 if (ret)
997 return ret;
998
999 f->rules++;
1000
1001 for (group = 0; group < f->groups; group++) {
1002 int i, v;
1003 u8 mask;
1004
1005 v = k[group / (BITS_PER_BYTE / f->bb)];
1006 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
1007 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
1008
1009 bit_offset += f->bb;
1010 bit_offset %= BITS_PER_BYTE;
1011
1012 if (mask_bits >= (group + 1) * f->bb) {
1013 /* Not masked */
1014 pipapo_bucket_set(f, rule, group, v);
1015 } else if (mask_bits <= group * f->bb) {
1016 /* Completely masked */
1017 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
1018 pipapo_bucket_set(f, rule, group, i);
1019 } else {
1020 /* The mask limit falls on this group */
1021 mask = GENMASK(f->bb - 1, 0);
1022 mask >>= mask_bits - group * f->bb;
1023 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
1024 if ((i & ~mask) == (v & ~mask))
1025 pipapo_bucket_set(f, rule, group, i);
1026 }
1027 }
1028 }
1029
1030 pipapo_lt_bits_adjust(f);
1031
1032 return 1;
1033 }
1034
1035 /**
1036 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
1037 * @base: Mask we are expanding
1038 * @step: Step bit for given expansion step
1039 * @len: Total length of mask space (set and unset bits), bytes
1040 *
1041 * Convenience function for mask expansion.
1042 *
1043 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
1044 */
pipapo_step_diff(u8 * base,int step,int len)1045 static bool pipapo_step_diff(u8 *base, int step, int len)
1046 {
1047 /* Network order, byte-addressed */
1048 #ifdef __BIG_ENDIAN__
1049 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
1050 #else
1051 return !(BIT(step % BITS_PER_BYTE) &
1052 base[len - 1 - step / BITS_PER_BYTE]);
1053 #endif
1054 }
1055
1056 /**
1057 * pipapo_step_after_end() - Check if mask exceeds range end with given step
1058 * @base: Mask we are expanding
1059 * @end: End of range
1060 * @step: Step bit for given expansion step, highest bit to be set
1061 * @len: Total length of mask space (set and unset bits), bytes
1062 *
1063 * Convenience function for mask expansion.
1064 *
1065 * Return: true if mask exceeds range setting step bits, false otherwise.
1066 */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)1067 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
1068 int len)
1069 {
1070 u8 tmp[NFT_PIPAPO_MAX_BYTES];
1071 int i;
1072
1073 memcpy(tmp, base, len);
1074
1075 /* Network order, byte-addressed */
1076 for (i = 0; i <= step; i++)
1077 #ifdef __BIG_ENDIAN__
1078 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1079 #else
1080 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1081 #endif
1082
1083 return memcmp(tmp, end, len) > 0;
1084 }
1085
1086 /**
1087 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1088 * @base: Netmask base
1089 * @step: Step bit to sum
1090 * @len: Netmask length, bytes
1091 */
pipapo_base_sum(u8 * base,int step,int len)1092 static void pipapo_base_sum(u8 *base, int step, int len)
1093 {
1094 bool carry = false;
1095 int i;
1096
1097 /* Network order, byte-addressed */
1098 #ifdef __BIG_ENDIAN__
1099 for (i = step / BITS_PER_BYTE; i < len; i++) {
1100 #else
1101 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1102 #endif
1103 if (carry)
1104 base[i]++;
1105 else
1106 base[i] += 1 << (step % BITS_PER_BYTE);
1107
1108 if (base[i])
1109 break;
1110
1111 carry = true;
1112 }
1113 }
1114
1115 /**
1116 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1117 * @f: Field containing lookup table
1118 * @start: Start of range
1119 * @end: End of range
1120 * @len: Length of value in bits
1121 *
1122 * Expand range to composing netmasks and insert corresponding rule references
1123 * in lookup buckets.
1124 *
1125 * Return: number of inserted rules on success, negative error code on failure.
1126 */
1127 static int pipapo_expand(struct nft_pipapo_field *f,
1128 const u8 *start, const u8 *end, int len)
1129 {
1130 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1131 u8 base[NFT_PIPAPO_MAX_BYTES];
1132
1133 memcpy(base, start, bytes);
1134 while (memcmp(base, end, bytes) <= 0) {
1135 int err;
1136
1137 step = 0;
1138 while (pipapo_step_diff(base, step, bytes)) {
1139 if (pipapo_step_after_end(base, end, step, bytes))
1140 break;
1141
1142 step++;
1143 if (step >= len) {
1144 if (!masks) {
1145 err = pipapo_insert(f, base, 0);
1146 if (err < 0)
1147 return err;
1148 masks = 1;
1149 }
1150 goto out;
1151 }
1152 }
1153
1154 err = pipapo_insert(f, base, len - step);
1155
1156 if (err < 0)
1157 return err;
1158
1159 masks++;
1160 pipapo_base_sum(base, step, bytes);
1161 }
1162 out:
1163 return masks;
1164 }
1165
1166 /**
1167 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1168 * @m: Matching data, including mapping table
1169 * @map: Table of rule maps: array of first rule and amount of rules
1170 * in next field a given rule maps to, for each field
1171 * @e: For last field, nft_set_ext pointer matching rules map to
1172 */
1173 static void pipapo_map(struct nft_pipapo_match *m,
1174 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1175 struct nft_pipapo_elem *e)
1176 {
1177 struct nft_pipapo_field *f;
1178 int i, j;
1179
1180 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1181 for (j = 0; j < map[i].n; j++) {
1182 f->mt[map[i].to + j].to = map[i + 1].to;
1183 f->mt[map[i].to + j].n = map[i + 1].n;
1184 }
1185 }
1186
1187 /* Last field: map to ext instead of mapping to next field */
1188 for (j = 0; j < map[i].n; j++)
1189 f->mt[map[i].to + j].e = e;
1190 }
1191
1192 /**
1193 * pipapo_free_scratch() - Free per-CPU map at original address
1194 * @m: Matching data
1195 * @cpu: CPU number
1196 */
1197 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1198 {
1199 struct nft_pipapo_scratch *s;
1200
1201 s = *per_cpu_ptr(m->scratch, cpu);
1202
1203 kvfree(s);
1204 }
1205
1206 /**
1207 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1208 * @clone: Copy of matching data with pending insertions and deletions
1209 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1210 *
1211 * Return: 0 on success, -ENOMEM on failure.
1212 */
1213 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1214 unsigned long bsize_max)
1215 {
1216 int i;
1217
1218 for_each_possible_cpu(i) {
1219 struct nft_pipapo_scratch *scratch;
1220
1221 scratch = kvzalloc_node(struct_size(scratch, __map, bsize_max * 2) +
1222 NFT_PIPAPO_ALIGN_HEADROOM,
1223 GFP_KERNEL_ACCOUNT, cpu_to_node(i));
1224 if (!scratch) {
1225 /* On failure, there's no need to undo previous
1226 * allocations: this means that some scratch maps have
1227 * a bigger allocated size now (this is only called on
1228 * insertion), but the extra space won't be used by any
1229 * CPU as new elements are not inserted and m->bsize_max
1230 * is not updated.
1231 */
1232 return -ENOMEM;
1233 }
1234
1235 pipapo_free_scratch(clone, i);
1236 local_lock_init(&scratch->bh_lock);
1237 *per_cpu_ptr(clone->scratch, i) = scratch;
1238 }
1239
1240 return 0;
1241 }
1242
1243 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1244 {
1245 #ifdef CONFIG_PROVE_LOCKING
1246 const struct net *net = read_pnet(&set->net);
1247
1248 return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1249 #else
1250 return true;
1251 #endif
1252 }
1253
1254 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old);
1255
1256 /**
1257 * pipapo_maybe_clone() - Build clone for pending data changes, if not existing
1258 * @set: nftables API set representation
1259 *
1260 * Return: newly created or existing clone, if any. NULL on allocation failure
1261 */
1262 static struct nft_pipapo_match *pipapo_maybe_clone(const struct nft_set *set)
1263 {
1264 struct nft_pipapo *priv = nft_set_priv(set);
1265 struct nft_pipapo_match *m;
1266
1267 if (priv->clone)
1268 return priv->clone;
1269
1270 m = rcu_dereference_protected(priv->match,
1271 nft_pipapo_transaction_mutex_held(set));
1272 priv->clone = pipapo_clone(m);
1273
1274 return priv->clone;
1275 }
1276
1277 /**
1278 * nft_pipapo_insert() - Validate and insert ranged elements
1279 * @net: Network namespace
1280 * @set: nftables API set representation
1281 * @elem: nftables API element representation containing key data
1282 * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element
1283 *
1284 * Return: 0 on success, error pointer on failure.
1285 */
1286 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1287 const struct nft_set_elem *elem,
1288 struct nft_elem_priv **elem_priv)
1289 {
1290 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1291 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1292 const u8 *start = (const u8 *)elem->key.val.data, *end;
1293 struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1294 u8 genmask = nft_genmask_next(net);
1295 struct nft_pipapo_elem *e, *dup;
1296 u64 tstamp = nft_net_tstamp(net);
1297 struct nft_pipapo_field *f;
1298 const u8 *start_p, *end_p;
1299 int i, bsize_max, err = 0;
1300
1301 if (!m)
1302 return -ENOMEM;
1303
1304 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1305 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1306 else
1307 end = start;
1308
1309 dup = pipapo_get(m, start, genmask, tstamp);
1310 if (dup) {
1311 /* Check if we already have the same exact entry */
1312 const struct nft_data *dup_key, *dup_end;
1313
1314 dup_key = nft_set_ext_key(&dup->ext);
1315 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1316 dup_end = nft_set_ext_key_end(&dup->ext);
1317 else
1318 dup_end = dup_key;
1319
1320 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1321 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1322 *elem_priv = &dup->priv;
1323 return -EEXIST;
1324 }
1325
1326 return -ENOTEMPTY;
1327 }
1328
1329 /* Look for partially overlapping entries */
1330 dup = pipapo_get(m, end, nft_genmask_next(net), tstamp);
1331 if (dup) {
1332 *elem_priv = &dup->priv;
1333 return -ENOTEMPTY;
1334 }
1335
1336 /* Validate */
1337 start_p = start;
1338 end_p = end;
1339
1340 /* some helpers return -1, or 0 >= for valid rule pos,
1341 * so we cannot support more than INT_MAX rules at this time.
1342 */
1343 BUILD_BUG_ON(NFT_PIPAPO_RULE0_MAX > INT_MAX);
1344
1345 nft_pipapo_for_each_field(f, i, m) {
1346 if (f->rules >= NFT_PIPAPO_RULE0_MAX)
1347 return -ENOSPC;
1348
1349 if (memcmp(start_p, end_p,
1350 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1351 return -EINVAL;
1352
1353 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1354 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1355 }
1356
1357 /* Insert */
1358 bsize_max = m->bsize_max;
1359
1360 nft_pipapo_for_each_field(f, i, m) {
1361 int ret;
1362
1363 rulemap[i].to = f->rules;
1364
1365 ret = memcmp(start, end,
1366 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1367 if (!ret)
1368 ret = pipapo_insert(f, start, f->groups * f->bb);
1369 else
1370 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1371
1372 if (ret < 0)
1373 return ret;
1374
1375 if (f->bsize > bsize_max)
1376 bsize_max = f->bsize;
1377
1378 rulemap[i].n = ret;
1379
1380 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1381 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1382 }
1383
1384 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1385 put_cpu_ptr(m->scratch);
1386
1387 err = pipapo_realloc_scratch(m, bsize_max);
1388 if (err)
1389 return err;
1390
1391 m->bsize_max = bsize_max;
1392 } else {
1393 put_cpu_ptr(m->scratch);
1394 }
1395
1396 e = nft_elem_priv_cast(elem->priv);
1397 *elem_priv = &e->priv;
1398
1399 pipapo_map(m, rulemap, e);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * pipapo_clone() - Clone matching data to create new working copy
1406 * @old: Existing matching data
1407 *
1408 * Return: copy of matching data passed as 'old' or NULL.
1409 */
1410 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1411 {
1412 struct nft_pipapo_field *dst, *src;
1413 struct nft_pipapo_match *new;
1414 int i;
1415
1416 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL_ACCOUNT);
1417 if (!new)
1418 return NULL;
1419
1420 new->field_count = old->field_count;
1421 new->bsize_max = old->bsize_max;
1422
1423 new->scratch = alloc_percpu(*new->scratch);
1424 if (!new->scratch)
1425 goto out_scratch;
1426
1427 for_each_possible_cpu(i)
1428 *per_cpu_ptr(new->scratch, i) = NULL;
1429
1430 if (pipapo_realloc_scratch(new, old->bsize_max))
1431 goto out_scratch_realloc;
1432
1433 rcu_head_init(&new->rcu);
1434
1435 src = old->f;
1436 dst = new->f;
1437
1438 for (i = 0; i < old->field_count; i++) {
1439 unsigned long *new_lt;
1440 ssize_t lt_size;
1441
1442 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1443
1444 lt_size = lt_calculate_size(src->groups, src->bb, src->bsize);
1445 if (lt_size < 0)
1446 goto out_lt;
1447
1448 new_lt = kvzalloc(lt_size, GFP_KERNEL_ACCOUNT);
1449 if (!new_lt)
1450 goto out_lt;
1451
1452 dst->lt = new_lt;
1453
1454 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1455 NFT_PIPAPO_LT_ALIGN(src->lt),
1456 src->bsize * sizeof(*dst->lt) *
1457 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1458
1459 if (src->rules > 0) {
1460 if (src->rules_alloc > (INT_MAX / sizeof(*src->mt)))
1461 goto out_mt;
1462
1463 dst->mt = kvmalloc_array(src->rules_alloc,
1464 sizeof(*src->mt),
1465 GFP_KERNEL_ACCOUNT);
1466 if (!dst->mt)
1467 goto out_mt;
1468
1469 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1470 } else {
1471 dst->mt = NULL;
1472 dst->rules_alloc = 0;
1473 }
1474
1475 src++;
1476 dst++;
1477 }
1478
1479 return new;
1480
1481 out_mt:
1482 kvfree(dst->lt);
1483 out_lt:
1484 for (dst--; i > 0; i--) {
1485 kvfree(dst->mt);
1486 kvfree(dst->lt);
1487 dst--;
1488 }
1489 out_scratch_realloc:
1490 for_each_possible_cpu(i)
1491 pipapo_free_scratch(new, i);
1492 out_scratch:
1493 free_percpu(new->scratch);
1494 kfree(new);
1495
1496 return NULL;
1497 }
1498
1499 /**
1500 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1501 * @f: Field containing mapping table
1502 * @first: Index of first rule in set of rules mapping to same entry
1503 *
1504 * Using the fact that all rules in a field that originated from the same entry
1505 * will map to the same set of rules in the next field, or to the same element
1506 * reference, return the cardinality of the set of rules that originated from
1507 * the same entry as the rule with index @first, @first rule included.
1508 *
1509 * In pictures:
1510 * rules
1511 * field #0 0 1 2 3 4
1512 * map to: 0 1 2-4 2-4 5-9
1513 * . . ....... . ...
1514 * | | | | \ \
1515 * | | | | \ \
1516 * | | | | \ \
1517 * ' ' ' ' ' \
1518 * in field #1 0 1 2 3 4 5 ...
1519 *
1520 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1521 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1522 *
1523 * For the last field in a set, we can rely on associated entries to map to the
1524 * same element references.
1525 *
1526 * Return: Number of rules that originated from the same entry as @first.
1527 */
1528 static unsigned int pipapo_rules_same_key(struct nft_pipapo_field *f, unsigned int first)
1529 {
1530 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1531 unsigned int r;
1532
1533 for (r = first; r < f->rules; r++) {
1534 if (r != first && e != f->mt[r].e)
1535 return r - first;
1536
1537 e = f->mt[r].e;
1538 }
1539
1540 if (r != first)
1541 return r - first;
1542
1543 return 0;
1544 }
1545
1546 /**
1547 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1548 * @mt: Mapping array
1549 * @rules: Original amount of rules in mapping table
1550 * @start: First rule index to be removed
1551 * @n: Amount of rules to be removed
1552 * @to_offset: First rule index, in next field, this group of rules maps to
1553 * @is_last: If this is the last field, delete reference from mapping array
1554 *
1555 * This is used to unmap rules from the mapping table for a single field,
1556 * maintaining consistency and compactness for the existing ones.
1557 *
1558 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1559 * following mapping array:
1560 *
1561 * rules
1562 * 0 1 2 3 4
1563 * map to: 4-10 4-10 11-15 11-15 16-18
1564 *
1565 * the result will be:
1566 *
1567 * rules
1568 * 0 1 2
1569 * map to: 4-10 4-10 11-13
1570 *
1571 * for fields before the last one. In case this is the mapping table for the
1572 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1573 *
1574 * rules
1575 * 0 1 2 3 4
1576 * element pointers: 0x42 0x42 0x33 0x33 0x44
1577 *
1578 * the result will be:
1579 *
1580 * rules
1581 * 0 1 2
1582 * element pointers: 0x42 0x42 0x44
1583 */
1584 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, unsigned int rules,
1585 unsigned int start, unsigned int n,
1586 unsigned int to_offset, bool is_last)
1587 {
1588 int i;
1589
1590 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1591 memset(mt + rules - n, 0, n * sizeof(*mt));
1592
1593 if (is_last)
1594 return;
1595
1596 for (i = start; i < rules - n; i++)
1597 mt[i].to -= to_offset;
1598 }
1599
1600 /**
1601 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1602 * @m: Matching data
1603 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1604 * in next field a given entry maps to, for each field
1605 *
1606 * For each rule in lookup table buckets mapping to this set of rules, drop
1607 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1608 * rules 0 and 1 from this lookup table:
1609 *
1610 * bucket
1611 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1612 * 0 0 1,2
1613 * 1 1,2 0
1614 * 2 0 1,2
1615 * 3 0 1,2
1616 * 4 0,1,2
1617 * 5 0 1 2
1618 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1619 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1620 *
1621 * rule 2 becomes rule 0, and the result will be:
1622 *
1623 * bucket
1624 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1625 * 0 0
1626 * 1 0
1627 * 2 0
1628 * 3 0
1629 * 4 0
1630 * 5 0
1631 * 6 0
1632 * 7 0 0
1633 *
1634 * once this is done, call unmap() to drop all the corresponding rule references
1635 * from mapping tables.
1636 */
1637 static void pipapo_drop(struct nft_pipapo_match *m,
1638 union nft_pipapo_map_bucket rulemap[])
1639 {
1640 struct nft_pipapo_field *f;
1641 int i;
1642
1643 nft_pipapo_for_each_field(f, i, m) {
1644 int g;
1645
1646 for (g = 0; g < f->groups; g++) {
1647 unsigned long *pos;
1648 int b;
1649
1650 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1651 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1652
1653 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1654 bitmap_cut(pos, pos, rulemap[i].to,
1655 rulemap[i].n,
1656 f->bsize * BITS_PER_LONG);
1657
1658 pos += f->bsize;
1659 }
1660 }
1661
1662 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1663 rulemap[i + 1].n, i == m->field_count - 1);
1664 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1665 /* We can ignore this, a failure to shrink tables down
1666 * doesn't make tables invalid.
1667 */
1668 ;
1669 }
1670 f->rules -= rulemap[i].n;
1671
1672 pipapo_lt_bits_adjust(f);
1673 }
1674 }
1675
1676 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1677 struct nft_pipapo_elem *e)
1678
1679 {
1680 nft_setelem_data_deactivate(net, set, &e->priv);
1681 }
1682
1683 /**
1684 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1685 * @set: nftables API set representation
1686 * @m: Matching data
1687 */
1688 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1689 {
1690 struct nft_pipapo *priv = nft_set_priv(set);
1691 struct net *net = read_pnet(&set->net);
1692 unsigned int rules_f0, first_rule = 0;
1693 u64 tstamp = nft_net_tstamp(net);
1694 struct nft_pipapo_elem *e;
1695 struct nft_trans_gc *gc;
1696
1697 gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1698 if (!gc)
1699 return;
1700
1701 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1702 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1703 const struct nft_pipapo_field *f;
1704 unsigned int i, start, rules_fx;
1705
1706 start = first_rule;
1707 rules_fx = rules_f0;
1708
1709 nft_pipapo_for_each_field(f, i, m) {
1710 rulemap[i].to = start;
1711 rulemap[i].n = rules_fx;
1712
1713 if (i < m->field_count - 1) {
1714 rules_fx = f->mt[start].n;
1715 start = f->mt[start].to;
1716 }
1717 }
1718
1719 /* Pick the last field, and its last index */
1720 f--;
1721 i--;
1722 e = f->mt[rulemap[i].to].e;
1723
1724 /* synchronous gc never fails, there is no need to set on
1725 * NFT_SET_ELEM_DEAD_BIT.
1726 */
1727 if (__nft_set_elem_expired(&e->ext, tstamp)) {
1728 gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
1729 if (!gc)
1730 return;
1731
1732 nft_pipapo_gc_deactivate(net, set, e);
1733 pipapo_drop(m, rulemap);
1734 nft_trans_gc_elem_add(gc, e);
1735
1736 /* And check again current first rule, which is now the
1737 * first we haven't checked.
1738 */
1739 } else {
1740 first_rule += rules_f0;
1741 }
1742 }
1743
1744 gc = nft_trans_gc_catchall_sync(gc);
1745 if (gc) {
1746 nft_trans_gc_queue_sync_done(gc);
1747 priv->last_gc = jiffies;
1748 }
1749 }
1750
1751 /**
1752 * pipapo_free_fields() - Free per-field tables contained in matching data
1753 * @m: Matching data
1754 */
1755 static void pipapo_free_fields(struct nft_pipapo_match *m)
1756 {
1757 struct nft_pipapo_field *f;
1758 int i;
1759
1760 nft_pipapo_for_each_field(f, i, m) {
1761 kvfree(f->lt);
1762 kvfree(f->mt);
1763 }
1764 }
1765
1766 static void pipapo_free_match(struct nft_pipapo_match *m)
1767 {
1768 int i;
1769
1770 for_each_possible_cpu(i)
1771 pipapo_free_scratch(m, i);
1772
1773 free_percpu(m->scratch);
1774 pipapo_free_fields(m);
1775
1776 kfree(m);
1777 }
1778
1779 /**
1780 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1781 * @rcu: RCU head
1782 */
1783 static void pipapo_reclaim_match(struct rcu_head *rcu)
1784 {
1785 struct nft_pipapo_match *m;
1786
1787 m = container_of(rcu, struct nft_pipapo_match, rcu);
1788 pipapo_free_match(m);
1789 }
1790
1791 /**
1792 * nft_pipapo_commit() - Replace lookup data with current working copy
1793 * @set: nftables API set representation
1794 *
1795 * While at it, check if we should perform garbage collection on the working
1796 * copy before committing it for lookup, and don't replace the table if the
1797 * working copy doesn't have pending changes.
1798 *
1799 * We also need to create a new working copy for subsequent insertions and
1800 * deletions.
1801 */
1802 static void nft_pipapo_commit(struct nft_set *set)
1803 {
1804 struct nft_pipapo *priv = nft_set_priv(set);
1805 struct nft_pipapo_match *old;
1806
1807 if (!priv->clone)
1808 return;
1809
1810 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1811 pipapo_gc(set, priv->clone);
1812
1813 old = rcu_replace_pointer(priv->match, priv->clone,
1814 nft_pipapo_transaction_mutex_held(set));
1815 priv->clone = NULL;
1816
1817 if (old)
1818 call_rcu(&old->rcu, pipapo_reclaim_match);
1819 }
1820
1821 static void nft_pipapo_abort(const struct nft_set *set)
1822 {
1823 struct nft_pipapo *priv = nft_set_priv(set);
1824
1825 if (!priv->clone)
1826 return;
1827 pipapo_free_match(priv->clone);
1828 priv->clone = NULL;
1829 }
1830
1831 /**
1832 * nft_pipapo_activate() - Mark element reference as active given key, commit
1833 * @net: Network namespace
1834 * @set: nftables API set representation
1835 * @elem_priv: nftables API element representation containing key data
1836 *
1837 * On insertion, elements are added to a copy of the matching data currently
1838 * in use for lookups, and not directly inserted into current lookup data. Both
1839 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1840 * element, hence we can't purpose either one as a real commit operation.
1841 */
1842 static void nft_pipapo_activate(const struct net *net,
1843 const struct nft_set *set,
1844 struct nft_elem_priv *elem_priv)
1845 {
1846 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1847
1848 nft_clear(net, &e->ext);
1849 }
1850
1851 /**
1852 * nft_pipapo_deactivate() - Search for element and make it inactive
1853 * @net: Network namespace
1854 * @set: nftables API set representation
1855 * @elem: nftables API element representation containing key data
1856 *
1857 * Return: deactivated element if found, NULL otherwise.
1858 */
1859 static struct nft_elem_priv *
1860 nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1861 const struct nft_set_elem *elem)
1862 {
1863 struct nft_pipapo_match *m = pipapo_maybe_clone(set);
1864 struct nft_pipapo_elem *e;
1865
1866 /* removal must occur on priv->clone, if we are low on memory
1867 * we have no choice and must fail the removal request.
1868 */
1869 if (!m)
1870 return NULL;
1871
1872 e = pipapo_get(m, (const u8 *)elem->key.val.data,
1873 nft_genmask_next(net), nft_net_tstamp(net));
1874 if (!e)
1875 return NULL;
1876
1877 nft_set_elem_change_active(net, set, &e->ext);
1878
1879 return &e->priv;
1880 }
1881
1882 /**
1883 * nft_pipapo_flush() - make element inactive
1884 * @net: Network namespace
1885 * @set: nftables API set representation
1886 * @elem_priv: nftables API element representation containing key data
1887 *
1888 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1889 * different interface, and it's also called once for each element in a set
1890 * being flushed, so we can't implement, strictly speaking, a flush operation,
1891 * which would otherwise be as simple as allocating an empty copy of the
1892 * matching data.
1893 *
1894 * Note that we could in theory do that, mark the set as flushed, and ignore
1895 * subsequent calls, but we would leak all the elements after the first one,
1896 * because they wouldn't then be freed as result of API calls.
1897 *
1898 * Return: true if element was found and deactivated.
1899 */
1900 static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1901 struct nft_elem_priv *elem_priv)
1902 {
1903 struct nft_pipapo_elem *e = nft_elem_priv_cast(elem_priv);
1904
1905 nft_set_elem_change_active(net, set, &e->ext);
1906 }
1907
1908 /**
1909 * pipapo_get_boundaries() - Get byte interval for associated rules
1910 * @f: Field including lookup table
1911 * @first_rule: First rule (lowest index)
1912 * @rule_count: Number of associated rules
1913 * @left: Byte expression for left boundary (start of range)
1914 * @right: Byte expression for right boundary (end of range)
1915 *
1916 * Given the first rule and amount of rules that originated from the same entry,
1917 * build the original range associated with the entry, and calculate the length
1918 * of the originating netmask.
1919 *
1920 * In pictures:
1921 *
1922 * bucket
1923 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1924 * 0 1,2
1925 * 1 1,2
1926 * 2 1,2
1927 * 3 1,2
1928 * 4 1,2
1929 * 5 1 2
1930 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1931 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1932 *
1933 * this is the lookup table corresponding to the IPv4 range
1934 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1935 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1936 *
1937 * This function fills @left and @right with the byte values of the leftmost
1938 * and rightmost bucket indices for the lowest and highest rule indices,
1939 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1940 * nibbles:
1941 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1942 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1943 * corresponding to bytes:
1944 * left: < 192, 168, 1, 0 >
1945 * right: < 192, 168, 2, 1 >
1946 * with mask length irrelevant here, unused on return, as the range is already
1947 * defined by its start and end points. The mask length is relevant for a single
1948 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1949 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1950 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1951 * between leftmost and rightmost bucket indices for each group, would be 24.
1952 *
1953 * Return: mask length, in bits.
1954 */
1955 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1956 int rule_count, u8 *left, u8 *right)
1957 {
1958 int g, mask_len = 0, bit_offset = 0;
1959 u8 *l = left, *r = right;
1960
1961 for (g = 0; g < f->groups; g++) {
1962 int b, x0, x1;
1963
1964 x0 = -1;
1965 x1 = -1;
1966 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1967 unsigned long *pos;
1968
1969 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1970 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1971 if (test_bit(first_rule, pos) && x0 == -1)
1972 x0 = b;
1973 if (test_bit(first_rule + rule_count - 1, pos))
1974 x1 = b;
1975 }
1976
1977 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1978 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1979
1980 bit_offset += f->bb;
1981 if (bit_offset >= BITS_PER_BYTE) {
1982 bit_offset %= BITS_PER_BYTE;
1983 l++;
1984 r++;
1985 }
1986
1987 if (x1 - x0 == 0)
1988 mask_len += 4;
1989 else if (x1 - x0 == 1)
1990 mask_len += 3;
1991 else if (x1 - x0 == 3)
1992 mask_len += 2;
1993 else if (x1 - x0 == 7)
1994 mask_len += 1;
1995 }
1996
1997 return mask_len;
1998 }
1999
2000 /**
2001 * pipapo_match_field() - Match rules against byte ranges
2002 * @f: Field including the lookup table
2003 * @first_rule: First of associated rules originating from same entry
2004 * @rule_count: Amount of associated rules
2005 * @start: Start of range to be matched
2006 * @end: End of range to be matched
2007 *
2008 * Return: true on match, false otherwise.
2009 */
2010 static bool pipapo_match_field(struct nft_pipapo_field *f,
2011 int first_rule, int rule_count,
2012 const u8 *start, const u8 *end)
2013 {
2014 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
2015 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
2016
2017 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
2018
2019 return !memcmp(start, left,
2020 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
2021 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
2022 }
2023
2024 /**
2025 * nft_pipapo_remove() - Remove element given key, commit
2026 * @net: Network namespace
2027 * @set: nftables API set representation
2028 * @elem_priv: nftables API element representation containing key data
2029 *
2030 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
2031 * API, but it's called once per element in the pending transaction, so we can't
2032 * implement this as a single commit operation. Closest we can get is to remove
2033 * the matched element here, if any, and commit the updated matching data.
2034 */
2035 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
2036 struct nft_elem_priv *elem_priv)
2037 {
2038 struct nft_pipapo *priv = nft_set_priv(set);
2039 struct nft_pipapo_match *m = priv->clone;
2040 unsigned int rules_f0, first_rule = 0;
2041 struct nft_pipapo_elem *e;
2042 const u8 *data;
2043
2044 e = nft_elem_priv_cast(elem_priv);
2045 data = (const u8 *)nft_set_ext_key(&e->ext);
2046
2047 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
2048 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
2049 const u8 *match_start, *match_end;
2050 struct nft_pipapo_field *f;
2051 int i, start, rules_fx;
2052
2053 match_start = data;
2054
2055 if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
2056 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
2057 else
2058 match_end = data;
2059
2060 start = first_rule;
2061 rules_fx = rules_f0;
2062
2063 nft_pipapo_for_each_field(f, i, m) {
2064 bool last = i == m->field_count - 1;
2065
2066 if (!pipapo_match_field(f, start, rules_fx,
2067 match_start, match_end))
2068 break;
2069
2070 rulemap[i].to = start;
2071 rulemap[i].n = rules_fx;
2072
2073 rules_fx = f->mt[start].n;
2074 start = f->mt[start].to;
2075
2076 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2077 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2078
2079 if (last && f->mt[rulemap[i].to].e == e) {
2080 pipapo_drop(m, rulemap);
2081 return;
2082 }
2083 }
2084
2085 first_rule += rules_f0;
2086 }
2087
2088 WARN_ON_ONCE(1); /* elem_priv not found */
2089 }
2090
2091 /**
2092 * nft_pipapo_do_walk() - Walk over elements in m
2093 * @ctx: nftables API context
2094 * @set: nftables API set representation
2095 * @m: matching data pointing to key mapping array
2096 * @iter: Iterator
2097 *
2098 * As elements are referenced in the mapping array for the last field, directly
2099 * scan that array: there's no need to follow rule mappings from the first
2100 * field. @m is protected either by RCU read lock or by transaction mutex.
2101 */
2102 static void nft_pipapo_do_walk(const struct nft_ctx *ctx, struct nft_set *set,
2103 const struct nft_pipapo_match *m,
2104 struct nft_set_iter *iter)
2105 {
2106 const struct nft_pipapo_field *f;
2107 unsigned int i, r;
2108
2109 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2110 ;
2111
2112 for (r = 0; r < f->rules; r++) {
2113 struct nft_pipapo_elem *e;
2114
2115 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2116 continue;
2117
2118 if (iter->count < iter->skip)
2119 goto cont;
2120
2121 e = f->mt[r].e;
2122
2123 iter->err = iter->fn(ctx, set, iter, &e->priv);
2124 if (iter->err < 0)
2125 return;
2126
2127 cont:
2128 iter->count++;
2129 }
2130 }
2131
2132 /**
2133 * nft_pipapo_walk() - Walk over elements
2134 * @ctx: nftables API context
2135 * @set: nftables API set representation
2136 * @iter: Iterator
2137 *
2138 * Test if destructive action is needed or not, clone active backend if needed
2139 * and call the real function to work on the data.
2140 */
2141 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2142 struct nft_set_iter *iter)
2143 {
2144 struct nft_pipapo *priv = nft_set_priv(set);
2145 const struct nft_pipapo_match *m;
2146
2147 switch (iter->type) {
2148 case NFT_ITER_UPDATE:
2149 m = pipapo_maybe_clone(set);
2150 if (!m) {
2151 iter->err = -ENOMEM;
2152 return;
2153 }
2154
2155 nft_pipapo_do_walk(ctx, set, m, iter);
2156 break;
2157 case NFT_ITER_READ:
2158 rcu_read_lock();
2159 m = rcu_dereference(priv->match);
2160 nft_pipapo_do_walk(ctx, set, m, iter);
2161 rcu_read_unlock();
2162 break;
2163 default:
2164 iter->err = -EINVAL;
2165 WARN_ON_ONCE(1);
2166 break;
2167 }
2168 }
2169
2170 /**
2171 * nft_pipapo_privsize() - Return the size of private data for the set
2172 * @nla: netlink attributes, ignored as size doesn't depend on them
2173 * @desc: Set description, ignored as size doesn't depend on it
2174 *
2175 * Return: size of private data for this set implementation, in bytes
2176 */
2177 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2178 const struct nft_set_desc *desc)
2179 {
2180 return sizeof(struct nft_pipapo);
2181 }
2182
2183 /**
2184 * nft_pipapo_estimate() - Set size, space and lookup complexity
2185 * @desc: Set description, element count and field description used
2186 * @features: Flags: NFT_SET_INTERVAL needs to be there
2187 * @est: Storage for estimation data
2188 *
2189 * Return: true if set description is compatible, false otherwise
2190 */
2191 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2192 struct nft_set_estimate *est)
2193 {
2194 if (!(features & NFT_SET_INTERVAL) ||
2195 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2196 return false;
2197
2198 est->size = pipapo_estimate_size(desc);
2199 if (!est->size)
2200 return false;
2201
2202 est->lookup = NFT_SET_CLASS_O_LOG_N;
2203
2204 est->space = NFT_SET_CLASS_O_N;
2205
2206 return true;
2207 }
2208
2209 /**
2210 * nft_pipapo_init() - Initialise data for a set instance
2211 * @set: nftables API set representation
2212 * @desc: Set description
2213 * @nla: netlink attributes
2214 *
2215 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2216 * attributes, initialise internal set parameters, current instance of matching
2217 * data and a copy for subsequent insertions.
2218 *
2219 * Return: 0 on success, negative error code on failure.
2220 */
2221 static int nft_pipapo_init(const struct nft_set *set,
2222 const struct nft_set_desc *desc,
2223 const struct nlattr * const nla[])
2224 {
2225 struct nft_pipapo *priv = nft_set_priv(set);
2226 struct nft_pipapo_match *m;
2227 struct nft_pipapo_field *f;
2228 int err, i, field_count;
2229
2230 BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2231
2232 field_count = desc->field_count ? : 1;
2233
2234 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS > 255);
2235 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS != NFT_REG32_COUNT);
2236
2237 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2238 return -EINVAL;
2239
2240 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2241 if (!m)
2242 return -ENOMEM;
2243
2244 m->field_count = field_count;
2245 m->bsize_max = 0;
2246
2247 m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2248 if (!m->scratch) {
2249 err = -ENOMEM;
2250 goto out_scratch;
2251 }
2252 for_each_possible_cpu(i)
2253 *per_cpu_ptr(m->scratch, i) = NULL;
2254
2255 rcu_head_init(&m->rcu);
2256
2257 nft_pipapo_for_each_field(f, i, m) {
2258 unsigned int len = desc->field_len[i] ? : set->klen;
2259
2260 /* f->groups is u8 */
2261 BUILD_BUG_ON((NFT_PIPAPO_MAX_BYTES *
2262 BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS_LARGE_SET) >= 256);
2263
2264 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2265 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2266
2267 priv->width += round_up(len, sizeof(u32));
2268
2269 f->bsize = 0;
2270 f->rules = 0;
2271 f->rules_alloc = 0;
2272 f->lt = NULL;
2273 f->mt = NULL;
2274 }
2275
2276 rcu_assign_pointer(priv->match, m);
2277
2278 return 0;
2279
2280 out_scratch:
2281 kfree(m);
2282
2283 return err;
2284 }
2285
2286 /**
2287 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2288 * @ctx: context
2289 * @set: nftables API set representation
2290 * @m: matching data pointing to key mapping array
2291 */
2292 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2293 const struct nft_set *set,
2294 struct nft_pipapo_match *m)
2295 {
2296 struct nft_pipapo_field *f;
2297 unsigned int i, r;
2298
2299 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2300 ;
2301
2302 for (r = 0; r < f->rules; r++) {
2303 struct nft_pipapo_elem *e;
2304
2305 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2306 continue;
2307
2308 e = f->mt[r].e;
2309
2310 nf_tables_set_elem_destroy(ctx, set, &e->priv);
2311 }
2312 }
2313
2314 /**
2315 * nft_pipapo_destroy() - Free private data for set and all committed elements
2316 * @ctx: context
2317 * @set: nftables API set representation
2318 */
2319 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2320 const struct nft_set *set)
2321 {
2322 struct nft_pipapo *priv = nft_set_priv(set);
2323 struct nft_pipapo_match *m;
2324
2325 m = rcu_dereference_protected(priv->match, true);
2326
2327 if (priv->clone) {
2328 nft_set_pipapo_match_destroy(ctx, set, priv->clone);
2329 pipapo_free_match(priv->clone);
2330 priv->clone = NULL;
2331 } else {
2332 nft_set_pipapo_match_destroy(ctx, set, m);
2333 }
2334
2335 pipapo_free_match(m);
2336 }
2337
2338 /**
2339 * nft_pipapo_gc_init() - Initialise garbage collection
2340 * @set: nftables API set representation
2341 *
2342 * Instead of actually setting up a periodic work for garbage collection, as
2343 * this operation requires a swap of matching data with the working copy, we'll
2344 * do that opportunistically with other commit operations if the interval is
2345 * elapsed, so we just need to set the current jiffies timestamp here.
2346 */
2347 static void nft_pipapo_gc_init(const struct nft_set *set)
2348 {
2349 struct nft_pipapo *priv = nft_set_priv(set);
2350
2351 priv->last_gc = jiffies;
2352 }
2353
2354 const struct nft_set_type nft_set_pipapo_type = {
2355 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2356 NFT_SET_TIMEOUT,
2357 .ops = {
2358 .lookup = nft_pipapo_lookup,
2359 .insert = nft_pipapo_insert,
2360 .activate = nft_pipapo_activate,
2361 .deactivate = nft_pipapo_deactivate,
2362 .flush = nft_pipapo_flush,
2363 .remove = nft_pipapo_remove,
2364 .walk = nft_pipapo_walk,
2365 .get = nft_pipapo_get,
2366 .privsize = nft_pipapo_privsize,
2367 .estimate = nft_pipapo_estimate,
2368 .init = nft_pipapo_init,
2369 .destroy = nft_pipapo_destroy,
2370 .gc_init = nft_pipapo_gc_init,
2371 .commit = nft_pipapo_commit,
2372 .abort = nft_pipapo_abort,
2373 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2374 },
2375 };
2376
2377 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2378 const struct nft_set_type nft_set_pipapo_avx2_type = {
2379 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2380 NFT_SET_TIMEOUT,
2381 .ops = {
2382 .lookup = nft_pipapo_avx2_lookup,
2383 .insert = nft_pipapo_insert,
2384 .activate = nft_pipapo_activate,
2385 .deactivate = nft_pipapo_deactivate,
2386 .flush = nft_pipapo_flush,
2387 .remove = nft_pipapo_remove,
2388 .walk = nft_pipapo_walk,
2389 .get = nft_pipapo_get,
2390 .privsize = nft_pipapo_privsize,
2391 .estimate = nft_pipapo_avx2_estimate,
2392 .init = nft_pipapo_init,
2393 .destroy = nft_pipapo_destroy,
2394 .gc_init = nft_pipapo_gc_init,
2395 .commit = nft_pipapo_commit,
2396 .abort = nft_pipapo_abort,
2397 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2398 },
2399 };
2400 #endif
2401