xref: /linux/net/ipv4/ipmr.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	IP multicast routing support for mrouted 3.6/3.8
4  *
5  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *	  Linux Consultancy and Custom Driver Development
7  *
8  *	Fixes:
9  *	Michael Chastain	:	Incorrect size of copying.
10  *	Alan Cox		:	Added the cache manager code
11  *	Alan Cox		:	Fixed the clone/copy bug and device race.
12  *	Mike McLagan		:	Routing by source
13  *	Malcolm Beattie		:	Buffer handling fixes.
14  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
15  *	SVR Anand		:	Fixed several multicast bugs and problems.
16  *	Alexey Kuznetsov	:	Status, optimisations and more.
17  *	Brad Parker		:	Better behaviour on mrouted upcall
18  *					overflow.
19  *      Carlos Picoto           :       PIMv1 Support
20  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
21  *					Relax this requirement to work with older peers.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/flow.h>
46 #include <net/net_namespace.h>
47 #include <net/ip.h>
48 #include <net/protocol.h>
49 #include <linux/skbuff.h>
50 #include <net/route.h>
51 #include <net/icmp.h>
52 #include <net/udp.h>
53 #include <net/raw.h>
54 #include <linux/notifier.h>
55 #include <linux/if_arp.h>
56 #include <linux/netfilter_ipv4.h>
57 #include <linux/compat.h>
58 #include <linux/export.h>
59 #include <linux/rhashtable.h>
60 #include <net/ip_tunnels.h>
61 #include <net/checksum.h>
62 #include <net/netlink.h>
63 #include <net/fib_rules.h>
64 #include <linux/netconf.h>
65 #include <net/rtnh.h>
66 #include <net/inet_dscp.h>
67 
68 #include <linux/nospec.h>
69 
70 struct ipmr_rule {
71 	struct fib_rule		common;
72 };
73 
74 struct ipmr_result {
75 	struct mr_table		*mrt;
76 };
77 
78 /* Big lock, protecting vif table, mrt cache and mroute socket state.
79  * Note that the changes are semaphored via rtnl_lock.
80  */
81 
82 static DEFINE_SPINLOCK(mrt_lock);
83 
84 static struct net_device *vif_dev_read(const struct vif_device *vif)
85 {
86 	return rcu_dereference(vif->dev);
87 }
88 
89 /* Multicast router control variables */
90 
91 /* Special spinlock for queue of unresolved entries */
92 static DEFINE_SPINLOCK(mfc_unres_lock);
93 
94 /* We return to original Alan's scheme. Hash table of resolved
95  * entries is changed only in process context and protected
96  * with weak lock mrt_lock. Queue of unresolved entries is protected
97  * with strong spinlock mfc_unres_lock.
98  *
99  * In this case data path is free of exclusive locks at all.
100  */
101 
102 static struct kmem_cache *mrt_cachep __ro_after_init;
103 
104 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
105 static void ipmr_free_table(struct mr_table *mrt);
106 
107 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
108 			  struct net_device *dev, struct sk_buff *skb,
109 			  struct mfc_cache *cache, int local);
110 static int ipmr_cache_report(const struct mr_table *mrt,
111 			     struct sk_buff *pkt, vifi_t vifi, int assert);
112 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
113 				 int cmd);
114 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
115 static void mroute_clean_tables(struct mr_table *mrt, int flags);
116 static void ipmr_expire_process(struct timer_list *t);
117 
118 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
119 #define ipmr_for_each_table(mrt, net)					\
120 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
121 				lockdep_rtnl_is_held() ||		\
122 				list_empty(&net->ipv4.mr_tables))
123 
124 static struct mr_table *ipmr_mr_table_iter(struct net *net,
125 					   struct mr_table *mrt)
126 {
127 	struct mr_table *ret;
128 
129 	if (!mrt)
130 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
131 				     struct mr_table, list);
132 	else
133 		ret = list_entry_rcu(mrt->list.next,
134 				     struct mr_table, list);
135 
136 	if (&ret->list == &net->ipv4.mr_tables)
137 		return NULL;
138 	return ret;
139 }
140 
141 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
142 {
143 	struct mr_table *mrt;
144 
145 	ipmr_for_each_table(mrt, net) {
146 		if (mrt->id == id)
147 			return mrt;
148 	}
149 	return NULL;
150 }
151 
152 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
153 {
154 	struct mr_table *mrt;
155 
156 	rcu_read_lock();
157 	mrt = __ipmr_get_table(net, id);
158 	rcu_read_unlock();
159 	return mrt;
160 }
161 
162 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
163 			   struct mr_table **mrt)
164 {
165 	int err;
166 	struct ipmr_result res;
167 	struct fib_lookup_arg arg = {
168 		.result = &res,
169 		.flags = FIB_LOOKUP_NOREF,
170 	};
171 
172 	/* update flow if oif or iif point to device enslaved to l3mdev */
173 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
174 
175 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
176 			       flowi4_to_flowi(flp4), 0, &arg);
177 	if (err < 0)
178 		return err;
179 	*mrt = res.mrt;
180 	return 0;
181 }
182 
183 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
184 			    int flags, struct fib_lookup_arg *arg)
185 {
186 	struct ipmr_result *res = arg->result;
187 	struct mr_table *mrt;
188 
189 	switch (rule->action) {
190 	case FR_ACT_TO_TBL:
191 		break;
192 	case FR_ACT_UNREACHABLE:
193 		return -ENETUNREACH;
194 	case FR_ACT_PROHIBIT:
195 		return -EACCES;
196 	case FR_ACT_BLACKHOLE:
197 	default:
198 		return -EINVAL;
199 	}
200 
201 	arg->table = fib_rule_get_table(rule, arg);
202 
203 	mrt = __ipmr_get_table(rule->fr_net, arg->table);
204 	if (!mrt)
205 		return -EAGAIN;
206 	res->mrt = mrt;
207 	return 0;
208 }
209 
210 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
211 {
212 	return 1;
213 }
214 
215 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
216 			       struct fib_rule_hdr *frh, struct nlattr **tb,
217 			       struct netlink_ext_ack *extack)
218 {
219 	return 0;
220 }
221 
222 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
223 			     struct nlattr **tb)
224 {
225 	return 1;
226 }
227 
228 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
229 			  struct fib_rule_hdr *frh)
230 {
231 	frh->dst_len = 0;
232 	frh->src_len = 0;
233 	frh->tos     = 0;
234 	return 0;
235 }
236 
237 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
238 	.family		= RTNL_FAMILY_IPMR,
239 	.rule_size	= sizeof(struct ipmr_rule),
240 	.addr_size	= sizeof(u32),
241 	.action		= ipmr_rule_action,
242 	.match		= ipmr_rule_match,
243 	.configure	= ipmr_rule_configure,
244 	.compare	= ipmr_rule_compare,
245 	.fill		= ipmr_rule_fill,
246 	.nlgroup	= RTNLGRP_IPV4_RULE,
247 	.owner		= THIS_MODULE,
248 };
249 
250 static int __net_init ipmr_rules_init(struct net *net)
251 {
252 	struct fib_rules_ops *ops;
253 	struct mr_table *mrt;
254 	int err;
255 
256 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
257 	if (IS_ERR(ops))
258 		return PTR_ERR(ops);
259 
260 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
261 
262 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
263 	if (IS_ERR(mrt)) {
264 		err = PTR_ERR(mrt);
265 		goto err1;
266 	}
267 
268 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
269 	if (err < 0)
270 		goto err2;
271 
272 	net->ipv4.mr_rules_ops = ops;
273 	return 0;
274 
275 err2:
276 	rtnl_lock();
277 	ipmr_free_table(mrt);
278 	rtnl_unlock();
279 err1:
280 	fib_rules_unregister(ops);
281 	return err;
282 }
283 
284 static void __net_exit ipmr_rules_exit(struct net *net)
285 {
286 	struct mr_table *mrt, *next;
287 
288 	ASSERT_RTNL();
289 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
290 		list_del(&mrt->list);
291 		ipmr_free_table(mrt);
292 	}
293 	fib_rules_unregister(net->ipv4.mr_rules_ops);
294 }
295 
296 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
297 			   struct netlink_ext_ack *extack)
298 {
299 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
300 }
301 
302 static unsigned int ipmr_rules_seq_read(const struct net *net)
303 {
304 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
305 }
306 
307 bool ipmr_rule_default(const struct fib_rule *rule)
308 {
309 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
310 }
311 EXPORT_SYMBOL(ipmr_rule_default);
312 #else
313 #define ipmr_for_each_table(mrt, net) \
314 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
315 
316 static struct mr_table *ipmr_mr_table_iter(struct net *net,
317 					   struct mr_table *mrt)
318 {
319 	if (!mrt)
320 		return net->ipv4.mrt;
321 	return NULL;
322 }
323 
324 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
325 {
326 	return net->ipv4.mrt;
327 }
328 
329 #define __ipmr_get_table ipmr_get_table
330 
331 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
332 			   struct mr_table **mrt)
333 {
334 	*mrt = net->ipv4.mrt;
335 	return 0;
336 }
337 
338 static int __net_init ipmr_rules_init(struct net *net)
339 {
340 	struct mr_table *mrt;
341 
342 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
343 	if (IS_ERR(mrt))
344 		return PTR_ERR(mrt);
345 	net->ipv4.mrt = mrt;
346 	return 0;
347 }
348 
349 static void __net_exit ipmr_rules_exit(struct net *net)
350 {
351 	ASSERT_RTNL();
352 	ipmr_free_table(net->ipv4.mrt);
353 	net->ipv4.mrt = NULL;
354 }
355 
356 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
357 			   struct netlink_ext_ack *extack)
358 {
359 	return 0;
360 }
361 
362 static unsigned int ipmr_rules_seq_read(const struct net *net)
363 {
364 	return 0;
365 }
366 
367 bool ipmr_rule_default(const struct fib_rule *rule)
368 {
369 	return true;
370 }
371 EXPORT_SYMBOL(ipmr_rule_default);
372 #endif
373 
374 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
375 				const void *ptr)
376 {
377 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
378 	const struct mfc_cache *c = ptr;
379 
380 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
381 	       cmparg->mfc_origin != c->mfc_origin;
382 }
383 
384 static const struct rhashtable_params ipmr_rht_params = {
385 	.head_offset = offsetof(struct mr_mfc, mnode),
386 	.key_offset = offsetof(struct mfc_cache, cmparg),
387 	.key_len = sizeof(struct mfc_cache_cmp_arg),
388 	.nelem_hint = 3,
389 	.obj_cmpfn = ipmr_hash_cmp,
390 	.automatic_shrinking = true,
391 };
392 
393 static void ipmr_new_table_set(struct mr_table *mrt,
394 			       struct net *net)
395 {
396 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
397 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
398 #endif
399 }
400 
401 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
402 	.mfc_mcastgrp = htonl(INADDR_ANY),
403 	.mfc_origin = htonl(INADDR_ANY),
404 };
405 
406 static struct mr_table_ops ipmr_mr_table_ops = {
407 	.rht_params = &ipmr_rht_params,
408 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
409 };
410 
411 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
412 {
413 	struct mr_table *mrt;
414 
415 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
416 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
417 		return ERR_PTR(-EINVAL);
418 
419 	mrt = __ipmr_get_table(net, id);
420 	if (mrt)
421 		return mrt;
422 
423 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
424 			      ipmr_expire_process, ipmr_new_table_set);
425 }
426 
427 static void ipmr_free_table(struct mr_table *mrt)
428 {
429 	struct net *net = read_pnet(&mrt->net);
430 
431 	WARN_ON_ONCE(!mr_can_free_table(net));
432 
433 	timer_shutdown_sync(&mrt->ipmr_expire_timer);
434 	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
435 				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
436 	rhltable_destroy(&mrt->mfc_hash);
437 	kfree(mrt);
438 }
439 
440 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
441 
442 /* Initialize ipmr pimreg/tunnel in_device */
443 static bool ipmr_init_vif_indev(const struct net_device *dev)
444 {
445 	struct in_device *in_dev;
446 
447 	ASSERT_RTNL();
448 
449 	in_dev = __in_dev_get_rtnl(dev);
450 	if (!in_dev)
451 		return false;
452 	ipv4_devconf_setall(in_dev);
453 	neigh_parms_data_state_setall(in_dev->arp_parms);
454 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
455 
456 	return true;
457 }
458 
459 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
460 {
461 	struct net_device *tunnel_dev, *new_dev;
462 	struct ip_tunnel_parm_kern p = { };
463 	int err;
464 
465 	tunnel_dev = __dev_get_by_name(net, "tunl0");
466 	if (!tunnel_dev)
467 		goto out;
468 
469 	p.iph.daddr = v->vifc_rmt_addr.s_addr;
470 	p.iph.saddr = v->vifc_lcl_addr.s_addr;
471 	p.iph.version = 4;
472 	p.iph.ihl = 5;
473 	p.iph.protocol = IPPROTO_IPIP;
474 	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
475 
476 	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
477 		goto out;
478 	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 			SIOCADDTUNNEL);
480 	if (err)
481 		goto out;
482 
483 	new_dev = __dev_get_by_name(net, p.name);
484 	if (!new_dev)
485 		goto out;
486 
487 	new_dev->flags |= IFF_MULTICAST;
488 	if (!ipmr_init_vif_indev(new_dev))
489 		goto out_unregister;
490 	if (dev_open(new_dev, NULL))
491 		goto out_unregister;
492 	dev_hold(new_dev);
493 	err = dev_set_allmulti(new_dev, 1);
494 	if (err) {
495 		dev_close(new_dev);
496 		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
497 				SIOCDELTUNNEL);
498 		dev_put(new_dev);
499 		new_dev = ERR_PTR(err);
500 	}
501 	return new_dev;
502 
503 out_unregister:
504 	unregister_netdevice(new_dev);
505 out:
506 	return ERR_PTR(-ENOBUFS);
507 }
508 
509 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
510 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
511 {
512 	struct net *net = dev_net(dev);
513 	struct mr_table *mrt;
514 	struct flowi4 fl4 = {
515 		.flowi4_oif	= dev->ifindex,
516 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
517 		.flowi4_mark	= skb->mark,
518 	};
519 	int err;
520 
521 	err = ipmr_fib_lookup(net, &fl4, &mrt);
522 	if (err < 0) {
523 		kfree_skb(skb);
524 		return err;
525 	}
526 
527 	DEV_STATS_ADD(dev, tx_bytes, skb->len);
528 	DEV_STATS_INC(dev, tx_packets);
529 	rcu_read_lock();
530 
531 	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
532 	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
533 			  IGMPMSG_WHOLEPKT);
534 
535 	rcu_read_unlock();
536 	kfree_skb(skb);
537 	return NETDEV_TX_OK;
538 }
539 
540 static int reg_vif_get_iflink(const struct net_device *dev)
541 {
542 	return 0;
543 }
544 
545 static const struct net_device_ops reg_vif_netdev_ops = {
546 	.ndo_start_xmit	= reg_vif_xmit,
547 	.ndo_get_iflink = reg_vif_get_iflink,
548 };
549 
550 static void reg_vif_setup(struct net_device *dev)
551 {
552 	dev->type		= ARPHRD_PIMREG;
553 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
554 	dev->flags		= IFF_NOARP;
555 	dev->netdev_ops		= &reg_vif_netdev_ops;
556 	dev->needs_free_netdev	= true;
557 	dev->netns_immutable	= true;
558 }
559 
560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561 {
562 	struct net_device *dev;
563 	char name[IFNAMSIZ];
564 
565 	if (mrt->id == RT_TABLE_DEFAULT)
566 		sprintf(name, "pimreg");
567 	else
568 		sprintf(name, "pimreg%u", mrt->id);
569 
570 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
571 
572 	if (!dev)
573 		return NULL;
574 
575 	dev_net_set(dev, net);
576 
577 	if (register_netdevice(dev)) {
578 		free_netdev(dev);
579 		return NULL;
580 	}
581 
582 	if (!ipmr_init_vif_indev(dev))
583 		goto failure;
584 	if (dev_open(dev, NULL))
585 		goto failure;
586 
587 	dev_hold(dev);
588 
589 	return dev;
590 
591 failure:
592 	unregister_netdevice(dev);
593 	return NULL;
594 }
595 
596 /* called with rcu_read_lock() */
597 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
598 		     unsigned int pimlen)
599 {
600 	struct net_device *reg_dev = NULL;
601 	struct iphdr *encap;
602 	int vif_num;
603 
604 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
605 	/* Check that:
606 	 * a. packet is really sent to a multicast group
607 	 * b. packet is not a NULL-REGISTER
608 	 * c. packet is not truncated
609 	 */
610 	if (!ipv4_is_multicast(encap->daddr) ||
611 	    encap->tot_len == 0 ||
612 	    ntohs(encap->tot_len) + pimlen > skb->len)
613 		return 1;
614 
615 	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
616 	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
617 	if (vif_num >= 0)
618 		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
619 	if (!reg_dev)
620 		return 1;
621 
622 	skb->mac_header = skb->network_header;
623 	skb_pull(skb, (u8 *)encap - skb->data);
624 	skb_reset_network_header(skb);
625 	skb->protocol = htons(ETH_P_IP);
626 	skb->ip_summed = CHECKSUM_NONE;
627 
628 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
629 
630 	netif_rx(skb);
631 
632 	return NET_RX_SUCCESS;
633 }
634 #else
635 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
636 {
637 	return NULL;
638 }
639 #endif
640 
641 static int call_ipmr_vif_entry_notifiers(struct net *net,
642 					 enum fib_event_type event_type,
643 					 struct vif_device *vif,
644 					 struct net_device *vif_dev,
645 					 vifi_t vif_index, u32 tb_id)
646 {
647 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
648 				     vif, vif_dev, vif_index, tb_id,
649 				     &net->ipv4.ipmr_seq);
650 }
651 
652 static int call_ipmr_mfc_entry_notifiers(struct net *net,
653 					 enum fib_event_type event_type,
654 					 struct mfc_cache *mfc, u32 tb_id)
655 {
656 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
657 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
658 }
659 
660 /**
661  *	vif_delete - Delete a VIF entry
662  *	@mrt: Table to delete from
663  *	@vifi: VIF identifier to delete
664  *	@notify: Set to 1, if the caller is a notifier_call
665  *	@head: if unregistering the VIF, place it on this queue
666  */
667 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
668 		      struct list_head *head)
669 {
670 	struct net *net = read_pnet(&mrt->net);
671 	struct vif_device *v;
672 	struct net_device *dev;
673 	struct in_device *in_dev;
674 
675 	if (vifi < 0 || vifi >= mrt->maxvif)
676 		return -EADDRNOTAVAIL;
677 
678 	v = &mrt->vif_table[vifi];
679 
680 	dev = rtnl_dereference(v->dev);
681 	if (!dev)
682 		return -EADDRNOTAVAIL;
683 
684 	spin_lock(&mrt_lock);
685 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
686 				      vifi, mrt->id);
687 	RCU_INIT_POINTER(v->dev, NULL);
688 
689 	if (vifi == mrt->mroute_reg_vif_num) {
690 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
691 		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
692 	}
693 	if (vifi + 1 == mrt->maxvif) {
694 		int tmp;
695 
696 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
697 			if (VIF_EXISTS(mrt, tmp))
698 				break;
699 		}
700 		WRITE_ONCE(mrt->maxvif, tmp + 1);
701 	}
702 
703 	spin_unlock(&mrt_lock);
704 
705 	dev_set_allmulti(dev, -1);
706 
707 	in_dev = __in_dev_get_rtnl(dev);
708 	if (in_dev) {
709 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
710 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
711 					    NETCONFA_MC_FORWARDING,
712 					    dev->ifindex, &in_dev->cnf);
713 		ip_rt_multicast_event(in_dev);
714 	}
715 
716 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
717 		unregister_netdevice_queue(dev, head);
718 
719 	netdev_put(dev, &v->dev_tracker);
720 	return 0;
721 }
722 
723 static void ipmr_cache_free_rcu(struct rcu_head *head)
724 {
725 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
726 
727 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
728 }
729 
730 static void ipmr_cache_free(struct mfc_cache *c)
731 {
732 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
733 }
734 
735 /* Destroy an unresolved cache entry, killing queued skbs
736  * and reporting error to netlink readers.
737  */
738 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
739 {
740 	struct net *net = read_pnet(&mrt->net);
741 	struct sk_buff *skb;
742 	struct nlmsgerr *e;
743 
744 	atomic_dec(&mrt->cache_resolve_queue_len);
745 
746 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
747 		if (ip_hdr(skb)->version == 0) {
748 			struct nlmsghdr *nlh = skb_pull(skb,
749 							sizeof(struct iphdr));
750 			nlh->nlmsg_type = NLMSG_ERROR;
751 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
752 			skb_trim(skb, nlh->nlmsg_len);
753 			e = nlmsg_data(nlh);
754 			e->error = -ETIMEDOUT;
755 			memset(&e->msg, 0, sizeof(e->msg));
756 
757 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
758 		} else {
759 			kfree_skb(skb);
760 		}
761 	}
762 
763 	ipmr_cache_free(c);
764 }
765 
766 /* Timer process for the unresolved queue. */
767 static void ipmr_expire_process(struct timer_list *t)
768 {
769 	struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
770 	struct mr_mfc *c, *next;
771 	unsigned long expires;
772 	unsigned long now;
773 
774 	if (!spin_trylock(&mfc_unres_lock)) {
775 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
776 		return;
777 	}
778 
779 	if (list_empty(&mrt->mfc_unres_queue))
780 		goto out;
781 
782 	now = jiffies;
783 	expires = 10*HZ;
784 
785 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
786 		if (time_after(c->mfc_un.unres.expires, now)) {
787 			unsigned long interval = c->mfc_un.unres.expires - now;
788 			if (interval < expires)
789 				expires = interval;
790 			continue;
791 		}
792 
793 		list_del(&c->list);
794 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
795 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
796 	}
797 
798 	if (!list_empty(&mrt->mfc_unres_queue))
799 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
800 
801 out:
802 	spin_unlock(&mfc_unres_lock);
803 }
804 
805 /* Fill oifs list. It is called under locked mrt_lock. */
806 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
807 				   unsigned char *ttls)
808 {
809 	int vifi;
810 
811 	cache->mfc_un.res.minvif = MAXVIFS;
812 	cache->mfc_un.res.maxvif = 0;
813 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
814 
815 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
816 		if (VIF_EXISTS(mrt, vifi) &&
817 		    ttls[vifi] && ttls[vifi] < 255) {
818 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
819 			if (cache->mfc_un.res.minvif > vifi)
820 				cache->mfc_un.res.minvif = vifi;
821 			if (cache->mfc_un.res.maxvif <= vifi)
822 				cache->mfc_un.res.maxvif = vifi + 1;
823 		}
824 	}
825 	WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
826 }
827 
828 static int vif_add(struct net *net, struct mr_table *mrt,
829 		   struct vifctl *vifc, int mrtsock)
830 {
831 	struct netdev_phys_item_id ppid = { };
832 	int vifi = vifc->vifc_vifi;
833 	struct vif_device *v = &mrt->vif_table[vifi];
834 	struct net_device *dev;
835 	struct in_device *in_dev;
836 	int err;
837 
838 	/* Is vif busy ? */
839 	if (VIF_EXISTS(mrt, vifi))
840 		return -EADDRINUSE;
841 
842 	switch (vifc->vifc_flags) {
843 	case VIFF_REGISTER:
844 		if (!ipmr_pimsm_enabled())
845 			return -EINVAL;
846 		/* Special Purpose VIF in PIM
847 		 * All the packets will be sent to the daemon
848 		 */
849 		if (mrt->mroute_reg_vif_num >= 0)
850 			return -EADDRINUSE;
851 		dev = ipmr_reg_vif(net, mrt);
852 		if (!dev)
853 			return -ENOBUFS;
854 		err = dev_set_allmulti(dev, 1);
855 		if (err) {
856 			unregister_netdevice(dev);
857 			dev_put(dev);
858 			return err;
859 		}
860 		break;
861 	case VIFF_TUNNEL:
862 		dev = ipmr_new_tunnel(net, vifc);
863 		if (IS_ERR(dev))
864 			return PTR_ERR(dev);
865 		break;
866 	case VIFF_USE_IFINDEX:
867 	case 0:
868 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
869 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
870 			if (dev && !__in_dev_get_rtnl(dev)) {
871 				dev_put(dev);
872 				return -EADDRNOTAVAIL;
873 			}
874 		} else {
875 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
876 		}
877 		if (!dev)
878 			return -EADDRNOTAVAIL;
879 		err = dev_set_allmulti(dev, 1);
880 		if (err) {
881 			dev_put(dev);
882 			return err;
883 		}
884 		break;
885 	default:
886 		return -EINVAL;
887 	}
888 
889 	in_dev = __in_dev_get_rtnl(dev);
890 	if (!in_dev) {
891 		dev_put(dev);
892 		return -EADDRNOTAVAIL;
893 	}
894 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
895 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
896 				    dev->ifindex, &in_dev->cnf);
897 	ip_rt_multicast_event(in_dev);
898 
899 	/* Fill in the VIF structures */
900 	vif_device_init(v, dev, vifc->vifc_rate_limit,
901 			vifc->vifc_threshold,
902 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
903 			(VIFF_TUNNEL | VIFF_REGISTER));
904 
905 	err = netif_get_port_parent_id(dev, &ppid, true);
906 	if (err == 0) {
907 		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
908 		v->dev_parent_id.id_len = ppid.id_len;
909 	} else {
910 		v->dev_parent_id.id_len = 0;
911 	}
912 
913 	v->local = vifc->vifc_lcl_addr.s_addr;
914 	v->remote = vifc->vifc_rmt_addr.s_addr;
915 
916 	/* And finish update writing critical data */
917 	spin_lock(&mrt_lock);
918 	rcu_assign_pointer(v->dev, dev);
919 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
920 	if (v->flags & VIFF_REGISTER) {
921 		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
922 		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
923 	}
924 	if (vifi+1 > mrt->maxvif)
925 		WRITE_ONCE(mrt->maxvif, vifi + 1);
926 	spin_unlock(&mrt_lock);
927 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
928 				      vifi, mrt->id);
929 	return 0;
930 }
931 
932 /* called with rcu_read_lock() */
933 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
934 					 __be32 origin,
935 					 __be32 mcastgrp)
936 {
937 	struct mfc_cache_cmp_arg arg = {
938 			.mfc_mcastgrp = mcastgrp,
939 			.mfc_origin = origin
940 	};
941 
942 	return mr_mfc_find(mrt, &arg);
943 }
944 
945 /* Look for a (*,G) entry */
946 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
947 					     __be32 mcastgrp, int vifi)
948 {
949 	struct mfc_cache_cmp_arg arg = {
950 			.mfc_mcastgrp = mcastgrp,
951 			.mfc_origin = htonl(INADDR_ANY)
952 	};
953 
954 	if (mcastgrp == htonl(INADDR_ANY))
955 		return mr_mfc_find_any_parent(mrt, vifi);
956 	return mr_mfc_find_any(mrt, vifi, &arg);
957 }
958 
959 /* Look for a (S,G,iif) entry if parent != -1 */
960 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
961 						__be32 origin, __be32 mcastgrp,
962 						int parent)
963 {
964 	struct mfc_cache_cmp_arg arg = {
965 			.mfc_mcastgrp = mcastgrp,
966 			.mfc_origin = origin,
967 	};
968 
969 	return mr_mfc_find_parent(mrt, &arg, parent);
970 }
971 
972 /* Allocate a multicast cache entry */
973 static struct mfc_cache *ipmr_cache_alloc(void)
974 {
975 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
976 
977 	if (c) {
978 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
979 		c->_c.mfc_un.res.minvif = MAXVIFS;
980 		c->_c.free = ipmr_cache_free_rcu;
981 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
982 	}
983 	return c;
984 }
985 
986 static struct mfc_cache *ipmr_cache_alloc_unres(void)
987 {
988 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
989 
990 	if (c) {
991 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
992 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
993 	}
994 	return c;
995 }
996 
997 /* A cache entry has gone into a resolved state from queued */
998 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
999 			       struct mfc_cache *uc, struct mfc_cache *c)
1000 {
1001 	struct sk_buff *skb;
1002 	struct nlmsgerr *e;
1003 
1004 	/* Play the pending entries through our router */
1005 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1006 		if (ip_hdr(skb)->version == 0) {
1007 			struct nlmsghdr *nlh = skb_pull(skb,
1008 							sizeof(struct iphdr));
1009 
1010 			if (mr_fill_mroute(mrt, skb, &c->_c,
1011 					   nlmsg_data(nlh)) > 0) {
1012 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1013 						 (u8 *)nlh;
1014 			} else {
1015 				nlh->nlmsg_type = NLMSG_ERROR;
1016 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1017 				skb_trim(skb, nlh->nlmsg_len);
1018 				e = nlmsg_data(nlh);
1019 				e->error = -EMSGSIZE;
1020 				memset(&e->msg, 0, sizeof(e->msg));
1021 			}
1022 
1023 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1024 		} else {
1025 			rcu_read_lock();
1026 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1027 			rcu_read_unlock();
1028 		}
1029 	}
1030 }
1031 
1032 /* Bounce a cache query up to mrouted and netlink.
1033  *
1034  * Called under rcu_read_lock().
1035  */
1036 static int ipmr_cache_report(const struct mr_table *mrt,
1037 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1038 {
1039 	const int ihl = ip_hdrlen(pkt);
1040 	struct sock *mroute_sk;
1041 	struct igmphdr *igmp;
1042 	struct igmpmsg *msg;
1043 	struct sk_buff *skb;
1044 	int ret;
1045 
1046 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1047 	if (!mroute_sk)
1048 		return -EINVAL;
1049 
1050 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1051 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1052 	else
1053 		skb = alloc_skb(128, GFP_ATOMIC);
1054 
1055 	if (!skb)
1056 		return -ENOBUFS;
1057 
1058 	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1059 		/* Ugly, but we have no choice with this interface.
1060 		 * Duplicate old header, fix ihl, length etc.
1061 		 * And all this only to mangle msg->im_msgtype and
1062 		 * to set msg->im_mbz to "mbz" :-)
1063 		 */
1064 		skb_push(skb, sizeof(struct iphdr));
1065 		skb_reset_network_header(skb);
1066 		skb_reset_transport_header(skb);
1067 		msg = (struct igmpmsg *)skb_network_header(skb);
1068 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1069 		msg->im_msgtype = assert;
1070 		msg->im_mbz = 0;
1071 		if (assert == IGMPMSG_WRVIFWHOLE) {
1072 			msg->im_vif = vifi;
1073 			msg->im_vif_hi = vifi >> 8;
1074 		} else {
1075 			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1076 			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1077 
1078 			msg->im_vif = vif_num;
1079 			msg->im_vif_hi = vif_num >> 8;
1080 		}
1081 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1082 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1083 					     sizeof(struct iphdr));
1084 	} else {
1085 		/* Copy the IP header */
1086 		skb_set_network_header(skb, skb->len);
1087 		skb_put(skb, ihl);
1088 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1089 		/* Flag to the kernel this is a route add */
1090 		ip_hdr(skb)->protocol = 0;
1091 		msg = (struct igmpmsg *)skb_network_header(skb);
1092 		msg->im_vif = vifi;
1093 		msg->im_vif_hi = vifi >> 8;
1094 		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1095 		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1096 		/* Add our header */
1097 		igmp = skb_put(skb, sizeof(struct igmphdr));
1098 		igmp->type = assert;
1099 		msg->im_msgtype = assert;
1100 		igmp->code = 0;
1101 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1102 		skb->transport_header = skb->network_header;
1103 	}
1104 
1105 	igmpmsg_netlink_event(mrt, skb);
1106 
1107 	/* Deliver to mrouted */
1108 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1109 
1110 	if (ret < 0) {
1111 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1112 		kfree_skb(skb);
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 /* Queue a packet for resolution. It gets locked cache entry! */
1119 /* Called under rcu_read_lock() */
1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121 				 struct sk_buff *skb, struct net_device *dev)
1122 {
1123 	const struct iphdr *iph = ip_hdr(skb);
1124 	struct mfc_cache *c;
1125 	bool found = false;
1126 	int err;
1127 
1128 	spin_lock_bh(&mfc_unres_lock);
1129 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130 		if (c->mfc_mcastgrp == iph->daddr &&
1131 		    c->mfc_origin == iph->saddr) {
1132 			found = true;
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (!found) {
1138 		/* Create a new entry if allowable */
1139 		c = ipmr_cache_alloc_unres();
1140 		if (!c) {
1141 			spin_unlock_bh(&mfc_unres_lock);
1142 
1143 			kfree_skb(skb);
1144 			return -ENOBUFS;
1145 		}
1146 
1147 		/* Fill in the new cache entry */
1148 		c->_c.mfc_parent = -1;
1149 		c->mfc_origin	= iph->saddr;
1150 		c->mfc_mcastgrp	= iph->daddr;
1151 
1152 		/* Reflect first query at mrouted. */
1153 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1154 
1155 		if (err < 0) {
1156 			/* If the report failed throw the cache entry
1157 			   out - Brad Parker
1158 			 */
1159 			spin_unlock_bh(&mfc_unres_lock);
1160 
1161 			ipmr_cache_free(c);
1162 			kfree_skb(skb);
1163 			return err;
1164 		}
1165 
1166 		atomic_inc(&mrt->cache_resolve_queue_len);
1167 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1168 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1169 
1170 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1171 			mod_timer(&mrt->ipmr_expire_timer,
1172 				  c->_c.mfc_un.unres.expires);
1173 	}
1174 
1175 	/* See if we can append the packet */
1176 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177 		kfree_skb(skb);
1178 		err = -ENOBUFS;
1179 	} else {
1180 		if (dev) {
1181 			skb->dev = dev;
1182 			skb->skb_iif = dev->ifindex;
1183 		}
1184 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1185 		err = 0;
1186 	}
1187 
1188 	spin_unlock_bh(&mfc_unres_lock);
1189 	return err;
1190 }
1191 
1192 /* MFC cache manipulation by user space mroute daemon */
1193 
1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1195 {
1196 	struct net *net = read_pnet(&mrt->net);
1197 	struct mfc_cache *c;
1198 
1199 	/* The entries are added/deleted only under RTNL */
1200 	rcu_read_lock();
1201 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202 				   mfc->mfcc_mcastgrp.s_addr, parent);
1203 	rcu_read_unlock();
1204 	if (!c)
1205 		return -ENOENT;
1206 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1207 	list_del_rcu(&c->_c.list);
1208 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1209 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1210 	mr_cache_put(&c->_c);
1211 
1212 	return 0;
1213 }
1214 
1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216 			struct mfcctl *mfc, int mrtsock, int parent)
1217 {
1218 	struct mfc_cache *uc, *c;
1219 	struct mr_mfc *_uc;
1220 	bool found;
1221 	int ret;
1222 
1223 	if (mfc->mfcc_parent >= MAXVIFS)
1224 		return -ENFILE;
1225 
1226 	/* The entries are added/deleted only under RTNL */
1227 	rcu_read_lock();
1228 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1229 				   mfc->mfcc_mcastgrp.s_addr, parent);
1230 	rcu_read_unlock();
1231 	if (c) {
1232 		spin_lock(&mrt_lock);
1233 		c->_c.mfc_parent = mfc->mfcc_parent;
1234 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1235 		if (!mrtsock)
1236 			c->_c.mfc_flags |= MFC_STATIC;
1237 		spin_unlock(&mrt_lock);
1238 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1239 					      mrt->id);
1240 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1241 		return 0;
1242 	}
1243 
1244 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1246 		return -EINVAL;
1247 
1248 	c = ipmr_cache_alloc();
1249 	if (!c)
1250 		return -ENOMEM;
1251 
1252 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1253 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254 	c->_c.mfc_parent = mfc->mfcc_parent;
1255 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1256 	if (!mrtsock)
1257 		c->_c.mfc_flags |= MFC_STATIC;
1258 
1259 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1260 				  ipmr_rht_params);
1261 	if (ret) {
1262 		pr_err("ipmr: rhtable insert error %d\n", ret);
1263 		ipmr_cache_free(c);
1264 		return ret;
1265 	}
1266 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1267 	/* Check to see if we resolved a queued list. If so we
1268 	 * need to send on the frames and tidy up.
1269 	 */
1270 	found = false;
1271 	spin_lock_bh(&mfc_unres_lock);
1272 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273 		uc = (struct mfc_cache *)_uc;
1274 		if (uc->mfc_origin == c->mfc_origin &&
1275 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276 			list_del(&_uc->list);
1277 			atomic_dec(&mrt->cache_resolve_queue_len);
1278 			found = true;
1279 			break;
1280 		}
1281 	}
1282 	if (list_empty(&mrt->mfc_unres_queue))
1283 		timer_delete(&mrt->ipmr_expire_timer);
1284 	spin_unlock_bh(&mfc_unres_lock);
1285 
1286 	if (found) {
1287 		ipmr_cache_resolve(net, mrt, uc, c);
1288 		ipmr_cache_free(uc);
1289 	}
1290 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1291 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1292 	return 0;
1293 }
1294 
1295 /* Close the multicast socket, and clear the vif tables etc */
1296 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1297 {
1298 	struct net *net = read_pnet(&mrt->net);
1299 	struct mr_mfc *c, *tmp;
1300 	struct mfc_cache *cache;
1301 	LIST_HEAD(list);
1302 	int i;
1303 
1304 	/* Shut down all active vif entries */
1305 	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1306 		for (i = 0; i < mrt->maxvif; i++) {
1307 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1308 			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1309 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1310 				continue;
1311 			vif_delete(mrt, i, 0, &list);
1312 		}
1313 		unregister_netdevice_many(&list);
1314 	}
1315 
1316 	/* Wipe the cache */
1317 	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1318 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1319 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1320 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1321 				continue;
1322 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1323 			list_del_rcu(&c->list);
1324 			cache = (struct mfc_cache *)c;
1325 			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1326 						      mrt->id);
1327 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1328 			mr_cache_put(c);
1329 		}
1330 	}
1331 
1332 	if (flags & MRT_FLUSH_MFC) {
1333 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1334 			spin_lock_bh(&mfc_unres_lock);
1335 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1336 				list_del(&c->list);
1337 				cache = (struct mfc_cache *)c;
1338 				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1339 				ipmr_destroy_unres(mrt, cache);
1340 			}
1341 			spin_unlock_bh(&mfc_unres_lock);
1342 		}
1343 	}
1344 }
1345 
1346 /* called from ip_ra_control(), before an RCU grace period,
1347  * we don't need to call synchronize_rcu() here
1348  */
1349 static void mrtsock_destruct(struct sock *sk)
1350 {
1351 	struct net *net = sock_net(sk);
1352 	struct mr_table *mrt;
1353 
1354 	rtnl_lock();
1355 	ipmr_for_each_table(mrt, net) {
1356 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1357 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1358 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1359 						    NETCONFA_MC_FORWARDING,
1360 						    NETCONFA_IFINDEX_ALL,
1361 						    net->ipv4.devconf_all);
1362 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1363 			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1364 		}
1365 	}
1366 	rtnl_unlock();
1367 }
1368 
1369 /* Socket options and virtual interface manipulation. The whole
1370  * virtual interface system is a complete heap, but unfortunately
1371  * that's how BSD mrouted happens to think. Maybe one day with a proper
1372  * MOSPF/PIM router set up we can clean this up.
1373  */
1374 
1375 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1376 			 unsigned int optlen)
1377 {
1378 	struct net *net = sock_net(sk);
1379 	int val, ret = 0, parent = 0;
1380 	struct mr_table *mrt;
1381 	struct vifctl vif;
1382 	struct mfcctl mfc;
1383 	bool do_wrvifwhole;
1384 	u32 uval;
1385 
1386 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1387 	rtnl_lock();
1388 	if (sk->sk_type != SOCK_RAW ||
1389 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1390 		ret = -EOPNOTSUPP;
1391 		goto out_unlock;
1392 	}
1393 
1394 	mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1395 	if (!mrt) {
1396 		ret = -ENOENT;
1397 		goto out_unlock;
1398 	}
1399 	if (optname != MRT_INIT) {
1400 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1401 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1402 			ret = -EACCES;
1403 			goto out_unlock;
1404 		}
1405 	}
1406 
1407 	switch (optname) {
1408 	case MRT_INIT:
1409 		if (optlen != sizeof(int)) {
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 		if (rtnl_dereference(mrt->mroute_sk)) {
1414 			ret = -EADDRINUSE;
1415 			break;
1416 		}
1417 
1418 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1419 		if (ret == 0) {
1420 			rcu_assign_pointer(mrt->mroute_sk, sk);
1421 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1422 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1423 						    NETCONFA_MC_FORWARDING,
1424 						    NETCONFA_IFINDEX_ALL,
1425 						    net->ipv4.devconf_all);
1426 		}
1427 		break;
1428 	case MRT_DONE:
1429 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1430 			ret = -EACCES;
1431 		} else {
1432 			/* We need to unlock here because mrtsock_destruct takes
1433 			 * care of rtnl itself and we can't change that due to
1434 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1435 			 */
1436 			rtnl_unlock();
1437 			ret = ip_ra_control(sk, 0, NULL);
1438 			goto out;
1439 		}
1440 		break;
1441 	case MRT_ADD_VIF:
1442 	case MRT_DEL_VIF:
1443 		if (optlen != sizeof(vif)) {
1444 			ret = -EINVAL;
1445 			break;
1446 		}
1447 		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1448 			ret = -EFAULT;
1449 			break;
1450 		}
1451 		if (vif.vifc_vifi >= MAXVIFS) {
1452 			ret = -ENFILE;
1453 			break;
1454 		}
1455 		if (optname == MRT_ADD_VIF) {
1456 			ret = vif_add(net, mrt, &vif,
1457 				      sk == rtnl_dereference(mrt->mroute_sk));
1458 		} else {
1459 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1460 		}
1461 		break;
1462 	/* Manipulate the forwarding caches. These live
1463 	 * in a sort of kernel/user symbiosis.
1464 	 */
1465 	case MRT_ADD_MFC:
1466 	case MRT_DEL_MFC:
1467 		parent = -1;
1468 		fallthrough;
1469 	case MRT_ADD_MFC_PROXY:
1470 	case MRT_DEL_MFC_PROXY:
1471 		if (optlen != sizeof(mfc)) {
1472 			ret = -EINVAL;
1473 			break;
1474 		}
1475 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1476 			ret = -EFAULT;
1477 			break;
1478 		}
1479 		if (parent == 0)
1480 			parent = mfc.mfcc_parent;
1481 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1482 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1483 		else
1484 			ret = ipmr_mfc_add(net, mrt, &mfc,
1485 					   sk == rtnl_dereference(mrt->mroute_sk),
1486 					   parent);
1487 		break;
1488 	case MRT_FLUSH:
1489 		if (optlen != sizeof(val)) {
1490 			ret = -EINVAL;
1491 			break;
1492 		}
1493 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1494 			ret = -EFAULT;
1495 			break;
1496 		}
1497 		mroute_clean_tables(mrt, val);
1498 		break;
1499 	/* Control PIM assert. */
1500 	case MRT_ASSERT:
1501 		if (optlen != sizeof(val)) {
1502 			ret = -EINVAL;
1503 			break;
1504 		}
1505 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1506 			ret = -EFAULT;
1507 			break;
1508 		}
1509 		mrt->mroute_do_assert = val;
1510 		break;
1511 	case MRT_PIM:
1512 		if (!ipmr_pimsm_enabled()) {
1513 			ret = -ENOPROTOOPT;
1514 			break;
1515 		}
1516 		if (optlen != sizeof(val)) {
1517 			ret = -EINVAL;
1518 			break;
1519 		}
1520 		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1521 			ret = -EFAULT;
1522 			break;
1523 		}
1524 
1525 		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1526 		val = !!val;
1527 		if (val != mrt->mroute_do_pim) {
1528 			mrt->mroute_do_pim = val;
1529 			mrt->mroute_do_assert = val;
1530 			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1531 		}
1532 		break;
1533 	case MRT_TABLE:
1534 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1535 			ret = -ENOPROTOOPT;
1536 			break;
1537 		}
1538 		if (optlen != sizeof(uval)) {
1539 			ret = -EINVAL;
1540 			break;
1541 		}
1542 		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1543 			ret = -EFAULT;
1544 			break;
1545 		}
1546 
1547 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1548 			ret = -EBUSY;
1549 		} else {
1550 			mrt = ipmr_new_table(net, uval);
1551 			if (IS_ERR(mrt))
1552 				ret = PTR_ERR(mrt);
1553 			else
1554 				raw_sk(sk)->ipmr_table = uval;
1555 		}
1556 		break;
1557 	/* Spurious command, or MRT_VERSION which you cannot set. */
1558 	default:
1559 		ret = -ENOPROTOOPT;
1560 	}
1561 out_unlock:
1562 	rtnl_unlock();
1563 out:
1564 	return ret;
1565 }
1566 
1567 /* Execute if this ioctl is a special mroute ioctl */
1568 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1569 {
1570 	switch (cmd) {
1571 	/* These userspace buffers will be consumed by ipmr_ioctl() */
1572 	case SIOCGETVIFCNT: {
1573 		struct sioc_vif_req buffer;
1574 
1575 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1576 				      sizeof(buffer));
1577 		}
1578 	case SIOCGETSGCNT: {
1579 		struct sioc_sg_req buffer;
1580 
1581 		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1582 				      sizeof(buffer));
1583 		}
1584 	}
1585 	/* return code > 0 means that the ioctl was not executed */
1586 	return 1;
1587 }
1588 
1589 /* Getsock opt support for the multicast routing system. */
1590 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1591 			 sockptr_t optlen)
1592 {
1593 	int olr;
1594 	int val;
1595 	struct net *net = sock_net(sk);
1596 	struct mr_table *mrt;
1597 
1598 	if (sk->sk_type != SOCK_RAW ||
1599 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1600 		return -EOPNOTSUPP;
1601 
1602 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1603 	if (!mrt)
1604 		return -ENOENT;
1605 
1606 	switch (optname) {
1607 	case MRT_VERSION:
1608 		val = 0x0305;
1609 		break;
1610 	case MRT_PIM:
1611 		if (!ipmr_pimsm_enabled())
1612 			return -ENOPROTOOPT;
1613 		val = mrt->mroute_do_pim;
1614 		break;
1615 	case MRT_ASSERT:
1616 		val = mrt->mroute_do_assert;
1617 		break;
1618 	default:
1619 		return -ENOPROTOOPT;
1620 	}
1621 
1622 	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1623 		return -EFAULT;
1624 	if (olr < 0)
1625 		return -EINVAL;
1626 
1627 	olr = min_t(unsigned int, olr, sizeof(int));
1628 
1629 	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1630 		return -EFAULT;
1631 	if (copy_to_sockptr(optval, &val, olr))
1632 		return -EFAULT;
1633 	return 0;
1634 }
1635 
1636 /* The IP multicast ioctl support routines. */
1637 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1638 {
1639 	struct vif_device *vif;
1640 	struct mfc_cache *c;
1641 	struct net *net = sock_net(sk);
1642 	struct sioc_vif_req *vr;
1643 	struct sioc_sg_req *sr;
1644 	struct mr_table *mrt;
1645 
1646 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1647 	if (!mrt)
1648 		return -ENOENT;
1649 
1650 	switch (cmd) {
1651 	case SIOCGETVIFCNT:
1652 		vr = (struct sioc_vif_req *)arg;
1653 		if (vr->vifi >= mrt->maxvif)
1654 			return -EINVAL;
1655 		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1656 		rcu_read_lock();
1657 		vif = &mrt->vif_table[vr->vifi];
1658 		if (VIF_EXISTS(mrt, vr->vifi)) {
1659 			vr->icount = READ_ONCE(vif->pkt_in);
1660 			vr->ocount = READ_ONCE(vif->pkt_out);
1661 			vr->ibytes = READ_ONCE(vif->bytes_in);
1662 			vr->obytes = READ_ONCE(vif->bytes_out);
1663 			rcu_read_unlock();
1664 
1665 			return 0;
1666 		}
1667 		rcu_read_unlock();
1668 		return -EADDRNOTAVAIL;
1669 	case SIOCGETSGCNT:
1670 		sr = (struct sioc_sg_req *)arg;
1671 
1672 		rcu_read_lock();
1673 		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1674 		if (c) {
1675 			sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1676 			sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1677 			sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1678 			rcu_read_unlock();
1679 			return 0;
1680 		}
1681 		rcu_read_unlock();
1682 		return -EADDRNOTAVAIL;
1683 	default:
1684 		return -ENOIOCTLCMD;
1685 	}
1686 }
1687 
1688 #ifdef CONFIG_COMPAT
1689 struct compat_sioc_sg_req {
1690 	struct in_addr src;
1691 	struct in_addr grp;
1692 	compat_ulong_t pktcnt;
1693 	compat_ulong_t bytecnt;
1694 	compat_ulong_t wrong_if;
1695 };
1696 
1697 struct compat_sioc_vif_req {
1698 	vifi_t	vifi;		/* Which iface */
1699 	compat_ulong_t icount;
1700 	compat_ulong_t ocount;
1701 	compat_ulong_t ibytes;
1702 	compat_ulong_t obytes;
1703 };
1704 
1705 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1706 {
1707 	struct compat_sioc_sg_req sr;
1708 	struct compat_sioc_vif_req vr;
1709 	struct vif_device *vif;
1710 	struct mfc_cache *c;
1711 	struct net *net = sock_net(sk);
1712 	struct mr_table *mrt;
1713 
1714 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1715 	if (!mrt)
1716 		return -ENOENT;
1717 
1718 	switch (cmd) {
1719 	case SIOCGETVIFCNT:
1720 		if (copy_from_user(&vr, arg, sizeof(vr)))
1721 			return -EFAULT;
1722 		if (vr.vifi >= mrt->maxvif)
1723 			return -EINVAL;
1724 		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1725 		rcu_read_lock();
1726 		vif = &mrt->vif_table[vr.vifi];
1727 		if (VIF_EXISTS(mrt, vr.vifi)) {
1728 			vr.icount = READ_ONCE(vif->pkt_in);
1729 			vr.ocount = READ_ONCE(vif->pkt_out);
1730 			vr.ibytes = READ_ONCE(vif->bytes_in);
1731 			vr.obytes = READ_ONCE(vif->bytes_out);
1732 			rcu_read_unlock();
1733 
1734 			if (copy_to_user(arg, &vr, sizeof(vr)))
1735 				return -EFAULT;
1736 			return 0;
1737 		}
1738 		rcu_read_unlock();
1739 		return -EADDRNOTAVAIL;
1740 	case SIOCGETSGCNT:
1741 		if (copy_from_user(&sr, arg, sizeof(sr)))
1742 			return -EFAULT;
1743 
1744 		rcu_read_lock();
1745 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1746 		if (c) {
1747 			sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1748 			sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1749 			sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1750 			rcu_read_unlock();
1751 
1752 			if (copy_to_user(arg, &sr, sizeof(sr)))
1753 				return -EFAULT;
1754 			return 0;
1755 		}
1756 		rcu_read_unlock();
1757 		return -EADDRNOTAVAIL;
1758 	default:
1759 		return -ENOIOCTLCMD;
1760 	}
1761 }
1762 #endif
1763 
1764 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1765 {
1766 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1767 	struct net *net = dev_net(dev);
1768 	struct mr_table *mrt;
1769 	struct vif_device *v;
1770 	int ct;
1771 
1772 	if (event != NETDEV_UNREGISTER)
1773 		return NOTIFY_DONE;
1774 
1775 	ipmr_for_each_table(mrt, net) {
1776 		v = &mrt->vif_table[0];
1777 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1778 			if (rcu_access_pointer(v->dev) == dev)
1779 				vif_delete(mrt, ct, 1, NULL);
1780 		}
1781 	}
1782 	return NOTIFY_DONE;
1783 }
1784 
1785 static struct notifier_block ip_mr_notifier = {
1786 	.notifier_call = ipmr_device_event,
1787 };
1788 
1789 /* Encapsulate a packet by attaching a valid IPIP header to it.
1790  * This avoids tunnel drivers and other mess and gives us the speed so
1791  * important for multicast video.
1792  */
1793 static void ip_encap(struct net *net, struct sk_buff *skb,
1794 		     __be32 saddr, __be32 daddr)
1795 {
1796 	struct iphdr *iph;
1797 	const struct iphdr *old_iph = ip_hdr(skb);
1798 
1799 	skb_push(skb, sizeof(struct iphdr));
1800 	skb->transport_header = skb->network_header;
1801 	skb_reset_network_header(skb);
1802 	iph = ip_hdr(skb);
1803 
1804 	iph->version	=	4;
1805 	iph->tos	=	old_iph->tos;
1806 	iph->ttl	=	old_iph->ttl;
1807 	iph->frag_off	=	0;
1808 	iph->daddr	=	daddr;
1809 	iph->saddr	=	saddr;
1810 	iph->protocol	=	IPPROTO_IPIP;
1811 	iph->ihl	=	5;
1812 	iph->tot_len	=	htons(skb->len);
1813 	ip_select_ident(net, skb, NULL);
1814 	ip_send_check(iph);
1815 
1816 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1817 	nf_reset_ct(skb);
1818 }
1819 
1820 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1821 				      struct sk_buff *skb)
1822 {
1823 	struct ip_options *opt = &(IPCB(skb)->opt);
1824 
1825 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1826 
1827 	if (unlikely(opt->optlen))
1828 		ip_forward_options(skb);
1829 
1830 	return dst_output(net, sk, skb);
1831 }
1832 
1833 #ifdef CONFIG_NET_SWITCHDEV
1834 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1835 				   int in_vifi, int out_vifi)
1836 {
1837 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1838 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1839 
1840 	if (!skb->offload_l3_fwd_mark)
1841 		return false;
1842 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1843 		return false;
1844 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1845 					&in_vif->dev_parent_id);
1846 }
1847 #else
1848 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1849 				   int in_vifi, int out_vifi)
1850 {
1851 	return false;
1852 }
1853 #endif
1854 
1855 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1856 
1857 static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt,
1858 			     struct sk_buff *skb, int vifi)
1859 {
1860 	const struct iphdr *iph = ip_hdr(skb);
1861 	struct vif_device *vif = &mrt->vif_table[vifi];
1862 	struct net_device *vif_dev;
1863 	struct rtable *rt;
1864 	struct flowi4 fl4;
1865 	int    encap = 0;
1866 
1867 	vif_dev = vif_dev_read(vif);
1868 	if (!vif_dev)
1869 		return -1;
1870 
1871 	if (vif->flags & VIFF_REGISTER) {
1872 		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1873 		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1874 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1875 		DEV_STATS_INC(vif_dev, tx_packets);
1876 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1877 		return -1;
1878 	}
1879 
1880 	if (vif->flags & VIFF_TUNNEL) {
1881 		rt = ip_route_output_ports(net, &fl4, NULL,
1882 					   vif->remote, vif->local,
1883 					   0, 0,
1884 					   IPPROTO_IPIP,
1885 					   iph->tos & INET_DSCP_MASK, vif->link);
1886 		if (IS_ERR(rt))
1887 			return -1;
1888 		encap = sizeof(struct iphdr);
1889 	} else {
1890 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1891 					   0, 0,
1892 					   IPPROTO_IPIP,
1893 					   iph->tos & INET_DSCP_MASK, vif->link);
1894 		if (IS_ERR(rt))
1895 			return -1;
1896 	}
1897 
1898 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1899 		/* Do not fragment multicasts. Alas, IPv4 does not
1900 		 * allow to send ICMP, so that packets will disappear
1901 		 * to blackhole.
1902 		 */
1903 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1904 		ip_rt_put(rt);
1905 		return -1;
1906 	}
1907 
1908 	encap += LL_RESERVED_SPACE(dst_dev_rcu(&rt->dst)) + rt->dst.header_len;
1909 
1910 	if (skb_cow(skb, encap)) {
1911 		ip_rt_put(rt);
1912 		return -1;
1913 	}
1914 
1915 	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1916 	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1917 
1918 	skb_dst_drop(skb);
1919 	skb_dst_set(skb, &rt->dst);
1920 	ip_decrease_ttl(ip_hdr(skb));
1921 
1922 	/* FIXME: forward and output firewalls used to be called here.
1923 	 * What do we do with netfilter? -- RR
1924 	 */
1925 	if (vif->flags & VIFF_TUNNEL) {
1926 		ip_encap(net, skb, vif->local, vif->remote);
1927 		/* FIXME: extra output firewall step used to be here. --RR */
1928 		DEV_STATS_INC(vif_dev, tx_packets);
1929 		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt,
1936 				int in_vifi, struct sk_buff *skb, int vifi)
1937 {
1938 	struct rtable *rt;
1939 
1940 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1941 		goto out_free;
1942 
1943 	if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1944 		goto out_free;
1945 
1946 	rt = skb_rtable(skb);
1947 
1948 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1949 
1950 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1951 	 * not only before forwarding, but after forwarding on all output
1952 	 * interfaces. It is clear, if mrouter runs a multicasting
1953 	 * program, it should receive packets not depending to what interface
1954 	 * program is joined.
1955 	 * If we will not make it, the program will have to join on all
1956 	 * interfaces. On the other hand, multihoming host (or router, but
1957 	 * not mrouter) cannot join to more than one interface - it will
1958 	 * result in receiving multiple packets.
1959 	 */
1960 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1961 		net, NULL, skb, skb->dev, dst_dev_rcu(&rt->dst),
1962 		ipmr_forward_finish);
1963 	return;
1964 
1965 out_free:
1966 	kfree_skb(skb);
1967 }
1968 
1969 static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt,
1970 				   struct sk_buff *skb, int vifi)
1971 {
1972 	if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1973 		goto out_free;
1974 
1975 	ip_mc_output(net, NULL, skb);
1976 	return;
1977 
1978 out_free:
1979 	kfree_skb(skb);
1980 }
1981 
1982 /* Called with mrt_lock or rcu_read_lock() */
1983 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1984 {
1985 	int ct;
1986 	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1987 	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1988 		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1989 			break;
1990 	}
1991 	return ct;
1992 }
1993 
1994 /* "local" means that we should preserve one skb (for local delivery) */
1995 /* Called uner rcu_read_lock() */
1996 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1997 			  struct net_device *dev, struct sk_buff *skb,
1998 			  struct mfc_cache *c, int local)
1999 {
2000 	int true_vifi = ipmr_find_vif(mrt, dev);
2001 	int psend = -1;
2002 	int vif, ct;
2003 
2004 	vif = c->_c.mfc_parent;
2005 	atomic_long_inc(&c->_c.mfc_un.res.pkt);
2006 	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2007 	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2008 
2009 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
2010 		struct mfc_cache *cache_proxy;
2011 
2012 		/* For an (*,G) entry, we only check that the incoming
2013 		 * interface is part of the static tree.
2014 		 */
2015 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2016 		if (cache_proxy &&
2017 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2018 			goto forward;
2019 	}
2020 
2021 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
2022 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2023 		if (rt_is_output_route(skb_rtable(skb))) {
2024 			/* It is our own packet, looped back.
2025 			 * Very complicated situation...
2026 			 *
2027 			 * The best workaround until routing daemons will be
2028 			 * fixed is not to redistribute packet, if it was
2029 			 * send through wrong interface. It means, that
2030 			 * multicast applications WILL NOT work for
2031 			 * (S,G), which have default multicast route pointing
2032 			 * to wrong oif. In any case, it is not a good
2033 			 * idea to use multicasting applications on router.
2034 			 */
2035 			goto dont_forward;
2036 		}
2037 
2038 		atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2039 
2040 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2041 		    /* pimsm uses asserts, when switching from RPT to SPT,
2042 		     * so that we cannot check that packet arrived on an oif.
2043 		     * It is bad, but otherwise we would need to move pretty
2044 		     * large chunk of pimd to kernel. Ough... --ANK
2045 		     */
2046 		    (mrt->mroute_do_pim ||
2047 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2048 		    time_after(jiffies,
2049 			       c->_c.mfc_un.res.last_assert +
2050 			       MFC_ASSERT_THRESH)) {
2051 			c->_c.mfc_un.res.last_assert = jiffies;
2052 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2053 			if (mrt->mroute_do_wrvifwhole)
2054 				ipmr_cache_report(mrt, skb, true_vifi,
2055 						  IGMPMSG_WRVIFWHOLE);
2056 		}
2057 		goto dont_forward;
2058 	}
2059 
2060 forward:
2061 	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2062 		   mrt->vif_table[vif].pkt_in + 1);
2063 	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2064 		   mrt->vif_table[vif].bytes_in + skb->len);
2065 
2066 	/* Forward the frame */
2067 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2068 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2069 		if (true_vifi >= 0 &&
2070 		    true_vifi != c->_c.mfc_parent &&
2071 		    ip_hdr(skb)->ttl >
2072 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2073 			/* It's an (*,*) entry and the packet is not coming from
2074 			 * the upstream: forward the packet to the upstream
2075 			 * only.
2076 			 */
2077 			psend = c->_c.mfc_parent;
2078 			goto last_forward;
2079 		}
2080 		goto dont_forward;
2081 	}
2082 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2083 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2084 		/* For (*,G) entry, don't forward to the incoming interface */
2085 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2086 		     ct != true_vifi) &&
2087 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2088 			if (psend != -1) {
2089 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2090 
2091 				if (skb2)
2092 					ipmr_queue_fwd_xmit(net, mrt, true_vifi,
2093 							    skb2, psend);
2094 			}
2095 			psend = ct;
2096 		}
2097 	}
2098 last_forward:
2099 	if (psend != -1) {
2100 		if (local) {
2101 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2102 
2103 			if (skb2)
2104 				ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb2,
2105 						    psend);
2106 		} else {
2107 			ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb, psend);
2108 			return;
2109 		}
2110 	}
2111 
2112 dont_forward:
2113 	if (!local)
2114 		kfree_skb(skb);
2115 }
2116 
2117 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2118 {
2119 	struct rtable *rt = skb_rtable(skb);
2120 	struct iphdr *iph = ip_hdr(skb);
2121 	struct flowi4 fl4 = {
2122 		.daddr = iph->daddr,
2123 		.saddr = iph->saddr,
2124 		.flowi4_dscp = ip4h_dscp(iph),
2125 		.flowi4_oif = (rt_is_output_route(rt) ?
2126 			       skb->dev->ifindex : 0),
2127 		.flowi4_iif = (rt_is_output_route(rt) ?
2128 			       LOOPBACK_IFINDEX :
2129 			       skb->dev->ifindex),
2130 		.flowi4_mark = skb->mark,
2131 	};
2132 	struct mr_table *mrt;
2133 	int err;
2134 
2135 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2136 	if (err)
2137 		return ERR_PTR(err);
2138 	return mrt;
2139 }
2140 
2141 /* Multicast packets for forwarding arrive here
2142  * Called with rcu_read_lock();
2143  */
2144 int ip_mr_input(struct sk_buff *skb)
2145 {
2146 	struct mfc_cache *cache;
2147 	struct net *net = dev_net(skb->dev);
2148 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2149 	struct mr_table *mrt;
2150 	struct net_device *dev;
2151 
2152 	/* skb->dev passed in is the loX master dev for vrfs.
2153 	 * As there are no vifs associated with loopback devices,
2154 	 * get the proper interface that does have a vif associated with it.
2155 	 */
2156 	dev = skb->dev;
2157 	if (netif_is_l3_master(skb->dev)) {
2158 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2159 		if (!dev) {
2160 			kfree_skb(skb);
2161 			return -ENODEV;
2162 		}
2163 	}
2164 
2165 	/* Packet is looped back after forward, it should not be
2166 	 * forwarded second time, but still can be delivered locally.
2167 	 */
2168 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2169 		goto dont_forward;
2170 
2171 	mrt = ipmr_rt_fib_lookup(net, skb);
2172 	if (IS_ERR(mrt)) {
2173 		kfree_skb(skb);
2174 		return PTR_ERR(mrt);
2175 	}
2176 	if (!local) {
2177 		if (IPCB(skb)->opt.router_alert) {
2178 			if (ip_call_ra_chain(skb))
2179 				return 0;
2180 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2181 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2182 			 * Cisco IOS <= 11.2(8)) do not put router alert
2183 			 * option to IGMP packets destined to routable
2184 			 * groups. It is very bad, because it means
2185 			 * that we can forward NO IGMP messages.
2186 			 */
2187 			struct sock *mroute_sk;
2188 
2189 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2190 			if (mroute_sk) {
2191 				nf_reset_ct(skb);
2192 				raw_rcv(mroute_sk, skb);
2193 				return 0;
2194 			}
2195 		}
2196 	}
2197 
2198 	/* already under rcu_read_lock() */
2199 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2200 	if (!cache) {
2201 		int vif = ipmr_find_vif(mrt, dev);
2202 
2203 		if (vif >= 0)
2204 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2205 						    vif);
2206 	}
2207 
2208 	/* No usable cache entry */
2209 	if (!cache) {
2210 		int vif;
2211 
2212 		if (local) {
2213 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2214 			ip_local_deliver(skb);
2215 			if (!skb2)
2216 				return -ENOBUFS;
2217 			skb = skb2;
2218 		}
2219 
2220 		vif = ipmr_find_vif(mrt, dev);
2221 		if (vif >= 0)
2222 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2223 		kfree_skb(skb);
2224 		return -ENODEV;
2225 	}
2226 
2227 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2228 
2229 	if (local)
2230 		return ip_local_deliver(skb);
2231 
2232 	return 0;
2233 
2234 dont_forward:
2235 	if (local)
2236 		return ip_local_deliver(skb);
2237 	kfree_skb(skb);
2238 	return 0;
2239 }
2240 
2241 static void ip_mr_output_finish(struct net *net, struct mr_table *mrt,
2242 				struct net_device *dev, struct sk_buff *skb,
2243 				struct mfc_cache *c)
2244 {
2245 	int psend = -1;
2246 	int ct;
2247 
2248 	atomic_long_inc(&c->_c.mfc_un.res.pkt);
2249 	atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2250 	WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2251 
2252 	/* Forward the frame */
2253 	if (c->mfc_origin == htonl(INADDR_ANY) &&
2254 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2255 		if (ip_hdr(skb)->ttl >
2256 		    c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2257 			/* It's an (*,*) entry and the packet is not coming from
2258 			 * the upstream: forward the packet to the upstream
2259 			 * only.
2260 			 */
2261 			psend = c->_c.mfc_parent;
2262 			goto last_xmit;
2263 		}
2264 		goto dont_xmit;
2265 	}
2266 
2267 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2268 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2269 		if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2270 			if (psend != -1) {
2271 				struct sk_buff *skb2;
2272 
2273 				skb2 = skb_clone(skb, GFP_ATOMIC);
2274 				if (skb2)
2275 					ipmr_queue_output_xmit(net, mrt,
2276 							       skb2, psend);
2277 			}
2278 			psend = ct;
2279 		}
2280 	}
2281 
2282 last_xmit:
2283 	if (psend != -1) {
2284 		ipmr_queue_output_xmit(net, mrt, skb, psend);
2285 		return;
2286 	}
2287 
2288 dont_xmit:
2289 	kfree_skb(skb);
2290 }
2291 
2292 /* Multicast packets for forwarding arrive here
2293  * Called with rcu_read_lock();
2294  */
2295 int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb)
2296 {
2297 	struct rtable *rt = skb_rtable(skb);
2298 	struct mfc_cache *cache;
2299 	struct net_device *dev;
2300 	struct mr_table *mrt;
2301 	int vif;
2302 
2303 	guard(rcu)();
2304 
2305 	dev = dst_dev_rcu(&rt->dst);
2306 
2307 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2308 		goto mc_output;
2309 	if (!(IPCB(skb)->flags & IPSKB_MCROUTE))
2310 		goto mc_output;
2311 
2312 	skb->dev = dev;
2313 
2314 	mrt = ipmr_rt_fib_lookup(net, skb);
2315 	if (IS_ERR(mrt))
2316 		goto mc_output;
2317 
2318 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2319 	if (!cache) {
2320 		vif = ipmr_find_vif(mrt, dev);
2321 		if (vif >= 0)
2322 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2323 						    vif);
2324 	}
2325 
2326 	/* No usable cache entry */
2327 	if (!cache) {
2328 		vif = ipmr_find_vif(mrt, dev);
2329 		if (vif >= 0)
2330 			return ipmr_cache_unresolved(mrt, vif, skb, dev);
2331 		goto mc_output;
2332 	}
2333 
2334 	vif = cache->_c.mfc_parent;
2335 	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev)
2336 		goto mc_output;
2337 
2338 	ip_mr_output_finish(net, mrt, dev, skb, cache);
2339 	return 0;
2340 
2341 mc_output:
2342 	return ip_mc_output(net, sk, skb);
2343 }
2344 
2345 #ifdef CONFIG_IP_PIMSM_V1
2346 /* Handle IGMP messages of PIMv1 */
2347 int pim_rcv_v1(struct sk_buff *skb)
2348 {
2349 	struct igmphdr *pim;
2350 	struct net *net = dev_net(skb->dev);
2351 	struct mr_table *mrt;
2352 
2353 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2354 		goto drop;
2355 
2356 	pim = igmp_hdr(skb);
2357 
2358 	mrt = ipmr_rt_fib_lookup(net, skb);
2359 	if (IS_ERR(mrt))
2360 		goto drop;
2361 	if (!mrt->mroute_do_pim ||
2362 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2363 		goto drop;
2364 
2365 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2366 drop:
2367 		kfree_skb(skb);
2368 	}
2369 	return 0;
2370 }
2371 #endif
2372 
2373 #ifdef CONFIG_IP_PIMSM_V2
2374 static int pim_rcv(struct sk_buff *skb)
2375 {
2376 	struct pimreghdr *pim;
2377 	struct net *net = dev_net(skb->dev);
2378 	struct mr_table *mrt;
2379 
2380 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2381 		goto drop;
2382 
2383 	pim = (struct pimreghdr *)skb_transport_header(skb);
2384 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2385 	    (pim->flags & PIM_NULL_REGISTER) ||
2386 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2387 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2388 		goto drop;
2389 
2390 	mrt = ipmr_rt_fib_lookup(net, skb);
2391 	if (IS_ERR(mrt))
2392 		goto drop;
2393 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2394 drop:
2395 		kfree_skb(skb);
2396 	}
2397 	return 0;
2398 }
2399 #endif
2400 
2401 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2402 		   __be32 saddr, __be32 daddr,
2403 		   struct rtmsg *rtm, u32 portid)
2404 {
2405 	struct mfc_cache *cache;
2406 	struct mr_table *mrt;
2407 	int err;
2408 
2409 	rcu_read_lock();
2410 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2411 	if (!mrt) {
2412 		rcu_read_unlock();
2413 		return -ENOENT;
2414 	}
2415 
2416 	cache = ipmr_cache_find(mrt, saddr, daddr);
2417 	if (!cache && skb->dev) {
2418 		int vif = ipmr_find_vif(mrt, skb->dev);
2419 
2420 		if (vif >= 0)
2421 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2422 	}
2423 	if (!cache) {
2424 		struct sk_buff *skb2;
2425 		struct iphdr *iph;
2426 		struct net_device *dev;
2427 		int vif = -1;
2428 
2429 		dev = skb->dev;
2430 		if (dev)
2431 			vif = ipmr_find_vif(mrt, dev);
2432 		if (vif < 0) {
2433 			rcu_read_unlock();
2434 			return -ENODEV;
2435 		}
2436 
2437 		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2438 		if (!skb2) {
2439 			rcu_read_unlock();
2440 			return -ENOMEM;
2441 		}
2442 
2443 		NETLINK_CB(skb2).portid = portid;
2444 		skb_push(skb2, sizeof(struct iphdr));
2445 		skb_reset_network_header(skb2);
2446 		iph = ip_hdr(skb2);
2447 		iph->ihl = sizeof(struct iphdr) >> 2;
2448 		iph->saddr = saddr;
2449 		iph->daddr = daddr;
2450 		iph->version = 0;
2451 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2452 		rcu_read_unlock();
2453 		return err;
2454 	}
2455 
2456 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2457 	rcu_read_unlock();
2458 	return err;
2459 }
2460 
2461 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2462 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2463 			    int flags)
2464 {
2465 	struct nlmsghdr *nlh;
2466 	struct rtmsg *rtm;
2467 	int err;
2468 
2469 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2470 	if (!nlh)
2471 		return -EMSGSIZE;
2472 
2473 	rtm = nlmsg_data(nlh);
2474 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2475 	rtm->rtm_dst_len  = 32;
2476 	rtm->rtm_src_len  = 32;
2477 	rtm->rtm_tos      = 0;
2478 	rtm->rtm_table    = mrt->id;
2479 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2480 		goto nla_put_failure;
2481 	rtm->rtm_type     = RTN_MULTICAST;
2482 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2483 	if (c->_c.mfc_flags & MFC_STATIC)
2484 		rtm->rtm_protocol = RTPROT_STATIC;
2485 	else
2486 		rtm->rtm_protocol = RTPROT_MROUTED;
2487 	rtm->rtm_flags    = 0;
2488 
2489 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2490 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2491 		goto nla_put_failure;
2492 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2493 	/* do not break the dump if cache is unresolved */
2494 	if (err < 0 && err != -ENOENT)
2495 		goto nla_put_failure;
2496 
2497 	nlmsg_end(skb, nlh);
2498 	return 0;
2499 
2500 nla_put_failure:
2501 	nlmsg_cancel(skb, nlh);
2502 	return -EMSGSIZE;
2503 }
2504 
2505 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2506 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2507 			     int flags)
2508 {
2509 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2510 				cmd, flags);
2511 }
2512 
2513 static size_t mroute_msgsize(bool unresolved, int maxvif)
2514 {
2515 	size_t len =
2516 		NLMSG_ALIGN(sizeof(struct rtmsg))
2517 		+ nla_total_size(4)	/* RTA_TABLE */
2518 		+ nla_total_size(4)	/* RTA_SRC */
2519 		+ nla_total_size(4)	/* RTA_DST */
2520 		;
2521 
2522 	if (!unresolved)
2523 		len = len
2524 		      + nla_total_size(4)	/* RTA_IIF */
2525 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2526 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2527 						/* RTA_MFC_STATS */
2528 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2529 		;
2530 
2531 	return len;
2532 }
2533 
2534 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2535 				 int cmd)
2536 {
2537 	struct net *net = read_pnet(&mrt->net);
2538 	struct sk_buff *skb;
2539 	int err = -ENOBUFS;
2540 
2541 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2542 				       mrt->maxvif),
2543 			GFP_ATOMIC);
2544 	if (!skb)
2545 		goto errout;
2546 
2547 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2548 	if (err < 0)
2549 		goto errout;
2550 
2551 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2552 	return;
2553 
2554 errout:
2555 	kfree_skb(skb);
2556 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2557 }
2558 
2559 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2560 {
2561 	size_t len =
2562 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2563 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2564 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2565 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2566 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2567 		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2568 					/* IPMRA_CREPORT_PKT */
2569 		+ nla_total_size(payloadlen)
2570 		;
2571 
2572 	return len;
2573 }
2574 
2575 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2576 {
2577 	struct net *net = read_pnet(&mrt->net);
2578 	struct nlmsghdr *nlh;
2579 	struct rtgenmsg *rtgenm;
2580 	struct igmpmsg *msg;
2581 	struct sk_buff *skb;
2582 	struct nlattr *nla;
2583 	int payloadlen;
2584 
2585 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2586 	msg = (struct igmpmsg *)skb_network_header(pkt);
2587 
2588 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2589 	if (!skb)
2590 		goto errout;
2591 
2592 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2593 			sizeof(struct rtgenmsg), 0);
2594 	if (!nlh)
2595 		goto errout;
2596 	rtgenm = nlmsg_data(nlh);
2597 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2598 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2599 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2600 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2601 			    msg->im_src.s_addr) ||
2602 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2603 			    msg->im_dst.s_addr) ||
2604 	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2605 		goto nla_put_failure;
2606 
2607 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2608 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2609 				  nla_data(nla), payloadlen))
2610 		goto nla_put_failure;
2611 
2612 	nlmsg_end(skb, nlh);
2613 
2614 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2615 	return;
2616 
2617 nla_put_failure:
2618 	nlmsg_cancel(skb, nlh);
2619 errout:
2620 	kfree_skb(skb);
2621 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2622 }
2623 
2624 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2625 				       const struct nlmsghdr *nlh,
2626 				       struct nlattr **tb,
2627 				       struct netlink_ext_ack *extack)
2628 {
2629 	struct rtmsg *rtm;
2630 	int i, err;
2631 
2632 	rtm = nlmsg_payload(nlh, sizeof(*rtm));
2633 	if (!rtm) {
2634 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2635 		return -EINVAL;
2636 	}
2637 
2638 	if (!netlink_strict_get_check(skb))
2639 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2640 					      rtm_ipv4_policy, extack);
2641 
2642 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2643 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2644 	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2645 	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2646 		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2647 		return -EINVAL;
2648 	}
2649 
2650 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2651 					    rtm_ipv4_policy, extack);
2652 	if (err)
2653 		return err;
2654 
2655 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2656 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2657 		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2658 		return -EINVAL;
2659 	}
2660 
2661 	for (i = 0; i <= RTA_MAX; i++) {
2662 		if (!tb[i])
2663 			continue;
2664 
2665 		switch (i) {
2666 		case RTA_SRC:
2667 		case RTA_DST:
2668 		case RTA_TABLE:
2669 			break;
2670 		default:
2671 			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2672 			return -EINVAL;
2673 		}
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2680 			     struct netlink_ext_ack *extack)
2681 {
2682 	struct net *net = sock_net(in_skb->sk);
2683 	struct nlattr *tb[RTA_MAX + 1];
2684 	struct sk_buff *skb = NULL;
2685 	struct mfc_cache *cache;
2686 	struct mr_table *mrt;
2687 	__be32 src, grp;
2688 	u32 tableid;
2689 	int err;
2690 
2691 	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2692 	if (err < 0)
2693 		goto errout;
2694 
2695 	src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2696 	grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2697 	tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2698 
2699 	mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2700 	if (!mrt) {
2701 		err = -ENOENT;
2702 		goto errout_free;
2703 	}
2704 
2705 	/* entries are added/deleted only under RTNL */
2706 	rcu_read_lock();
2707 	cache = ipmr_cache_find(mrt, src, grp);
2708 	rcu_read_unlock();
2709 	if (!cache) {
2710 		err = -ENOENT;
2711 		goto errout_free;
2712 	}
2713 
2714 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2715 	if (!skb) {
2716 		err = -ENOBUFS;
2717 		goto errout_free;
2718 	}
2719 
2720 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2721 			       nlh->nlmsg_seq, cache,
2722 			       RTM_NEWROUTE, 0);
2723 	if (err < 0)
2724 		goto errout_free;
2725 
2726 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2727 
2728 errout:
2729 	return err;
2730 
2731 errout_free:
2732 	kfree_skb(skb);
2733 	goto errout;
2734 }
2735 
2736 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2737 {
2738 	struct fib_dump_filter filter = {
2739 		.rtnl_held = true,
2740 	};
2741 	int err;
2742 
2743 	if (cb->strict_check) {
2744 		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2745 					    &filter, cb);
2746 		if (err < 0)
2747 			return err;
2748 	}
2749 
2750 	if (filter.table_id) {
2751 		struct mr_table *mrt;
2752 
2753 		mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2754 		if (!mrt) {
2755 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2756 				return skb->len;
2757 
2758 			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2759 			return -ENOENT;
2760 		}
2761 		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2762 				    &mfc_unres_lock, &filter);
2763 		return skb->len ? : err;
2764 	}
2765 
2766 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2767 				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2768 }
2769 
2770 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2771 	[RTA_SRC]	= { .type = NLA_U32 },
2772 	[RTA_DST]	= { .type = NLA_U32 },
2773 	[RTA_IIF]	= { .type = NLA_U32 },
2774 	[RTA_TABLE]	= { .type = NLA_U32 },
2775 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2776 };
2777 
2778 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2779 {
2780 	switch (rtm_protocol) {
2781 	case RTPROT_STATIC:
2782 	case RTPROT_MROUTED:
2783 		return true;
2784 	}
2785 	return false;
2786 }
2787 
2788 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2789 {
2790 	struct rtnexthop *rtnh = nla_data(nla);
2791 	int remaining = nla_len(nla), vifi = 0;
2792 
2793 	while (rtnh_ok(rtnh, remaining)) {
2794 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2795 		if (++vifi == MAXVIFS)
2796 			break;
2797 		rtnh = rtnh_next(rtnh, &remaining);
2798 	}
2799 
2800 	return remaining > 0 ? -EINVAL : vifi;
2801 }
2802 
2803 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2804 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2805 			    struct mfcctl *mfcc, int *mrtsock,
2806 			    struct mr_table **mrtret,
2807 			    struct netlink_ext_ack *extack)
2808 {
2809 	struct net_device *dev = NULL;
2810 	u32 tblid = RT_TABLE_DEFAULT;
2811 	struct mr_table *mrt;
2812 	struct nlattr *attr;
2813 	struct rtmsg *rtm;
2814 	int ret, rem;
2815 
2816 	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2817 					rtm_ipmr_policy, extack);
2818 	if (ret < 0)
2819 		goto out;
2820 	rtm = nlmsg_data(nlh);
2821 
2822 	ret = -EINVAL;
2823 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2824 	    rtm->rtm_type != RTN_MULTICAST ||
2825 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2826 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2827 		goto out;
2828 
2829 	memset(mfcc, 0, sizeof(*mfcc));
2830 	mfcc->mfcc_parent = -1;
2831 	ret = 0;
2832 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2833 		switch (nla_type(attr)) {
2834 		case RTA_SRC:
2835 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2836 			break;
2837 		case RTA_DST:
2838 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2839 			break;
2840 		case RTA_IIF:
2841 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2842 			if (!dev) {
2843 				ret = -ENODEV;
2844 				goto out;
2845 			}
2846 			break;
2847 		case RTA_MULTIPATH:
2848 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2849 				ret = -EINVAL;
2850 				goto out;
2851 			}
2852 			break;
2853 		case RTA_PREFSRC:
2854 			ret = 1;
2855 			break;
2856 		case RTA_TABLE:
2857 			tblid = nla_get_u32(attr);
2858 			break;
2859 		}
2860 	}
2861 	mrt = __ipmr_get_table(net, tblid);
2862 	if (!mrt) {
2863 		ret = -ENOENT;
2864 		goto out;
2865 	}
2866 	*mrtret = mrt;
2867 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2868 	if (dev)
2869 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2870 
2871 out:
2872 	return ret;
2873 }
2874 
2875 /* takes care of both newroute and delroute */
2876 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2877 			  struct netlink_ext_ack *extack)
2878 {
2879 	struct net *net = sock_net(skb->sk);
2880 	int ret, mrtsock, parent;
2881 	struct mr_table *tbl;
2882 	struct mfcctl mfcc;
2883 
2884 	mrtsock = 0;
2885 	tbl = NULL;
2886 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2887 	if (ret < 0)
2888 		return ret;
2889 
2890 	parent = ret ? mfcc.mfcc_parent : -1;
2891 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2892 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2893 	else
2894 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2895 }
2896 
2897 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2898 {
2899 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2900 
2901 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2902 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2903 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2904 			mrt->mroute_reg_vif_num) ||
2905 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2906 		       mrt->mroute_do_assert) ||
2907 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2908 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2909 		       mrt->mroute_do_wrvifwhole))
2910 		return false;
2911 
2912 	return true;
2913 }
2914 
2915 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2916 {
2917 	struct net_device *vif_dev;
2918 	struct nlattr *vif_nest;
2919 	struct vif_device *vif;
2920 
2921 	vif = &mrt->vif_table[vifid];
2922 	vif_dev = rtnl_dereference(vif->dev);
2923 	/* if the VIF doesn't exist just continue */
2924 	if (!vif_dev)
2925 		return true;
2926 
2927 	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2928 	if (!vif_nest)
2929 		return false;
2930 
2931 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2932 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2933 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2934 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2935 			      IPMRA_VIFA_PAD) ||
2936 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2937 			      IPMRA_VIFA_PAD) ||
2938 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2939 			      IPMRA_VIFA_PAD) ||
2940 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2941 			      IPMRA_VIFA_PAD) ||
2942 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2943 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2944 		nla_nest_cancel(skb, vif_nest);
2945 		return false;
2946 	}
2947 	nla_nest_end(skb, vif_nest);
2948 
2949 	return true;
2950 }
2951 
2952 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2953 			       struct netlink_ext_ack *extack)
2954 {
2955 	struct ifinfomsg *ifm;
2956 
2957 	ifm = nlmsg_payload(nlh, sizeof(*ifm));
2958 	if (!ifm) {
2959 		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2960 		return -EINVAL;
2961 	}
2962 
2963 	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2964 		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2965 		return -EINVAL;
2966 	}
2967 
2968 	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2969 	    ifm->ifi_change || ifm->ifi_index) {
2970 		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2971 		return -EINVAL;
2972 	}
2973 
2974 	return 0;
2975 }
2976 
2977 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2978 {
2979 	struct net *net = sock_net(skb->sk);
2980 	struct nlmsghdr *nlh = NULL;
2981 	unsigned int t = 0, s_t;
2982 	unsigned int e = 0, s_e;
2983 	struct mr_table *mrt;
2984 
2985 	if (cb->strict_check) {
2986 		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2987 
2988 		if (err < 0)
2989 			return err;
2990 	}
2991 
2992 	s_t = cb->args[0];
2993 	s_e = cb->args[1];
2994 
2995 	ipmr_for_each_table(mrt, net) {
2996 		struct nlattr *vifs, *af;
2997 		struct ifinfomsg *hdr;
2998 		u32 i;
2999 
3000 		if (t < s_t)
3001 			goto skip_table;
3002 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
3003 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
3004 				sizeof(*hdr), NLM_F_MULTI);
3005 		if (!nlh)
3006 			break;
3007 
3008 		hdr = nlmsg_data(nlh);
3009 		memset(hdr, 0, sizeof(*hdr));
3010 		hdr->ifi_family = RTNL_FAMILY_IPMR;
3011 
3012 		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
3013 		if (!af) {
3014 			nlmsg_cancel(skb, nlh);
3015 			goto out;
3016 		}
3017 
3018 		if (!ipmr_fill_table(mrt, skb)) {
3019 			nlmsg_cancel(skb, nlh);
3020 			goto out;
3021 		}
3022 
3023 		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
3024 		if (!vifs) {
3025 			nla_nest_end(skb, af);
3026 			nlmsg_end(skb, nlh);
3027 			goto out;
3028 		}
3029 		for (i = 0; i < mrt->maxvif; i++) {
3030 			if (e < s_e)
3031 				goto skip_entry;
3032 			if (!ipmr_fill_vif(mrt, i, skb)) {
3033 				nla_nest_end(skb, vifs);
3034 				nla_nest_end(skb, af);
3035 				nlmsg_end(skb, nlh);
3036 				goto out;
3037 			}
3038 skip_entry:
3039 			e++;
3040 		}
3041 		s_e = 0;
3042 		e = 0;
3043 		nla_nest_end(skb, vifs);
3044 		nla_nest_end(skb, af);
3045 		nlmsg_end(skb, nlh);
3046 skip_table:
3047 		t++;
3048 	}
3049 
3050 out:
3051 	cb->args[1] = e;
3052 	cb->args[0] = t;
3053 
3054 	return skb->len;
3055 }
3056 
3057 #ifdef CONFIG_PROC_FS
3058 /* The /proc interfaces to multicast routing :
3059  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
3060  */
3061 
3062 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
3063 	__acquires(RCU)
3064 {
3065 	struct mr_vif_iter *iter = seq->private;
3066 	struct net *net = seq_file_net(seq);
3067 	struct mr_table *mrt;
3068 
3069 	rcu_read_lock();
3070 	mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
3071 	if (!mrt) {
3072 		rcu_read_unlock();
3073 		return ERR_PTR(-ENOENT);
3074 	}
3075 
3076 	iter->mrt = mrt;
3077 
3078 	return mr_vif_seq_start(seq, pos);
3079 }
3080 
3081 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
3082 	__releases(RCU)
3083 {
3084 	rcu_read_unlock();
3085 }
3086 
3087 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
3088 {
3089 	struct mr_vif_iter *iter = seq->private;
3090 	struct mr_table *mrt = iter->mrt;
3091 
3092 	if (v == SEQ_START_TOKEN) {
3093 		seq_puts(seq,
3094 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
3095 	} else {
3096 		const struct vif_device *vif = v;
3097 		const struct net_device *vif_dev;
3098 		const char *name;
3099 
3100 		vif_dev = vif_dev_read(vif);
3101 		name = vif_dev ? vif_dev->name : "none";
3102 		seq_printf(seq,
3103 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
3104 			   vif - mrt->vif_table,
3105 			   name, vif->bytes_in, vif->pkt_in,
3106 			   vif->bytes_out, vif->pkt_out,
3107 			   vif->flags, vif->local, vif->remote);
3108 	}
3109 	return 0;
3110 }
3111 
3112 static const struct seq_operations ipmr_vif_seq_ops = {
3113 	.start = ipmr_vif_seq_start,
3114 	.next  = mr_vif_seq_next,
3115 	.stop  = ipmr_vif_seq_stop,
3116 	.show  = ipmr_vif_seq_show,
3117 };
3118 
3119 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3120 {
3121 	struct net *net = seq_file_net(seq);
3122 	struct mr_table *mrt;
3123 
3124 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3125 	if (!mrt)
3126 		return ERR_PTR(-ENOENT);
3127 
3128 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3129 }
3130 
3131 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3132 {
3133 	int n;
3134 
3135 	if (v == SEQ_START_TOKEN) {
3136 		seq_puts(seq,
3137 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
3138 	} else {
3139 		const struct mfc_cache *mfc = v;
3140 		const struct mr_mfc_iter *it = seq->private;
3141 		const struct mr_table *mrt = it->mrt;
3142 
3143 		seq_printf(seq, "%08X %08X %-3hd",
3144 			   (__force u32) mfc->mfc_mcastgrp,
3145 			   (__force u32) mfc->mfc_origin,
3146 			   mfc->_c.mfc_parent);
3147 
3148 		if (it->cache != &mrt->mfc_unres_queue) {
3149 			seq_printf(seq, " %8lu %8lu %8lu",
3150 				   atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3151 				   atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3152 				   atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3153 			for (n = mfc->_c.mfc_un.res.minvif;
3154 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3155 				if (VIF_EXISTS(mrt, n) &&
3156 				    mfc->_c.mfc_un.res.ttls[n] < 255)
3157 					seq_printf(seq,
3158 					   " %2d:%-3d",
3159 					   n, mfc->_c.mfc_un.res.ttls[n]);
3160 			}
3161 		} else {
3162 			/* unresolved mfc_caches don't contain
3163 			 * pkt, bytes and wrong_if values
3164 			 */
3165 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3166 		}
3167 		seq_putc(seq, '\n');
3168 	}
3169 	return 0;
3170 }
3171 
3172 static const struct seq_operations ipmr_mfc_seq_ops = {
3173 	.start = ipmr_mfc_seq_start,
3174 	.next  = mr_mfc_seq_next,
3175 	.stop  = mr_mfc_seq_stop,
3176 	.show  = ipmr_mfc_seq_show,
3177 };
3178 #endif
3179 
3180 #ifdef CONFIG_IP_PIMSM_V2
3181 static const struct net_protocol pim_protocol = {
3182 	.handler	=	pim_rcv,
3183 };
3184 #endif
3185 
3186 static unsigned int ipmr_seq_read(const struct net *net)
3187 {
3188 	return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3189 }
3190 
3191 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3192 		     struct netlink_ext_ack *extack)
3193 {
3194 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3195 		       ipmr_mr_table_iter, extack);
3196 }
3197 
3198 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3199 	.family		= RTNL_FAMILY_IPMR,
3200 	.fib_seq_read	= ipmr_seq_read,
3201 	.fib_dump	= ipmr_dump,
3202 	.owner		= THIS_MODULE,
3203 };
3204 
3205 static int __net_init ipmr_notifier_init(struct net *net)
3206 {
3207 	struct fib_notifier_ops *ops;
3208 
3209 	net->ipv4.ipmr_seq = 0;
3210 
3211 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3212 	if (IS_ERR(ops))
3213 		return PTR_ERR(ops);
3214 	net->ipv4.ipmr_notifier_ops = ops;
3215 
3216 	return 0;
3217 }
3218 
3219 static void __net_exit ipmr_notifier_exit(struct net *net)
3220 {
3221 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3222 	net->ipv4.ipmr_notifier_ops = NULL;
3223 }
3224 
3225 /* Setup for IP multicast routing */
3226 static int __net_init ipmr_net_init(struct net *net)
3227 {
3228 	int err;
3229 
3230 	err = ipmr_notifier_init(net);
3231 	if (err)
3232 		goto ipmr_notifier_fail;
3233 
3234 	err = ipmr_rules_init(net);
3235 	if (err < 0)
3236 		goto ipmr_rules_fail;
3237 
3238 #ifdef CONFIG_PROC_FS
3239 	err = -ENOMEM;
3240 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3241 			sizeof(struct mr_vif_iter)))
3242 		goto proc_vif_fail;
3243 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3244 			sizeof(struct mr_mfc_iter)))
3245 		goto proc_cache_fail;
3246 #endif
3247 	return 0;
3248 
3249 #ifdef CONFIG_PROC_FS
3250 proc_cache_fail:
3251 	remove_proc_entry("ip_mr_vif", net->proc_net);
3252 proc_vif_fail:
3253 	rtnl_lock();
3254 	ipmr_rules_exit(net);
3255 	rtnl_unlock();
3256 #endif
3257 ipmr_rules_fail:
3258 	ipmr_notifier_exit(net);
3259 ipmr_notifier_fail:
3260 	return err;
3261 }
3262 
3263 static void __net_exit ipmr_net_exit(struct net *net)
3264 {
3265 #ifdef CONFIG_PROC_FS
3266 	remove_proc_entry("ip_mr_cache", net->proc_net);
3267 	remove_proc_entry("ip_mr_vif", net->proc_net);
3268 #endif
3269 	ipmr_notifier_exit(net);
3270 }
3271 
3272 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3273 {
3274 	struct net *net;
3275 
3276 	rtnl_lock();
3277 	list_for_each_entry(net, net_list, exit_list)
3278 		ipmr_rules_exit(net);
3279 	rtnl_unlock();
3280 }
3281 
3282 static struct pernet_operations ipmr_net_ops = {
3283 	.init = ipmr_net_init,
3284 	.exit = ipmr_net_exit,
3285 	.exit_batch = ipmr_net_exit_batch,
3286 };
3287 
3288 static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3289 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3290 	 .dumpit = ipmr_rtm_dumplink},
3291 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3292 	 .doit = ipmr_rtm_route},
3293 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3294 	 .doit = ipmr_rtm_route},
3295 	{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3296 	 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3297 };
3298 
3299 int __init ip_mr_init(void)
3300 {
3301 	int err;
3302 
3303 	mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3304 
3305 	err = register_pernet_subsys(&ipmr_net_ops);
3306 	if (err)
3307 		goto reg_pernet_fail;
3308 
3309 	err = register_netdevice_notifier(&ip_mr_notifier);
3310 	if (err)
3311 		goto reg_notif_fail;
3312 #ifdef CONFIG_IP_PIMSM_V2
3313 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3314 		pr_err("%s: can't add PIM protocol\n", __func__);
3315 		err = -EAGAIN;
3316 		goto add_proto_fail;
3317 	}
3318 #endif
3319 	rtnl_register_many(ipmr_rtnl_msg_handlers);
3320 
3321 	return 0;
3322 
3323 #ifdef CONFIG_IP_PIMSM_V2
3324 add_proto_fail:
3325 	unregister_netdevice_notifier(&ip_mr_notifier);
3326 #endif
3327 reg_notif_fail:
3328 	unregister_pernet_subsys(&ipmr_net_ops);
3329 reg_pernet_fail:
3330 	kmem_cache_destroy(mrt_cachep);
3331 	return err;
3332 }
3333