1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/flow.h> 46 #include <net/net_namespace.h> 47 #include <net/ip.h> 48 #include <net/protocol.h> 49 #include <linux/skbuff.h> 50 #include <net/route.h> 51 #include <net/icmp.h> 52 #include <net/udp.h> 53 #include <net/raw.h> 54 #include <linux/notifier.h> 55 #include <linux/if_arp.h> 56 #include <linux/netfilter_ipv4.h> 57 #include <linux/compat.h> 58 #include <linux/export.h> 59 #include <linux/rhashtable.h> 60 #include <net/ip_tunnels.h> 61 #include <net/checksum.h> 62 #include <net/netlink.h> 63 #include <net/fib_rules.h> 64 #include <linux/netconf.h> 65 #include <net/rtnh.h> 66 #include <net/inet_dscp.h> 67 68 #include <linux/nospec.h> 69 70 struct ipmr_rule { 71 struct fib_rule common; 72 }; 73 74 struct ipmr_result { 75 struct mr_table *mrt; 76 }; 77 78 /* Big lock, protecting vif table, mrt cache and mroute socket state. 79 * Note that the changes are semaphored via rtnl_lock. 80 */ 81 82 static DEFINE_SPINLOCK(mrt_lock); 83 84 static struct net_device *vif_dev_read(const struct vif_device *vif) 85 { 86 return rcu_dereference(vif->dev); 87 } 88 89 /* Multicast router control variables */ 90 91 /* Special spinlock for queue of unresolved entries */ 92 static DEFINE_SPINLOCK(mfc_unres_lock); 93 94 /* We return to original Alan's scheme. Hash table of resolved 95 * entries is changed only in process context and protected 96 * with weak lock mrt_lock. Queue of unresolved entries is protected 97 * with strong spinlock mfc_unres_lock. 98 * 99 * In this case data path is free of exclusive locks at all. 100 */ 101 102 static struct kmem_cache *mrt_cachep __ro_after_init; 103 104 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 105 static void ipmr_free_table(struct mr_table *mrt); 106 107 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 108 struct net_device *dev, struct sk_buff *skb, 109 struct mfc_cache *cache, int local); 110 static int ipmr_cache_report(const struct mr_table *mrt, 111 struct sk_buff *pkt, vifi_t vifi, int assert); 112 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 113 int cmd); 114 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 115 static void mroute_clean_tables(struct mr_table *mrt, int flags); 116 static void ipmr_expire_process(struct timer_list *t); 117 118 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 119 #define ipmr_for_each_table(mrt, net) \ 120 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 121 lockdep_rtnl_is_held() || \ 122 list_empty(&net->ipv4.mr_tables)) 123 124 static struct mr_table *ipmr_mr_table_iter(struct net *net, 125 struct mr_table *mrt) 126 { 127 struct mr_table *ret; 128 129 if (!mrt) 130 ret = list_entry_rcu(net->ipv4.mr_tables.next, 131 struct mr_table, list); 132 else 133 ret = list_entry_rcu(mrt->list.next, 134 struct mr_table, list); 135 136 if (&ret->list == &net->ipv4.mr_tables) 137 return NULL; 138 return ret; 139 } 140 141 static struct mr_table *__ipmr_get_table(struct net *net, u32 id) 142 { 143 struct mr_table *mrt; 144 145 ipmr_for_each_table(mrt, net) { 146 if (mrt->id == id) 147 return mrt; 148 } 149 return NULL; 150 } 151 152 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 153 { 154 struct mr_table *mrt; 155 156 rcu_read_lock(); 157 mrt = __ipmr_get_table(net, id); 158 rcu_read_unlock(); 159 return mrt; 160 } 161 162 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 163 struct mr_table **mrt) 164 { 165 int err; 166 struct ipmr_result res; 167 struct fib_lookup_arg arg = { 168 .result = &res, 169 .flags = FIB_LOOKUP_NOREF, 170 }; 171 172 /* update flow if oif or iif point to device enslaved to l3mdev */ 173 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 174 175 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 176 flowi4_to_flowi(flp4), 0, &arg); 177 if (err < 0) 178 return err; 179 *mrt = res.mrt; 180 return 0; 181 } 182 183 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 184 int flags, struct fib_lookup_arg *arg) 185 { 186 struct ipmr_result *res = arg->result; 187 struct mr_table *mrt; 188 189 switch (rule->action) { 190 case FR_ACT_TO_TBL: 191 break; 192 case FR_ACT_UNREACHABLE: 193 return -ENETUNREACH; 194 case FR_ACT_PROHIBIT: 195 return -EACCES; 196 case FR_ACT_BLACKHOLE: 197 default: 198 return -EINVAL; 199 } 200 201 arg->table = fib_rule_get_table(rule, arg); 202 203 mrt = __ipmr_get_table(rule->fr_net, arg->table); 204 if (!mrt) 205 return -EAGAIN; 206 res->mrt = mrt; 207 return 0; 208 } 209 210 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 211 { 212 return 1; 213 } 214 215 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 216 struct fib_rule_hdr *frh, struct nlattr **tb, 217 struct netlink_ext_ack *extack) 218 { 219 return 0; 220 } 221 222 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 223 struct nlattr **tb) 224 { 225 return 1; 226 } 227 228 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 229 struct fib_rule_hdr *frh) 230 { 231 frh->dst_len = 0; 232 frh->src_len = 0; 233 frh->tos = 0; 234 return 0; 235 } 236 237 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 238 .family = RTNL_FAMILY_IPMR, 239 .rule_size = sizeof(struct ipmr_rule), 240 .addr_size = sizeof(u32), 241 .action = ipmr_rule_action, 242 .match = ipmr_rule_match, 243 .configure = ipmr_rule_configure, 244 .compare = ipmr_rule_compare, 245 .fill = ipmr_rule_fill, 246 .nlgroup = RTNLGRP_IPV4_RULE, 247 .owner = THIS_MODULE, 248 }; 249 250 static int __net_init ipmr_rules_init(struct net *net) 251 { 252 struct fib_rules_ops *ops; 253 struct mr_table *mrt; 254 int err; 255 256 ops = fib_rules_register(&ipmr_rules_ops_template, net); 257 if (IS_ERR(ops)) 258 return PTR_ERR(ops); 259 260 INIT_LIST_HEAD(&net->ipv4.mr_tables); 261 262 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 263 if (IS_ERR(mrt)) { 264 err = PTR_ERR(mrt); 265 goto err1; 266 } 267 268 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT); 269 if (err < 0) 270 goto err2; 271 272 net->ipv4.mr_rules_ops = ops; 273 return 0; 274 275 err2: 276 rtnl_lock(); 277 ipmr_free_table(mrt); 278 rtnl_unlock(); 279 err1: 280 fib_rules_unregister(ops); 281 return err; 282 } 283 284 static void __net_exit ipmr_rules_exit(struct net *net) 285 { 286 struct mr_table *mrt, *next; 287 288 ASSERT_RTNL(); 289 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 290 list_del(&mrt->list); 291 ipmr_free_table(mrt); 292 } 293 fib_rules_unregister(net->ipv4.mr_rules_ops); 294 } 295 296 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 297 struct netlink_ext_ack *extack) 298 { 299 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 300 } 301 302 static unsigned int ipmr_rules_seq_read(const struct net *net) 303 { 304 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 305 } 306 307 bool ipmr_rule_default(const struct fib_rule *rule) 308 { 309 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 310 } 311 EXPORT_SYMBOL(ipmr_rule_default); 312 #else 313 #define ipmr_for_each_table(mrt, net) \ 314 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 315 316 static struct mr_table *ipmr_mr_table_iter(struct net *net, 317 struct mr_table *mrt) 318 { 319 if (!mrt) 320 return net->ipv4.mrt; 321 return NULL; 322 } 323 324 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 325 { 326 return net->ipv4.mrt; 327 } 328 329 #define __ipmr_get_table ipmr_get_table 330 331 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 332 struct mr_table **mrt) 333 { 334 *mrt = net->ipv4.mrt; 335 return 0; 336 } 337 338 static int __net_init ipmr_rules_init(struct net *net) 339 { 340 struct mr_table *mrt; 341 342 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 343 if (IS_ERR(mrt)) 344 return PTR_ERR(mrt); 345 net->ipv4.mrt = mrt; 346 return 0; 347 } 348 349 static void __net_exit ipmr_rules_exit(struct net *net) 350 { 351 ASSERT_RTNL(); 352 ipmr_free_table(net->ipv4.mrt); 353 net->ipv4.mrt = NULL; 354 } 355 356 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 357 struct netlink_ext_ack *extack) 358 { 359 return 0; 360 } 361 362 static unsigned int ipmr_rules_seq_read(const struct net *net) 363 { 364 return 0; 365 } 366 367 bool ipmr_rule_default(const struct fib_rule *rule) 368 { 369 return true; 370 } 371 EXPORT_SYMBOL(ipmr_rule_default); 372 #endif 373 374 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 375 const void *ptr) 376 { 377 const struct mfc_cache_cmp_arg *cmparg = arg->key; 378 const struct mfc_cache *c = ptr; 379 380 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 381 cmparg->mfc_origin != c->mfc_origin; 382 } 383 384 static const struct rhashtable_params ipmr_rht_params = { 385 .head_offset = offsetof(struct mr_mfc, mnode), 386 .key_offset = offsetof(struct mfc_cache, cmparg), 387 .key_len = sizeof(struct mfc_cache_cmp_arg), 388 .nelem_hint = 3, 389 .obj_cmpfn = ipmr_hash_cmp, 390 .automatic_shrinking = true, 391 }; 392 393 static void ipmr_new_table_set(struct mr_table *mrt, 394 struct net *net) 395 { 396 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 397 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 398 #endif 399 } 400 401 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 402 .mfc_mcastgrp = htonl(INADDR_ANY), 403 .mfc_origin = htonl(INADDR_ANY), 404 }; 405 406 static struct mr_table_ops ipmr_mr_table_ops = { 407 .rht_params = &ipmr_rht_params, 408 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 409 }; 410 411 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 412 { 413 struct mr_table *mrt; 414 415 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 416 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 417 return ERR_PTR(-EINVAL); 418 419 mrt = __ipmr_get_table(net, id); 420 if (mrt) 421 return mrt; 422 423 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 424 ipmr_expire_process, ipmr_new_table_set); 425 } 426 427 static void ipmr_free_table(struct mr_table *mrt) 428 { 429 struct net *net = read_pnet(&mrt->net); 430 431 WARN_ON_ONCE(!mr_can_free_table(net)); 432 433 timer_shutdown_sync(&mrt->ipmr_expire_timer); 434 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 435 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 436 rhltable_destroy(&mrt->mfc_hash); 437 kfree(mrt); 438 } 439 440 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 441 442 /* Initialize ipmr pimreg/tunnel in_device */ 443 static bool ipmr_init_vif_indev(const struct net_device *dev) 444 { 445 struct in_device *in_dev; 446 447 ASSERT_RTNL(); 448 449 in_dev = __in_dev_get_rtnl(dev); 450 if (!in_dev) 451 return false; 452 ipv4_devconf_setall(in_dev); 453 neigh_parms_data_state_setall(in_dev->arp_parms); 454 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 455 456 return true; 457 } 458 459 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 460 { 461 struct net_device *tunnel_dev, *new_dev; 462 struct ip_tunnel_parm_kern p = { }; 463 int err; 464 465 tunnel_dev = __dev_get_by_name(net, "tunl0"); 466 if (!tunnel_dev) 467 goto out; 468 469 p.iph.daddr = v->vifc_rmt_addr.s_addr; 470 p.iph.saddr = v->vifc_lcl_addr.s_addr; 471 p.iph.version = 4; 472 p.iph.ihl = 5; 473 p.iph.protocol = IPPROTO_IPIP; 474 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 475 476 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 477 goto out; 478 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 479 SIOCADDTUNNEL); 480 if (err) 481 goto out; 482 483 new_dev = __dev_get_by_name(net, p.name); 484 if (!new_dev) 485 goto out; 486 487 new_dev->flags |= IFF_MULTICAST; 488 if (!ipmr_init_vif_indev(new_dev)) 489 goto out_unregister; 490 if (dev_open(new_dev, NULL)) 491 goto out_unregister; 492 dev_hold(new_dev); 493 err = dev_set_allmulti(new_dev, 1); 494 if (err) { 495 dev_close(new_dev); 496 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 497 SIOCDELTUNNEL); 498 dev_put(new_dev); 499 new_dev = ERR_PTR(err); 500 } 501 return new_dev; 502 503 out_unregister: 504 unregister_netdevice(new_dev); 505 out: 506 return ERR_PTR(-ENOBUFS); 507 } 508 509 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 510 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 511 { 512 struct net *net = dev_net(dev); 513 struct mr_table *mrt; 514 struct flowi4 fl4 = { 515 .flowi4_oif = dev->ifindex, 516 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 517 .flowi4_mark = skb->mark, 518 }; 519 int err; 520 521 err = ipmr_fib_lookup(net, &fl4, &mrt); 522 if (err < 0) { 523 kfree_skb(skb); 524 return err; 525 } 526 527 DEV_STATS_ADD(dev, tx_bytes, skb->len); 528 DEV_STATS_INC(dev, tx_packets); 529 rcu_read_lock(); 530 531 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 532 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 533 IGMPMSG_WHOLEPKT); 534 535 rcu_read_unlock(); 536 kfree_skb(skb); 537 return NETDEV_TX_OK; 538 } 539 540 static int reg_vif_get_iflink(const struct net_device *dev) 541 { 542 return 0; 543 } 544 545 static const struct net_device_ops reg_vif_netdev_ops = { 546 .ndo_start_xmit = reg_vif_xmit, 547 .ndo_get_iflink = reg_vif_get_iflink, 548 }; 549 550 static void reg_vif_setup(struct net_device *dev) 551 { 552 dev->type = ARPHRD_PIMREG; 553 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 554 dev->flags = IFF_NOARP; 555 dev->netdev_ops = ®_vif_netdev_ops; 556 dev->needs_free_netdev = true; 557 dev->netns_immutable = true; 558 } 559 560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 561 { 562 struct net_device *dev; 563 char name[IFNAMSIZ]; 564 565 if (mrt->id == RT_TABLE_DEFAULT) 566 sprintf(name, "pimreg"); 567 else 568 sprintf(name, "pimreg%u", mrt->id); 569 570 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 571 572 if (!dev) 573 return NULL; 574 575 dev_net_set(dev, net); 576 577 if (register_netdevice(dev)) { 578 free_netdev(dev); 579 return NULL; 580 } 581 582 if (!ipmr_init_vif_indev(dev)) 583 goto failure; 584 if (dev_open(dev, NULL)) 585 goto failure; 586 587 dev_hold(dev); 588 589 return dev; 590 591 failure: 592 unregister_netdevice(dev); 593 return NULL; 594 } 595 596 /* called with rcu_read_lock() */ 597 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 598 unsigned int pimlen) 599 { 600 struct net_device *reg_dev = NULL; 601 struct iphdr *encap; 602 int vif_num; 603 604 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 605 /* Check that: 606 * a. packet is really sent to a multicast group 607 * b. packet is not a NULL-REGISTER 608 * c. packet is not truncated 609 */ 610 if (!ipv4_is_multicast(encap->daddr) || 611 encap->tot_len == 0 || 612 ntohs(encap->tot_len) + pimlen > skb->len) 613 return 1; 614 615 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 616 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 617 if (vif_num >= 0) 618 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 619 if (!reg_dev) 620 return 1; 621 622 skb->mac_header = skb->network_header; 623 skb_pull(skb, (u8 *)encap - skb->data); 624 skb_reset_network_header(skb); 625 skb->protocol = htons(ETH_P_IP); 626 skb->ip_summed = CHECKSUM_NONE; 627 628 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 629 630 netif_rx(skb); 631 632 return NET_RX_SUCCESS; 633 } 634 #else 635 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 636 { 637 return NULL; 638 } 639 #endif 640 641 static int call_ipmr_vif_entry_notifiers(struct net *net, 642 enum fib_event_type event_type, 643 struct vif_device *vif, 644 struct net_device *vif_dev, 645 vifi_t vif_index, u32 tb_id) 646 { 647 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 648 vif, vif_dev, vif_index, tb_id, 649 &net->ipv4.ipmr_seq); 650 } 651 652 static int call_ipmr_mfc_entry_notifiers(struct net *net, 653 enum fib_event_type event_type, 654 struct mfc_cache *mfc, u32 tb_id) 655 { 656 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 657 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 658 } 659 660 /** 661 * vif_delete - Delete a VIF entry 662 * @mrt: Table to delete from 663 * @vifi: VIF identifier to delete 664 * @notify: Set to 1, if the caller is a notifier_call 665 * @head: if unregistering the VIF, place it on this queue 666 */ 667 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 668 struct list_head *head) 669 { 670 struct net *net = read_pnet(&mrt->net); 671 struct vif_device *v; 672 struct net_device *dev; 673 struct in_device *in_dev; 674 675 if (vifi < 0 || vifi >= mrt->maxvif) 676 return -EADDRNOTAVAIL; 677 678 v = &mrt->vif_table[vifi]; 679 680 dev = rtnl_dereference(v->dev); 681 if (!dev) 682 return -EADDRNOTAVAIL; 683 684 spin_lock(&mrt_lock); 685 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 686 vifi, mrt->id); 687 RCU_INIT_POINTER(v->dev, NULL); 688 689 if (vifi == mrt->mroute_reg_vif_num) { 690 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 691 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 692 } 693 if (vifi + 1 == mrt->maxvif) { 694 int tmp; 695 696 for (tmp = vifi - 1; tmp >= 0; tmp--) { 697 if (VIF_EXISTS(mrt, tmp)) 698 break; 699 } 700 WRITE_ONCE(mrt->maxvif, tmp + 1); 701 } 702 703 spin_unlock(&mrt_lock); 704 705 dev_set_allmulti(dev, -1); 706 707 in_dev = __in_dev_get_rtnl(dev); 708 if (in_dev) { 709 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 710 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 711 NETCONFA_MC_FORWARDING, 712 dev->ifindex, &in_dev->cnf); 713 ip_rt_multicast_event(in_dev); 714 } 715 716 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 717 unregister_netdevice_queue(dev, head); 718 719 netdev_put(dev, &v->dev_tracker); 720 return 0; 721 } 722 723 static void ipmr_cache_free_rcu(struct rcu_head *head) 724 { 725 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 726 727 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 728 } 729 730 static void ipmr_cache_free(struct mfc_cache *c) 731 { 732 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 733 } 734 735 /* Destroy an unresolved cache entry, killing queued skbs 736 * and reporting error to netlink readers. 737 */ 738 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 739 { 740 struct net *net = read_pnet(&mrt->net); 741 struct sk_buff *skb; 742 struct nlmsgerr *e; 743 744 atomic_dec(&mrt->cache_resolve_queue_len); 745 746 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 747 if (ip_hdr(skb)->version == 0) { 748 struct nlmsghdr *nlh = skb_pull(skb, 749 sizeof(struct iphdr)); 750 nlh->nlmsg_type = NLMSG_ERROR; 751 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 752 skb_trim(skb, nlh->nlmsg_len); 753 e = nlmsg_data(nlh); 754 e->error = -ETIMEDOUT; 755 memset(&e->msg, 0, sizeof(e->msg)); 756 757 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 758 } else { 759 kfree_skb(skb); 760 } 761 } 762 763 ipmr_cache_free(c); 764 } 765 766 /* Timer process for the unresolved queue. */ 767 static void ipmr_expire_process(struct timer_list *t) 768 { 769 struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer); 770 struct mr_mfc *c, *next; 771 unsigned long expires; 772 unsigned long now; 773 774 if (!spin_trylock(&mfc_unres_lock)) { 775 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 776 return; 777 } 778 779 if (list_empty(&mrt->mfc_unres_queue)) 780 goto out; 781 782 now = jiffies; 783 expires = 10*HZ; 784 785 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 786 if (time_after(c->mfc_un.unres.expires, now)) { 787 unsigned long interval = c->mfc_un.unres.expires - now; 788 if (interval < expires) 789 expires = interval; 790 continue; 791 } 792 793 list_del(&c->list); 794 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 795 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 796 } 797 798 if (!list_empty(&mrt->mfc_unres_queue)) 799 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 800 801 out: 802 spin_unlock(&mfc_unres_lock); 803 } 804 805 /* Fill oifs list. It is called under locked mrt_lock. */ 806 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 807 unsigned char *ttls) 808 { 809 int vifi; 810 811 cache->mfc_un.res.minvif = MAXVIFS; 812 cache->mfc_un.res.maxvif = 0; 813 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 814 815 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 816 if (VIF_EXISTS(mrt, vifi) && 817 ttls[vifi] && ttls[vifi] < 255) { 818 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 819 if (cache->mfc_un.res.minvif > vifi) 820 cache->mfc_un.res.minvif = vifi; 821 if (cache->mfc_un.res.maxvif <= vifi) 822 cache->mfc_un.res.maxvif = vifi + 1; 823 } 824 } 825 WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies); 826 } 827 828 static int vif_add(struct net *net, struct mr_table *mrt, 829 struct vifctl *vifc, int mrtsock) 830 { 831 struct netdev_phys_item_id ppid = { }; 832 int vifi = vifc->vifc_vifi; 833 struct vif_device *v = &mrt->vif_table[vifi]; 834 struct net_device *dev; 835 struct in_device *in_dev; 836 int err; 837 838 /* Is vif busy ? */ 839 if (VIF_EXISTS(mrt, vifi)) 840 return -EADDRINUSE; 841 842 switch (vifc->vifc_flags) { 843 case VIFF_REGISTER: 844 if (!ipmr_pimsm_enabled()) 845 return -EINVAL; 846 /* Special Purpose VIF in PIM 847 * All the packets will be sent to the daemon 848 */ 849 if (mrt->mroute_reg_vif_num >= 0) 850 return -EADDRINUSE; 851 dev = ipmr_reg_vif(net, mrt); 852 if (!dev) 853 return -ENOBUFS; 854 err = dev_set_allmulti(dev, 1); 855 if (err) { 856 unregister_netdevice(dev); 857 dev_put(dev); 858 return err; 859 } 860 break; 861 case VIFF_TUNNEL: 862 dev = ipmr_new_tunnel(net, vifc); 863 if (IS_ERR(dev)) 864 return PTR_ERR(dev); 865 break; 866 case VIFF_USE_IFINDEX: 867 case 0: 868 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 869 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 870 if (dev && !__in_dev_get_rtnl(dev)) { 871 dev_put(dev); 872 return -EADDRNOTAVAIL; 873 } 874 } else { 875 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 876 } 877 if (!dev) 878 return -EADDRNOTAVAIL; 879 err = dev_set_allmulti(dev, 1); 880 if (err) { 881 dev_put(dev); 882 return err; 883 } 884 break; 885 default: 886 return -EINVAL; 887 } 888 889 in_dev = __in_dev_get_rtnl(dev); 890 if (!in_dev) { 891 dev_put(dev); 892 return -EADDRNOTAVAIL; 893 } 894 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 895 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 896 dev->ifindex, &in_dev->cnf); 897 ip_rt_multicast_event(in_dev); 898 899 /* Fill in the VIF structures */ 900 vif_device_init(v, dev, vifc->vifc_rate_limit, 901 vifc->vifc_threshold, 902 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 903 (VIFF_TUNNEL | VIFF_REGISTER)); 904 905 err = netif_get_port_parent_id(dev, &ppid, true); 906 if (err == 0) { 907 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 908 v->dev_parent_id.id_len = ppid.id_len; 909 } else { 910 v->dev_parent_id.id_len = 0; 911 } 912 913 v->local = vifc->vifc_lcl_addr.s_addr; 914 v->remote = vifc->vifc_rmt_addr.s_addr; 915 916 /* And finish update writing critical data */ 917 spin_lock(&mrt_lock); 918 rcu_assign_pointer(v->dev, dev); 919 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 920 if (v->flags & VIFF_REGISTER) { 921 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 922 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 923 } 924 if (vifi+1 > mrt->maxvif) 925 WRITE_ONCE(mrt->maxvif, vifi + 1); 926 spin_unlock(&mrt_lock); 927 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 928 vifi, mrt->id); 929 return 0; 930 } 931 932 /* called with rcu_read_lock() */ 933 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 934 __be32 origin, 935 __be32 mcastgrp) 936 { 937 struct mfc_cache_cmp_arg arg = { 938 .mfc_mcastgrp = mcastgrp, 939 .mfc_origin = origin 940 }; 941 942 return mr_mfc_find(mrt, &arg); 943 } 944 945 /* Look for a (*,G) entry */ 946 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 947 __be32 mcastgrp, int vifi) 948 { 949 struct mfc_cache_cmp_arg arg = { 950 .mfc_mcastgrp = mcastgrp, 951 .mfc_origin = htonl(INADDR_ANY) 952 }; 953 954 if (mcastgrp == htonl(INADDR_ANY)) 955 return mr_mfc_find_any_parent(mrt, vifi); 956 return mr_mfc_find_any(mrt, vifi, &arg); 957 } 958 959 /* Look for a (S,G,iif) entry if parent != -1 */ 960 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 961 __be32 origin, __be32 mcastgrp, 962 int parent) 963 { 964 struct mfc_cache_cmp_arg arg = { 965 .mfc_mcastgrp = mcastgrp, 966 .mfc_origin = origin, 967 }; 968 969 return mr_mfc_find_parent(mrt, &arg, parent); 970 } 971 972 /* Allocate a multicast cache entry */ 973 static struct mfc_cache *ipmr_cache_alloc(void) 974 { 975 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 976 977 if (c) { 978 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 979 c->_c.mfc_un.res.minvif = MAXVIFS; 980 c->_c.free = ipmr_cache_free_rcu; 981 refcount_set(&c->_c.mfc_un.res.refcount, 1); 982 } 983 return c; 984 } 985 986 static struct mfc_cache *ipmr_cache_alloc_unres(void) 987 { 988 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 989 990 if (c) { 991 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 992 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 993 } 994 return c; 995 } 996 997 /* A cache entry has gone into a resolved state from queued */ 998 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 999 struct mfc_cache *uc, struct mfc_cache *c) 1000 { 1001 struct sk_buff *skb; 1002 struct nlmsgerr *e; 1003 1004 /* Play the pending entries through our router */ 1005 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1006 if (ip_hdr(skb)->version == 0) { 1007 struct nlmsghdr *nlh = skb_pull(skb, 1008 sizeof(struct iphdr)); 1009 1010 if (mr_fill_mroute(mrt, skb, &c->_c, 1011 nlmsg_data(nlh)) > 0) { 1012 nlh->nlmsg_len = skb_tail_pointer(skb) - 1013 (u8 *)nlh; 1014 } else { 1015 nlh->nlmsg_type = NLMSG_ERROR; 1016 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1017 skb_trim(skb, nlh->nlmsg_len); 1018 e = nlmsg_data(nlh); 1019 e->error = -EMSGSIZE; 1020 memset(&e->msg, 0, sizeof(e->msg)); 1021 } 1022 1023 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1024 } else { 1025 rcu_read_lock(); 1026 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1027 rcu_read_unlock(); 1028 } 1029 } 1030 } 1031 1032 /* Bounce a cache query up to mrouted and netlink. 1033 * 1034 * Called under rcu_read_lock(). 1035 */ 1036 static int ipmr_cache_report(const struct mr_table *mrt, 1037 struct sk_buff *pkt, vifi_t vifi, int assert) 1038 { 1039 const int ihl = ip_hdrlen(pkt); 1040 struct sock *mroute_sk; 1041 struct igmphdr *igmp; 1042 struct igmpmsg *msg; 1043 struct sk_buff *skb; 1044 int ret; 1045 1046 mroute_sk = rcu_dereference(mrt->mroute_sk); 1047 if (!mroute_sk) 1048 return -EINVAL; 1049 1050 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1051 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1052 else 1053 skb = alloc_skb(128, GFP_ATOMIC); 1054 1055 if (!skb) 1056 return -ENOBUFS; 1057 1058 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1059 /* Ugly, but we have no choice with this interface. 1060 * Duplicate old header, fix ihl, length etc. 1061 * And all this only to mangle msg->im_msgtype and 1062 * to set msg->im_mbz to "mbz" :-) 1063 */ 1064 skb_push(skb, sizeof(struct iphdr)); 1065 skb_reset_network_header(skb); 1066 skb_reset_transport_header(skb); 1067 msg = (struct igmpmsg *)skb_network_header(skb); 1068 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1069 msg->im_msgtype = assert; 1070 msg->im_mbz = 0; 1071 if (assert == IGMPMSG_WRVIFWHOLE) { 1072 msg->im_vif = vifi; 1073 msg->im_vif_hi = vifi >> 8; 1074 } else { 1075 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1076 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1077 1078 msg->im_vif = vif_num; 1079 msg->im_vif_hi = vif_num >> 8; 1080 } 1081 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1082 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1083 sizeof(struct iphdr)); 1084 } else { 1085 /* Copy the IP header */ 1086 skb_set_network_header(skb, skb->len); 1087 skb_put(skb, ihl); 1088 skb_copy_to_linear_data(skb, pkt->data, ihl); 1089 /* Flag to the kernel this is a route add */ 1090 ip_hdr(skb)->protocol = 0; 1091 msg = (struct igmpmsg *)skb_network_header(skb); 1092 msg->im_vif = vifi; 1093 msg->im_vif_hi = vifi >> 8; 1094 ipv4_pktinfo_prepare(mroute_sk, pkt, false); 1095 memcpy(skb->cb, pkt->cb, sizeof(skb->cb)); 1096 /* Add our header */ 1097 igmp = skb_put(skb, sizeof(struct igmphdr)); 1098 igmp->type = assert; 1099 msg->im_msgtype = assert; 1100 igmp->code = 0; 1101 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1102 skb->transport_header = skb->network_header; 1103 } 1104 1105 igmpmsg_netlink_event(mrt, skb); 1106 1107 /* Deliver to mrouted */ 1108 ret = sock_queue_rcv_skb(mroute_sk, skb); 1109 1110 if (ret < 0) { 1111 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1112 kfree_skb(skb); 1113 } 1114 1115 return ret; 1116 } 1117 1118 /* Queue a packet for resolution. It gets locked cache entry! */ 1119 /* Called under rcu_read_lock() */ 1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1121 struct sk_buff *skb, struct net_device *dev) 1122 { 1123 const struct iphdr *iph = ip_hdr(skb); 1124 struct mfc_cache *c; 1125 bool found = false; 1126 int err; 1127 1128 spin_lock_bh(&mfc_unres_lock); 1129 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1130 if (c->mfc_mcastgrp == iph->daddr && 1131 c->mfc_origin == iph->saddr) { 1132 found = true; 1133 break; 1134 } 1135 } 1136 1137 if (!found) { 1138 /* Create a new entry if allowable */ 1139 c = ipmr_cache_alloc_unres(); 1140 if (!c) { 1141 spin_unlock_bh(&mfc_unres_lock); 1142 1143 kfree_skb(skb); 1144 return -ENOBUFS; 1145 } 1146 1147 /* Fill in the new cache entry */ 1148 c->_c.mfc_parent = -1; 1149 c->mfc_origin = iph->saddr; 1150 c->mfc_mcastgrp = iph->daddr; 1151 1152 /* Reflect first query at mrouted. */ 1153 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1154 1155 if (err < 0) { 1156 /* If the report failed throw the cache entry 1157 out - Brad Parker 1158 */ 1159 spin_unlock_bh(&mfc_unres_lock); 1160 1161 ipmr_cache_free(c); 1162 kfree_skb(skb); 1163 return err; 1164 } 1165 1166 atomic_inc(&mrt->cache_resolve_queue_len); 1167 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1168 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1169 1170 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1171 mod_timer(&mrt->ipmr_expire_timer, 1172 c->_c.mfc_un.unres.expires); 1173 } 1174 1175 /* See if we can append the packet */ 1176 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1177 kfree_skb(skb); 1178 err = -ENOBUFS; 1179 } else { 1180 if (dev) { 1181 skb->dev = dev; 1182 skb->skb_iif = dev->ifindex; 1183 } 1184 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1185 err = 0; 1186 } 1187 1188 spin_unlock_bh(&mfc_unres_lock); 1189 return err; 1190 } 1191 1192 /* MFC cache manipulation by user space mroute daemon */ 1193 1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1195 { 1196 struct net *net = read_pnet(&mrt->net); 1197 struct mfc_cache *c; 1198 1199 /* The entries are added/deleted only under RTNL */ 1200 rcu_read_lock(); 1201 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1202 mfc->mfcc_mcastgrp.s_addr, parent); 1203 rcu_read_unlock(); 1204 if (!c) 1205 return -ENOENT; 1206 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1207 list_del_rcu(&c->_c.list); 1208 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1209 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1210 mr_cache_put(&c->_c); 1211 1212 return 0; 1213 } 1214 1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1216 struct mfcctl *mfc, int mrtsock, int parent) 1217 { 1218 struct mfc_cache *uc, *c; 1219 struct mr_mfc *_uc; 1220 bool found; 1221 int ret; 1222 1223 if (mfc->mfcc_parent >= MAXVIFS) 1224 return -ENFILE; 1225 1226 /* The entries are added/deleted only under RTNL */ 1227 rcu_read_lock(); 1228 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1229 mfc->mfcc_mcastgrp.s_addr, parent); 1230 rcu_read_unlock(); 1231 if (c) { 1232 spin_lock(&mrt_lock); 1233 c->_c.mfc_parent = mfc->mfcc_parent; 1234 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1235 if (!mrtsock) 1236 c->_c.mfc_flags |= MFC_STATIC; 1237 spin_unlock(&mrt_lock); 1238 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1239 mrt->id); 1240 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1241 return 0; 1242 } 1243 1244 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1245 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1246 return -EINVAL; 1247 1248 c = ipmr_cache_alloc(); 1249 if (!c) 1250 return -ENOMEM; 1251 1252 c->mfc_origin = mfc->mfcc_origin.s_addr; 1253 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1254 c->_c.mfc_parent = mfc->mfcc_parent; 1255 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1256 if (!mrtsock) 1257 c->_c.mfc_flags |= MFC_STATIC; 1258 1259 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1260 ipmr_rht_params); 1261 if (ret) { 1262 pr_err("ipmr: rhtable insert error %d\n", ret); 1263 ipmr_cache_free(c); 1264 return ret; 1265 } 1266 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1267 /* Check to see if we resolved a queued list. If so we 1268 * need to send on the frames and tidy up. 1269 */ 1270 found = false; 1271 spin_lock_bh(&mfc_unres_lock); 1272 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1273 uc = (struct mfc_cache *)_uc; 1274 if (uc->mfc_origin == c->mfc_origin && 1275 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1276 list_del(&_uc->list); 1277 atomic_dec(&mrt->cache_resolve_queue_len); 1278 found = true; 1279 break; 1280 } 1281 } 1282 if (list_empty(&mrt->mfc_unres_queue)) 1283 timer_delete(&mrt->ipmr_expire_timer); 1284 spin_unlock_bh(&mfc_unres_lock); 1285 1286 if (found) { 1287 ipmr_cache_resolve(net, mrt, uc, c); 1288 ipmr_cache_free(uc); 1289 } 1290 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1291 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1292 return 0; 1293 } 1294 1295 /* Close the multicast socket, and clear the vif tables etc */ 1296 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1297 { 1298 struct net *net = read_pnet(&mrt->net); 1299 struct mr_mfc *c, *tmp; 1300 struct mfc_cache *cache; 1301 LIST_HEAD(list); 1302 int i; 1303 1304 /* Shut down all active vif entries */ 1305 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1306 for (i = 0; i < mrt->maxvif; i++) { 1307 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1308 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1309 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1310 continue; 1311 vif_delete(mrt, i, 0, &list); 1312 } 1313 unregister_netdevice_many(&list); 1314 } 1315 1316 /* Wipe the cache */ 1317 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1318 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1319 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1320 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1321 continue; 1322 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1323 list_del_rcu(&c->list); 1324 cache = (struct mfc_cache *)c; 1325 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1326 mrt->id); 1327 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1328 mr_cache_put(c); 1329 } 1330 } 1331 1332 if (flags & MRT_FLUSH_MFC) { 1333 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1334 spin_lock_bh(&mfc_unres_lock); 1335 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1336 list_del(&c->list); 1337 cache = (struct mfc_cache *)c; 1338 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1339 ipmr_destroy_unres(mrt, cache); 1340 } 1341 spin_unlock_bh(&mfc_unres_lock); 1342 } 1343 } 1344 } 1345 1346 /* called from ip_ra_control(), before an RCU grace period, 1347 * we don't need to call synchronize_rcu() here 1348 */ 1349 static void mrtsock_destruct(struct sock *sk) 1350 { 1351 struct net *net = sock_net(sk); 1352 struct mr_table *mrt; 1353 1354 rtnl_lock(); 1355 ipmr_for_each_table(mrt, net) { 1356 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1357 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1358 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1359 NETCONFA_MC_FORWARDING, 1360 NETCONFA_IFINDEX_ALL, 1361 net->ipv4.devconf_all); 1362 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1363 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1364 } 1365 } 1366 rtnl_unlock(); 1367 } 1368 1369 /* Socket options and virtual interface manipulation. The whole 1370 * virtual interface system is a complete heap, but unfortunately 1371 * that's how BSD mrouted happens to think. Maybe one day with a proper 1372 * MOSPF/PIM router set up we can clean this up. 1373 */ 1374 1375 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1376 unsigned int optlen) 1377 { 1378 struct net *net = sock_net(sk); 1379 int val, ret = 0, parent = 0; 1380 struct mr_table *mrt; 1381 struct vifctl vif; 1382 struct mfcctl mfc; 1383 bool do_wrvifwhole; 1384 u32 uval; 1385 1386 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1387 rtnl_lock(); 1388 if (sk->sk_type != SOCK_RAW || 1389 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1390 ret = -EOPNOTSUPP; 1391 goto out_unlock; 1392 } 1393 1394 mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1395 if (!mrt) { 1396 ret = -ENOENT; 1397 goto out_unlock; 1398 } 1399 if (optname != MRT_INIT) { 1400 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1401 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1402 ret = -EACCES; 1403 goto out_unlock; 1404 } 1405 } 1406 1407 switch (optname) { 1408 case MRT_INIT: 1409 if (optlen != sizeof(int)) { 1410 ret = -EINVAL; 1411 break; 1412 } 1413 if (rtnl_dereference(mrt->mroute_sk)) { 1414 ret = -EADDRINUSE; 1415 break; 1416 } 1417 1418 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1419 if (ret == 0) { 1420 rcu_assign_pointer(mrt->mroute_sk, sk); 1421 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1422 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1423 NETCONFA_MC_FORWARDING, 1424 NETCONFA_IFINDEX_ALL, 1425 net->ipv4.devconf_all); 1426 } 1427 break; 1428 case MRT_DONE: 1429 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1430 ret = -EACCES; 1431 } else { 1432 /* We need to unlock here because mrtsock_destruct takes 1433 * care of rtnl itself and we can't change that due to 1434 * the IP_ROUTER_ALERT setsockopt which runs without it. 1435 */ 1436 rtnl_unlock(); 1437 ret = ip_ra_control(sk, 0, NULL); 1438 goto out; 1439 } 1440 break; 1441 case MRT_ADD_VIF: 1442 case MRT_DEL_VIF: 1443 if (optlen != sizeof(vif)) { 1444 ret = -EINVAL; 1445 break; 1446 } 1447 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1448 ret = -EFAULT; 1449 break; 1450 } 1451 if (vif.vifc_vifi >= MAXVIFS) { 1452 ret = -ENFILE; 1453 break; 1454 } 1455 if (optname == MRT_ADD_VIF) { 1456 ret = vif_add(net, mrt, &vif, 1457 sk == rtnl_dereference(mrt->mroute_sk)); 1458 } else { 1459 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1460 } 1461 break; 1462 /* Manipulate the forwarding caches. These live 1463 * in a sort of kernel/user symbiosis. 1464 */ 1465 case MRT_ADD_MFC: 1466 case MRT_DEL_MFC: 1467 parent = -1; 1468 fallthrough; 1469 case MRT_ADD_MFC_PROXY: 1470 case MRT_DEL_MFC_PROXY: 1471 if (optlen != sizeof(mfc)) { 1472 ret = -EINVAL; 1473 break; 1474 } 1475 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1476 ret = -EFAULT; 1477 break; 1478 } 1479 if (parent == 0) 1480 parent = mfc.mfcc_parent; 1481 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1482 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1483 else 1484 ret = ipmr_mfc_add(net, mrt, &mfc, 1485 sk == rtnl_dereference(mrt->mroute_sk), 1486 parent); 1487 break; 1488 case MRT_FLUSH: 1489 if (optlen != sizeof(val)) { 1490 ret = -EINVAL; 1491 break; 1492 } 1493 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1494 ret = -EFAULT; 1495 break; 1496 } 1497 mroute_clean_tables(mrt, val); 1498 break; 1499 /* Control PIM assert. */ 1500 case MRT_ASSERT: 1501 if (optlen != sizeof(val)) { 1502 ret = -EINVAL; 1503 break; 1504 } 1505 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1506 ret = -EFAULT; 1507 break; 1508 } 1509 mrt->mroute_do_assert = val; 1510 break; 1511 case MRT_PIM: 1512 if (!ipmr_pimsm_enabled()) { 1513 ret = -ENOPROTOOPT; 1514 break; 1515 } 1516 if (optlen != sizeof(val)) { 1517 ret = -EINVAL; 1518 break; 1519 } 1520 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1521 ret = -EFAULT; 1522 break; 1523 } 1524 1525 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1526 val = !!val; 1527 if (val != mrt->mroute_do_pim) { 1528 mrt->mroute_do_pim = val; 1529 mrt->mroute_do_assert = val; 1530 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1531 } 1532 break; 1533 case MRT_TABLE: 1534 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1535 ret = -ENOPROTOOPT; 1536 break; 1537 } 1538 if (optlen != sizeof(uval)) { 1539 ret = -EINVAL; 1540 break; 1541 } 1542 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1543 ret = -EFAULT; 1544 break; 1545 } 1546 1547 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1548 ret = -EBUSY; 1549 } else { 1550 mrt = ipmr_new_table(net, uval); 1551 if (IS_ERR(mrt)) 1552 ret = PTR_ERR(mrt); 1553 else 1554 raw_sk(sk)->ipmr_table = uval; 1555 } 1556 break; 1557 /* Spurious command, or MRT_VERSION which you cannot set. */ 1558 default: 1559 ret = -ENOPROTOOPT; 1560 } 1561 out_unlock: 1562 rtnl_unlock(); 1563 out: 1564 return ret; 1565 } 1566 1567 /* Execute if this ioctl is a special mroute ioctl */ 1568 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1569 { 1570 switch (cmd) { 1571 /* These userspace buffers will be consumed by ipmr_ioctl() */ 1572 case SIOCGETVIFCNT: { 1573 struct sioc_vif_req buffer; 1574 1575 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1576 sizeof(buffer)); 1577 } 1578 case SIOCGETSGCNT: { 1579 struct sioc_sg_req buffer; 1580 1581 return sock_ioctl_inout(sk, cmd, arg, &buffer, 1582 sizeof(buffer)); 1583 } 1584 } 1585 /* return code > 0 means that the ioctl was not executed */ 1586 return 1; 1587 } 1588 1589 /* Getsock opt support for the multicast routing system. */ 1590 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, 1591 sockptr_t optlen) 1592 { 1593 int olr; 1594 int val; 1595 struct net *net = sock_net(sk); 1596 struct mr_table *mrt; 1597 1598 if (sk->sk_type != SOCK_RAW || 1599 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1600 return -EOPNOTSUPP; 1601 1602 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1603 if (!mrt) 1604 return -ENOENT; 1605 1606 switch (optname) { 1607 case MRT_VERSION: 1608 val = 0x0305; 1609 break; 1610 case MRT_PIM: 1611 if (!ipmr_pimsm_enabled()) 1612 return -ENOPROTOOPT; 1613 val = mrt->mroute_do_pim; 1614 break; 1615 case MRT_ASSERT: 1616 val = mrt->mroute_do_assert; 1617 break; 1618 default: 1619 return -ENOPROTOOPT; 1620 } 1621 1622 if (copy_from_sockptr(&olr, optlen, sizeof(int))) 1623 return -EFAULT; 1624 if (olr < 0) 1625 return -EINVAL; 1626 1627 olr = min_t(unsigned int, olr, sizeof(int)); 1628 1629 if (copy_to_sockptr(optlen, &olr, sizeof(int))) 1630 return -EFAULT; 1631 if (copy_to_sockptr(optval, &val, olr)) 1632 return -EFAULT; 1633 return 0; 1634 } 1635 1636 /* The IP multicast ioctl support routines. */ 1637 int ipmr_ioctl(struct sock *sk, int cmd, void *arg) 1638 { 1639 struct vif_device *vif; 1640 struct mfc_cache *c; 1641 struct net *net = sock_net(sk); 1642 struct sioc_vif_req *vr; 1643 struct sioc_sg_req *sr; 1644 struct mr_table *mrt; 1645 1646 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1647 if (!mrt) 1648 return -ENOENT; 1649 1650 switch (cmd) { 1651 case SIOCGETVIFCNT: 1652 vr = (struct sioc_vif_req *)arg; 1653 if (vr->vifi >= mrt->maxvif) 1654 return -EINVAL; 1655 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif); 1656 rcu_read_lock(); 1657 vif = &mrt->vif_table[vr->vifi]; 1658 if (VIF_EXISTS(mrt, vr->vifi)) { 1659 vr->icount = READ_ONCE(vif->pkt_in); 1660 vr->ocount = READ_ONCE(vif->pkt_out); 1661 vr->ibytes = READ_ONCE(vif->bytes_in); 1662 vr->obytes = READ_ONCE(vif->bytes_out); 1663 rcu_read_unlock(); 1664 1665 return 0; 1666 } 1667 rcu_read_unlock(); 1668 return -EADDRNOTAVAIL; 1669 case SIOCGETSGCNT: 1670 sr = (struct sioc_sg_req *)arg; 1671 1672 rcu_read_lock(); 1673 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr); 1674 if (c) { 1675 sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt); 1676 sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes); 1677 sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if); 1678 rcu_read_unlock(); 1679 return 0; 1680 } 1681 rcu_read_unlock(); 1682 return -EADDRNOTAVAIL; 1683 default: 1684 return -ENOIOCTLCMD; 1685 } 1686 } 1687 1688 #ifdef CONFIG_COMPAT 1689 struct compat_sioc_sg_req { 1690 struct in_addr src; 1691 struct in_addr grp; 1692 compat_ulong_t pktcnt; 1693 compat_ulong_t bytecnt; 1694 compat_ulong_t wrong_if; 1695 }; 1696 1697 struct compat_sioc_vif_req { 1698 vifi_t vifi; /* Which iface */ 1699 compat_ulong_t icount; 1700 compat_ulong_t ocount; 1701 compat_ulong_t ibytes; 1702 compat_ulong_t obytes; 1703 }; 1704 1705 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1706 { 1707 struct compat_sioc_sg_req sr; 1708 struct compat_sioc_vif_req vr; 1709 struct vif_device *vif; 1710 struct mfc_cache *c; 1711 struct net *net = sock_net(sk); 1712 struct mr_table *mrt; 1713 1714 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1715 if (!mrt) 1716 return -ENOENT; 1717 1718 switch (cmd) { 1719 case SIOCGETVIFCNT: 1720 if (copy_from_user(&vr, arg, sizeof(vr))) 1721 return -EFAULT; 1722 if (vr.vifi >= mrt->maxvif) 1723 return -EINVAL; 1724 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1725 rcu_read_lock(); 1726 vif = &mrt->vif_table[vr.vifi]; 1727 if (VIF_EXISTS(mrt, vr.vifi)) { 1728 vr.icount = READ_ONCE(vif->pkt_in); 1729 vr.ocount = READ_ONCE(vif->pkt_out); 1730 vr.ibytes = READ_ONCE(vif->bytes_in); 1731 vr.obytes = READ_ONCE(vif->bytes_out); 1732 rcu_read_unlock(); 1733 1734 if (copy_to_user(arg, &vr, sizeof(vr))) 1735 return -EFAULT; 1736 return 0; 1737 } 1738 rcu_read_unlock(); 1739 return -EADDRNOTAVAIL; 1740 case SIOCGETSGCNT: 1741 if (copy_from_user(&sr, arg, sizeof(sr))) 1742 return -EFAULT; 1743 1744 rcu_read_lock(); 1745 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1746 if (c) { 1747 sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt); 1748 sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes); 1749 sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if); 1750 rcu_read_unlock(); 1751 1752 if (copy_to_user(arg, &sr, sizeof(sr))) 1753 return -EFAULT; 1754 return 0; 1755 } 1756 rcu_read_unlock(); 1757 return -EADDRNOTAVAIL; 1758 default: 1759 return -ENOIOCTLCMD; 1760 } 1761 } 1762 #endif 1763 1764 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1765 { 1766 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1767 struct net *net = dev_net(dev); 1768 struct mr_table *mrt; 1769 struct vif_device *v; 1770 int ct; 1771 1772 if (event != NETDEV_UNREGISTER) 1773 return NOTIFY_DONE; 1774 1775 ipmr_for_each_table(mrt, net) { 1776 v = &mrt->vif_table[0]; 1777 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1778 if (rcu_access_pointer(v->dev) == dev) 1779 vif_delete(mrt, ct, 1, NULL); 1780 } 1781 } 1782 return NOTIFY_DONE; 1783 } 1784 1785 static struct notifier_block ip_mr_notifier = { 1786 .notifier_call = ipmr_device_event, 1787 }; 1788 1789 /* Encapsulate a packet by attaching a valid IPIP header to it. 1790 * This avoids tunnel drivers and other mess and gives us the speed so 1791 * important for multicast video. 1792 */ 1793 static void ip_encap(struct net *net, struct sk_buff *skb, 1794 __be32 saddr, __be32 daddr) 1795 { 1796 struct iphdr *iph; 1797 const struct iphdr *old_iph = ip_hdr(skb); 1798 1799 skb_push(skb, sizeof(struct iphdr)); 1800 skb->transport_header = skb->network_header; 1801 skb_reset_network_header(skb); 1802 iph = ip_hdr(skb); 1803 1804 iph->version = 4; 1805 iph->tos = old_iph->tos; 1806 iph->ttl = old_iph->ttl; 1807 iph->frag_off = 0; 1808 iph->daddr = daddr; 1809 iph->saddr = saddr; 1810 iph->protocol = IPPROTO_IPIP; 1811 iph->ihl = 5; 1812 iph->tot_len = htons(skb->len); 1813 ip_select_ident(net, skb, NULL); 1814 ip_send_check(iph); 1815 1816 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1817 nf_reset_ct(skb); 1818 } 1819 1820 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1821 struct sk_buff *skb) 1822 { 1823 struct ip_options *opt = &(IPCB(skb)->opt); 1824 1825 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1826 1827 if (unlikely(opt->optlen)) 1828 ip_forward_options(skb); 1829 1830 return dst_output(net, sk, skb); 1831 } 1832 1833 #ifdef CONFIG_NET_SWITCHDEV 1834 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1835 int in_vifi, int out_vifi) 1836 { 1837 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1838 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1839 1840 if (!skb->offload_l3_fwd_mark) 1841 return false; 1842 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1843 return false; 1844 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1845 &in_vif->dev_parent_id); 1846 } 1847 #else 1848 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1849 int in_vifi, int out_vifi) 1850 { 1851 return false; 1852 } 1853 #endif 1854 1855 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1856 1857 static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt, 1858 struct sk_buff *skb, int vifi) 1859 { 1860 const struct iphdr *iph = ip_hdr(skb); 1861 struct vif_device *vif = &mrt->vif_table[vifi]; 1862 struct net_device *vif_dev; 1863 struct rtable *rt; 1864 struct flowi4 fl4; 1865 int encap = 0; 1866 1867 vif_dev = vif_dev_read(vif); 1868 if (!vif_dev) 1869 return -1; 1870 1871 if (vif->flags & VIFF_REGISTER) { 1872 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1873 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1874 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1875 DEV_STATS_INC(vif_dev, tx_packets); 1876 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1877 return -1; 1878 } 1879 1880 if (vif->flags & VIFF_TUNNEL) { 1881 rt = ip_route_output_ports(net, &fl4, NULL, 1882 vif->remote, vif->local, 1883 0, 0, 1884 IPPROTO_IPIP, 1885 iph->tos & INET_DSCP_MASK, vif->link); 1886 if (IS_ERR(rt)) 1887 return -1; 1888 encap = sizeof(struct iphdr); 1889 } else { 1890 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1891 0, 0, 1892 IPPROTO_IPIP, 1893 iph->tos & INET_DSCP_MASK, vif->link); 1894 if (IS_ERR(rt)) 1895 return -1; 1896 } 1897 1898 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1899 /* Do not fragment multicasts. Alas, IPv4 does not 1900 * allow to send ICMP, so that packets will disappear 1901 * to blackhole. 1902 */ 1903 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1904 ip_rt_put(rt); 1905 return -1; 1906 } 1907 1908 encap += LL_RESERVED_SPACE(dst_dev_rcu(&rt->dst)) + rt->dst.header_len; 1909 1910 if (skb_cow(skb, encap)) { 1911 ip_rt_put(rt); 1912 return -1; 1913 } 1914 1915 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1916 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1917 1918 skb_dst_drop(skb); 1919 skb_dst_set(skb, &rt->dst); 1920 ip_decrease_ttl(ip_hdr(skb)); 1921 1922 /* FIXME: forward and output firewalls used to be called here. 1923 * What do we do with netfilter? -- RR 1924 */ 1925 if (vif->flags & VIFF_TUNNEL) { 1926 ip_encap(net, skb, vif->local, vif->remote); 1927 /* FIXME: extra output firewall step used to be here. --RR */ 1928 DEV_STATS_INC(vif_dev, tx_packets); 1929 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); 1930 } 1931 1932 return 0; 1933 } 1934 1935 static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt, 1936 int in_vifi, struct sk_buff *skb, int vifi) 1937 { 1938 struct rtable *rt; 1939 1940 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1941 goto out_free; 1942 1943 if (ipmr_prepare_xmit(net, mrt, skb, vifi)) 1944 goto out_free; 1945 1946 rt = skb_rtable(skb); 1947 1948 IPCB(skb)->flags |= IPSKB_FORWARDED; 1949 1950 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1951 * not only before forwarding, but after forwarding on all output 1952 * interfaces. It is clear, if mrouter runs a multicasting 1953 * program, it should receive packets not depending to what interface 1954 * program is joined. 1955 * If we will not make it, the program will have to join on all 1956 * interfaces. On the other hand, multihoming host (or router, but 1957 * not mrouter) cannot join to more than one interface - it will 1958 * result in receiving multiple packets. 1959 */ 1960 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1961 net, NULL, skb, skb->dev, dst_dev_rcu(&rt->dst), 1962 ipmr_forward_finish); 1963 return; 1964 1965 out_free: 1966 kfree_skb(skb); 1967 } 1968 1969 static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt, 1970 struct sk_buff *skb, int vifi) 1971 { 1972 if (ipmr_prepare_xmit(net, mrt, skb, vifi)) 1973 goto out_free; 1974 1975 ip_mc_output(net, NULL, skb); 1976 return; 1977 1978 out_free: 1979 kfree_skb(skb); 1980 } 1981 1982 /* Called with mrt_lock or rcu_read_lock() */ 1983 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1984 { 1985 int ct; 1986 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1987 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1988 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1989 break; 1990 } 1991 return ct; 1992 } 1993 1994 /* "local" means that we should preserve one skb (for local delivery) */ 1995 /* Called uner rcu_read_lock() */ 1996 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1997 struct net_device *dev, struct sk_buff *skb, 1998 struct mfc_cache *c, int local) 1999 { 2000 int true_vifi = ipmr_find_vif(mrt, dev); 2001 int psend = -1; 2002 int vif, ct; 2003 2004 vif = c->_c.mfc_parent; 2005 atomic_long_inc(&c->_c.mfc_un.res.pkt); 2006 atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes); 2007 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies); 2008 2009 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 2010 struct mfc_cache *cache_proxy; 2011 2012 /* For an (*,G) entry, we only check that the incoming 2013 * interface is part of the static tree. 2014 */ 2015 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 2016 if (cache_proxy && 2017 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 2018 goto forward; 2019 } 2020 2021 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 2022 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 2023 if (rt_is_output_route(skb_rtable(skb))) { 2024 /* It is our own packet, looped back. 2025 * Very complicated situation... 2026 * 2027 * The best workaround until routing daemons will be 2028 * fixed is not to redistribute packet, if it was 2029 * send through wrong interface. It means, that 2030 * multicast applications WILL NOT work for 2031 * (S,G), which have default multicast route pointing 2032 * to wrong oif. In any case, it is not a good 2033 * idea to use multicasting applications on router. 2034 */ 2035 goto dont_forward; 2036 } 2037 2038 atomic_long_inc(&c->_c.mfc_un.res.wrong_if); 2039 2040 if (true_vifi >= 0 && mrt->mroute_do_assert && 2041 /* pimsm uses asserts, when switching from RPT to SPT, 2042 * so that we cannot check that packet arrived on an oif. 2043 * It is bad, but otherwise we would need to move pretty 2044 * large chunk of pimd to kernel. Ough... --ANK 2045 */ 2046 (mrt->mroute_do_pim || 2047 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2048 time_after(jiffies, 2049 c->_c.mfc_un.res.last_assert + 2050 MFC_ASSERT_THRESH)) { 2051 c->_c.mfc_un.res.last_assert = jiffies; 2052 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 2053 if (mrt->mroute_do_wrvifwhole) 2054 ipmr_cache_report(mrt, skb, true_vifi, 2055 IGMPMSG_WRVIFWHOLE); 2056 } 2057 goto dont_forward; 2058 } 2059 2060 forward: 2061 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2062 mrt->vif_table[vif].pkt_in + 1); 2063 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2064 mrt->vif_table[vif].bytes_in + skb->len); 2065 2066 /* Forward the frame */ 2067 if (c->mfc_origin == htonl(INADDR_ANY) && 2068 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2069 if (true_vifi >= 0 && 2070 true_vifi != c->_c.mfc_parent && 2071 ip_hdr(skb)->ttl > 2072 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2073 /* It's an (*,*) entry and the packet is not coming from 2074 * the upstream: forward the packet to the upstream 2075 * only. 2076 */ 2077 psend = c->_c.mfc_parent; 2078 goto last_forward; 2079 } 2080 goto dont_forward; 2081 } 2082 for (ct = c->_c.mfc_un.res.maxvif - 1; 2083 ct >= c->_c.mfc_un.res.minvif; ct--) { 2084 /* For (*,G) entry, don't forward to the incoming interface */ 2085 if ((c->mfc_origin != htonl(INADDR_ANY) || 2086 ct != true_vifi) && 2087 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2088 if (psend != -1) { 2089 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2090 2091 if (skb2) 2092 ipmr_queue_fwd_xmit(net, mrt, true_vifi, 2093 skb2, psend); 2094 } 2095 psend = ct; 2096 } 2097 } 2098 last_forward: 2099 if (psend != -1) { 2100 if (local) { 2101 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2102 2103 if (skb2) 2104 ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb2, 2105 psend); 2106 } else { 2107 ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb, psend); 2108 return; 2109 } 2110 } 2111 2112 dont_forward: 2113 if (!local) 2114 kfree_skb(skb); 2115 } 2116 2117 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2118 { 2119 struct rtable *rt = skb_rtable(skb); 2120 struct iphdr *iph = ip_hdr(skb); 2121 struct flowi4 fl4 = { 2122 .daddr = iph->daddr, 2123 .saddr = iph->saddr, 2124 .flowi4_dscp = ip4h_dscp(iph), 2125 .flowi4_oif = (rt_is_output_route(rt) ? 2126 skb->dev->ifindex : 0), 2127 .flowi4_iif = (rt_is_output_route(rt) ? 2128 LOOPBACK_IFINDEX : 2129 skb->dev->ifindex), 2130 .flowi4_mark = skb->mark, 2131 }; 2132 struct mr_table *mrt; 2133 int err; 2134 2135 err = ipmr_fib_lookup(net, &fl4, &mrt); 2136 if (err) 2137 return ERR_PTR(err); 2138 return mrt; 2139 } 2140 2141 /* Multicast packets for forwarding arrive here 2142 * Called with rcu_read_lock(); 2143 */ 2144 int ip_mr_input(struct sk_buff *skb) 2145 { 2146 struct mfc_cache *cache; 2147 struct net *net = dev_net(skb->dev); 2148 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2149 struct mr_table *mrt; 2150 struct net_device *dev; 2151 2152 /* skb->dev passed in is the loX master dev for vrfs. 2153 * As there are no vifs associated with loopback devices, 2154 * get the proper interface that does have a vif associated with it. 2155 */ 2156 dev = skb->dev; 2157 if (netif_is_l3_master(skb->dev)) { 2158 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2159 if (!dev) { 2160 kfree_skb(skb); 2161 return -ENODEV; 2162 } 2163 } 2164 2165 /* Packet is looped back after forward, it should not be 2166 * forwarded second time, but still can be delivered locally. 2167 */ 2168 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2169 goto dont_forward; 2170 2171 mrt = ipmr_rt_fib_lookup(net, skb); 2172 if (IS_ERR(mrt)) { 2173 kfree_skb(skb); 2174 return PTR_ERR(mrt); 2175 } 2176 if (!local) { 2177 if (IPCB(skb)->opt.router_alert) { 2178 if (ip_call_ra_chain(skb)) 2179 return 0; 2180 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2181 /* IGMPv1 (and broken IGMPv2 implementations sort of 2182 * Cisco IOS <= 11.2(8)) do not put router alert 2183 * option to IGMP packets destined to routable 2184 * groups. It is very bad, because it means 2185 * that we can forward NO IGMP messages. 2186 */ 2187 struct sock *mroute_sk; 2188 2189 mroute_sk = rcu_dereference(mrt->mroute_sk); 2190 if (mroute_sk) { 2191 nf_reset_ct(skb); 2192 raw_rcv(mroute_sk, skb); 2193 return 0; 2194 } 2195 } 2196 } 2197 2198 /* already under rcu_read_lock() */ 2199 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2200 if (!cache) { 2201 int vif = ipmr_find_vif(mrt, dev); 2202 2203 if (vif >= 0) 2204 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2205 vif); 2206 } 2207 2208 /* No usable cache entry */ 2209 if (!cache) { 2210 int vif; 2211 2212 if (local) { 2213 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2214 ip_local_deliver(skb); 2215 if (!skb2) 2216 return -ENOBUFS; 2217 skb = skb2; 2218 } 2219 2220 vif = ipmr_find_vif(mrt, dev); 2221 if (vif >= 0) 2222 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2223 kfree_skb(skb); 2224 return -ENODEV; 2225 } 2226 2227 ip_mr_forward(net, mrt, dev, skb, cache, local); 2228 2229 if (local) 2230 return ip_local_deliver(skb); 2231 2232 return 0; 2233 2234 dont_forward: 2235 if (local) 2236 return ip_local_deliver(skb); 2237 kfree_skb(skb); 2238 return 0; 2239 } 2240 2241 static void ip_mr_output_finish(struct net *net, struct mr_table *mrt, 2242 struct net_device *dev, struct sk_buff *skb, 2243 struct mfc_cache *c) 2244 { 2245 int psend = -1; 2246 int ct; 2247 2248 atomic_long_inc(&c->_c.mfc_un.res.pkt); 2249 atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes); 2250 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies); 2251 2252 /* Forward the frame */ 2253 if (c->mfc_origin == htonl(INADDR_ANY) && 2254 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2255 if (ip_hdr(skb)->ttl > 2256 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2257 /* It's an (*,*) entry and the packet is not coming from 2258 * the upstream: forward the packet to the upstream 2259 * only. 2260 */ 2261 psend = c->_c.mfc_parent; 2262 goto last_xmit; 2263 } 2264 goto dont_xmit; 2265 } 2266 2267 for (ct = c->_c.mfc_un.res.maxvif - 1; 2268 ct >= c->_c.mfc_un.res.minvif; ct--) { 2269 if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2270 if (psend != -1) { 2271 struct sk_buff *skb2; 2272 2273 skb2 = skb_clone(skb, GFP_ATOMIC); 2274 if (skb2) 2275 ipmr_queue_output_xmit(net, mrt, 2276 skb2, psend); 2277 } 2278 psend = ct; 2279 } 2280 } 2281 2282 last_xmit: 2283 if (psend != -1) { 2284 ipmr_queue_output_xmit(net, mrt, skb, psend); 2285 return; 2286 } 2287 2288 dont_xmit: 2289 kfree_skb(skb); 2290 } 2291 2292 /* Multicast packets for forwarding arrive here 2293 * Called with rcu_read_lock(); 2294 */ 2295 int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb) 2296 { 2297 struct rtable *rt = skb_rtable(skb); 2298 struct mfc_cache *cache; 2299 struct net_device *dev; 2300 struct mr_table *mrt; 2301 int vif; 2302 2303 guard(rcu)(); 2304 2305 dev = dst_dev_rcu(&rt->dst); 2306 2307 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2308 goto mc_output; 2309 if (!(IPCB(skb)->flags & IPSKB_MCROUTE)) 2310 goto mc_output; 2311 2312 skb->dev = dev; 2313 2314 mrt = ipmr_rt_fib_lookup(net, skb); 2315 if (IS_ERR(mrt)) 2316 goto mc_output; 2317 2318 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2319 if (!cache) { 2320 vif = ipmr_find_vif(mrt, dev); 2321 if (vif >= 0) 2322 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2323 vif); 2324 } 2325 2326 /* No usable cache entry */ 2327 if (!cache) { 2328 vif = ipmr_find_vif(mrt, dev); 2329 if (vif >= 0) 2330 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2331 goto mc_output; 2332 } 2333 2334 vif = cache->_c.mfc_parent; 2335 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) 2336 goto mc_output; 2337 2338 ip_mr_output_finish(net, mrt, dev, skb, cache); 2339 return 0; 2340 2341 mc_output: 2342 return ip_mc_output(net, sk, skb); 2343 } 2344 2345 #ifdef CONFIG_IP_PIMSM_V1 2346 /* Handle IGMP messages of PIMv1 */ 2347 int pim_rcv_v1(struct sk_buff *skb) 2348 { 2349 struct igmphdr *pim; 2350 struct net *net = dev_net(skb->dev); 2351 struct mr_table *mrt; 2352 2353 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2354 goto drop; 2355 2356 pim = igmp_hdr(skb); 2357 2358 mrt = ipmr_rt_fib_lookup(net, skb); 2359 if (IS_ERR(mrt)) 2360 goto drop; 2361 if (!mrt->mroute_do_pim || 2362 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2363 goto drop; 2364 2365 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2366 drop: 2367 kfree_skb(skb); 2368 } 2369 return 0; 2370 } 2371 #endif 2372 2373 #ifdef CONFIG_IP_PIMSM_V2 2374 static int pim_rcv(struct sk_buff *skb) 2375 { 2376 struct pimreghdr *pim; 2377 struct net *net = dev_net(skb->dev); 2378 struct mr_table *mrt; 2379 2380 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2381 goto drop; 2382 2383 pim = (struct pimreghdr *)skb_transport_header(skb); 2384 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2385 (pim->flags & PIM_NULL_REGISTER) || 2386 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2387 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2388 goto drop; 2389 2390 mrt = ipmr_rt_fib_lookup(net, skb); 2391 if (IS_ERR(mrt)) 2392 goto drop; 2393 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2394 drop: 2395 kfree_skb(skb); 2396 } 2397 return 0; 2398 } 2399 #endif 2400 2401 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2402 __be32 saddr, __be32 daddr, 2403 struct rtmsg *rtm, u32 portid) 2404 { 2405 struct mfc_cache *cache; 2406 struct mr_table *mrt; 2407 int err; 2408 2409 rcu_read_lock(); 2410 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT); 2411 if (!mrt) { 2412 rcu_read_unlock(); 2413 return -ENOENT; 2414 } 2415 2416 cache = ipmr_cache_find(mrt, saddr, daddr); 2417 if (!cache && skb->dev) { 2418 int vif = ipmr_find_vif(mrt, skb->dev); 2419 2420 if (vif >= 0) 2421 cache = ipmr_cache_find_any(mrt, daddr, vif); 2422 } 2423 if (!cache) { 2424 struct sk_buff *skb2; 2425 struct iphdr *iph; 2426 struct net_device *dev; 2427 int vif = -1; 2428 2429 dev = skb->dev; 2430 if (dev) 2431 vif = ipmr_find_vif(mrt, dev); 2432 if (vif < 0) { 2433 rcu_read_unlock(); 2434 return -ENODEV; 2435 } 2436 2437 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2438 if (!skb2) { 2439 rcu_read_unlock(); 2440 return -ENOMEM; 2441 } 2442 2443 NETLINK_CB(skb2).portid = portid; 2444 skb_push(skb2, sizeof(struct iphdr)); 2445 skb_reset_network_header(skb2); 2446 iph = ip_hdr(skb2); 2447 iph->ihl = sizeof(struct iphdr) >> 2; 2448 iph->saddr = saddr; 2449 iph->daddr = daddr; 2450 iph->version = 0; 2451 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2452 rcu_read_unlock(); 2453 return err; 2454 } 2455 2456 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2457 rcu_read_unlock(); 2458 return err; 2459 } 2460 2461 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2462 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2463 int flags) 2464 { 2465 struct nlmsghdr *nlh; 2466 struct rtmsg *rtm; 2467 int err; 2468 2469 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2470 if (!nlh) 2471 return -EMSGSIZE; 2472 2473 rtm = nlmsg_data(nlh); 2474 rtm->rtm_family = RTNL_FAMILY_IPMR; 2475 rtm->rtm_dst_len = 32; 2476 rtm->rtm_src_len = 32; 2477 rtm->rtm_tos = 0; 2478 rtm->rtm_table = mrt->id; 2479 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2480 goto nla_put_failure; 2481 rtm->rtm_type = RTN_MULTICAST; 2482 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2483 if (c->_c.mfc_flags & MFC_STATIC) 2484 rtm->rtm_protocol = RTPROT_STATIC; 2485 else 2486 rtm->rtm_protocol = RTPROT_MROUTED; 2487 rtm->rtm_flags = 0; 2488 2489 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2490 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2491 goto nla_put_failure; 2492 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2493 /* do not break the dump if cache is unresolved */ 2494 if (err < 0 && err != -ENOENT) 2495 goto nla_put_failure; 2496 2497 nlmsg_end(skb, nlh); 2498 return 0; 2499 2500 nla_put_failure: 2501 nlmsg_cancel(skb, nlh); 2502 return -EMSGSIZE; 2503 } 2504 2505 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2506 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2507 int flags) 2508 { 2509 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2510 cmd, flags); 2511 } 2512 2513 static size_t mroute_msgsize(bool unresolved, int maxvif) 2514 { 2515 size_t len = 2516 NLMSG_ALIGN(sizeof(struct rtmsg)) 2517 + nla_total_size(4) /* RTA_TABLE */ 2518 + nla_total_size(4) /* RTA_SRC */ 2519 + nla_total_size(4) /* RTA_DST */ 2520 ; 2521 2522 if (!unresolved) 2523 len = len 2524 + nla_total_size(4) /* RTA_IIF */ 2525 + nla_total_size(0) /* RTA_MULTIPATH */ 2526 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2527 /* RTA_MFC_STATS */ 2528 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2529 ; 2530 2531 return len; 2532 } 2533 2534 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2535 int cmd) 2536 { 2537 struct net *net = read_pnet(&mrt->net); 2538 struct sk_buff *skb; 2539 int err = -ENOBUFS; 2540 2541 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2542 mrt->maxvif), 2543 GFP_ATOMIC); 2544 if (!skb) 2545 goto errout; 2546 2547 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2548 if (err < 0) 2549 goto errout; 2550 2551 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2552 return; 2553 2554 errout: 2555 kfree_skb(skb); 2556 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2557 } 2558 2559 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2560 { 2561 size_t len = 2562 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2563 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2564 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2565 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2566 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2567 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2568 /* IPMRA_CREPORT_PKT */ 2569 + nla_total_size(payloadlen) 2570 ; 2571 2572 return len; 2573 } 2574 2575 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2576 { 2577 struct net *net = read_pnet(&mrt->net); 2578 struct nlmsghdr *nlh; 2579 struct rtgenmsg *rtgenm; 2580 struct igmpmsg *msg; 2581 struct sk_buff *skb; 2582 struct nlattr *nla; 2583 int payloadlen; 2584 2585 payloadlen = pkt->len - sizeof(struct igmpmsg); 2586 msg = (struct igmpmsg *)skb_network_header(pkt); 2587 2588 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2589 if (!skb) 2590 goto errout; 2591 2592 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2593 sizeof(struct rtgenmsg), 0); 2594 if (!nlh) 2595 goto errout; 2596 rtgenm = nlmsg_data(nlh); 2597 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2598 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2599 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2600 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2601 msg->im_src.s_addr) || 2602 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2603 msg->im_dst.s_addr) || 2604 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2605 goto nla_put_failure; 2606 2607 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2608 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2609 nla_data(nla), payloadlen)) 2610 goto nla_put_failure; 2611 2612 nlmsg_end(skb, nlh); 2613 2614 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2615 return; 2616 2617 nla_put_failure: 2618 nlmsg_cancel(skb, nlh); 2619 errout: 2620 kfree_skb(skb); 2621 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2622 } 2623 2624 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2625 const struct nlmsghdr *nlh, 2626 struct nlattr **tb, 2627 struct netlink_ext_ack *extack) 2628 { 2629 struct rtmsg *rtm; 2630 int i, err; 2631 2632 rtm = nlmsg_payload(nlh, sizeof(*rtm)); 2633 if (!rtm) { 2634 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2635 return -EINVAL; 2636 } 2637 2638 if (!netlink_strict_get_check(skb)) 2639 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2640 rtm_ipv4_policy, extack); 2641 2642 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2643 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2644 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2645 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2646 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2647 return -EINVAL; 2648 } 2649 2650 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2651 rtm_ipv4_policy, extack); 2652 if (err) 2653 return err; 2654 2655 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2656 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2657 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2658 return -EINVAL; 2659 } 2660 2661 for (i = 0; i <= RTA_MAX; i++) { 2662 if (!tb[i]) 2663 continue; 2664 2665 switch (i) { 2666 case RTA_SRC: 2667 case RTA_DST: 2668 case RTA_TABLE: 2669 break; 2670 default: 2671 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2672 return -EINVAL; 2673 } 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2680 struct netlink_ext_ack *extack) 2681 { 2682 struct net *net = sock_net(in_skb->sk); 2683 struct nlattr *tb[RTA_MAX + 1]; 2684 struct sk_buff *skb = NULL; 2685 struct mfc_cache *cache; 2686 struct mr_table *mrt; 2687 __be32 src, grp; 2688 u32 tableid; 2689 int err; 2690 2691 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2692 if (err < 0) 2693 goto errout; 2694 2695 src = nla_get_in_addr_default(tb[RTA_SRC], 0); 2696 grp = nla_get_in_addr_default(tb[RTA_DST], 0); 2697 tableid = nla_get_u32_default(tb[RTA_TABLE], 0); 2698 2699 mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2700 if (!mrt) { 2701 err = -ENOENT; 2702 goto errout_free; 2703 } 2704 2705 /* entries are added/deleted only under RTNL */ 2706 rcu_read_lock(); 2707 cache = ipmr_cache_find(mrt, src, grp); 2708 rcu_read_unlock(); 2709 if (!cache) { 2710 err = -ENOENT; 2711 goto errout_free; 2712 } 2713 2714 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2715 if (!skb) { 2716 err = -ENOBUFS; 2717 goto errout_free; 2718 } 2719 2720 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2721 nlh->nlmsg_seq, cache, 2722 RTM_NEWROUTE, 0); 2723 if (err < 0) 2724 goto errout_free; 2725 2726 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2727 2728 errout: 2729 return err; 2730 2731 errout_free: 2732 kfree_skb(skb); 2733 goto errout; 2734 } 2735 2736 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2737 { 2738 struct fib_dump_filter filter = { 2739 .rtnl_held = true, 2740 }; 2741 int err; 2742 2743 if (cb->strict_check) { 2744 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2745 &filter, cb); 2746 if (err < 0) 2747 return err; 2748 } 2749 2750 if (filter.table_id) { 2751 struct mr_table *mrt; 2752 2753 mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id); 2754 if (!mrt) { 2755 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2756 return skb->len; 2757 2758 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2759 return -ENOENT; 2760 } 2761 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2762 &mfc_unres_lock, &filter); 2763 return skb->len ? : err; 2764 } 2765 2766 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2767 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2768 } 2769 2770 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2771 [RTA_SRC] = { .type = NLA_U32 }, 2772 [RTA_DST] = { .type = NLA_U32 }, 2773 [RTA_IIF] = { .type = NLA_U32 }, 2774 [RTA_TABLE] = { .type = NLA_U32 }, 2775 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2776 }; 2777 2778 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2779 { 2780 switch (rtm_protocol) { 2781 case RTPROT_STATIC: 2782 case RTPROT_MROUTED: 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2789 { 2790 struct rtnexthop *rtnh = nla_data(nla); 2791 int remaining = nla_len(nla), vifi = 0; 2792 2793 while (rtnh_ok(rtnh, remaining)) { 2794 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2795 if (++vifi == MAXVIFS) 2796 break; 2797 rtnh = rtnh_next(rtnh, &remaining); 2798 } 2799 2800 return remaining > 0 ? -EINVAL : vifi; 2801 } 2802 2803 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2804 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2805 struct mfcctl *mfcc, int *mrtsock, 2806 struct mr_table **mrtret, 2807 struct netlink_ext_ack *extack) 2808 { 2809 struct net_device *dev = NULL; 2810 u32 tblid = RT_TABLE_DEFAULT; 2811 struct mr_table *mrt; 2812 struct nlattr *attr; 2813 struct rtmsg *rtm; 2814 int ret, rem; 2815 2816 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2817 rtm_ipmr_policy, extack); 2818 if (ret < 0) 2819 goto out; 2820 rtm = nlmsg_data(nlh); 2821 2822 ret = -EINVAL; 2823 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2824 rtm->rtm_type != RTN_MULTICAST || 2825 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2826 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2827 goto out; 2828 2829 memset(mfcc, 0, sizeof(*mfcc)); 2830 mfcc->mfcc_parent = -1; 2831 ret = 0; 2832 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2833 switch (nla_type(attr)) { 2834 case RTA_SRC: 2835 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2836 break; 2837 case RTA_DST: 2838 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2839 break; 2840 case RTA_IIF: 2841 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2842 if (!dev) { 2843 ret = -ENODEV; 2844 goto out; 2845 } 2846 break; 2847 case RTA_MULTIPATH: 2848 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2849 ret = -EINVAL; 2850 goto out; 2851 } 2852 break; 2853 case RTA_PREFSRC: 2854 ret = 1; 2855 break; 2856 case RTA_TABLE: 2857 tblid = nla_get_u32(attr); 2858 break; 2859 } 2860 } 2861 mrt = __ipmr_get_table(net, tblid); 2862 if (!mrt) { 2863 ret = -ENOENT; 2864 goto out; 2865 } 2866 *mrtret = mrt; 2867 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2868 if (dev) 2869 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2870 2871 out: 2872 return ret; 2873 } 2874 2875 /* takes care of both newroute and delroute */ 2876 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2877 struct netlink_ext_ack *extack) 2878 { 2879 struct net *net = sock_net(skb->sk); 2880 int ret, mrtsock, parent; 2881 struct mr_table *tbl; 2882 struct mfcctl mfcc; 2883 2884 mrtsock = 0; 2885 tbl = NULL; 2886 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2887 if (ret < 0) 2888 return ret; 2889 2890 parent = ret ? mfcc.mfcc_parent : -1; 2891 if (nlh->nlmsg_type == RTM_NEWROUTE) 2892 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2893 else 2894 return ipmr_mfc_delete(tbl, &mfcc, parent); 2895 } 2896 2897 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2898 { 2899 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2900 2901 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2902 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2903 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2904 mrt->mroute_reg_vif_num) || 2905 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2906 mrt->mroute_do_assert) || 2907 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2908 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2909 mrt->mroute_do_wrvifwhole)) 2910 return false; 2911 2912 return true; 2913 } 2914 2915 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2916 { 2917 struct net_device *vif_dev; 2918 struct nlattr *vif_nest; 2919 struct vif_device *vif; 2920 2921 vif = &mrt->vif_table[vifid]; 2922 vif_dev = rtnl_dereference(vif->dev); 2923 /* if the VIF doesn't exist just continue */ 2924 if (!vif_dev) 2925 return true; 2926 2927 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2928 if (!vif_nest) 2929 return false; 2930 2931 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2932 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2933 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2934 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2935 IPMRA_VIFA_PAD) || 2936 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2937 IPMRA_VIFA_PAD) || 2938 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2939 IPMRA_VIFA_PAD) || 2940 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2941 IPMRA_VIFA_PAD) || 2942 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2943 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2944 nla_nest_cancel(skb, vif_nest); 2945 return false; 2946 } 2947 nla_nest_end(skb, vif_nest); 2948 2949 return true; 2950 } 2951 2952 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2953 struct netlink_ext_ack *extack) 2954 { 2955 struct ifinfomsg *ifm; 2956 2957 ifm = nlmsg_payload(nlh, sizeof(*ifm)); 2958 if (!ifm) { 2959 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2960 return -EINVAL; 2961 } 2962 2963 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2964 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2965 return -EINVAL; 2966 } 2967 2968 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2969 ifm->ifi_change || ifm->ifi_index) { 2970 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2971 return -EINVAL; 2972 } 2973 2974 return 0; 2975 } 2976 2977 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2978 { 2979 struct net *net = sock_net(skb->sk); 2980 struct nlmsghdr *nlh = NULL; 2981 unsigned int t = 0, s_t; 2982 unsigned int e = 0, s_e; 2983 struct mr_table *mrt; 2984 2985 if (cb->strict_check) { 2986 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2987 2988 if (err < 0) 2989 return err; 2990 } 2991 2992 s_t = cb->args[0]; 2993 s_e = cb->args[1]; 2994 2995 ipmr_for_each_table(mrt, net) { 2996 struct nlattr *vifs, *af; 2997 struct ifinfomsg *hdr; 2998 u32 i; 2999 3000 if (t < s_t) 3001 goto skip_table; 3002 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 3003 cb->nlh->nlmsg_seq, RTM_NEWLINK, 3004 sizeof(*hdr), NLM_F_MULTI); 3005 if (!nlh) 3006 break; 3007 3008 hdr = nlmsg_data(nlh); 3009 memset(hdr, 0, sizeof(*hdr)); 3010 hdr->ifi_family = RTNL_FAMILY_IPMR; 3011 3012 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 3013 if (!af) { 3014 nlmsg_cancel(skb, nlh); 3015 goto out; 3016 } 3017 3018 if (!ipmr_fill_table(mrt, skb)) { 3019 nlmsg_cancel(skb, nlh); 3020 goto out; 3021 } 3022 3023 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 3024 if (!vifs) { 3025 nla_nest_end(skb, af); 3026 nlmsg_end(skb, nlh); 3027 goto out; 3028 } 3029 for (i = 0; i < mrt->maxvif; i++) { 3030 if (e < s_e) 3031 goto skip_entry; 3032 if (!ipmr_fill_vif(mrt, i, skb)) { 3033 nla_nest_end(skb, vifs); 3034 nla_nest_end(skb, af); 3035 nlmsg_end(skb, nlh); 3036 goto out; 3037 } 3038 skip_entry: 3039 e++; 3040 } 3041 s_e = 0; 3042 e = 0; 3043 nla_nest_end(skb, vifs); 3044 nla_nest_end(skb, af); 3045 nlmsg_end(skb, nlh); 3046 skip_table: 3047 t++; 3048 } 3049 3050 out: 3051 cb->args[1] = e; 3052 cb->args[0] = t; 3053 3054 return skb->len; 3055 } 3056 3057 #ifdef CONFIG_PROC_FS 3058 /* The /proc interfaces to multicast routing : 3059 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 3060 */ 3061 3062 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 3063 __acquires(RCU) 3064 { 3065 struct mr_vif_iter *iter = seq->private; 3066 struct net *net = seq_file_net(seq); 3067 struct mr_table *mrt; 3068 3069 rcu_read_lock(); 3070 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT); 3071 if (!mrt) { 3072 rcu_read_unlock(); 3073 return ERR_PTR(-ENOENT); 3074 } 3075 3076 iter->mrt = mrt; 3077 3078 return mr_vif_seq_start(seq, pos); 3079 } 3080 3081 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 3082 __releases(RCU) 3083 { 3084 rcu_read_unlock(); 3085 } 3086 3087 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 3088 { 3089 struct mr_vif_iter *iter = seq->private; 3090 struct mr_table *mrt = iter->mrt; 3091 3092 if (v == SEQ_START_TOKEN) { 3093 seq_puts(seq, 3094 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 3095 } else { 3096 const struct vif_device *vif = v; 3097 const struct net_device *vif_dev; 3098 const char *name; 3099 3100 vif_dev = vif_dev_read(vif); 3101 name = vif_dev ? vif_dev->name : "none"; 3102 seq_printf(seq, 3103 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 3104 vif - mrt->vif_table, 3105 name, vif->bytes_in, vif->pkt_in, 3106 vif->bytes_out, vif->pkt_out, 3107 vif->flags, vif->local, vif->remote); 3108 } 3109 return 0; 3110 } 3111 3112 static const struct seq_operations ipmr_vif_seq_ops = { 3113 .start = ipmr_vif_seq_start, 3114 .next = mr_vif_seq_next, 3115 .stop = ipmr_vif_seq_stop, 3116 .show = ipmr_vif_seq_show, 3117 }; 3118 3119 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 3120 { 3121 struct net *net = seq_file_net(seq); 3122 struct mr_table *mrt; 3123 3124 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 3125 if (!mrt) 3126 return ERR_PTR(-ENOENT); 3127 3128 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 3129 } 3130 3131 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 3132 { 3133 int n; 3134 3135 if (v == SEQ_START_TOKEN) { 3136 seq_puts(seq, 3137 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 3138 } else { 3139 const struct mfc_cache *mfc = v; 3140 const struct mr_mfc_iter *it = seq->private; 3141 const struct mr_table *mrt = it->mrt; 3142 3143 seq_printf(seq, "%08X %08X %-3hd", 3144 (__force u32) mfc->mfc_mcastgrp, 3145 (__force u32) mfc->mfc_origin, 3146 mfc->_c.mfc_parent); 3147 3148 if (it->cache != &mrt->mfc_unres_queue) { 3149 seq_printf(seq, " %8lu %8lu %8lu", 3150 atomic_long_read(&mfc->_c.mfc_un.res.pkt), 3151 atomic_long_read(&mfc->_c.mfc_un.res.bytes), 3152 atomic_long_read(&mfc->_c.mfc_un.res.wrong_if)); 3153 for (n = mfc->_c.mfc_un.res.minvif; 3154 n < mfc->_c.mfc_un.res.maxvif; n++) { 3155 if (VIF_EXISTS(mrt, n) && 3156 mfc->_c.mfc_un.res.ttls[n] < 255) 3157 seq_printf(seq, 3158 " %2d:%-3d", 3159 n, mfc->_c.mfc_un.res.ttls[n]); 3160 } 3161 } else { 3162 /* unresolved mfc_caches don't contain 3163 * pkt, bytes and wrong_if values 3164 */ 3165 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 3166 } 3167 seq_putc(seq, '\n'); 3168 } 3169 return 0; 3170 } 3171 3172 static const struct seq_operations ipmr_mfc_seq_ops = { 3173 .start = ipmr_mfc_seq_start, 3174 .next = mr_mfc_seq_next, 3175 .stop = mr_mfc_seq_stop, 3176 .show = ipmr_mfc_seq_show, 3177 }; 3178 #endif 3179 3180 #ifdef CONFIG_IP_PIMSM_V2 3181 static const struct net_protocol pim_protocol = { 3182 .handler = pim_rcv, 3183 }; 3184 #endif 3185 3186 static unsigned int ipmr_seq_read(const struct net *net) 3187 { 3188 return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net); 3189 } 3190 3191 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3192 struct netlink_ext_ack *extack) 3193 { 3194 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3195 ipmr_mr_table_iter, extack); 3196 } 3197 3198 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3199 .family = RTNL_FAMILY_IPMR, 3200 .fib_seq_read = ipmr_seq_read, 3201 .fib_dump = ipmr_dump, 3202 .owner = THIS_MODULE, 3203 }; 3204 3205 static int __net_init ipmr_notifier_init(struct net *net) 3206 { 3207 struct fib_notifier_ops *ops; 3208 3209 net->ipv4.ipmr_seq = 0; 3210 3211 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3212 if (IS_ERR(ops)) 3213 return PTR_ERR(ops); 3214 net->ipv4.ipmr_notifier_ops = ops; 3215 3216 return 0; 3217 } 3218 3219 static void __net_exit ipmr_notifier_exit(struct net *net) 3220 { 3221 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3222 net->ipv4.ipmr_notifier_ops = NULL; 3223 } 3224 3225 /* Setup for IP multicast routing */ 3226 static int __net_init ipmr_net_init(struct net *net) 3227 { 3228 int err; 3229 3230 err = ipmr_notifier_init(net); 3231 if (err) 3232 goto ipmr_notifier_fail; 3233 3234 err = ipmr_rules_init(net); 3235 if (err < 0) 3236 goto ipmr_rules_fail; 3237 3238 #ifdef CONFIG_PROC_FS 3239 err = -ENOMEM; 3240 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3241 sizeof(struct mr_vif_iter))) 3242 goto proc_vif_fail; 3243 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3244 sizeof(struct mr_mfc_iter))) 3245 goto proc_cache_fail; 3246 #endif 3247 return 0; 3248 3249 #ifdef CONFIG_PROC_FS 3250 proc_cache_fail: 3251 remove_proc_entry("ip_mr_vif", net->proc_net); 3252 proc_vif_fail: 3253 rtnl_lock(); 3254 ipmr_rules_exit(net); 3255 rtnl_unlock(); 3256 #endif 3257 ipmr_rules_fail: 3258 ipmr_notifier_exit(net); 3259 ipmr_notifier_fail: 3260 return err; 3261 } 3262 3263 static void __net_exit ipmr_net_exit(struct net *net) 3264 { 3265 #ifdef CONFIG_PROC_FS 3266 remove_proc_entry("ip_mr_cache", net->proc_net); 3267 remove_proc_entry("ip_mr_vif", net->proc_net); 3268 #endif 3269 ipmr_notifier_exit(net); 3270 } 3271 3272 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3273 { 3274 struct net *net; 3275 3276 rtnl_lock(); 3277 list_for_each_entry(net, net_list, exit_list) 3278 ipmr_rules_exit(net); 3279 rtnl_unlock(); 3280 } 3281 3282 static struct pernet_operations ipmr_net_ops = { 3283 .init = ipmr_net_init, 3284 .exit = ipmr_net_exit, 3285 .exit_batch = ipmr_net_exit_batch, 3286 }; 3287 3288 static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = { 3289 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK, 3290 .dumpit = ipmr_rtm_dumplink}, 3291 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE, 3292 .doit = ipmr_rtm_route}, 3293 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE, 3294 .doit = ipmr_rtm_route}, 3295 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE, 3296 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute}, 3297 }; 3298 3299 int __init ip_mr_init(void) 3300 { 3301 int err; 3302 3303 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3304 3305 err = register_pernet_subsys(&ipmr_net_ops); 3306 if (err) 3307 goto reg_pernet_fail; 3308 3309 err = register_netdevice_notifier(&ip_mr_notifier); 3310 if (err) 3311 goto reg_notif_fail; 3312 #ifdef CONFIG_IP_PIMSM_V2 3313 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3314 pr_err("%s: can't add PIM protocol\n", __func__); 3315 err = -EAGAIN; 3316 goto add_proto_fail; 3317 } 3318 #endif 3319 rtnl_register_many(ipmr_rtnl_msg_handlers); 3320 3321 return 0; 3322 3323 #ifdef CONFIG_IP_PIMSM_V2 3324 add_proto_fail: 3325 unregister_netdevice_notifier(&ip_mr_notifier); 3326 #endif 3327 reg_notif_fail: 3328 unregister_pernet_subsys(&ipmr_net_ops); 3329 reg_pernet_fail: 3330 kmem_cache_destroy(mrt_cachep); 3331 return err; 3332 } 3333