1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65 #include <net/inet_dscp.h>
66
67 #include <linux/nospec.h>
68
69 struct ipmr_rule {
70 struct fib_rule common;
71 };
72
73 struct ipmr_result {
74 struct mr_table *mrt;
75 };
76
77 /* Big lock, protecting vif table, mrt cache and mroute socket state.
78 * Note that the changes are semaphored via rtnl_lock.
79 */
80
81 static DEFINE_SPINLOCK(mrt_lock);
82
vif_dev_read(const struct vif_device * vif)83 static struct net_device *vif_dev_read(const struct vif_device *vif)
84 {
85 return rcu_dereference(vif->dev);
86 }
87
88 /* Multicast router control variables */
89
90 /* Special spinlock for queue of unresolved entries */
91 static DEFINE_SPINLOCK(mfc_unres_lock);
92
93 /* We return to original Alan's scheme. Hash table of resolved
94 * entries is changed only in process context and protected
95 * with weak lock mrt_lock. Queue of unresolved entries is protected
96 * with strong spinlock mfc_unres_lock.
97 *
98 * In this case data path is free of exclusive locks at all.
99 */
100
101 static struct kmem_cache *mrt_cachep __ro_after_init;
102
103 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104 static void ipmr_free_table(struct mr_table *mrt);
105
106 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107 struct net_device *dev, struct sk_buff *skb,
108 struct mfc_cache *cache, int local);
109 static int ipmr_cache_report(const struct mr_table *mrt,
110 struct sk_buff *pkt, vifi_t vifi, int assert);
111 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112 int cmd);
113 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114 static void mroute_clean_tables(struct mr_table *mrt, int flags);
115 static void ipmr_expire_process(struct timer_list *t);
116
117 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118 #define ipmr_for_each_table(mrt, net) \
119 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
120 lockdep_rtnl_is_held() || \
121 list_empty(&net->ipv4.mr_tables))
122
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)123 static struct mr_table *ipmr_mr_table_iter(struct net *net,
124 struct mr_table *mrt)
125 {
126 struct mr_table *ret;
127
128 if (!mrt)
129 ret = list_entry_rcu(net->ipv4.mr_tables.next,
130 struct mr_table, list);
131 else
132 ret = list_entry_rcu(mrt->list.next,
133 struct mr_table, list);
134
135 if (&ret->list == &net->ipv4.mr_tables)
136 return NULL;
137 return ret;
138 }
139
__ipmr_get_table(struct net * net,u32 id)140 static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
141 {
142 struct mr_table *mrt;
143
144 ipmr_for_each_table(mrt, net) {
145 if (mrt->id == id)
146 return mrt;
147 }
148 return NULL;
149 }
150
ipmr_get_table(struct net * net,u32 id)151 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
152 {
153 struct mr_table *mrt;
154
155 rcu_read_lock();
156 mrt = __ipmr_get_table(net, id);
157 rcu_read_unlock();
158 return mrt;
159 }
160
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)161 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
162 struct mr_table **mrt)
163 {
164 int err;
165 struct ipmr_result res;
166 struct fib_lookup_arg arg = {
167 .result = &res,
168 .flags = FIB_LOOKUP_NOREF,
169 };
170
171 /* update flow if oif or iif point to device enslaved to l3mdev */
172 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
173
174 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
175 flowi4_to_flowi(flp4), 0, &arg);
176 if (err < 0)
177 return err;
178 *mrt = res.mrt;
179 return 0;
180 }
181
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)182 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
183 int flags, struct fib_lookup_arg *arg)
184 {
185 struct ipmr_result *res = arg->result;
186 struct mr_table *mrt;
187
188 switch (rule->action) {
189 case FR_ACT_TO_TBL:
190 break;
191 case FR_ACT_UNREACHABLE:
192 return -ENETUNREACH;
193 case FR_ACT_PROHIBIT:
194 return -EACCES;
195 case FR_ACT_BLACKHOLE:
196 default:
197 return -EINVAL;
198 }
199
200 arg->table = fib_rule_get_table(rule, arg);
201
202 mrt = __ipmr_get_table(rule->fr_net, arg->table);
203 if (!mrt)
204 return -EAGAIN;
205 res->mrt = mrt;
206 return 0;
207 }
208
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)209 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
210 {
211 return 1;
212 }
213
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)214 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
215 struct fib_rule_hdr *frh, struct nlattr **tb,
216 struct netlink_ext_ack *extack)
217 {
218 return 0;
219 }
220
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)221 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
222 struct nlattr **tb)
223 {
224 return 1;
225 }
226
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)227 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
228 struct fib_rule_hdr *frh)
229 {
230 frh->dst_len = 0;
231 frh->src_len = 0;
232 frh->tos = 0;
233 return 0;
234 }
235
236 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
237 .family = RTNL_FAMILY_IPMR,
238 .rule_size = sizeof(struct ipmr_rule),
239 .addr_size = sizeof(u32),
240 .action = ipmr_rule_action,
241 .match = ipmr_rule_match,
242 .configure = ipmr_rule_configure,
243 .compare = ipmr_rule_compare,
244 .fill = ipmr_rule_fill,
245 .nlgroup = RTNLGRP_IPV4_RULE,
246 .owner = THIS_MODULE,
247 };
248
ipmr_rules_init(struct net * net)249 static int __net_init ipmr_rules_init(struct net *net)
250 {
251 struct fib_rules_ops *ops;
252 struct mr_table *mrt;
253 int err;
254
255 ops = fib_rules_register(&ipmr_rules_ops_template, net);
256 if (IS_ERR(ops))
257 return PTR_ERR(ops);
258
259 INIT_LIST_HEAD(&net->ipv4.mr_tables);
260
261 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
262 if (IS_ERR(mrt)) {
263 err = PTR_ERR(mrt);
264 goto err1;
265 }
266
267 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
268 if (err < 0)
269 goto err2;
270
271 net->ipv4.mr_rules_ops = ops;
272 return 0;
273
274 err2:
275 rtnl_lock();
276 ipmr_free_table(mrt);
277 rtnl_unlock();
278 err1:
279 fib_rules_unregister(ops);
280 return err;
281 }
282
ipmr_rules_exit(struct net * net)283 static void __net_exit ipmr_rules_exit(struct net *net)
284 {
285 struct mr_table *mrt, *next;
286
287 ASSERT_RTNL();
288 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
289 list_del(&mrt->list);
290 ipmr_free_table(mrt);
291 }
292 fib_rules_unregister(net->ipv4.mr_rules_ops);
293 }
294
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)295 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
296 struct netlink_ext_ack *extack)
297 {
298 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
299 }
300
ipmr_rules_seq_read(const struct net * net)301 static unsigned int ipmr_rules_seq_read(const struct net *net)
302 {
303 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
304 }
305
ipmr_rule_default(const struct fib_rule * rule)306 bool ipmr_rule_default(const struct fib_rule *rule)
307 {
308 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
309 }
310 EXPORT_SYMBOL(ipmr_rule_default);
311 #else
312 #define ipmr_for_each_table(mrt, net) \
313 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
314
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)315 static struct mr_table *ipmr_mr_table_iter(struct net *net,
316 struct mr_table *mrt)
317 {
318 if (!mrt)
319 return net->ipv4.mrt;
320 return NULL;
321 }
322
ipmr_get_table(struct net * net,u32 id)323 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
324 {
325 return net->ipv4.mrt;
326 }
327
328 #define __ipmr_get_table ipmr_get_table
329
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)330 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
331 struct mr_table **mrt)
332 {
333 *mrt = net->ipv4.mrt;
334 return 0;
335 }
336
ipmr_rules_init(struct net * net)337 static int __net_init ipmr_rules_init(struct net *net)
338 {
339 struct mr_table *mrt;
340
341 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
342 if (IS_ERR(mrt))
343 return PTR_ERR(mrt);
344 net->ipv4.mrt = mrt;
345 return 0;
346 }
347
ipmr_rules_exit(struct net * net)348 static void __net_exit ipmr_rules_exit(struct net *net)
349 {
350 ASSERT_RTNL();
351 ipmr_free_table(net->ipv4.mrt);
352 net->ipv4.mrt = NULL;
353 }
354
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)355 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
356 struct netlink_ext_ack *extack)
357 {
358 return 0;
359 }
360
ipmr_rules_seq_read(const struct net * net)361 static unsigned int ipmr_rules_seq_read(const struct net *net)
362 {
363 return 0;
364 }
365
ipmr_rule_default(const struct fib_rule * rule)366 bool ipmr_rule_default(const struct fib_rule *rule)
367 {
368 return true;
369 }
370 EXPORT_SYMBOL(ipmr_rule_default);
371 #endif
372
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)373 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
374 const void *ptr)
375 {
376 const struct mfc_cache_cmp_arg *cmparg = arg->key;
377 const struct mfc_cache *c = ptr;
378
379 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
380 cmparg->mfc_origin != c->mfc_origin;
381 }
382
383 static const struct rhashtable_params ipmr_rht_params = {
384 .head_offset = offsetof(struct mr_mfc, mnode),
385 .key_offset = offsetof(struct mfc_cache, cmparg),
386 .key_len = sizeof(struct mfc_cache_cmp_arg),
387 .nelem_hint = 3,
388 .obj_cmpfn = ipmr_hash_cmp,
389 .automatic_shrinking = true,
390 };
391
ipmr_new_table_set(struct mr_table * mrt,struct net * net)392 static void ipmr_new_table_set(struct mr_table *mrt,
393 struct net *net)
394 {
395 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
396 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
397 #endif
398 }
399
400 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
401 .mfc_mcastgrp = htonl(INADDR_ANY),
402 .mfc_origin = htonl(INADDR_ANY),
403 };
404
405 static struct mr_table_ops ipmr_mr_table_ops = {
406 .rht_params = &ipmr_rht_params,
407 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
408 };
409
ipmr_new_table(struct net * net,u32 id)410 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
411 {
412 struct mr_table *mrt;
413
414 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
415 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
416 return ERR_PTR(-EINVAL);
417
418 mrt = __ipmr_get_table(net, id);
419 if (mrt)
420 return mrt;
421
422 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
423 ipmr_expire_process, ipmr_new_table_set);
424 }
425
ipmr_free_table(struct mr_table * mrt)426 static void ipmr_free_table(struct mr_table *mrt)
427 {
428 struct net *net = read_pnet(&mrt->net);
429
430 WARN_ON_ONCE(!mr_can_free_table(net));
431
432 timer_shutdown_sync(&mrt->ipmr_expire_timer);
433 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
434 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
435 rhltable_destroy(&mrt->mfc_hash);
436 kfree(mrt);
437 }
438
439 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
440
441 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)442 static bool ipmr_init_vif_indev(const struct net_device *dev)
443 {
444 struct in_device *in_dev;
445
446 ASSERT_RTNL();
447
448 in_dev = __in_dev_get_rtnl(dev);
449 if (!in_dev)
450 return false;
451 ipv4_devconf_setall(in_dev);
452 neigh_parms_data_state_setall(in_dev->arp_parms);
453 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
454
455 return true;
456 }
457
ipmr_new_tunnel(struct net * net,struct vifctl * v)458 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
459 {
460 struct net_device *tunnel_dev, *new_dev;
461 struct ip_tunnel_parm_kern p = { };
462 int err;
463
464 tunnel_dev = __dev_get_by_name(net, "tunl0");
465 if (!tunnel_dev)
466 goto out;
467
468 p.iph.daddr = v->vifc_rmt_addr.s_addr;
469 p.iph.saddr = v->vifc_lcl_addr.s_addr;
470 p.iph.version = 4;
471 p.iph.ihl = 5;
472 p.iph.protocol = IPPROTO_IPIP;
473 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
474
475 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
476 goto out;
477 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
478 SIOCADDTUNNEL);
479 if (err)
480 goto out;
481
482 new_dev = __dev_get_by_name(net, p.name);
483 if (!new_dev)
484 goto out;
485
486 new_dev->flags |= IFF_MULTICAST;
487 if (!ipmr_init_vif_indev(new_dev))
488 goto out_unregister;
489 if (dev_open(new_dev, NULL))
490 goto out_unregister;
491 dev_hold(new_dev);
492 err = dev_set_allmulti(new_dev, 1);
493 if (err) {
494 dev_close(new_dev);
495 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
496 SIOCDELTUNNEL);
497 dev_put(new_dev);
498 new_dev = ERR_PTR(err);
499 }
500 return new_dev;
501
502 out_unregister:
503 unregister_netdevice(new_dev);
504 out:
505 return ERR_PTR(-ENOBUFS);
506 }
507
508 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)509 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
510 {
511 struct net *net = dev_net(dev);
512 struct mr_table *mrt;
513 struct flowi4 fl4 = {
514 .flowi4_oif = dev->ifindex,
515 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
516 .flowi4_mark = skb->mark,
517 };
518 int err;
519
520 err = ipmr_fib_lookup(net, &fl4, &mrt);
521 if (err < 0) {
522 kfree_skb(skb);
523 return err;
524 }
525
526 DEV_STATS_ADD(dev, tx_bytes, skb->len);
527 DEV_STATS_INC(dev, tx_packets);
528 rcu_read_lock();
529
530 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
531 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
532 IGMPMSG_WHOLEPKT);
533
534 rcu_read_unlock();
535 kfree_skb(skb);
536 return NETDEV_TX_OK;
537 }
538
reg_vif_get_iflink(const struct net_device * dev)539 static int reg_vif_get_iflink(const struct net_device *dev)
540 {
541 return 0;
542 }
543
544 static const struct net_device_ops reg_vif_netdev_ops = {
545 .ndo_start_xmit = reg_vif_xmit,
546 .ndo_get_iflink = reg_vif_get_iflink,
547 };
548
reg_vif_setup(struct net_device * dev)549 static void reg_vif_setup(struct net_device *dev)
550 {
551 dev->type = ARPHRD_PIMREG;
552 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
553 dev->flags = IFF_NOARP;
554 dev->netdev_ops = ®_vif_netdev_ops;
555 dev->needs_free_netdev = true;
556 dev->netns_immutable = true;
557 }
558
ipmr_reg_vif(struct net * net,struct mr_table * mrt)559 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
560 {
561 struct net_device *dev;
562 char name[IFNAMSIZ];
563
564 if (mrt->id == RT_TABLE_DEFAULT)
565 sprintf(name, "pimreg");
566 else
567 sprintf(name, "pimreg%u", mrt->id);
568
569 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
570
571 if (!dev)
572 return NULL;
573
574 dev_net_set(dev, net);
575
576 if (register_netdevice(dev)) {
577 free_netdev(dev);
578 return NULL;
579 }
580
581 if (!ipmr_init_vif_indev(dev))
582 goto failure;
583 if (dev_open(dev, NULL))
584 goto failure;
585
586 dev_hold(dev);
587
588 return dev;
589
590 failure:
591 unregister_netdevice(dev);
592 return NULL;
593 }
594
595 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)596 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
597 unsigned int pimlen)
598 {
599 struct net_device *reg_dev = NULL;
600 struct iphdr *encap;
601 int vif_num;
602
603 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
604 /* Check that:
605 * a. packet is really sent to a multicast group
606 * b. packet is not a NULL-REGISTER
607 * c. packet is not truncated
608 */
609 if (!ipv4_is_multicast(encap->daddr) ||
610 encap->tot_len == 0 ||
611 ntohs(encap->tot_len) + pimlen > skb->len)
612 return 1;
613
614 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
615 vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
616 if (vif_num >= 0)
617 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
618 if (!reg_dev)
619 return 1;
620
621 skb->mac_header = skb->network_header;
622 skb_pull(skb, (u8 *)encap - skb->data);
623 skb_reset_network_header(skb);
624 skb->protocol = htons(ETH_P_IP);
625 skb->ip_summed = CHECKSUM_NONE;
626
627 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
628
629 netif_rx(skb);
630
631 return NET_RX_SUCCESS;
632 }
633 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)634 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
635 {
636 return NULL;
637 }
638 #endif
639
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,struct net_device * vif_dev,vifi_t vif_index,u32 tb_id)640 static int call_ipmr_vif_entry_notifiers(struct net *net,
641 enum fib_event_type event_type,
642 struct vif_device *vif,
643 struct net_device *vif_dev,
644 vifi_t vif_index, u32 tb_id)
645 {
646 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
647 vif, vif_dev, vif_index, tb_id,
648 &net->ipv4.ipmr_seq);
649 }
650
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)651 static int call_ipmr_mfc_entry_notifiers(struct net *net,
652 enum fib_event_type event_type,
653 struct mfc_cache *mfc, u32 tb_id)
654 {
655 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
656 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
657 }
658
659 /**
660 * vif_delete - Delete a VIF entry
661 * @mrt: Table to delete from
662 * @vifi: VIF identifier to delete
663 * @notify: Set to 1, if the caller is a notifier_call
664 * @head: if unregistering the VIF, place it on this queue
665 */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)666 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
667 struct list_head *head)
668 {
669 struct net *net = read_pnet(&mrt->net);
670 struct vif_device *v;
671 struct net_device *dev;
672 struct in_device *in_dev;
673
674 if (vifi < 0 || vifi >= mrt->maxvif)
675 return -EADDRNOTAVAIL;
676
677 v = &mrt->vif_table[vifi];
678
679 dev = rtnl_dereference(v->dev);
680 if (!dev)
681 return -EADDRNOTAVAIL;
682
683 spin_lock(&mrt_lock);
684 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
685 vifi, mrt->id);
686 RCU_INIT_POINTER(v->dev, NULL);
687
688 if (vifi == mrt->mroute_reg_vif_num) {
689 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
690 WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
691 }
692 if (vifi + 1 == mrt->maxvif) {
693 int tmp;
694
695 for (tmp = vifi - 1; tmp >= 0; tmp--) {
696 if (VIF_EXISTS(mrt, tmp))
697 break;
698 }
699 WRITE_ONCE(mrt->maxvif, tmp + 1);
700 }
701
702 spin_unlock(&mrt_lock);
703
704 dev_set_allmulti(dev, -1);
705
706 in_dev = __in_dev_get_rtnl(dev);
707 if (in_dev) {
708 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
709 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
710 NETCONFA_MC_FORWARDING,
711 dev->ifindex, &in_dev->cnf);
712 ip_rt_multicast_event(in_dev);
713 }
714
715 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
716 unregister_netdevice_queue(dev, head);
717
718 netdev_put(dev, &v->dev_tracker);
719 return 0;
720 }
721
ipmr_cache_free_rcu(struct rcu_head * head)722 static void ipmr_cache_free_rcu(struct rcu_head *head)
723 {
724 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
725
726 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
727 }
728
ipmr_cache_free(struct mfc_cache * c)729 static void ipmr_cache_free(struct mfc_cache *c)
730 {
731 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
732 }
733
734 /* Destroy an unresolved cache entry, killing queued skbs
735 * and reporting error to netlink readers.
736 */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)737 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
738 {
739 struct net *net = read_pnet(&mrt->net);
740 struct sk_buff *skb;
741 struct nlmsgerr *e;
742
743 atomic_dec(&mrt->cache_resolve_queue_len);
744
745 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
746 if (ip_hdr(skb)->version == 0) {
747 struct nlmsghdr *nlh = skb_pull(skb,
748 sizeof(struct iphdr));
749 nlh->nlmsg_type = NLMSG_ERROR;
750 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
751 skb_trim(skb, nlh->nlmsg_len);
752 e = nlmsg_data(nlh);
753 e->error = -ETIMEDOUT;
754 memset(&e->msg, 0, sizeof(e->msg));
755
756 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
757 } else {
758 kfree_skb(skb);
759 }
760 }
761
762 ipmr_cache_free(c);
763 }
764
765 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)766 static void ipmr_expire_process(struct timer_list *t)
767 {
768 struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
769 struct mr_mfc *c, *next;
770 unsigned long expires;
771 unsigned long now;
772
773 if (!spin_trylock(&mfc_unres_lock)) {
774 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
775 return;
776 }
777
778 if (list_empty(&mrt->mfc_unres_queue))
779 goto out;
780
781 now = jiffies;
782 expires = 10*HZ;
783
784 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
785 if (time_after(c->mfc_un.unres.expires, now)) {
786 unsigned long interval = c->mfc_un.unres.expires - now;
787 if (interval < expires)
788 expires = interval;
789 continue;
790 }
791
792 list_del(&c->list);
793 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
794 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
795 }
796
797 if (!list_empty(&mrt->mfc_unres_queue))
798 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
799
800 out:
801 spin_unlock(&mfc_unres_lock);
802 }
803
804 /* Fill oifs list. It is called under locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)805 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
806 unsigned char *ttls)
807 {
808 int vifi;
809
810 cache->mfc_un.res.minvif = MAXVIFS;
811 cache->mfc_un.res.maxvif = 0;
812 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
813
814 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
815 if (VIF_EXISTS(mrt, vifi) &&
816 ttls[vifi] && ttls[vifi] < 255) {
817 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
818 if (cache->mfc_un.res.minvif > vifi)
819 cache->mfc_un.res.minvif = vifi;
820 if (cache->mfc_un.res.maxvif <= vifi)
821 cache->mfc_un.res.maxvif = vifi + 1;
822 }
823 }
824 WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
825 }
826
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)827 static int vif_add(struct net *net, struct mr_table *mrt,
828 struct vifctl *vifc, int mrtsock)
829 {
830 struct netdev_phys_item_id ppid = { };
831 int vifi = vifc->vifc_vifi;
832 struct vif_device *v = &mrt->vif_table[vifi];
833 struct net_device *dev;
834 struct in_device *in_dev;
835 int err;
836
837 /* Is vif busy ? */
838 if (VIF_EXISTS(mrt, vifi))
839 return -EADDRINUSE;
840
841 switch (vifc->vifc_flags) {
842 case VIFF_REGISTER:
843 if (!ipmr_pimsm_enabled())
844 return -EINVAL;
845 /* Special Purpose VIF in PIM
846 * All the packets will be sent to the daemon
847 */
848 if (mrt->mroute_reg_vif_num >= 0)
849 return -EADDRINUSE;
850 dev = ipmr_reg_vif(net, mrt);
851 if (!dev)
852 return -ENOBUFS;
853 err = dev_set_allmulti(dev, 1);
854 if (err) {
855 unregister_netdevice(dev);
856 dev_put(dev);
857 return err;
858 }
859 break;
860 case VIFF_TUNNEL:
861 dev = ipmr_new_tunnel(net, vifc);
862 if (IS_ERR(dev))
863 return PTR_ERR(dev);
864 break;
865 case VIFF_USE_IFINDEX:
866 case 0:
867 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
868 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
869 if (dev && !__in_dev_get_rtnl(dev)) {
870 dev_put(dev);
871 return -EADDRNOTAVAIL;
872 }
873 } else {
874 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
875 }
876 if (!dev)
877 return -EADDRNOTAVAIL;
878 err = dev_set_allmulti(dev, 1);
879 if (err) {
880 dev_put(dev);
881 return err;
882 }
883 break;
884 default:
885 return -EINVAL;
886 }
887
888 in_dev = __in_dev_get_rtnl(dev);
889 if (!in_dev) {
890 dev_put(dev);
891 return -EADDRNOTAVAIL;
892 }
893 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
894 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
895 dev->ifindex, &in_dev->cnf);
896 ip_rt_multicast_event(in_dev);
897
898 /* Fill in the VIF structures */
899 vif_device_init(v, dev, vifc->vifc_rate_limit,
900 vifc->vifc_threshold,
901 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
902 (VIFF_TUNNEL | VIFF_REGISTER));
903
904 err = dev_get_port_parent_id(dev, &ppid, true);
905 if (err == 0) {
906 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
907 v->dev_parent_id.id_len = ppid.id_len;
908 } else {
909 v->dev_parent_id.id_len = 0;
910 }
911
912 v->local = vifc->vifc_lcl_addr.s_addr;
913 v->remote = vifc->vifc_rmt_addr.s_addr;
914
915 /* And finish update writing critical data */
916 spin_lock(&mrt_lock);
917 rcu_assign_pointer(v->dev, dev);
918 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
919 if (v->flags & VIFF_REGISTER) {
920 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
921 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
922 }
923 if (vifi+1 > mrt->maxvif)
924 WRITE_ONCE(mrt->maxvif, vifi + 1);
925 spin_unlock(&mrt_lock);
926 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
927 vifi, mrt->id);
928 return 0;
929 }
930
931 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)932 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
933 __be32 origin,
934 __be32 mcastgrp)
935 {
936 struct mfc_cache_cmp_arg arg = {
937 .mfc_mcastgrp = mcastgrp,
938 .mfc_origin = origin
939 };
940
941 return mr_mfc_find(mrt, &arg);
942 }
943
944 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)945 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
946 __be32 mcastgrp, int vifi)
947 {
948 struct mfc_cache_cmp_arg arg = {
949 .mfc_mcastgrp = mcastgrp,
950 .mfc_origin = htonl(INADDR_ANY)
951 };
952
953 if (mcastgrp == htonl(INADDR_ANY))
954 return mr_mfc_find_any_parent(mrt, vifi);
955 return mr_mfc_find_any(mrt, vifi, &arg);
956 }
957
958 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)959 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
960 __be32 origin, __be32 mcastgrp,
961 int parent)
962 {
963 struct mfc_cache_cmp_arg arg = {
964 .mfc_mcastgrp = mcastgrp,
965 .mfc_origin = origin,
966 };
967
968 return mr_mfc_find_parent(mrt, &arg, parent);
969 }
970
971 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)972 static struct mfc_cache *ipmr_cache_alloc(void)
973 {
974 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
975
976 if (c) {
977 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
978 c->_c.mfc_un.res.minvif = MAXVIFS;
979 c->_c.free = ipmr_cache_free_rcu;
980 refcount_set(&c->_c.mfc_un.res.refcount, 1);
981 }
982 return c;
983 }
984
ipmr_cache_alloc_unres(void)985 static struct mfc_cache *ipmr_cache_alloc_unres(void)
986 {
987 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
988
989 if (c) {
990 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
991 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
992 }
993 return c;
994 }
995
996 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)997 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
998 struct mfc_cache *uc, struct mfc_cache *c)
999 {
1000 struct sk_buff *skb;
1001 struct nlmsgerr *e;
1002
1003 /* Play the pending entries through our router */
1004 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1005 if (ip_hdr(skb)->version == 0) {
1006 struct nlmsghdr *nlh = skb_pull(skb,
1007 sizeof(struct iphdr));
1008
1009 if (mr_fill_mroute(mrt, skb, &c->_c,
1010 nlmsg_data(nlh)) > 0) {
1011 nlh->nlmsg_len = skb_tail_pointer(skb) -
1012 (u8 *)nlh;
1013 } else {
1014 nlh->nlmsg_type = NLMSG_ERROR;
1015 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1016 skb_trim(skb, nlh->nlmsg_len);
1017 e = nlmsg_data(nlh);
1018 e->error = -EMSGSIZE;
1019 memset(&e->msg, 0, sizeof(e->msg));
1020 }
1021
1022 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1023 } else {
1024 rcu_read_lock();
1025 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1026 rcu_read_unlock();
1027 }
1028 }
1029 }
1030
1031 /* Bounce a cache query up to mrouted and netlink.
1032 *
1033 * Called under rcu_read_lock().
1034 */
ipmr_cache_report(const struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1035 static int ipmr_cache_report(const struct mr_table *mrt,
1036 struct sk_buff *pkt, vifi_t vifi, int assert)
1037 {
1038 const int ihl = ip_hdrlen(pkt);
1039 struct sock *mroute_sk;
1040 struct igmphdr *igmp;
1041 struct igmpmsg *msg;
1042 struct sk_buff *skb;
1043 int ret;
1044
1045 mroute_sk = rcu_dereference(mrt->mroute_sk);
1046 if (!mroute_sk)
1047 return -EINVAL;
1048
1049 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1050 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1051 else
1052 skb = alloc_skb(128, GFP_ATOMIC);
1053
1054 if (!skb)
1055 return -ENOBUFS;
1056
1057 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1058 /* Ugly, but we have no choice with this interface.
1059 * Duplicate old header, fix ihl, length etc.
1060 * And all this only to mangle msg->im_msgtype and
1061 * to set msg->im_mbz to "mbz" :-)
1062 */
1063 skb_push(skb, sizeof(struct iphdr));
1064 skb_reset_network_header(skb);
1065 skb_reset_transport_header(skb);
1066 msg = (struct igmpmsg *)skb_network_header(skb);
1067 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1068 msg->im_msgtype = assert;
1069 msg->im_mbz = 0;
1070 if (assert == IGMPMSG_WRVIFWHOLE) {
1071 msg->im_vif = vifi;
1072 msg->im_vif_hi = vifi >> 8;
1073 } else {
1074 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1075 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1076
1077 msg->im_vif = vif_num;
1078 msg->im_vif_hi = vif_num >> 8;
1079 }
1080 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1081 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1082 sizeof(struct iphdr));
1083 } else {
1084 /* Copy the IP header */
1085 skb_set_network_header(skb, skb->len);
1086 skb_put(skb, ihl);
1087 skb_copy_to_linear_data(skb, pkt->data, ihl);
1088 /* Flag to the kernel this is a route add */
1089 ip_hdr(skb)->protocol = 0;
1090 msg = (struct igmpmsg *)skb_network_header(skb);
1091 msg->im_vif = vifi;
1092 msg->im_vif_hi = vifi >> 8;
1093 ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1094 memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1095 /* Add our header */
1096 igmp = skb_put(skb, sizeof(struct igmphdr));
1097 igmp->type = assert;
1098 msg->im_msgtype = assert;
1099 igmp->code = 0;
1100 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1101 skb->transport_header = skb->network_header;
1102 }
1103
1104 igmpmsg_netlink_event(mrt, skb);
1105
1106 /* Deliver to mrouted */
1107 ret = sock_queue_rcv_skb(mroute_sk, skb);
1108
1109 if (ret < 0) {
1110 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1111 kfree_skb(skb);
1112 }
1113
1114 return ret;
1115 }
1116
1117 /* Queue a packet for resolution. It gets locked cache entry! */
1118 /* Called under rcu_read_lock() */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1119 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1120 struct sk_buff *skb, struct net_device *dev)
1121 {
1122 const struct iphdr *iph = ip_hdr(skb);
1123 struct mfc_cache *c;
1124 bool found = false;
1125 int err;
1126
1127 spin_lock_bh(&mfc_unres_lock);
1128 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1129 if (c->mfc_mcastgrp == iph->daddr &&
1130 c->mfc_origin == iph->saddr) {
1131 found = true;
1132 break;
1133 }
1134 }
1135
1136 if (!found) {
1137 /* Create a new entry if allowable */
1138 c = ipmr_cache_alloc_unres();
1139 if (!c) {
1140 spin_unlock_bh(&mfc_unres_lock);
1141
1142 kfree_skb(skb);
1143 return -ENOBUFS;
1144 }
1145
1146 /* Fill in the new cache entry */
1147 c->_c.mfc_parent = -1;
1148 c->mfc_origin = iph->saddr;
1149 c->mfc_mcastgrp = iph->daddr;
1150
1151 /* Reflect first query at mrouted. */
1152 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1153
1154 if (err < 0) {
1155 /* If the report failed throw the cache entry
1156 out - Brad Parker
1157 */
1158 spin_unlock_bh(&mfc_unres_lock);
1159
1160 ipmr_cache_free(c);
1161 kfree_skb(skb);
1162 return err;
1163 }
1164
1165 atomic_inc(&mrt->cache_resolve_queue_len);
1166 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1167 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1168
1169 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1170 mod_timer(&mrt->ipmr_expire_timer,
1171 c->_c.mfc_un.unres.expires);
1172 }
1173
1174 /* See if we can append the packet */
1175 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1176 kfree_skb(skb);
1177 err = -ENOBUFS;
1178 } else {
1179 if (dev) {
1180 skb->dev = dev;
1181 skb->skb_iif = dev->ifindex;
1182 }
1183 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1184 err = 0;
1185 }
1186
1187 spin_unlock_bh(&mfc_unres_lock);
1188 return err;
1189 }
1190
1191 /* MFC cache manipulation by user space mroute daemon */
1192
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1193 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1194 {
1195 struct net *net = read_pnet(&mrt->net);
1196 struct mfc_cache *c;
1197
1198 /* The entries are added/deleted only under RTNL */
1199 rcu_read_lock();
1200 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1201 mfc->mfcc_mcastgrp.s_addr, parent);
1202 rcu_read_unlock();
1203 if (!c)
1204 return -ENOENT;
1205 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1206 list_del_rcu(&c->_c.list);
1207 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1208 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1209 mr_cache_put(&c->_c);
1210
1211 return 0;
1212 }
1213
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1214 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1215 struct mfcctl *mfc, int mrtsock, int parent)
1216 {
1217 struct mfc_cache *uc, *c;
1218 struct mr_mfc *_uc;
1219 bool found;
1220 int ret;
1221
1222 if (mfc->mfcc_parent >= MAXVIFS)
1223 return -ENFILE;
1224
1225 /* The entries are added/deleted only under RTNL */
1226 rcu_read_lock();
1227 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1228 mfc->mfcc_mcastgrp.s_addr, parent);
1229 rcu_read_unlock();
1230 if (c) {
1231 spin_lock(&mrt_lock);
1232 c->_c.mfc_parent = mfc->mfcc_parent;
1233 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1234 if (!mrtsock)
1235 c->_c.mfc_flags |= MFC_STATIC;
1236 spin_unlock(&mrt_lock);
1237 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1238 mrt->id);
1239 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1240 return 0;
1241 }
1242
1243 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1244 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1245 return -EINVAL;
1246
1247 c = ipmr_cache_alloc();
1248 if (!c)
1249 return -ENOMEM;
1250
1251 c->mfc_origin = mfc->mfcc_origin.s_addr;
1252 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1253 c->_c.mfc_parent = mfc->mfcc_parent;
1254 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1255 if (!mrtsock)
1256 c->_c.mfc_flags |= MFC_STATIC;
1257
1258 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1259 ipmr_rht_params);
1260 if (ret) {
1261 pr_err("ipmr: rhtable insert error %d\n", ret);
1262 ipmr_cache_free(c);
1263 return ret;
1264 }
1265 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1266 /* Check to see if we resolved a queued list. If so we
1267 * need to send on the frames and tidy up.
1268 */
1269 found = false;
1270 spin_lock_bh(&mfc_unres_lock);
1271 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1272 uc = (struct mfc_cache *)_uc;
1273 if (uc->mfc_origin == c->mfc_origin &&
1274 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1275 list_del(&_uc->list);
1276 atomic_dec(&mrt->cache_resolve_queue_len);
1277 found = true;
1278 break;
1279 }
1280 }
1281 if (list_empty(&mrt->mfc_unres_queue))
1282 timer_delete(&mrt->ipmr_expire_timer);
1283 spin_unlock_bh(&mfc_unres_lock);
1284
1285 if (found) {
1286 ipmr_cache_resolve(net, mrt, uc, c);
1287 ipmr_cache_free(uc);
1288 }
1289 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1290 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1291 return 0;
1292 }
1293
1294 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1295 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1296 {
1297 struct net *net = read_pnet(&mrt->net);
1298 struct mr_mfc *c, *tmp;
1299 struct mfc_cache *cache;
1300 LIST_HEAD(list);
1301 int i;
1302
1303 /* Shut down all active vif entries */
1304 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1305 for (i = 0; i < mrt->maxvif; i++) {
1306 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1307 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1308 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1309 continue;
1310 vif_delete(mrt, i, 0, &list);
1311 }
1312 unregister_netdevice_many(&list);
1313 }
1314
1315 /* Wipe the cache */
1316 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1317 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1318 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1319 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1320 continue;
1321 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1322 list_del_rcu(&c->list);
1323 cache = (struct mfc_cache *)c;
1324 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1325 mrt->id);
1326 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1327 mr_cache_put(c);
1328 }
1329 }
1330
1331 if (flags & MRT_FLUSH_MFC) {
1332 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1333 spin_lock_bh(&mfc_unres_lock);
1334 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1335 list_del(&c->list);
1336 cache = (struct mfc_cache *)c;
1337 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1338 ipmr_destroy_unres(mrt, cache);
1339 }
1340 spin_unlock_bh(&mfc_unres_lock);
1341 }
1342 }
1343 }
1344
1345 /* called from ip_ra_control(), before an RCU grace period,
1346 * we don't need to call synchronize_rcu() here
1347 */
mrtsock_destruct(struct sock * sk)1348 static void mrtsock_destruct(struct sock *sk)
1349 {
1350 struct net *net = sock_net(sk);
1351 struct mr_table *mrt;
1352
1353 rtnl_lock();
1354 ipmr_for_each_table(mrt, net) {
1355 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1356 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1357 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1358 NETCONFA_MC_FORWARDING,
1359 NETCONFA_IFINDEX_ALL,
1360 net->ipv4.devconf_all);
1361 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1362 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1363 }
1364 }
1365 rtnl_unlock();
1366 }
1367
1368 /* Socket options and virtual interface manipulation. The whole
1369 * virtual interface system is a complete heap, but unfortunately
1370 * that's how BSD mrouted happens to think. Maybe one day with a proper
1371 * MOSPF/PIM router set up we can clean this up.
1372 */
1373
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1374 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1375 unsigned int optlen)
1376 {
1377 struct net *net = sock_net(sk);
1378 int val, ret = 0, parent = 0;
1379 struct mr_table *mrt;
1380 struct vifctl vif;
1381 struct mfcctl mfc;
1382 bool do_wrvifwhole;
1383 u32 uval;
1384
1385 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1386 rtnl_lock();
1387 if (sk->sk_type != SOCK_RAW ||
1388 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1389 ret = -EOPNOTSUPP;
1390 goto out_unlock;
1391 }
1392
1393 mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1394 if (!mrt) {
1395 ret = -ENOENT;
1396 goto out_unlock;
1397 }
1398 if (optname != MRT_INIT) {
1399 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1400 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1401 ret = -EACCES;
1402 goto out_unlock;
1403 }
1404 }
1405
1406 switch (optname) {
1407 case MRT_INIT:
1408 if (optlen != sizeof(int)) {
1409 ret = -EINVAL;
1410 break;
1411 }
1412 if (rtnl_dereference(mrt->mroute_sk)) {
1413 ret = -EADDRINUSE;
1414 break;
1415 }
1416
1417 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1418 if (ret == 0) {
1419 rcu_assign_pointer(mrt->mroute_sk, sk);
1420 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1421 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1422 NETCONFA_MC_FORWARDING,
1423 NETCONFA_IFINDEX_ALL,
1424 net->ipv4.devconf_all);
1425 }
1426 break;
1427 case MRT_DONE:
1428 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1429 ret = -EACCES;
1430 } else {
1431 /* We need to unlock here because mrtsock_destruct takes
1432 * care of rtnl itself and we can't change that due to
1433 * the IP_ROUTER_ALERT setsockopt which runs without it.
1434 */
1435 rtnl_unlock();
1436 ret = ip_ra_control(sk, 0, NULL);
1437 goto out;
1438 }
1439 break;
1440 case MRT_ADD_VIF:
1441 case MRT_DEL_VIF:
1442 if (optlen != sizeof(vif)) {
1443 ret = -EINVAL;
1444 break;
1445 }
1446 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1447 ret = -EFAULT;
1448 break;
1449 }
1450 if (vif.vifc_vifi >= MAXVIFS) {
1451 ret = -ENFILE;
1452 break;
1453 }
1454 if (optname == MRT_ADD_VIF) {
1455 ret = vif_add(net, mrt, &vif,
1456 sk == rtnl_dereference(mrt->mroute_sk));
1457 } else {
1458 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1459 }
1460 break;
1461 /* Manipulate the forwarding caches. These live
1462 * in a sort of kernel/user symbiosis.
1463 */
1464 case MRT_ADD_MFC:
1465 case MRT_DEL_MFC:
1466 parent = -1;
1467 fallthrough;
1468 case MRT_ADD_MFC_PROXY:
1469 case MRT_DEL_MFC_PROXY:
1470 if (optlen != sizeof(mfc)) {
1471 ret = -EINVAL;
1472 break;
1473 }
1474 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1475 ret = -EFAULT;
1476 break;
1477 }
1478 if (parent == 0)
1479 parent = mfc.mfcc_parent;
1480 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1481 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1482 else
1483 ret = ipmr_mfc_add(net, mrt, &mfc,
1484 sk == rtnl_dereference(mrt->mroute_sk),
1485 parent);
1486 break;
1487 case MRT_FLUSH:
1488 if (optlen != sizeof(val)) {
1489 ret = -EINVAL;
1490 break;
1491 }
1492 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1493 ret = -EFAULT;
1494 break;
1495 }
1496 mroute_clean_tables(mrt, val);
1497 break;
1498 /* Control PIM assert. */
1499 case MRT_ASSERT:
1500 if (optlen != sizeof(val)) {
1501 ret = -EINVAL;
1502 break;
1503 }
1504 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1505 ret = -EFAULT;
1506 break;
1507 }
1508 mrt->mroute_do_assert = val;
1509 break;
1510 case MRT_PIM:
1511 if (!ipmr_pimsm_enabled()) {
1512 ret = -ENOPROTOOPT;
1513 break;
1514 }
1515 if (optlen != sizeof(val)) {
1516 ret = -EINVAL;
1517 break;
1518 }
1519 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1520 ret = -EFAULT;
1521 break;
1522 }
1523
1524 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1525 val = !!val;
1526 if (val != mrt->mroute_do_pim) {
1527 mrt->mroute_do_pim = val;
1528 mrt->mroute_do_assert = val;
1529 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1530 }
1531 break;
1532 case MRT_TABLE:
1533 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1534 ret = -ENOPROTOOPT;
1535 break;
1536 }
1537 if (optlen != sizeof(uval)) {
1538 ret = -EINVAL;
1539 break;
1540 }
1541 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1542 ret = -EFAULT;
1543 break;
1544 }
1545
1546 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1547 ret = -EBUSY;
1548 } else {
1549 mrt = ipmr_new_table(net, uval);
1550 if (IS_ERR(mrt))
1551 ret = PTR_ERR(mrt);
1552 else
1553 raw_sk(sk)->ipmr_table = uval;
1554 }
1555 break;
1556 /* Spurious command, or MRT_VERSION which you cannot set. */
1557 default:
1558 ret = -ENOPROTOOPT;
1559 }
1560 out_unlock:
1561 rtnl_unlock();
1562 out:
1563 return ret;
1564 }
1565
1566 /* Execute if this ioctl is a special mroute ioctl */
ipmr_sk_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1567 int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1568 {
1569 switch (cmd) {
1570 /* These userspace buffers will be consumed by ipmr_ioctl() */
1571 case SIOCGETVIFCNT: {
1572 struct sioc_vif_req buffer;
1573
1574 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1575 sizeof(buffer));
1576 }
1577 case SIOCGETSGCNT: {
1578 struct sioc_sg_req buffer;
1579
1580 return sock_ioctl_inout(sk, cmd, arg, &buffer,
1581 sizeof(buffer));
1582 }
1583 }
1584 /* return code > 0 means that the ioctl was not executed */
1585 return 1;
1586 }
1587
1588 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,sockptr_t optval,sockptr_t optlen)1589 int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1590 sockptr_t optlen)
1591 {
1592 int olr;
1593 int val;
1594 struct net *net = sock_net(sk);
1595 struct mr_table *mrt;
1596
1597 if (sk->sk_type != SOCK_RAW ||
1598 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1599 return -EOPNOTSUPP;
1600
1601 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1602 if (!mrt)
1603 return -ENOENT;
1604
1605 switch (optname) {
1606 case MRT_VERSION:
1607 val = 0x0305;
1608 break;
1609 case MRT_PIM:
1610 if (!ipmr_pimsm_enabled())
1611 return -ENOPROTOOPT;
1612 val = mrt->mroute_do_pim;
1613 break;
1614 case MRT_ASSERT:
1615 val = mrt->mroute_do_assert;
1616 break;
1617 default:
1618 return -ENOPROTOOPT;
1619 }
1620
1621 if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1622 return -EFAULT;
1623 if (olr < 0)
1624 return -EINVAL;
1625
1626 olr = min_t(unsigned int, olr, sizeof(int));
1627
1628 if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1629 return -EFAULT;
1630 if (copy_to_sockptr(optval, &val, olr))
1631 return -EFAULT;
1632 return 0;
1633 }
1634
1635 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void * arg)1636 int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1637 {
1638 struct vif_device *vif;
1639 struct mfc_cache *c;
1640 struct net *net = sock_net(sk);
1641 struct sioc_vif_req *vr;
1642 struct sioc_sg_req *sr;
1643 struct mr_table *mrt;
1644
1645 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1646 if (!mrt)
1647 return -ENOENT;
1648
1649 switch (cmd) {
1650 case SIOCGETVIFCNT:
1651 vr = (struct sioc_vif_req *)arg;
1652 if (vr->vifi >= mrt->maxvif)
1653 return -EINVAL;
1654 vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1655 rcu_read_lock();
1656 vif = &mrt->vif_table[vr->vifi];
1657 if (VIF_EXISTS(mrt, vr->vifi)) {
1658 vr->icount = READ_ONCE(vif->pkt_in);
1659 vr->ocount = READ_ONCE(vif->pkt_out);
1660 vr->ibytes = READ_ONCE(vif->bytes_in);
1661 vr->obytes = READ_ONCE(vif->bytes_out);
1662 rcu_read_unlock();
1663
1664 return 0;
1665 }
1666 rcu_read_unlock();
1667 return -EADDRNOTAVAIL;
1668 case SIOCGETSGCNT:
1669 sr = (struct sioc_sg_req *)arg;
1670
1671 rcu_read_lock();
1672 c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1673 if (c) {
1674 sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1675 sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1676 sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1677 rcu_read_unlock();
1678 return 0;
1679 }
1680 rcu_read_unlock();
1681 return -EADDRNOTAVAIL;
1682 default:
1683 return -ENOIOCTLCMD;
1684 }
1685 }
1686
1687 #ifdef CONFIG_COMPAT
1688 struct compat_sioc_sg_req {
1689 struct in_addr src;
1690 struct in_addr grp;
1691 compat_ulong_t pktcnt;
1692 compat_ulong_t bytecnt;
1693 compat_ulong_t wrong_if;
1694 };
1695
1696 struct compat_sioc_vif_req {
1697 vifi_t vifi; /* Which iface */
1698 compat_ulong_t icount;
1699 compat_ulong_t ocount;
1700 compat_ulong_t ibytes;
1701 compat_ulong_t obytes;
1702 };
1703
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1704 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1705 {
1706 struct compat_sioc_sg_req sr;
1707 struct compat_sioc_vif_req vr;
1708 struct vif_device *vif;
1709 struct mfc_cache *c;
1710 struct net *net = sock_net(sk);
1711 struct mr_table *mrt;
1712
1713 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1714 if (!mrt)
1715 return -ENOENT;
1716
1717 switch (cmd) {
1718 case SIOCGETVIFCNT:
1719 if (copy_from_user(&vr, arg, sizeof(vr)))
1720 return -EFAULT;
1721 if (vr.vifi >= mrt->maxvif)
1722 return -EINVAL;
1723 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1724 rcu_read_lock();
1725 vif = &mrt->vif_table[vr.vifi];
1726 if (VIF_EXISTS(mrt, vr.vifi)) {
1727 vr.icount = READ_ONCE(vif->pkt_in);
1728 vr.ocount = READ_ONCE(vif->pkt_out);
1729 vr.ibytes = READ_ONCE(vif->bytes_in);
1730 vr.obytes = READ_ONCE(vif->bytes_out);
1731 rcu_read_unlock();
1732
1733 if (copy_to_user(arg, &vr, sizeof(vr)))
1734 return -EFAULT;
1735 return 0;
1736 }
1737 rcu_read_unlock();
1738 return -EADDRNOTAVAIL;
1739 case SIOCGETSGCNT:
1740 if (copy_from_user(&sr, arg, sizeof(sr)))
1741 return -EFAULT;
1742
1743 rcu_read_lock();
1744 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1745 if (c) {
1746 sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1747 sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1748 sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1749 rcu_read_unlock();
1750
1751 if (copy_to_user(arg, &sr, sizeof(sr)))
1752 return -EFAULT;
1753 return 0;
1754 }
1755 rcu_read_unlock();
1756 return -EADDRNOTAVAIL;
1757 default:
1758 return -ENOIOCTLCMD;
1759 }
1760 }
1761 #endif
1762
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1763 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1764 {
1765 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1766 struct net *net = dev_net(dev);
1767 struct mr_table *mrt;
1768 struct vif_device *v;
1769 int ct;
1770
1771 if (event != NETDEV_UNREGISTER)
1772 return NOTIFY_DONE;
1773
1774 ipmr_for_each_table(mrt, net) {
1775 v = &mrt->vif_table[0];
1776 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1777 if (rcu_access_pointer(v->dev) == dev)
1778 vif_delete(mrt, ct, 1, NULL);
1779 }
1780 }
1781 return NOTIFY_DONE;
1782 }
1783
1784 static struct notifier_block ip_mr_notifier = {
1785 .notifier_call = ipmr_device_event,
1786 };
1787
1788 /* Encapsulate a packet by attaching a valid IPIP header to it.
1789 * This avoids tunnel drivers and other mess and gives us the speed so
1790 * important for multicast video.
1791 */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1792 static void ip_encap(struct net *net, struct sk_buff *skb,
1793 __be32 saddr, __be32 daddr)
1794 {
1795 struct iphdr *iph;
1796 const struct iphdr *old_iph = ip_hdr(skb);
1797
1798 skb_push(skb, sizeof(struct iphdr));
1799 skb->transport_header = skb->network_header;
1800 skb_reset_network_header(skb);
1801 iph = ip_hdr(skb);
1802
1803 iph->version = 4;
1804 iph->tos = old_iph->tos;
1805 iph->ttl = old_iph->ttl;
1806 iph->frag_off = 0;
1807 iph->daddr = daddr;
1808 iph->saddr = saddr;
1809 iph->protocol = IPPROTO_IPIP;
1810 iph->ihl = 5;
1811 iph->tot_len = htons(skb->len);
1812 ip_select_ident(net, skb, NULL);
1813 ip_send_check(iph);
1814
1815 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1816 nf_reset_ct(skb);
1817 }
1818
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1819 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1820 struct sk_buff *skb)
1821 {
1822 struct ip_options *opt = &(IPCB(skb)->opt);
1823
1824 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1825
1826 if (unlikely(opt->optlen))
1827 ip_forward_options(skb);
1828
1829 return dst_output(net, sk, skb);
1830 }
1831
1832 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1833 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1834 int in_vifi, int out_vifi)
1835 {
1836 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1837 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1838
1839 if (!skb->offload_l3_fwd_mark)
1840 return false;
1841 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1842 return false;
1843 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1844 &in_vif->dev_parent_id);
1845 }
1846 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1847 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1848 int in_vifi, int out_vifi)
1849 {
1850 return false;
1851 }
1852 #endif
1853
1854 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1855
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1856 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1857 int in_vifi, struct sk_buff *skb, int vifi)
1858 {
1859 const struct iphdr *iph = ip_hdr(skb);
1860 struct vif_device *vif = &mrt->vif_table[vifi];
1861 struct net_device *vif_dev;
1862 struct net_device *dev;
1863 struct rtable *rt;
1864 struct flowi4 fl4;
1865 int encap = 0;
1866
1867 vif_dev = vif_dev_read(vif);
1868 if (!vif_dev)
1869 goto out_free;
1870
1871 if (vif->flags & VIFF_REGISTER) {
1872 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1873 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1874 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1875 DEV_STATS_INC(vif_dev, tx_packets);
1876 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1877 goto out_free;
1878 }
1879
1880 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1881 goto out_free;
1882
1883 if (vif->flags & VIFF_TUNNEL) {
1884 rt = ip_route_output_ports(net, &fl4, NULL,
1885 vif->remote, vif->local,
1886 0, 0,
1887 IPPROTO_IPIP,
1888 iph->tos & INET_DSCP_MASK, vif->link);
1889 if (IS_ERR(rt))
1890 goto out_free;
1891 encap = sizeof(struct iphdr);
1892 } else {
1893 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1894 0, 0,
1895 IPPROTO_IPIP,
1896 iph->tos & INET_DSCP_MASK, vif->link);
1897 if (IS_ERR(rt))
1898 goto out_free;
1899 }
1900
1901 dev = rt->dst.dev;
1902
1903 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1904 /* Do not fragment multicasts. Alas, IPv4 does not
1905 * allow to send ICMP, so that packets will disappear
1906 * to blackhole.
1907 */
1908 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1909 ip_rt_put(rt);
1910 goto out_free;
1911 }
1912
1913 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1914
1915 if (skb_cow(skb, encap)) {
1916 ip_rt_put(rt);
1917 goto out_free;
1918 }
1919
1920 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1921 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1922
1923 skb_dst_drop(skb);
1924 skb_dst_set(skb, &rt->dst);
1925 ip_decrease_ttl(ip_hdr(skb));
1926
1927 /* FIXME: forward and output firewalls used to be called here.
1928 * What do we do with netfilter? -- RR
1929 */
1930 if (vif->flags & VIFF_TUNNEL) {
1931 ip_encap(net, skb, vif->local, vif->remote);
1932 /* FIXME: extra output firewall step used to be here. --RR */
1933 DEV_STATS_INC(vif_dev, tx_packets);
1934 DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1935 }
1936
1937 IPCB(skb)->flags |= IPSKB_FORWARDED;
1938
1939 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1940 * not only before forwarding, but after forwarding on all output
1941 * interfaces. It is clear, if mrouter runs a multicasting
1942 * program, it should receive packets not depending to what interface
1943 * program is joined.
1944 * If we will not make it, the program will have to join on all
1945 * interfaces. On the other hand, multihoming host (or router, but
1946 * not mrouter) cannot join to more than one interface - it will
1947 * result in receiving multiple packets.
1948 */
1949 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1950 net, NULL, skb, skb->dev, dev,
1951 ipmr_forward_finish);
1952 return;
1953
1954 out_free:
1955 kfree_skb(skb);
1956 }
1957
1958 /* Called with mrt_lock or rcu_read_lock() */
ipmr_find_vif(const struct mr_table * mrt,struct net_device * dev)1959 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1960 {
1961 int ct;
1962 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1963 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1964 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1965 break;
1966 }
1967 return ct;
1968 }
1969
1970 /* "local" means that we should preserve one skb (for local delivery) */
1971 /* Called uner rcu_read_lock() */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1972 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1973 struct net_device *dev, struct sk_buff *skb,
1974 struct mfc_cache *c, int local)
1975 {
1976 int true_vifi = ipmr_find_vif(mrt, dev);
1977 int psend = -1;
1978 int vif, ct;
1979
1980 vif = c->_c.mfc_parent;
1981 atomic_long_inc(&c->_c.mfc_un.res.pkt);
1982 atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
1983 WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
1984
1985 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1986 struct mfc_cache *cache_proxy;
1987
1988 /* For an (*,G) entry, we only check that the incoming
1989 * interface is part of the static tree.
1990 */
1991 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1992 if (cache_proxy &&
1993 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1994 goto forward;
1995 }
1996
1997 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1998 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1999 if (rt_is_output_route(skb_rtable(skb))) {
2000 /* It is our own packet, looped back.
2001 * Very complicated situation...
2002 *
2003 * The best workaround until routing daemons will be
2004 * fixed is not to redistribute packet, if it was
2005 * send through wrong interface. It means, that
2006 * multicast applications WILL NOT work for
2007 * (S,G), which have default multicast route pointing
2008 * to wrong oif. In any case, it is not a good
2009 * idea to use multicasting applications on router.
2010 */
2011 goto dont_forward;
2012 }
2013
2014 atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2015
2016 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2017 /* pimsm uses asserts, when switching from RPT to SPT,
2018 * so that we cannot check that packet arrived on an oif.
2019 * It is bad, but otherwise we would need to move pretty
2020 * large chunk of pimd to kernel. Ough... --ANK
2021 */
2022 (mrt->mroute_do_pim ||
2023 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2024 time_after(jiffies,
2025 c->_c.mfc_un.res.last_assert +
2026 MFC_ASSERT_THRESH)) {
2027 c->_c.mfc_un.res.last_assert = jiffies;
2028 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2029 if (mrt->mroute_do_wrvifwhole)
2030 ipmr_cache_report(mrt, skb, true_vifi,
2031 IGMPMSG_WRVIFWHOLE);
2032 }
2033 goto dont_forward;
2034 }
2035
2036 forward:
2037 WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2038 mrt->vif_table[vif].pkt_in + 1);
2039 WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2040 mrt->vif_table[vif].bytes_in + skb->len);
2041
2042 /* Forward the frame */
2043 if (c->mfc_origin == htonl(INADDR_ANY) &&
2044 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2045 if (true_vifi >= 0 &&
2046 true_vifi != c->_c.mfc_parent &&
2047 ip_hdr(skb)->ttl >
2048 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2049 /* It's an (*,*) entry and the packet is not coming from
2050 * the upstream: forward the packet to the upstream
2051 * only.
2052 */
2053 psend = c->_c.mfc_parent;
2054 goto last_forward;
2055 }
2056 goto dont_forward;
2057 }
2058 for (ct = c->_c.mfc_un.res.maxvif - 1;
2059 ct >= c->_c.mfc_un.res.minvif; ct--) {
2060 /* For (*,G) entry, don't forward to the incoming interface */
2061 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2062 ct != true_vifi) &&
2063 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2064 if (psend != -1) {
2065 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2066
2067 if (skb2)
2068 ipmr_queue_xmit(net, mrt, true_vifi,
2069 skb2, psend);
2070 }
2071 psend = ct;
2072 }
2073 }
2074 last_forward:
2075 if (psend != -1) {
2076 if (local) {
2077 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2078
2079 if (skb2)
2080 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2081 psend);
2082 } else {
2083 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2084 return;
2085 }
2086 }
2087
2088 dont_forward:
2089 if (!local)
2090 kfree_skb(skb);
2091 }
2092
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2093 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2094 {
2095 struct rtable *rt = skb_rtable(skb);
2096 struct iphdr *iph = ip_hdr(skb);
2097 struct flowi4 fl4 = {
2098 .daddr = iph->daddr,
2099 .saddr = iph->saddr,
2100 .flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(iph)),
2101 .flowi4_oif = (rt_is_output_route(rt) ?
2102 skb->dev->ifindex : 0),
2103 .flowi4_iif = (rt_is_output_route(rt) ?
2104 LOOPBACK_IFINDEX :
2105 skb->dev->ifindex),
2106 .flowi4_mark = skb->mark,
2107 };
2108 struct mr_table *mrt;
2109 int err;
2110
2111 err = ipmr_fib_lookup(net, &fl4, &mrt);
2112 if (err)
2113 return ERR_PTR(err);
2114 return mrt;
2115 }
2116
2117 /* Multicast packets for forwarding arrive here
2118 * Called with rcu_read_lock();
2119 */
ip_mr_input(struct sk_buff * skb)2120 int ip_mr_input(struct sk_buff *skb)
2121 {
2122 struct mfc_cache *cache;
2123 struct net *net = dev_net(skb->dev);
2124 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2125 struct mr_table *mrt;
2126 struct net_device *dev;
2127
2128 /* skb->dev passed in is the loX master dev for vrfs.
2129 * As there are no vifs associated with loopback devices,
2130 * get the proper interface that does have a vif associated with it.
2131 */
2132 dev = skb->dev;
2133 if (netif_is_l3_master(skb->dev)) {
2134 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2135 if (!dev) {
2136 kfree_skb(skb);
2137 return -ENODEV;
2138 }
2139 }
2140
2141 /* Packet is looped back after forward, it should not be
2142 * forwarded second time, but still can be delivered locally.
2143 */
2144 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2145 goto dont_forward;
2146
2147 mrt = ipmr_rt_fib_lookup(net, skb);
2148 if (IS_ERR(mrt)) {
2149 kfree_skb(skb);
2150 return PTR_ERR(mrt);
2151 }
2152 if (!local) {
2153 if (IPCB(skb)->opt.router_alert) {
2154 if (ip_call_ra_chain(skb))
2155 return 0;
2156 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2157 /* IGMPv1 (and broken IGMPv2 implementations sort of
2158 * Cisco IOS <= 11.2(8)) do not put router alert
2159 * option to IGMP packets destined to routable
2160 * groups. It is very bad, because it means
2161 * that we can forward NO IGMP messages.
2162 */
2163 struct sock *mroute_sk;
2164
2165 mroute_sk = rcu_dereference(mrt->mroute_sk);
2166 if (mroute_sk) {
2167 nf_reset_ct(skb);
2168 raw_rcv(mroute_sk, skb);
2169 return 0;
2170 }
2171 }
2172 }
2173
2174 /* already under rcu_read_lock() */
2175 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2176 if (!cache) {
2177 int vif = ipmr_find_vif(mrt, dev);
2178
2179 if (vif >= 0)
2180 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2181 vif);
2182 }
2183
2184 /* No usable cache entry */
2185 if (!cache) {
2186 int vif;
2187
2188 if (local) {
2189 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2190 ip_local_deliver(skb);
2191 if (!skb2)
2192 return -ENOBUFS;
2193 skb = skb2;
2194 }
2195
2196 vif = ipmr_find_vif(mrt, dev);
2197 if (vif >= 0)
2198 return ipmr_cache_unresolved(mrt, vif, skb, dev);
2199 kfree_skb(skb);
2200 return -ENODEV;
2201 }
2202
2203 ip_mr_forward(net, mrt, dev, skb, cache, local);
2204
2205 if (local)
2206 return ip_local_deliver(skb);
2207
2208 return 0;
2209
2210 dont_forward:
2211 if (local)
2212 return ip_local_deliver(skb);
2213 kfree_skb(skb);
2214 return 0;
2215 }
2216
2217 #ifdef CONFIG_IP_PIMSM_V1
2218 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2219 int pim_rcv_v1(struct sk_buff *skb)
2220 {
2221 struct igmphdr *pim;
2222 struct net *net = dev_net(skb->dev);
2223 struct mr_table *mrt;
2224
2225 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2226 goto drop;
2227
2228 pim = igmp_hdr(skb);
2229
2230 mrt = ipmr_rt_fib_lookup(net, skb);
2231 if (IS_ERR(mrt))
2232 goto drop;
2233 if (!mrt->mroute_do_pim ||
2234 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2235 goto drop;
2236
2237 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2238 drop:
2239 kfree_skb(skb);
2240 }
2241 return 0;
2242 }
2243 #endif
2244
2245 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2246 static int pim_rcv(struct sk_buff *skb)
2247 {
2248 struct pimreghdr *pim;
2249 struct net *net = dev_net(skb->dev);
2250 struct mr_table *mrt;
2251
2252 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2253 goto drop;
2254
2255 pim = (struct pimreghdr *)skb_transport_header(skb);
2256 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2257 (pim->flags & PIM_NULL_REGISTER) ||
2258 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2259 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2260 goto drop;
2261
2262 mrt = ipmr_rt_fib_lookup(net, skb);
2263 if (IS_ERR(mrt))
2264 goto drop;
2265 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2266 drop:
2267 kfree_skb(skb);
2268 }
2269 return 0;
2270 }
2271 #endif
2272
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2273 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2274 __be32 saddr, __be32 daddr,
2275 struct rtmsg *rtm, u32 portid)
2276 {
2277 struct mfc_cache *cache;
2278 struct mr_table *mrt;
2279 int err;
2280
2281 rcu_read_lock();
2282 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2283 if (!mrt) {
2284 rcu_read_unlock();
2285 return -ENOENT;
2286 }
2287
2288 cache = ipmr_cache_find(mrt, saddr, daddr);
2289 if (!cache && skb->dev) {
2290 int vif = ipmr_find_vif(mrt, skb->dev);
2291
2292 if (vif >= 0)
2293 cache = ipmr_cache_find_any(mrt, daddr, vif);
2294 }
2295 if (!cache) {
2296 struct sk_buff *skb2;
2297 struct iphdr *iph;
2298 struct net_device *dev;
2299 int vif = -1;
2300
2301 dev = skb->dev;
2302 if (dev)
2303 vif = ipmr_find_vif(mrt, dev);
2304 if (vif < 0) {
2305 rcu_read_unlock();
2306 return -ENODEV;
2307 }
2308
2309 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2310 if (!skb2) {
2311 rcu_read_unlock();
2312 return -ENOMEM;
2313 }
2314
2315 NETLINK_CB(skb2).portid = portid;
2316 skb_push(skb2, sizeof(struct iphdr));
2317 skb_reset_network_header(skb2);
2318 iph = ip_hdr(skb2);
2319 iph->ihl = sizeof(struct iphdr) >> 2;
2320 iph->saddr = saddr;
2321 iph->daddr = daddr;
2322 iph->version = 0;
2323 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2324 rcu_read_unlock();
2325 return err;
2326 }
2327
2328 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2329 rcu_read_unlock();
2330 return err;
2331 }
2332
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2333 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2334 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2335 int flags)
2336 {
2337 struct nlmsghdr *nlh;
2338 struct rtmsg *rtm;
2339 int err;
2340
2341 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2342 if (!nlh)
2343 return -EMSGSIZE;
2344
2345 rtm = nlmsg_data(nlh);
2346 rtm->rtm_family = RTNL_FAMILY_IPMR;
2347 rtm->rtm_dst_len = 32;
2348 rtm->rtm_src_len = 32;
2349 rtm->rtm_tos = 0;
2350 rtm->rtm_table = mrt->id;
2351 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2352 goto nla_put_failure;
2353 rtm->rtm_type = RTN_MULTICAST;
2354 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2355 if (c->_c.mfc_flags & MFC_STATIC)
2356 rtm->rtm_protocol = RTPROT_STATIC;
2357 else
2358 rtm->rtm_protocol = RTPROT_MROUTED;
2359 rtm->rtm_flags = 0;
2360
2361 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2362 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2363 goto nla_put_failure;
2364 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2365 /* do not break the dump if cache is unresolved */
2366 if (err < 0 && err != -ENOENT)
2367 goto nla_put_failure;
2368
2369 nlmsg_end(skb, nlh);
2370 return 0;
2371
2372 nla_put_failure:
2373 nlmsg_cancel(skb, nlh);
2374 return -EMSGSIZE;
2375 }
2376
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2377 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2378 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2379 int flags)
2380 {
2381 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2382 cmd, flags);
2383 }
2384
mroute_msgsize(bool unresolved,int maxvif)2385 static size_t mroute_msgsize(bool unresolved, int maxvif)
2386 {
2387 size_t len =
2388 NLMSG_ALIGN(sizeof(struct rtmsg))
2389 + nla_total_size(4) /* RTA_TABLE */
2390 + nla_total_size(4) /* RTA_SRC */
2391 + nla_total_size(4) /* RTA_DST */
2392 ;
2393
2394 if (!unresolved)
2395 len = len
2396 + nla_total_size(4) /* RTA_IIF */
2397 + nla_total_size(0) /* RTA_MULTIPATH */
2398 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2399 /* RTA_MFC_STATS */
2400 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2401 ;
2402
2403 return len;
2404 }
2405
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2406 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2407 int cmd)
2408 {
2409 struct net *net = read_pnet(&mrt->net);
2410 struct sk_buff *skb;
2411 int err = -ENOBUFS;
2412
2413 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2414 mrt->maxvif),
2415 GFP_ATOMIC);
2416 if (!skb)
2417 goto errout;
2418
2419 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2420 if (err < 0)
2421 goto errout;
2422
2423 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2424 return;
2425
2426 errout:
2427 kfree_skb(skb);
2428 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2429 }
2430
igmpmsg_netlink_msgsize(size_t payloadlen)2431 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2432 {
2433 size_t len =
2434 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2435 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2436 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2437 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2438 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2439 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2440 /* IPMRA_CREPORT_PKT */
2441 + nla_total_size(payloadlen)
2442 ;
2443
2444 return len;
2445 }
2446
igmpmsg_netlink_event(const struct mr_table * mrt,struct sk_buff * pkt)2447 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2448 {
2449 struct net *net = read_pnet(&mrt->net);
2450 struct nlmsghdr *nlh;
2451 struct rtgenmsg *rtgenm;
2452 struct igmpmsg *msg;
2453 struct sk_buff *skb;
2454 struct nlattr *nla;
2455 int payloadlen;
2456
2457 payloadlen = pkt->len - sizeof(struct igmpmsg);
2458 msg = (struct igmpmsg *)skb_network_header(pkt);
2459
2460 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2461 if (!skb)
2462 goto errout;
2463
2464 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2465 sizeof(struct rtgenmsg), 0);
2466 if (!nlh)
2467 goto errout;
2468 rtgenm = nlmsg_data(nlh);
2469 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2470 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2471 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2472 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2473 msg->im_src.s_addr) ||
2474 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2475 msg->im_dst.s_addr) ||
2476 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2477 goto nla_put_failure;
2478
2479 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2480 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2481 nla_data(nla), payloadlen))
2482 goto nla_put_failure;
2483
2484 nlmsg_end(skb, nlh);
2485
2486 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2487 return;
2488
2489 nla_put_failure:
2490 nlmsg_cancel(skb, nlh);
2491 errout:
2492 kfree_skb(skb);
2493 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2494 }
2495
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2496 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2497 const struct nlmsghdr *nlh,
2498 struct nlattr **tb,
2499 struct netlink_ext_ack *extack)
2500 {
2501 struct rtmsg *rtm;
2502 int i, err;
2503
2504 rtm = nlmsg_payload(nlh, sizeof(*rtm));
2505 if (!rtm) {
2506 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2507 return -EINVAL;
2508 }
2509
2510 if (!netlink_strict_get_check(skb))
2511 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2512 rtm_ipv4_policy, extack);
2513
2514 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2515 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2516 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2517 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2518 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2519 return -EINVAL;
2520 }
2521
2522 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2523 rtm_ipv4_policy, extack);
2524 if (err)
2525 return err;
2526
2527 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2528 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2529 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2530 return -EINVAL;
2531 }
2532
2533 for (i = 0; i <= RTA_MAX; i++) {
2534 if (!tb[i])
2535 continue;
2536
2537 switch (i) {
2538 case RTA_SRC:
2539 case RTA_DST:
2540 case RTA_TABLE:
2541 break;
2542 default:
2543 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2544 return -EINVAL;
2545 }
2546 }
2547
2548 return 0;
2549 }
2550
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2551 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2552 struct netlink_ext_ack *extack)
2553 {
2554 struct net *net = sock_net(in_skb->sk);
2555 struct nlattr *tb[RTA_MAX + 1];
2556 struct sk_buff *skb = NULL;
2557 struct mfc_cache *cache;
2558 struct mr_table *mrt;
2559 __be32 src, grp;
2560 u32 tableid;
2561 int err;
2562
2563 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2564 if (err < 0)
2565 goto errout;
2566
2567 src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2568 grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2569 tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2570
2571 mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2572 if (!mrt) {
2573 err = -ENOENT;
2574 goto errout_free;
2575 }
2576
2577 /* entries are added/deleted only under RTNL */
2578 rcu_read_lock();
2579 cache = ipmr_cache_find(mrt, src, grp);
2580 rcu_read_unlock();
2581 if (!cache) {
2582 err = -ENOENT;
2583 goto errout_free;
2584 }
2585
2586 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2587 if (!skb) {
2588 err = -ENOBUFS;
2589 goto errout_free;
2590 }
2591
2592 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2593 nlh->nlmsg_seq, cache,
2594 RTM_NEWROUTE, 0);
2595 if (err < 0)
2596 goto errout_free;
2597
2598 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2599
2600 errout:
2601 return err;
2602
2603 errout_free:
2604 kfree_skb(skb);
2605 goto errout;
2606 }
2607
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2608 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2609 {
2610 struct fib_dump_filter filter = {
2611 .rtnl_held = true,
2612 };
2613 int err;
2614
2615 if (cb->strict_check) {
2616 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2617 &filter, cb);
2618 if (err < 0)
2619 return err;
2620 }
2621
2622 if (filter.table_id) {
2623 struct mr_table *mrt;
2624
2625 mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2626 if (!mrt) {
2627 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2628 return skb->len;
2629
2630 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2631 return -ENOENT;
2632 }
2633 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2634 &mfc_unres_lock, &filter);
2635 return skb->len ? : err;
2636 }
2637
2638 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2639 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2640 }
2641
2642 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2643 [RTA_SRC] = { .type = NLA_U32 },
2644 [RTA_DST] = { .type = NLA_U32 },
2645 [RTA_IIF] = { .type = NLA_U32 },
2646 [RTA_TABLE] = { .type = NLA_U32 },
2647 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2648 };
2649
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2650 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2651 {
2652 switch (rtm_protocol) {
2653 case RTPROT_STATIC:
2654 case RTPROT_MROUTED:
2655 return true;
2656 }
2657 return false;
2658 }
2659
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2660 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2661 {
2662 struct rtnexthop *rtnh = nla_data(nla);
2663 int remaining = nla_len(nla), vifi = 0;
2664
2665 while (rtnh_ok(rtnh, remaining)) {
2666 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2667 if (++vifi == MAXVIFS)
2668 break;
2669 rtnh = rtnh_next(rtnh, &remaining);
2670 }
2671
2672 return remaining > 0 ? -EINVAL : vifi;
2673 }
2674
2675 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2676 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2677 struct mfcctl *mfcc, int *mrtsock,
2678 struct mr_table **mrtret,
2679 struct netlink_ext_ack *extack)
2680 {
2681 struct net_device *dev = NULL;
2682 u32 tblid = RT_TABLE_DEFAULT;
2683 struct mr_table *mrt;
2684 struct nlattr *attr;
2685 struct rtmsg *rtm;
2686 int ret, rem;
2687
2688 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2689 rtm_ipmr_policy, extack);
2690 if (ret < 0)
2691 goto out;
2692 rtm = nlmsg_data(nlh);
2693
2694 ret = -EINVAL;
2695 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2696 rtm->rtm_type != RTN_MULTICAST ||
2697 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2698 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2699 goto out;
2700
2701 memset(mfcc, 0, sizeof(*mfcc));
2702 mfcc->mfcc_parent = -1;
2703 ret = 0;
2704 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2705 switch (nla_type(attr)) {
2706 case RTA_SRC:
2707 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2708 break;
2709 case RTA_DST:
2710 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2711 break;
2712 case RTA_IIF:
2713 dev = __dev_get_by_index(net, nla_get_u32(attr));
2714 if (!dev) {
2715 ret = -ENODEV;
2716 goto out;
2717 }
2718 break;
2719 case RTA_MULTIPATH:
2720 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2721 ret = -EINVAL;
2722 goto out;
2723 }
2724 break;
2725 case RTA_PREFSRC:
2726 ret = 1;
2727 break;
2728 case RTA_TABLE:
2729 tblid = nla_get_u32(attr);
2730 break;
2731 }
2732 }
2733 mrt = __ipmr_get_table(net, tblid);
2734 if (!mrt) {
2735 ret = -ENOENT;
2736 goto out;
2737 }
2738 *mrtret = mrt;
2739 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2740 if (dev)
2741 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2742
2743 out:
2744 return ret;
2745 }
2746
2747 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2748 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2749 struct netlink_ext_ack *extack)
2750 {
2751 struct net *net = sock_net(skb->sk);
2752 int ret, mrtsock, parent;
2753 struct mr_table *tbl;
2754 struct mfcctl mfcc;
2755
2756 mrtsock = 0;
2757 tbl = NULL;
2758 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2759 if (ret < 0)
2760 return ret;
2761
2762 parent = ret ? mfcc.mfcc_parent : -1;
2763 if (nlh->nlmsg_type == RTM_NEWROUTE)
2764 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2765 else
2766 return ipmr_mfc_delete(tbl, &mfcc, parent);
2767 }
2768
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2769 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2770 {
2771 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2772
2773 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2774 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2775 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2776 mrt->mroute_reg_vif_num) ||
2777 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2778 mrt->mroute_do_assert) ||
2779 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2780 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2781 mrt->mroute_do_wrvifwhole))
2782 return false;
2783
2784 return true;
2785 }
2786
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2787 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2788 {
2789 struct net_device *vif_dev;
2790 struct nlattr *vif_nest;
2791 struct vif_device *vif;
2792
2793 vif = &mrt->vif_table[vifid];
2794 vif_dev = rtnl_dereference(vif->dev);
2795 /* if the VIF doesn't exist just continue */
2796 if (!vif_dev)
2797 return true;
2798
2799 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2800 if (!vif_nest)
2801 return false;
2802
2803 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2804 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2805 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2806 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2807 IPMRA_VIFA_PAD) ||
2808 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2809 IPMRA_VIFA_PAD) ||
2810 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2811 IPMRA_VIFA_PAD) ||
2812 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2813 IPMRA_VIFA_PAD) ||
2814 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2815 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2816 nla_nest_cancel(skb, vif_nest);
2817 return false;
2818 }
2819 nla_nest_end(skb, vif_nest);
2820
2821 return true;
2822 }
2823
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2824 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2825 struct netlink_ext_ack *extack)
2826 {
2827 struct ifinfomsg *ifm;
2828
2829 ifm = nlmsg_payload(nlh, sizeof(*ifm));
2830 if (!ifm) {
2831 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2832 return -EINVAL;
2833 }
2834
2835 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2836 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2837 return -EINVAL;
2838 }
2839
2840 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2841 ifm->ifi_change || ifm->ifi_index) {
2842 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2843 return -EINVAL;
2844 }
2845
2846 return 0;
2847 }
2848
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2849 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2850 {
2851 struct net *net = sock_net(skb->sk);
2852 struct nlmsghdr *nlh = NULL;
2853 unsigned int t = 0, s_t;
2854 unsigned int e = 0, s_e;
2855 struct mr_table *mrt;
2856
2857 if (cb->strict_check) {
2858 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2859
2860 if (err < 0)
2861 return err;
2862 }
2863
2864 s_t = cb->args[0];
2865 s_e = cb->args[1];
2866
2867 ipmr_for_each_table(mrt, net) {
2868 struct nlattr *vifs, *af;
2869 struct ifinfomsg *hdr;
2870 u32 i;
2871
2872 if (t < s_t)
2873 goto skip_table;
2874 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2875 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2876 sizeof(*hdr), NLM_F_MULTI);
2877 if (!nlh)
2878 break;
2879
2880 hdr = nlmsg_data(nlh);
2881 memset(hdr, 0, sizeof(*hdr));
2882 hdr->ifi_family = RTNL_FAMILY_IPMR;
2883
2884 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2885 if (!af) {
2886 nlmsg_cancel(skb, nlh);
2887 goto out;
2888 }
2889
2890 if (!ipmr_fill_table(mrt, skb)) {
2891 nlmsg_cancel(skb, nlh);
2892 goto out;
2893 }
2894
2895 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2896 if (!vifs) {
2897 nla_nest_end(skb, af);
2898 nlmsg_end(skb, nlh);
2899 goto out;
2900 }
2901 for (i = 0; i < mrt->maxvif; i++) {
2902 if (e < s_e)
2903 goto skip_entry;
2904 if (!ipmr_fill_vif(mrt, i, skb)) {
2905 nla_nest_end(skb, vifs);
2906 nla_nest_end(skb, af);
2907 nlmsg_end(skb, nlh);
2908 goto out;
2909 }
2910 skip_entry:
2911 e++;
2912 }
2913 s_e = 0;
2914 e = 0;
2915 nla_nest_end(skb, vifs);
2916 nla_nest_end(skb, af);
2917 nlmsg_end(skb, nlh);
2918 skip_table:
2919 t++;
2920 }
2921
2922 out:
2923 cb->args[1] = e;
2924 cb->args[0] = t;
2925
2926 return skb->len;
2927 }
2928
2929 #ifdef CONFIG_PROC_FS
2930 /* The /proc interfaces to multicast routing :
2931 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2932 */
2933
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2934 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2935 __acquires(RCU)
2936 {
2937 struct mr_vif_iter *iter = seq->private;
2938 struct net *net = seq_file_net(seq);
2939 struct mr_table *mrt;
2940
2941 rcu_read_lock();
2942 mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2943 if (!mrt) {
2944 rcu_read_unlock();
2945 return ERR_PTR(-ENOENT);
2946 }
2947
2948 iter->mrt = mrt;
2949
2950 return mr_vif_seq_start(seq, pos);
2951 }
2952
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2953 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2954 __releases(RCU)
2955 {
2956 rcu_read_unlock();
2957 }
2958
ipmr_vif_seq_show(struct seq_file * seq,void * v)2959 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2960 {
2961 struct mr_vif_iter *iter = seq->private;
2962 struct mr_table *mrt = iter->mrt;
2963
2964 if (v == SEQ_START_TOKEN) {
2965 seq_puts(seq,
2966 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2967 } else {
2968 const struct vif_device *vif = v;
2969 const struct net_device *vif_dev;
2970 const char *name;
2971
2972 vif_dev = vif_dev_read(vif);
2973 name = vif_dev ? vif_dev->name : "none";
2974 seq_printf(seq,
2975 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2976 vif - mrt->vif_table,
2977 name, vif->bytes_in, vif->pkt_in,
2978 vif->bytes_out, vif->pkt_out,
2979 vif->flags, vif->local, vif->remote);
2980 }
2981 return 0;
2982 }
2983
2984 static const struct seq_operations ipmr_vif_seq_ops = {
2985 .start = ipmr_vif_seq_start,
2986 .next = mr_vif_seq_next,
2987 .stop = ipmr_vif_seq_stop,
2988 .show = ipmr_vif_seq_show,
2989 };
2990
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2991 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2992 {
2993 struct net *net = seq_file_net(seq);
2994 struct mr_table *mrt;
2995
2996 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2997 if (!mrt)
2998 return ERR_PTR(-ENOENT);
2999
3000 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3001 }
3002
ipmr_mfc_seq_show(struct seq_file * seq,void * v)3003 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3004 {
3005 int n;
3006
3007 if (v == SEQ_START_TOKEN) {
3008 seq_puts(seq,
3009 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
3010 } else {
3011 const struct mfc_cache *mfc = v;
3012 const struct mr_mfc_iter *it = seq->private;
3013 const struct mr_table *mrt = it->mrt;
3014
3015 seq_printf(seq, "%08X %08X %-3hd",
3016 (__force u32) mfc->mfc_mcastgrp,
3017 (__force u32) mfc->mfc_origin,
3018 mfc->_c.mfc_parent);
3019
3020 if (it->cache != &mrt->mfc_unres_queue) {
3021 seq_printf(seq, " %8lu %8lu %8lu",
3022 atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3023 atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3024 atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3025 for (n = mfc->_c.mfc_un.res.minvif;
3026 n < mfc->_c.mfc_un.res.maxvif; n++) {
3027 if (VIF_EXISTS(mrt, n) &&
3028 mfc->_c.mfc_un.res.ttls[n] < 255)
3029 seq_printf(seq,
3030 " %2d:%-3d",
3031 n, mfc->_c.mfc_un.res.ttls[n]);
3032 }
3033 } else {
3034 /* unresolved mfc_caches don't contain
3035 * pkt, bytes and wrong_if values
3036 */
3037 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3038 }
3039 seq_putc(seq, '\n');
3040 }
3041 return 0;
3042 }
3043
3044 static const struct seq_operations ipmr_mfc_seq_ops = {
3045 .start = ipmr_mfc_seq_start,
3046 .next = mr_mfc_seq_next,
3047 .stop = mr_mfc_seq_stop,
3048 .show = ipmr_mfc_seq_show,
3049 };
3050 #endif
3051
3052 #ifdef CONFIG_IP_PIMSM_V2
3053 static const struct net_protocol pim_protocol = {
3054 .handler = pim_rcv,
3055 };
3056 #endif
3057
ipmr_seq_read(const struct net * net)3058 static unsigned int ipmr_seq_read(const struct net *net)
3059 {
3060 return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3061 }
3062
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3063 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3064 struct netlink_ext_ack *extack)
3065 {
3066 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3067 ipmr_mr_table_iter, extack);
3068 }
3069
3070 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3071 .family = RTNL_FAMILY_IPMR,
3072 .fib_seq_read = ipmr_seq_read,
3073 .fib_dump = ipmr_dump,
3074 .owner = THIS_MODULE,
3075 };
3076
ipmr_notifier_init(struct net * net)3077 static int __net_init ipmr_notifier_init(struct net *net)
3078 {
3079 struct fib_notifier_ops *ops;
3080
3081 net->ipv4.ipmr_seq = 0;
3082
3083 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3084 if (IS_ERR(ops))
3085 return PTR_ERR(ops);
3086 net->ipv4.ipmr_notifier_ops = ops;
3087
3088 return 0;
3089 }
3090
ipmr_notifier_exit(struct net * net)3091 static void __net_exit ipmr_notifier_exit(struct net *net)
3092 {
3093 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3094 net->ipv4.ipmr_notifier_ops = NULL;
3095 }
3096
3097 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3098 static int __net_init ipmr_net_init(struct net *net)
3099 {
3100 int err;
3101
3102 err = ipmr_notifier_init(net);
3103 if (err)
3104 goto ipmr_notifier_fail;
3105
3106 err = ipmr_rules_init(net);
3107 if (err < 0)
3108 goto ipmr_rules_fail;
3109
3110 #ifdef CONFIG_PROC_FS
3111 err = -ENOMEM;
3112 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3113 sizeof(struct mr_vif_iter)))
3114 goto proc_vif_fail;
3115 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3116 sizeof(struct mr_mfc_iter)))
3117 goto proc_cache_fail;
3118 #endif
3119 return 0;
3120
3121 #ifdef CONFIG_PROC_FS
3122 proc_cache_fail:
3123 remove_proc_entry("ip_mr_vif", net->proc_net);
3124 proc_vif_fail:
3125 rtnl_lock();
3126 ipmr_rules_exit(net);
3127 rtnl_unlock();
3128 #endif
3129 ipmr_rules_fail:
3130 ipmr_notifier_exit(net);
3131 ipmr_notifier_fail:
3132 return err;
3133 }
3134
ipmr_net_exit(struct net * net)3135 static void __net_exit ipmr_net_exit(struct net *net)
3136 {
3137 #ifdef CONFIG_PROC_FS
3138 remove_proc_entry("ip_mr_cache", net->proc_net);
3139 remove_proc_entry("ip_mr_vif", net->proc_net);
3140 #endif
3141 ipmr_notifier_exit(net);
3142 }
3143
ipmr_net_exit_batch(struct list_head * net_list)3144 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3145 {
3146 struct net *net;
3147
3148 rtnl_lock();
3149 list_for_each_entry(net, net_list, exit_list)
3150 ipmr_rules_exit(net);
3151 rtnl_unlock();
3152 }
3153
3154 static struct pernet_operations ipmr_net_ops = {
3155 .init = ipmr_net_init,
3156 .exit = ipmr_net_exit,
3157 .exit_batch = ipmr_net_exit_batch,
3158 };
3159
3160 static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3161 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3162 .dumpit = ipmr_rtm_dumplink},
3163 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3164 .doit = ipmr_rtm_route},
3165 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3166 .doit = ipmr_rtm_route},
3167 {.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3168 .doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3169 };
3170
ip_mr_init(void)3171 int __init ip_mr_init(void)
3172 {
3173 int err;
3174
3175 mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3176
3177 err = register_pernet_subsys(&ipmr_net_ops);
3178 if (err)
3179 goto reg_pernet_fail;
3180
3181 err = register_netdevice_notifier(&ip_mr_notifier);
3182 if (err)
3183 goto reg_notif_fail;
3184 #ifdef CONFIG_IP_PIMSM_V2
3185 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3186 pr_err("%s: can't add PIM protocol\n", __func__);
3187 err = -EAGAIN;
3188 goto add_proto_fail;
3189 }
3190 #endif
3191 rtnl_register_many(ipmr_rtnl_msg_handlers);
3192
3193 return 0;
3194
3195 #ifdef CONFIG_IP_PIMSM_V2
3196 add_proto_fail:
3197 unregister_netdevice_notifier(&ip_mr_notifier);
3198 #endif
3199 reg_notif_fail:
3200 unregister_pernet_subsys(&ipmr_net_ops);
3201 reg_pernet_fail:
3202 kmem_cache_destroy(mrt_cachep);
3203 return err;
3204 }
3205