1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * page_pool.c
4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5 * Copyright (C) 2016 Red Hat, Inc.
6 */
7
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13
14 #include <net/netdev_lock.h>
15 #include <net/netdev_rx_queue.h>
16 #include <net/page_pool/helpers.h>
17 #include <net/page_pool/memory_provider.h>
18 #include <net/xdp.h>
19
20 #include <linux/dma-direction.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/page-flags.h>
23 #include <linux/mm.h> /* for put_page() */
24 #include <linux/poison.h>
25 #include <linux/ethtool.h>
26 #include <linux/netdevice.h>
27
28 #include <trace/events/page_pool.h>
29
30 #include "dev.h"
31 #include "mp_dmabuf_devmem.h"
32 #include "netmem_priv.h"
33 #include "page_pool_priv.h"
34
35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
36
37 #define DEFER_TIME (msecs_to_jiffies(1000))
38 #define DEFER_WARN_INTERVAL (60 * HZ)
39
40 #define BIAS_MAX (LONG_MAX >> 1)
41
42 #ifdef CONFIG_PAGE_POOL_STATS
43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
44
45 /* alloc_stat_inc is intended to be used in softirq context */
46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
47 /* recycle_stat_inc is safe to use when preemption is possible. */
48 #define recycle_stat_inc(pool, __stat) \
49 do { \
50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
51 this_cpu_inc(s->__stat); \
52 } while (0)
53
54 #define recycle_stat_add(pool, __stat, val) \
55 do { \
56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
57 this_cpu_add(s->__stat, val); \
58 } while (0)
59
60 static const char pp_stats[][ETH_GSTRING_LEN] = {
61 "rx_pp_alloc_fast",
62 "rx_pp_alloc_slow",
63 "rx_pp_alloc_slow_ho",
64 "rx_pp_alloc_empty",
65 "rx_pp_alloc_refill",
66 "rx_pp_alloc_waive",
67 "rx_pp_recycle_cached",
68 "rx_pp_recycle_cache_full",
69 "rx_pp_recycle_ring",
70 "rx_pp_recycle_ring_full",
71 "rx_pp_recycle_released_ref",
72 };
73
74 /**
75 * page_pool_get_stats() - fetch page pool stats
76 * @pool: pool from which page was allocated
77 * @stats: struct page_pool_stats to fill in
78 *
79 * Retrieve statistics about the page_pool. This API is only available
80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
81 * A pointer to a caller allocated struct page_pool_stats structure
82 * is passed to this API which is filled in. The caller can then report
83 * those stats to the user (perhaps via ethtool, debugfs, etc.).
84 */
page_pool_get_stats(const struct page_pool * pool,struct page_pool_stats * stats)85 bool page_pool_get_stats(const struct page_pool *pool,
86 struct page_pool_stats *stats)
87 {
88 int cpu = 0;
89
90 if (!stats)
91 return false;
92
93 /* The caller is responsible to initialize stats. */
94 stats->alloc_stats.fast += pool->alloc_stats.fast;
95 stats->alloc_stats.slow += pool->alloc_stats.slow;
96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
97 stats->alloc_stats.empty += pool->alloc_stats.empty;
98 stats->alloc_stats.refill += pool->alloc_stats.refill;
99 stats->alloc_stats.waive += pool->alloc_stats.waive;
100
101 for_each_possible_cpu(cpu) {
102 const struct page_pool_recycle_stats *pcpu =
103 per_cpu_ptr(pool->recycle_stats, cpu);
104
105 stats->recycle_stats.cached += pcpu->cached;
106 stats->recycle_stats.cache_full += pcpu->cache_full;
107 stats->recycle_stats.ring += pcpu->ring;
108 stats->recycle_stats.ring_full += pcpu->ring_full;
109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
110 }
111
112 return true;
113 }
114 EXPORT_SYMBOL(page_pool_get_stats);
115
page_pool_ethtool_stats_get_strings(u8 * data)116 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
117 {
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
122 data += ETH_GSTRING_LEN;
123 }
124
125 return data;
126 }
127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
128
page_pool_ethtool_stats_get_count(void)129 int page_pool_ethtool_stats_get_count(void)
130 {
131 return ARRAY_SIZE(pp_stats);
132 }
133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
134
page_pool_ethtool_stats_get(u64 * data,const void * stats)135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
136 {
137 const struct page_pool_stats *pool_stats = stats;
138
139 *data++ = pool_stats->alloc_stats.fast;
140 *data++ = pool_stats->alloc_stats.slow;
141 *data++ = pool_stats->alloc_stats.slow_high_order;
142 *data++ = pool_stats->alloc_stats.empty;
143 *data++ = pool_stats->alloc_stats.refill;
144 *data++ = pool_stats->alloc_stats.waive;
145 *data++ = pool_stats->recycle_stats.cached;
146 *data++ = pool_stats->recycle_stats.cache_full;
147 *data++ = pool_stats->recycle_stats.ring;
148 *data++ = pool_stats->recycle_stats.ring_full;
149 *data++ = pool_stats->recycle_stats.released_refcnt;
150
151 return data;
152 }
153 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
154
155 #else
156 #define alloc_stat_inc(...) do { } while (0)
157 #define recycle_stat_inc(...) do { } while (0)
158 #define recycle_stat_add(...) do { } while (0)
159 #endif
160
page_pool_producer_lock(struct page_pool * pool)161 static bool page_pool_producer_lock(struct page_pool *pool)
162 __acquires(&pool->ring.producer_lock)
163 {
164 bool in_softirq = in_softirq();
165
166 if (in_softirq)
167 spin_lock(&pool->ring.producer_lock);
168 else
169 spin_lock_bh(&pool->ring.producer_lock);
170
171 return in_softirq;
172 }
173
page_pool_producer_unlock(struct page_pool * pool,bool in_softirq)174 static void page_pool_producer_unlock(struct page_pool *pool,
175 bool in_softirq)
176 __releases(&pool->ring.producer_lock)
177 {
178 if (in_softirq)
179 spin_unlock(&pool->ring.producer_lock);
180 else
181 spin_unlock_bh(&pool->ring.producer_lock);
182 }
183
page_pool_struct_check(void)184 static void page_pool_struct_check(void)
185 {
186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
190 PAGE_POOL_FRAG_GROUP_ALIGN);
191 }
192
page_pool_init(struct page_pool * pool,const struct page_pool_params * params,int cpuid)193 static int page_pool_init(struct page_pool *pool,
194 const struct page_pool_params *params,
195 int cpuid)
196 {
197 unsigned int ring_qsize = 1024; /* Default */
198 struct netdev_rx_queue *rxq;
199 int err;
200
201 page_pool_struct_check();
202
203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p));
204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow));
205
206 pool->cpuid = cpuid;
207 pool->dma_sync_for_cpu = true;
208
209 /* Validate only known flags were used */
210 if (pool->slow.flags & ~PP_FLAG_ALL)
211 return -EINVAL;
212
213 if (pool->p.pool_size)
214 ring_qsize = pool->p.pool_size;
215
216 /* Sanity limit mem that can be pinned down */
217 if (ring_qsize > 32768)
218 return -E2BIG;
219
220 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
221 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
222 * which is the XDP_TX use-case.
223 */
224 if (pool->slow.flags & PP_FLAG_DMA_MAP) {
225 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
226 (pool->p.dma_dir != DMA_BIDIRECTIONAL))
227 return -EINVAL;
228
229 pool->dma_map = true;
230 }
231
232 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
233 /* In order to request DMA-sync-for-device the page
234 * needs to be mapped
235 */
236 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
237 return -EINVAL;
238
239 if (!pool->p.max_len)
240 return -EINVAL;
241
242 pool->dma_sync = true;
243
244 /* pool->p.offset has to be set according to the address
245 * offset used by the DMA engine to start copying rx data
246 */
247 }
248
249 pool->has_init_callback = !!pool->slow.init_callback;
250
251 #ifdef CONFIG_PAGE_POOL_STATS
252 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
253 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
254 if (!pool->recycle_stats)
255 return -ENOMEM;
256 } else {
257 /* For system page pool instance we use a singular stats object
258 * instead of allocating a separate percpu variable for each
259 * (also percpu) page pool instance.
260 */
261 pool->recycle_stats = &pp_system_recycle_stats;
262 pool->system = true;
263 }
264 #endif
265
266 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
267 #ifdef CONFIG_PAGE_POOL_STATS
268 if (!pool->system)
269 free_percpu(pool->recycle_stats);
270 #endif
271 return -ENOMEM;
272 }
273
274 atomic_set(&pool->pages_state_release_cnt, 0);
275
276 /* Driver calling page_pool_create() also call page_pool_destroy() */
277 refcount_set(&pool->user_cnt, 1);
278
279 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1);
280
281 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
282 netdev_assert_locked(pool->slow.netdev);
283 rxq = __netif_get_rx_queue(pool->slow.netdev,
284 pool->slow.queue_idx);
285 pool->mp_priv = rxq->mp_params.mp_priv;
286 pool->mp_ops = rxq->mp_params.mp_ops;
287 }
288
289 if (pool->mp_ops) {
290 if (!pool->dma_map || !pool->dma_sync)
291 return -EOPNOTSUPP;
292
293 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) {
294 err = -EFAULT;
295 goto free_ptr_ring;
296 }
297
298 err = pool->mp_ops->init(pool);
299 if (err) {
300 pr_warn("%s() mem-provider init failed %d\n", __func__,
301 err);
302 goto free_ptr_ring;
303 }
304
305 static_branch_inc(&page_pool_mem_providers);
306 }
307
308 return 0;
309
310 free_ptr_ring:
311 ptr_ring_cleanup(&pool->ring, NULL);
312 #ifdef CONFIG_PAGE_POOL_STATS
313 if (!pool->system)
314 free_percpu(pool->recycle_stats);
315 #endif
316 return err;
317 }
318
page_pool_uninit(struct page_pool * pool)319 static void page_pool_uninit(struct page_pool *pool)
320 {
321 ptr_ring_cleanup(&pool->ring, NULL);
322 xa_destroy(&pool->dma_mapped);
323
324 #ifdef CONFIG_PAGE_POOL_STATS
325 if (!pool->system)
326 free_percpu(pool->recycle_stats);
327 #endif
328 }
329
330 /**
331 * page_pool_create_percpu() - create a page pool for a given cpu.
332 * @params: parameters, see struct page_pool_params
333 * @cpuid: cpu identifier
334 */
335 struct page_pool *
page_pool_create_percpu(const struct page_pool_params * params,int cpuid)336 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
337 {
338 struct page_pool *pool;
339 int err;
340
341 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
342 if (!pool)
343 return ERR_PTR(-ENOMEM);
344
345 err = page_pool_init(pool, params, cpuid);
346 if (err < 0)
347 goto err_free;
348
349 err = page_pool_list(pool);
350 if (err)
351 goto err_uninit;
352
353 return pool;
354
355 err_uninit:
356 page_pool_uninit(pool);
357 err_free:
358 pr_warn("%s() gave up with errno %d\n", __func__, err);
359 kfree(pool);
360 return ERR_PTR(err);
361 }
362 EXPORT_SYMBOL(page_pool_create_percpu);
363
364 /**
365 * page_pool_create() - create a page pool
366 * @params: parameters, see struct page_pool_params
367 */
page_pool_create(const struct page_pool_params * params)368 struct page_pool *page_pool_create(const struct page_pool_params *params)
369 {
370 return page_pool_create_percpu(params, -1);
371 }
372 EXPORT_SYMBOL(page_pool_create);
373
374 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem);
375
page_pool_refill_alloc_cache(struct page_pool * pool)376 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
377 {
378 struct ptr_ring *r = &pool->ring;
379 netmem_ref netmem;
380 int pref_nid; /* preferred NUMA node */
381
382 /* Quicker fallback, avoid locks when ring is empty */
383 if (__ptr_ring_empty(r)) {
384 alloc_stat_inc(pool, empty);
385 return 0;
386 }
387
388 /* Softirq guarantee CPU and thus NUMA node is stable. This,
389 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
390 */
391 #ifdef CONFIG_NUMA
392 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
393 #else
394 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
395 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
396 #endif
397
398 /* Refill alloc array, but only if NUMA match */
399 do {
400 netmem = (__force netmem_ref)__ptr_ring_consume(r);
401 if (unlikely(!netmem))
402 break;
403
404 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
405 pool->alloc.cache[pool->alloc.count++] = netmem;
406 } else {
407 /* NUMA mismatch;
408 * (1) release 1 page to page-allocator and
409 * (2) break out to fallthrough to alloc_pages_node.
410 * This limit stress on page buddy alloactor.
411 */
412 page_pool_return_page(pool, netmem);
413 alloc_stat_inc(pool, waive);
414 netmem = 0;
415 break;
416 }
417 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
418
419 /* Return last page */
420 if (likely(pool->alloc.count > 0)) {
421 netmem = pool->alloc.cache[--pool->alloc.count];
422 alloc_stat_inc(pool, refill);
423 }
424
425 return netmem;
426 }
427
428 /* fast path */
__page_pool_get_cached(struct page_pool * pool)429 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
430 {
431 netmem_ref netmem;
432
433 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
434 if (likely(pool->alloc.count)) {
435 /* Fast-path */
436 netmem = pool->alloc.cache[--pool->alloc.count];
437 alloc_stat_inc(pool, fast);
438 } else {
439 netmem = page_pool_refill_alloc_cache(pool);
440 }
441
442 return netmem;
443 }
444
__page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)445 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
446 netmem_ref netmem,
447 u32 dma_sync_size)
448 {
449 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
450 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
451
452 dma_sync_size = min(dma_sync_size, pool->p.max_len);
453 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
454 dma_sync_size, pool->p.dma_dir);
455 #endif
456 }
457
458 static __always_inline void
page_pool_dma_sync_for_device(const struct page_pool * pool,netmem_ref netmem,u32 dma_sync_size)459 page_pool_dma_sync_for_device(const struct page_pool *pool,
460 netmem_ref netmem,
461 u32 dma_sync_size)
462 {
463 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) {
464 rcu_read_lock();
465 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */
466 if (pool->dma_sync)
467 __page_pool_dma_sync_for_device(pool, netmem,
468 dma_sync_size);
469 rcu_read_unlock();
470 }
471 }
472
page_pool_dma_map(struct page_pool * pool,netmem_ref netmem,gfp_t gfp)473 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp)
474 {
475 dma_addr_t dma;
476 int err;
477 u32 id;
478
479 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
480 * since dma_addr_t can be either 32 or 64 bits and does not always fit
481 * into page private data (i.e 32bit cpu with 64bit DMA caps)
482 * This mapping is kept for lifetime of page, until leaving pool.
483 */
484 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
485 (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
486 DMA_ATTR_SKIP_CPU_SYNC |
487 DMA_ATTR_WEAK_ORDERING);
488 if (dma_mapping_error(pool->p.dev, dma))
489 return false;
490
491 if (page_pool_set_dma_addr_netmem(netmem, dma)) {
492 WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
493 goto unmap_failed;
494 }
495
496 if (in_softirq())
497 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem),
498 PP_DMA_INDEX_LIMIT, gfp);
499 else
500 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem),
501 PP_DMA_INDEX_LIMIT, gfp);
502 if (err) {
503 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@");
504 goto unset_failed;
505 }
506
507 netmem_set_dma_index(netmem, id);
508 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
509
510 return true;
511
512 unset_failed:
513 page_pool_set_dma_addr_netmem(netmem, 0);
514 unmap_failed:
515 dma_unmap_page_attrs(pool->p.dev, dma,
516 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
517 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
518 return false;
519 }
520
__page_pool_alloc_page_order(struct page_pool * pool,gfp_t gfp)521 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
522 gfp_t gfp)
523 {
524 struct page *page;
525
526 gfp |= __GFP_COMP;
527 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
528 if (unlikely(!page))
529 return NULL;
530
531 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) {
532 put_page(page);
533 return NULL;
534 }
535
536 alloc_stat_inc(pool, slow_high_order);
537 page_pool_set_pp_info(pool, page_to_netmem(page));
538
539 /* Track how many pages are held 'in-flight' */
540 pool->pages_state_hold_cnt++;
541 trace_page_pool_state_hold(pool, page_to_netmem(page),
542 pool->pages_state_hold_cnt);
543 return page;
544 }
545
546 /* slow path */
__page_pool_alloc_pages_slow(struct page_pool * pool,gfp_t gfp)547 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool,
548 gfp_t gfp)
549 {
550 const int bulk = PP_ALLOC_CACHE_REFILL;
551 unsigned int pp_order = pool->p.order;
552 bool dma_map = pool->dma_map;
553 netmem_ref netmem;
554 int i, nr_pages;
555
556 /* Don't support bulk alloc for high-order pages */
557 if (unlikely(pp_order))
558 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
559
560 /* Unnecessary as alloc cache is empty, but guarantees zero count */
561 if (unlikely(pool->alloc.count > 0))
562 return pool->alloc.cache[--pool->alloc.count];
563
564 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */
565 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
566
567 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk,
568 (struct page **)pool->alloc.cache);
569 if (unlikely(!nr_pages))
570 return 0;
571
572 /* Pages have been filled into alloc.cache array, but count is zero and
573 * page element have not been (possibly) DMA mapped.
574 */
575 for (i = 0; i < nr_pages; i++) {
576 netmem = pool->alloc.cache[i];
577 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) {
578 put_page(netmem_to_page(netmem));
579 continue;
580 }
581
582 page_pool_set_pp_info(pool, netmem);
583 pool->alloc.cache[pool->alloc.count++] = netmem;
584 /* Track how many pages are held 'in-flight' */
585 pool->pages_state_hold_cnt++;
586 trace_page_pool_state_hold(pool, netmem,
587 pool->pages_state_hold_cnt);
588 }
589
590 /* Return last page */
591 if (likely(pool->alloc.count > 0)) {
592 netmem = pool->alloc.cache[--pool->alloc.count];
593 alloc_stat_inc(pool, slow);
594 } else {
595 netmem = 0;
596 }
597
598 /* When page just alloc'ed is should/must have refcnt 1. */
599 return netmem;
600 }
601
602 /* For using page_pool replace: alloc_pages() API calls, but provide
603 * synchronization guarantee for allocation side.
604 */
page_pool_alloc_netmems(struct page_pool * pool,gfp_t gfp)605 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp)
606 {
607 netmem_ref netmem;
608
609 /* Fast-path: Get a page from cache */
610 netmem = __page_pool_get_cached(pool);
611 if (netmem)
612 return netmem;
613
614 /* Slow-path: cache empty, do real allocation */
615 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
616 netmem = pool->mp_ops->alloc_netmems(pool, gfp);
617 else
618 netmem = __page_pool_alloc_pages_slow(pool, gfp);
619 return netmem;
620 }
621 EXPORT_SYMBOL(page_pool_alloc_netmems);
622 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL);
623
page_pool_alloc_pages(struct page_pool * pool,gfp_t gfp)624 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
625 {
626 return netmem_to_page(page_pool_alloc_netmems(pool, gfp));
627 }
628 EXPORT_SYMBOL(page_pool_alloc_pages);
629
630 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
631 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
632 */
633 #define _distance(a, b) (s32)((a) - (b))
634
page_pool_inflight(const struct page_pool * pool,bool strict)635 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
636 {
637 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
638 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
639 s32 inflight;
640
641 inflight = _distance(hold_cnt, release_cnt);
642
643 if (strict) {
644 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
645 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
646 inflight);
647 } else {
648 inflight = max(0, inflight);
649 }
650
651 return inflight;
652 }
653
page_pool_set_pp_info(struct page_pool * pool,netmem_ref netmem)654 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
655 {
656 netmem_set_pp(netmem, pool);
657 netmem_or_pp_magic(netmem, PP_SIGNATURE);
658
659 /* Ensuring all pages have been split into one fragment initially:
660 * page_pool_set_pp_info() is only called once for every page when it
661 * is allocated from the page allocator and page_pool_fragment_page()
662 * is dirtying the same cache line as the page->pp_magic above, so
663 * the overhead is negligible.
664 */
665 page_pool_fragment_netmem(netmem, 1);
666 if (pool->has_init_callback)
667 pool->slow.init_callback(netmem, pool->slow.init_arg);
668 }
669
page_pool_clear_pp_info(netmem_ref netmem)670 void page_pool_clear_pp_info(netmem_ref netmem)
671 {
672 netmem_clear_pp_magic(netmem);
673 netmem_set_pp(netmem, NULL);
674 }
675
__page_pool_release_page_dma(struct page_pool * pool,netmem_ref netmem)676 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool,
677 netmem_ref netmem)
678 {
679 struct page *old, *page = netmem_to_page(netmem);
680 unsigned long id;
681 dma_addr_t dma;
682
683 if (!pool->dma_map)
684 /* Always account for inflight pages, even if we didn't
685 * map them
686 */
687 return;
688
689 id = netmem_get_dma_index(netmem);
690 if (!id)
691 return;
692
693 if (in_softirq())
694 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0);
695 else
696 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0);
697 if (old != page)
698 return;
699
700 dma = page_pool_get_dma_addr_netmem(netmem);
701
702 /* When page is unmapped, it cannot be returned to our pool */
703 dma_unmap_page_attrs(pool->p.dev, dma,
704 PAGE_SIZE << pool->p.order, pool->p.dma_dir,
705 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
706 page_pool_set_dma_addr_netmem(netmem, 0);
707 netmem_set_dma_index(netmem, 0);
708 }
709
710 /* Disconnects a page (from a page_pool). API users can have a need
711 * to disconnect a page (from a page_pool), to allow it to be used as
712 * a regular page (that will eventually be returned to the normal
713 * page-allocator via put_page).
714 */
page_pool_return_page(struct page_pool * pool,netmem_ref netmem)715 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem)
716 {
717 int count;
718 bool put;
719
720 put = true;
721 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops)
722 put = pool->mp_ops->release_netmem(pool, netmem);
723 else
724 __page_pool_release_page_dma(pool, netmem);
725
726 /* This may be the last page returned, releasing the pool, so
727 * it is not safe to reference pool afterwards.
728 */
729 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
730 trace_page_pool_state_release(pool, netmem, count);
731
732 if (put) {
733 page_pool_clear_pp_info(netmem);
734 put_page(netmem_to_page(netmem));
735 }
736 /* An optimization would be to call __free_pages(page, pool->p.order)
737 * knowing page is not part of page-cache (thus avoiding a
738 * __page_cache_release() call).
739 */
740 }
741
page_pool_recycle_in_ring(struct page_pool * pool,netmem_ref netmem)742 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
743 {
744 bool in_softirq, ret;
745
746 /* BH protection not needed if current is softirq */
747 in_softirq = page_pool_producer_lock(pool);
748 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem);
749 if (ret)
750 recycle_stat_inc(pool, ring);
751 page_pool_producer_unlock(pool, in_softirq);
752
753 return ret;
754 }
755
756 /* Only allow direct recycling in special circumstances, into the
757 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
758 *
759 * Caller must provide appropriate safe context.
760 */
page_pool_recycle_in_cache(netmem_ref netmem,struct page_pool * pool)761 static bool page_pool_recycle_in_cache(netmem_ref netmem,
762 struct page_pool *pool)
763 {
764 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
765 recycle_stat_inc(pool, cache_full);
766 return false;
767 }
768
769 /* Caller MUST have verified/know (page_ref_count(page) == 1) */
770 pool->alloc.cache[pool->alloc.count++] = netmem;
771 recycle_stat_inc(pool, cached);
772 return true;
773 }
774
__page_pool_page_can_be_recycled(netmem_ref netmem)775 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
776 {
777 return netmem_is_net_iov(netmem) ||
778 (page_ref_count(netmem_to_page(netmem)) == 1 &&
779 !page_is_pfmemalloc(netmem_to_page(netmem)));
780 }
781
782 /* If the page refcnt == 1, this will try to recycle the page.
783 * If pool->dma_sync is set, we'll try to sync the DMA area for
784 * the configured size min(dma_sync_size, pool->max_len).
785 * If the page refcnt != 1, then the page will be returned to memory
786 * subsystem.
787 */
788 static __always_inline netmem_ref
__page_pool_put_page(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)789 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
790 unsigned int dma_sync_size, bool allow_direct)
791 {
792 lockdep_assert_no_hardirq();
793
794 /* This allocator is optimized for the XDP mode that uses
795 * one-frame-per-page, but have fallbacks that act like the
796 * regular page allocator APIs.
797 *
798 * refcnt == 1 means page_pool owns page, and can recycle it.
799 *
800 * page is NOT reusable when allocated when system is under
801 * some pressure. (page_is_pfmemalloc)
802 */
803 if (likely(__page_pool_page_can_be_recycled(netmem))) {
804 /* Read barrier done in page_ref_count / READ_ONCE */
805
806 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
807
808 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
809 return 0;
810
811 /* Page found as candidate for recycling */
812 return netmem;
813 }
814
815 /* Fallback/non-XDP mode: API user have elevated refcnt.
816 *
817 * Many drivers split up the page into fragments, and some
818 * want to keep doing this to save memory and do refcnt based
819 * recycling. Support this use case too, to ease drivers
820 * switching between XDP/non-XDP.
821 *
822 * In-case page_pool maintains the DMA mapping, API user must
823 * call page_pool_put_page once. In this elevated refcnt
824 * case, the DMA is unmapped/released, as driver is likely
825 * doing refcnt based recycle tricks, meaning another process
826 * will be invoking put_page.
827 */
828 recycle_stat_inc(pool, released_refcnt);
829 page_pool_return_page(pool, netmem);
830
831 return 0;
832 }
833
page_pool_napi_local(const struct page_pool * pool)834 static bool page_pool_napi_local(const struct page_pool *pool)
835 {
836 const struct napi_struct *napi;
837 u32 cpuid;
838
839 /* On PREEMPT_RT the softirq can be preempted by the consumer */
840 if (IS_ENABLED(CONFIG_PREEMPT_RT))
841 return false;
842
843 if (unlikely(!in_softirq()))
844 return false;
845
846 /* Allow direct recycle if we have reasons to believe that we are
847 * in the same context as the consumer would run, so there's
848 * no possible race.
849 * __page_pool_put_page() makes sure we're not in hardirq context
850 * and interrupts are enabled prior to accessing the cache.
851 */
852 cpuid = smp_processor_id();
853 if (READ_ONCE(pool->cpuid) == cpuid)
854 return true;
855
856 napi = READ_ONCE(pool->p.napi);
857
858 return napi && READ_ONCE(napi->list_owner) == cpuid;
859 }
860
page_pool_put_unrefed_netmem(struct page_pool * pool,netmem_ref netmem,unsigned int dma_sync_size,bool allow_direct)861 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
862 unsigned int dma_sync_size, bool allow_direct)
863 {
864 if (!allow_direct)
865 allow_direct = page_pool_napi_local(pool);
866
867 netmem = __page_pool_put_page(pool, netmem, dma_sync_size,
868 allow_direct);
869 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
870 /* Cache full, fallback to free pages */
871 recycle_stat_inc(pool, ring_full);
872 page_pool_return_page(pool, netmem);
873 }
874 }
875 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
876
page_pool_put_unrefed_page(struct page_pool * pool,struct page * page,unsigned int dma_sync_size,bool allow_direct)877 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
878 unsigned int dma_sync_size, bool allow_direct)
879 {
880 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
881 allow_direct);
882 }
883 EXPORT_SYMBOL(page_pool_put_unrefed_page);
884
page_pool_recycle_ring_bulk(struct page_pool * pool,netmem_ref * bulk,u32 bulk_len)885 static void page_pool_recycle_ring_bulk(struct page_pool *pool,
886 netmem_ref *bulk,
887 u32 bulk_len)
888 {
889 bool in_softirq;
890 u32 i;
891
892 /* Bulk produce into ptr_ring page_pool cache */
893 in_softirq = page_pool_producer_lock(pool);
894
895 for (i = 0; i < bulk_len; i++) {
896 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) {
897 /* ring full */
898 recycle_stat_inc(pool, ring_full);
899 break;
900 }
901 }
902
903 page_pool_producer_unlock(pool, in_softirq);
904 recycle_stat_add(pool, ring, i);
905
906 /* Hopefully all pages were returned into ptr_ring */
907 if (likely(i == bulk_len))
908 return;
909
910 /*
911 * ptr_ring cache is full, free remaining pages outside producer lock
912 * since put_page() with refcnt == 1 can be an expensive operation.
913 */
914 for (; i < bulk_len; i++)
915 page_pool_return_page(pool, bulk[i]);
916 }
917
918 /**
919 * page_pool_put_netmem_bulk() - release references on multiple netmems
920 * @data: array holding netmem references
921 * @count: number of entries in @data
922 *
923 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring
924 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk()
925 * will release leftover netmems to the memory provider.
926 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx
927 * completion loop for the XDP_REDIRECT use case.
928 *
929 * Please note the caller must not use data area after running
930 * page_pool_put_netmem_bulk(), as this function overwrites it.
931 */
page_pool_put_netmem_bulk(netmem_ref * data,u32 count)932 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count)
933 {
934 u32 bulk_len = 0;
935
936 for (u32 i = 0; i < count; i++) {
937 netmem_ref netmem = netmem_compound_head(data[i]);
938
939 if (page_pool_unref_and_test(netmem))
940 data[bulk_len++] = netmem;
941 }
942
943 count = bulk_len;
944 while (count) {
945 netmem_ref bulk[XDP_BULK_QUEUE_SIZE];
946 struct page_pool *pool = NULL;
947 bool allow_direct;
948 u32 foreign = 0;
949
950 bulk_len = 0;
951
952 for (u32 i = 0; i < count; i++) {
953 struct page_pool *netmem_pp;
954 netmem_ref netmem = data[i];
955
956 netmem_pp = netmem_get_pp(netmem);
957 if (unlikely(!pool)) {
958 pool = netmem_pp;
959 allow_direct = page_pool_napi_local(pool);
960 } else if (netmem_pp != pool) {
961 /*
962 * If the netmem belongs to a different
963 * page_pool, save it for another round.
964 */
965 data[foreign++] = netmem;
966 continue;
967 }
968
969 netmem = __page_pool_put_page(pool, netmem, -1,
970 allow_direct);
971 /* Approved for bulk recycling in ptr_ring cache */
972 if (netmem)
973 bulk[bulk_len++] = netmem;
974 }
975
976 if (bulk_len)
977 page_pool_recycle_ring_bulk(pool, bulk, bulk_len);
978
979 count = foreign;
980 }
981 }
982 EXPORT_SYMBOL(page_pool_put_netmem_bulk);
983
page_pool_drain_frag(struct page_pool * pool,netmem_ref netmem)984 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
985 netmem_ref netmem)
986 {
987 long drain_count = BIAS_MAX - pool->frag_users;
988
989 /* Some user is still using the page frag */
990 if (likely(page_pool_unref_netmem(netmem, drain_count)))
991 return 0;
992
993 if (__page_pool_page_can_be_recycled(netmem)) {
994 page_pool_dma_sync_for_device(pool, netmem, -1);
995 return netmem;
996 }
997
998 page_pool_return_page(pool, netmem);
999 return 0;
1000 }
1001
page_pool_free_frag(struct page_pool * pool)1002 static void page_pool_free_frag(struct page_pool *pool)
1003 {
1004 long drain_count = BIAS_MAX - pool->frag_users;
1005 netmem_ref netmem = pool->frag_page;
1006
1007 pool->frag_page = 0;
1008
1009 if (!netmem || page_pool_unref_netmem(netmem, drain_count))
1010 return;
1011
1012 page_pool_return_page(pool, netmem);
1013 }
1014
page_pool_alloc_frag_netmem(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1015 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
1016 unsigned int *offset, unsigned int size,
1017 gfp_t gfp)
1018 {
1019 unsigned int max_size = PAGE_SIZE << pool->p.order;
1020 netmem_ref netmem = pool->frag_page;
1021
1022 if (WARN_ON(size > max_size))
1023 return 0;
1024
1025 size = ALIGN(size, dma_get_cache_alignment());
1026 *offset = pool->frag_offset;
1027
1028 if (netmem && *offset + size > max_size) {
1029 netmem = page_pool_drain_frag(pool, netmem);
1030 if (netmem) {
1031 recycle_stat_inc(pool, cached);
1032 alloc_stat_inc(pool, fast);
1033 goto frag_reset;
1034 }
1035 }
1036
1037 if (!netmem) {
1038 netmem = page_pool_alloc_netmems(pool, gfp);
1039 if (unlikely(!netmem)) {
1040 pool->frag_page = 0;
1041 return 0;
1042 }
1043
1044 pool->frag_page = netmem;
1045
1046 frag_reset:
1047 pool->frag_users = 1;
1048 *offset = 0;
1049 pool->frag_offset = size;
1050 page_pool_fragment_netmem(netmem, BIAS_MAX);
1051 return netmem;
1052 }
1053
1054 pool->frag_users++;
1055 pool->frag_offset = *offset + size;
1056 return netmem;
1057 }
1058 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
1059
page_pool_alloc_frag(struct page_pool * pool,unsigned int * offset,unsigned int size,gfp_t gfp)1060 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
1061 unsigned int size, gfp_t gfp)
1062 {
1063 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
1064 gfp));
1065 }
1066 EXPORT_SYMBOL(page_pool_alloc_frag);
1067
page_pool_empty_ring(struct page_pool * pool)1068 static void page_pool_empty_ring(struct page_pool *pool)
1069 {
1070 netmem_ref netmem;
1071
1072 /* Empty recycle ring */
1073 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
1074 /* Verify the refcnt invariant of cached pages */
1075 if (!(netmem_ref_count(netmem) == 1))
1076 pr_crit("%s() page_pool refcnt %d violation\n",
1077 __func__, netmem_ref_count(netmem));
1078
1079 page_pool_return_page(pool, netmem);
1080 }
1081 }
1082
__page_pool_destroy(struct page_pool * pool)1083 static void __page_pool_destroy(struct page_pool *pool)
1084 {
1085 if (pool->disconnect)
1086 pool->disconnect(pool);
1087
1088 page_pool_unlist(pool);
1089 page_pool_uninit(pool);
1090
1091 if (pool->mp_ops) {
1092 pool->mp_ops->destroy(pool);
1093 static_branch_dec(&page_pool_mem_providers);
1094 }
1095
1096 kfree(pool);
1097 }
1098
page_pool_empty_alloc_cache_once(struct page_pool * pool)1099 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1100 {
1101 netmem_ref netmem;
1102
1103 if (pool->destroy_cnt)
1104 return;
1105
1106 /* Empty alloc cache, assume caller made sure this is
1107 * no-longer in use, and page_pool_alloc_pages() cannot be
1108 * call concurrently.
1109 */
1110 while (pool->alloc.count) {
1111 netmem = pool->alloc.cache[--pool->alloc.count];
1112 page_pool_return_page(pool, netmem);
1113 }
1114 }
1115
page_pool_scrub(struct page_pool * pool)1116 static void page_pool_scrub(struct page_pool *pool)
1117 {
1118 unsigned long id;
1119 void *ptr;
1120
1121 page_pool_empty_alloc_cache_once(pool);
1122 if (!pool->destroy_cnt++ && pool->dma_map) {
1123 if (pool->dma_sync) {
1124 /* Disable page_pool_dma_sync_for_device() */
1125 pool->dma_sync = false;
1126
1127 /* Make sure all concurrent returns that may see the old
1128 * value of dma_sync (and thus perform a sync) have
1129 * finished before doing the unmapping below. Skip the
1130 * wait if the device doesn't actually need syncing, or
1131 * if there are no outstanding mapped pages.
1132 */
1133 if (dma_dev_need_sync(pool->p.dev) &&
1134 !xa_empty(&pool->dma_mapped))
1135 synchronize_net();
1136 }
1137
1138 xa_for_each(&pool->dma_mapped, id, ptr)
1139 __page_pool_release_page_dma(pool, page_to_netmem(ptr));
1140 }
1141
1142 /* No more consumers should exist, but producers could still
1143 * be in-flight.
1144 */
1145 page_pool_empty_ring(pool);
1146 }
1147
page_pool_release(struct page_pool * pool)1148 static int page_pool_release(struct page_pool *pool)
1149 {
1150 bool in_softirq;
1151 int inflight;
1152
1153 page_pool_scrub(pool);
1154 inflight = page_pool_inflight(pool, true);
1155 /* Acquire producer lock to make sure producers have exited. */
1156 in_softirq = page_pool_producer_lock(pool);
1157 page_pool_producer_unlock(pool, in_softirq);
1158 if (!inflight)
1159 __page_pool_destroy(pool);
1160
1161 return inflight;
1162 }
1163
page_pool_release_retry(struct work_struct * wq)1164 static void page_pool_release_retry(struct work_struct *wq)
1165 {
1166 struct delayed_work *dwq = to_delayed_work(wq);
1167 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1168 void *netdev;
1169 int inflight;
1170
1171 inflight = page_pool_release(pool);
1172 /* In rare cases, a driver bug may cause inflight to go negative.
1173 * Don't reschedule release if inflight is 0 or negative.
1174 * - If 0, the page_pool has been destroyed
1175 * - if negative, we will never recover
1176 * in both cases no reschedule is necessary.
1177 */
1178 if (inflight <= 0)
1179 return;
1180
1181 /* Periodic warning for page pools the user can't see */
1182 netdev = READ_ONCE(pool->slow.netdev);
1183 if (time_after_eq(jiffies, pool->defer_warn) &&
1184 (!netdev || netdev == NET_PTR_POISON)) {
1185 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1186
1187 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1188 __func__, pool->user.id, inflight, sec);
1189 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1190 }
1191
1192 /* Still not ready to be disconnected, retry later */
1193 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1194 }
1195
page_pool_use_xdp_mem(struct page_pool * pool,void (* disconnect)(void *),const struct xdp_mem_info * mem)1196 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1197 const struct xdp_mem_info *mem)
1198 {
1199 refcount_inc(&pool->user_cnt);
1200 pool->disconnect = disconnect;
1201 pool->xdp_mem_id = mem->id;
1202 }
1203
page_pool_disable_direct_recycling(struct page_pool * pool)1204 void page_pool_disable_direct_recycling(struct page_pool *pool)
1205 {
1206 /* Disable direct recycling based on pool->cpuid.
1207 * Paired with READ_ONCE() in page_pool_napi_local().
1208 */
1209 WRITE_ONCE(pool->cpuid, -1);
1210
1211 if (!pool->p.napi)
1212 return;
1213
1214 napi_assert_will_not_race(pool->p.napi);
1215
1216 mutex_lock(&page_pools_lock);
1217 WRITE_ONCE(pool->p.napi, NULL);
1218 mutex_unlock(&page_pools_lock);
1219 }
1220 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1221
page_pool_destroy(struct page_pool * pool)1222 void page_pool_destroy(struct page_pool *pool)
1223 {
1224 if (!pool)
1225 return;
1226
1227 if (!page_pool_put(pool))
1228 return;
1229
1230 page_pool_disable_direct_recycling(pool);
1231 page_pool_free_frag(pool);
1232
1233 if (!page_pool_release(pool))
1234 return;
1235
1236 page_pool_detached(pool);
1237 pool->defer_start = jiffies;
1238 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1239
1240 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1241 schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1242 }
1243 EXPORT_SYMBOL(page_pool_destroy);
1244
1245 /* Caller must provide appropriate safe context, e.g. NAPI. */
page_pool_update_nid(struct page_pool * pool,int new_nid)1246 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1247 {
1248 netmem_ref netmem;
1249
1250 trace_page_pool_update_nid(pool, new_nid);
1251 pool->p.nid = new_nid;
1252
1253 /* Flush pool alloc cache, as refill will check NUMA node */
1254 while (pool->alloc.count) {
1255 netmem = pool->alloc.cache[--pool->alloc.count];
1256 page_pool_return_page(pool, netmem);
1257 }
1258 }
1259 EXPORT_SYMBOL(page_pool_update_nid);
1260
net_mp_niov_set_dma_addr(struct net_iov * niov,dma_addr_t addr)1261 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr)
1262 {
1263 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr);
1264 }
1265
1266 /* Associate a niov with a page pool. Should follow with a matching
1267 * net_mp_niov_clear_page_pool()
1268 */
net_mp_niov_set_page_pool(struct page_pool * pool,struct net_iov * niov)1269 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov)
1270 {
1271 netmem_ref netmem = net_iov_to_netmem(niov);
1272
1273 page_pool_set_pp_info(pool, netmem);
1274
1275 pool->pages_state_hold_cnt++;
1276 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
1277 }
1278
1279 /* Disassociate a niov from a page pool. Should only be used in the
1280 * ->release_netmem() path.
1281 */
net_mp_niov_clear_page_pool(struct net_iov * niov)1282 void net_mp_niov_clear_page_pool(struct net_iov *niov)
1283 {
1284 netmem_ref netmem = net_iov_to_netmem(niov);
1285
1286 page_pool_clear_pp_info(netmem);
1287 }
1288