1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 *
126 * Run the eBPF program and then cut skb->data to correct size returned by
127 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128 * than pkt_len we keep whole skb->data. This is the socket level
129 * wrapper to bpf_prog_run. It returns 0 if the packet should
130 * be accepted or -EPERM if the packet should be tossed.
131 *
132 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 int err;
136 struct sk_filter *filter;
137
138 /*
139 * If the skb was allocated from pfmemalloc reserves, only
140 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 * helping free memory
142 */
143 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 return -ENOMEM;
146 }
147 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 if (err)
149 return err;
150
151 err = security_sock_rcv_skb(sk, skb);
152 if (err)
153 return err;
154
155 rcu_read_lock();
156 filter = rcu_dereference(sk->sk_filter);
157 if (filter) {
158 struct sock *save_sk = skb->sk;
159 unsigned int pkt_len;
160
161 skb->sk = sk;
162 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 skb->sk = save_sk;
164 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 }
166 rcu_read_unlock();
167
168 return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 return skb_get_poff(skb);
175 }
176
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 struct nlattr *nla;
180
181 if (skb_is_nonlinear(skb))
182 return 0;
183
184 if (skb->len < sizeof(struct nlattr))
185 return 0;
186
187 if (a > skb->len - sizeof(struct nlattr))
188 return 0;
189
190 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 if (nla)
192 return (void *) nla - (void *) skb->data;
193
194 return 0;
195 }
196
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 struct nlattr *nla;
200
201 if (skb_is_nonlinear(skb))
202 return 0;
203
204 if (skb->len < sizeof(struct nlattr))
205 return 0;
206
207 if (a > skb->len - sizeof(struct nlattr))
208 return 0;
209
210 nla = (struct nlattr *) &skb->data[a];
211 if (!nla_ok(nla, skb->len - a))
212 return 0;
213
214 nla = nla_find_nested(nla, x);
215 if (nla)
216 return (void *) nla - (void *) skb->data;
217
218 return 0;
219 }
220
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)221 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
222 data, int, headlen, int, offset)
223 {
224 u8 tmp, *ptr;
225 const int len = sizeof(tmp);
226
227 if (offset >= 0) {
228 if (headlen - offset >= len)
229 return *(u8 *)(data + offset);
230 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
231 return tmp;
232 } else {
233 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
234 if (likely(ptr))
235 return *(u8 *)ptr;
236 }
237
238 return -EFAULT;
239 }
240
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)241 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
242 int, offset)
243 {
244 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
245 offset);
246 }
247
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)248 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
249 data, int, headlen, int, offset)
250 {
251 __be16 tmp, *ptr;
252 const int len = sizeof(tmp);
253
254 if (offset >= 0) {
255 if (headlen - offset >= len)
256 return get_unaligned_be16(data + offset);
257 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
258 return be16_to_cpu(tmp);
259 } else {
260 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
261 if (likely(ptr))
262 return get_unaligned_be16(ptr);
263 }
264
265 return -EFAULT;
266 }
267
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)268 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
269 int, offset)
270 {
271 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
272 offset);
273 }
274
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)275 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
276 data, int, headlen, int, offset)
277 {
278 __be32 tmp, *ptr;
279 const int len = sizeof(tmp);
280
281 if (likely(offset >= 0)) {
282 if (headlen - offset >= len)
283 return get_unaligned_be32(data + offset);
284 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
285 return be32_to_cpu(tmp);
286 } else {
287 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
288 if (likely(ptr))
289 return get_unaligned_be32(ptr);
290 }
291
292 return -EFAULT;
293 }
294
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)295 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
296 int, offset)
297 {
298 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
299 offset);
300 }
301
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)302 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
303 struct bpf_insn *insn_buf)
304 {
305 struct bpf_insn *insn = insn_buf;
306
307 switch (skb_field) {
308 case SKF_AD_MARK:
309 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
310
311 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
312 offsetof(struct sk_buff, mark));
313 break;
314
315 case SKF_AD_PKTTYPE:
316 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
317 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
318 #ifdef __BIG_ENDIAN_BITFIELD
319 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
320 #endif
321 break;
322
323 case SKF_AD_QUEUE:
324 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
325
326 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
327 offsetof(struct sk_buff, queue_mapping));
328 break;
329
330 case SKF_AD_VLAN_TAG:
331 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
332
333 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
334 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 offsetof(struct sk_buff, vlan_tci));
336 break;
337 case SKF_AD_VLAN_TAG_PRESENT:
338 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
339 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
340 offsetof(struct sk_buff, vlan_all));
341 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
342 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
343 break;
344 }
345
346 return insn - insn_buf;
347 }
348
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)349 static bool convert_bpf_extensions(struct sock_filter *fp,
350 struct bpf_insn **insnp)
351 {
352 struct bpf_insn *insn = *insnp;
353 u32 cnt;
354
355 switch (fp->k) {
356 case SKF_AD_OFF + SKF_AD_PROTOCOL:
357 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
358
359 /* A = *(u16 *) (CTX + offsetof(protocol)) */
360 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
361 offsetof(struct sk_buff, protocol));
362 /* A = ntohs(A) [emitting a nop or swap16] */
363 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
364 break;
365
366 case SKF_AD_OFF + SKF_AD_PKTTYPE:
367 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
368 insn += cnt - 1;
369 break;
370
371 case SKF_AD_OFF + SKF_AD_IFINDEX:
372 case SKF_AD_OFF + SKF_AD_HATYPE:
373 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
374 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
375
376 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
377 BPF_REG_TMP, BPF_REG_CTX,
378 offsetof(struct sk_buff, dev));
379 /* if (tmp != 0) goto pc + 1 */
380 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
381 *insn++ = BPF_EXIT_INSN();
382 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
383 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
384 offsetof(struct net_device, ifindex));
385 else
386 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
387 offsetof(struct net_device, type));
388 break;
389
390 case SKF_AD_OFF + SKF_AD_MARK:
391 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
392 insn += cnt - 1;
393 break;
394
395 case SKF_AD_OFF + SKF_AD_RXHASH:
396 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
397
398 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
399 offsetof(struct sk_buff, hash));
400 break;
401
402 case SKF_AD_OFF + SKF_AD_QUEUE:
403 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
404 insn += cnt - 1;
405 break;
406
407 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
408 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
409 BPF_REG_A, BPF_REG_CTX, insn);
410 insn += cnt - 1;
411 break;
412
413 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
414 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
415 BPF_REG_A, BPF_REG_CTX, insn);
416 insn += cnt - 1;
417 break;
418
419 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
420 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
421
422 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
423 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
424 offsetof(struct sk_buff, vlan_proto));
425 /* A = ntohs(A) [emitting a nop or swap16] */
426 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
427 break;
428
429 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 case SKF_AD_OFF + SKF_AD_NLATTR:
431 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
432 case SKF_AD_OFF + SKF_AD_CPU:
433 case SKF_AD_OFF + SKF_AD_RANDOM:
434 /* arg1 = CTX */
435 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
436 /* arg2 = A */
437 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
438 /* arg3 = X */
439 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
440 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
441 switch (fp->k) {
442 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
443 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
444 break;
445 case SKF_AD_OFF + SKF_AD_NLATTR:
446 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
447 break;
448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
450 break;
451 case SKF_AD_OFF + SKF_AD_CPU:
452 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
453 break;
454 case SKF_AD_OFF + SKF_AD_RANDOM:
455 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
456 bpf_user_rnd_init_once();
457 break;
458 }
459 break;
460
461 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
462 /* A ^= X */
463 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
464 break;
465
466 default:
467 /* This is just a dummy call to avoid letting the compiler
468 * evict __bpf_call_base() as an optimization. Placed here
469 * where no-one bothers.
470 */
471 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
472 return false;
473 }
474
475 *insnp = insn;
476 return true;
477 }
478
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)479 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
480 {
481 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
482 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
483 bool endian = BPF_SIZE(fp->code) == BPF_H ||
484 BPF_SIZE(fp->code) == BPF_W;
485 bool indirect = BPF_MODE(fp->code) == BPF_IND;
486 const int ip_align = NET_IP_ALIGN;
487 struct bpf_insn *insn = *insnp;
488 int offset = fp->k;
489
490 if (!indirect &&
491 ((unaligned_ok && offset >= 0) ||
492 (!unaligned_ok && offset >= 0 &&
493 offset + ip_align >= 0 &&
494 offset + ip_align % size == 0))) {
495 bool ldx_off_ok = offset <= S16_MAX;
496
497 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
498 if (offset)
499 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
500 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
501 size, 2 + endian + (!ldx_off_ok * 2));
502 if (ldx_off_ok) {
503 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
504 BPF_REG_D, offset);
505 } else {
506 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
507 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
508 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
509 BPF_REG_TMP, 0);
510 }
511 if (endian)
512 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
513 *insn++ = BPF_JMP_A(8);
514 }
515
516 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
517 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
518 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
519 if (!indirect) {
520 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
521 } else {
522 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
523 if (fp->k)
524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
525 }
526
527 switch (BPF_SIZE(fp->code)) {
528 case BPF_B:
529 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
530 break;
531 case BPF_H:
532 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
533 break;
534 case BPF_W:
535 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
536 break;
537 default:
538 return false;
539 }
540
541 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
542 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
543 *insn = BPF_EXIT_INSN();
544
545 *insnp = insn;
546 return true;
547 }
548
549 /**
550 * bpf_convert_filter - convert filter program
551 * @prog: the user passed filter program
552 * @len: the length of the user passed filter program
553 * @new_prog: allocated 'struct bpf_prog' or NULL
554 * @new_len: pointer to store length of converted program
555 * @seen_ld_abs: bool whether we've seen ld_abs/ind
556 *
557 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
558 * style extended BPF (eBPF).
559 * Conversion workflow:
560 *
561 * 1) First pass for calculating the new program length:
562 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
563 *
564 * 2) 2nd pass to remap in two passes: 1st pass finds new
565 * jump offsets, 2nd pass remapping:
566 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
567 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)568 static int bpf_convert_filter(struct sock_filter *prog, int len,
569 struct bpf_prog *new_prog, int *new_len,
570 bool *seen_ld_abs)
571 {
572 int new_flen = 0, pass = 0, target, i, stack_off;
573 struct bpf_insn *new_insn, *first_insn = NULL;
574 struct sock_filter *fp;
575 int *addrs = NULL;
576 u8 bpf_src;
577
578 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
579 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
580
581 if (len <= 0 || len > BPF_MAXINSNS)
582 return -EINVAL;
583
584 if (new_prog) {
585 first_insn = new_prog->insnsi;
586 addrs = kcalloc(len, sizeof(*addrs),
587 GFP_KERNEL | __GFP_NOWARN);
588 if (!addrs)
589 return -ENOMEM;
590 }
591
592 do_pass:
593 new_insn = first_insn;
594 fp = prog;
595
596 /* Classic BPF related prologue emission. */
597 if (new_prog) {
598 /* Classic BPF expects A and X to be reset first. These need
599 * to be guaranteed to be the first two instructions.
600 */
601 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
602 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
603
604 /* All programs must keep CTX in callee saved BPF_REG_CTX.
605 * In eBPF case it's done by the compiler, here we need to
606 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
607 */
608 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
609 if (*seen_ld_abs) {
610 /* For packet access in classic BPF, cache skb->data
611 * in callee-saved BPF R8 and skb->len - skb->data_len
612 * (headlen) in BPF R9. Since classic BPF is read-only
613 * on CTX, we only need to cache it once.
614 */
615 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
616 BPF_REG_D, BPF_REG_CTX,
617 offsetof(struct sk_buff, data));
618 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
619 offsetof(struct sk_buff, len));
620 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
621 offsetof(struct sk_buff, data_len));
622 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
623 }
624 } else {
625 new_insn += 3;
626 }
627
628 for (i = 0; i < len; fp++, i++) {
629 struct bpf_insn tmp_insns[32] = { };
630 struct bpf_insn *insn = tmp_insns;
631
632 if (addrs)
633 addrs[i] = new_insn - first_insn;
634
635 switch (fp->code) {
636 /* All arithmetic insns and skb loads map as-is. */
637 case BPF_ALU | BPF_ADD | BPF_X:
638 case BPF_ALU | BPF_ADD | BPF_K:
639 case BPF_ALU | BPF_SUB | BPF_X:
640 case BPF_ALU | BPF_SUB | BPF_K:
641 case BPF_ALU | BPF_AND | BPF_X:
642 case BPF_ALU | BPF_AND | BPF_K:
643 case BPF_ALU | BPF_OR | BPF_X:
644 case BPF_ALU | BPF_OR | BPF_K:
645 case BPF_ALU | BPF_LSH | BPF_X:
646 case BPF_ALU | BPF_LSH | BPF_K:
647 case BPF_ALU | BPF_RSH | BPF_X:
648 case BPF_ALU | BPF_RSH | BPF_K:
649 case BPF_ALU | BPF_XOR | BPF_X:
650 case BPF_ALU | BPF_XOR | BPF_K:
651 case BPF_ALU | BPF_MUL | BPF_X:
652 case BPF_ALU | BPF_MUL | BPF_K:
653 case BPF_ALU | BPF_DIV | BPF_X:
654 case BPF_ALU | BPF_DIV | BPF_K:
655 case BPF_ALU | BPF_MOD | BPF_X:
656 case BPF_ALU | BPF_MOD | BPF_K:
657 case BPF_ALU | BPF_NEG:
658 case BPF_LD | BPF_ABS | BPF_W:
659 case BPF_LD | BPF_ABS | BPF_H:
660 case BPF_LD | BPF_ABS | BPF_B:
661 case BPF_LD | BPF_IND | BPF_W:
662 case BPF_LD | BPF_IND | BPF_H:
663 case BPF_LD | BPF_IND | BPF_B:
664 /* Check for overloaded BPF extension and
665 * directly convert it if found, otherwise
666 * just move on with mapping.
667 */
668 if (BPF_CLASS(fp->code) == BPF_LD &&
669 BPF_MODE(fp->code) == BPF_ABS &&
670 convert_bpf_extensions(fp, &insn))
671 break;
672 if (BPF_CLASS(fp->code) == BPF_LD &&
673 convert_bpf_ld_abs(fp, &insn)) {
674 *seen_ld_abs = true;
675 break;
676 }
677
678 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
679 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
680 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
681 /* Error with exception code on div/mod by 0.
682 * For cBPF programs, this was always return 0.
683 */
684 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
685 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
686 *insn++ = BPF_EXIT_INSN();
687 }
688
689 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
690 break;
691
692 /* Jump transformation cannot use BPF block macros
693 * everywhere as offset calculation and target updates
694 * require a bit more work than the rest, i.e. jump
695 * opcodes map as-is, but offsets need adjustment.
696 */
697
698 #define BPF_EMIT_JMP \
699 do { \
700 const s32 off_min = S16_MIN, off_max = S16_MAX; \
701 s32 off; \
702 \
703 if (target >= len || target < 0) \
704 goto err; \
705 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
706 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
707 off -= insn - tmp_insns; \
708 /* Reject anything not fitting into insn->off. */ \
709 if (off < off_min || off > off_max) \
710 goto err; \
711 insn->off = off; \
712 } while (0)
713
714 case BPF_JMP | BPF_JA:
715 target = i + fp->k + 1;
716 insn->code = fp->code;
717 BPF_EMIT_JMP;
718 break;
719
720 case BPF_JMP | BPF_JEQ | BPF_K:
721 case BPF_JMP | BPF_JEQ | BPF_X:
722 case BPF_JMP | BPF_JSET | BPF_K:
723 case BPF_JMP | BPF_JSET | BPF_X:
724 case BPF_JMP | BPF_JGT | BPF_K:
725 case BPF_JMP | BPF_JGT | BPF_X:
726 case BPF_JMP | BPF_JGE | BPF_K:
727 case BPF_JMP | BPF_JGE | BPF_X:
728 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
729 /* BPF immediates are signed, zero extend
730 * immediate into tmp register and use it
731 * in compare insn.
732 */
733 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
734
735 insn->dst_reg = BPF_REG_A;
736 insn->src_reg = BPF_REG_TMP;
737 bpf_src = BPF_X;
738 } else {
739 insn->dst_reg = BPF_REG_A;
740 insn->imm = fp->k;
741 bpf_src = BPF_SRC(fp->code);
742 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
743 }
744
745 /* Common case where 'jump_false' is next insn. */
746 if (fp->jf == 0) {
747 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
748 target = i + fp->jt + 1;
749 BPF_EMIT_JMP;
750 break;
751 }
752
753 /* Convert some jumps when 'jump_true' is next insn. */
754 if (fp->jt == 0) {
755 switch (BPF_OP(fp->code)) {
756 case BPF_JEQ:
757 insn->code = BPF_JMP | BPF_JNE | bpf_src;
758 break;
759 case BPF_JGT:
760 insn->code = BPF_JMP | BPF_JLE | bpf_src;
761 break;
762 case BPF_JGE:
763 insn->code = BPF_JMP | BPF_JLT | bpf_src;
764 break;
765 default:
766 goto jmp_rest;
767 }
768
769 target = i + fp->jf + 1;
770 BPF_EMIT_JMP;
771 break;
772 }
773 jmp_rest:
774 /* Other jumps are mapped into two insns: Jxx and JA. */
775 target = i + fp->jt + 1;
776 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
777 BPF_EMIT_JMP;
778 insn++;
779
780 insn->code = BPF_JMP | BPF_JA;
781 target = i + fp->jf + 1;
782 BPF_EMIT_JMP;
783 break;
784
785 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
786 case BPF_LDX | BPF_MSH | BPF_B: {
787 struct sock_filter tmp = {
788 .code = BPF_LD | BPF_ABS | BPF_B,
789 .k = fp->k,
790 };
791
792 *seen_ld_abs = true;
793
794 /* X = A */
795 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
797 convert_bpf_ld_abs(&tmp, &insn);
798 insn++;
799 /* A &= 0xf */
800 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
801 /* A <<= 2 */
802 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
803 /* tmp = X */
804 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
805 /* X = A */
806 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
807 /* A = tmp */
808 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
809 break;
810 }
811 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
812 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
813 */
814 case BPF_RET | BPF_A:
815 case BPF_RET | BPF_K:
816 if (BPF_RVAL(fp->code) == BPF_K)
817 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
818 0, fp->k);
819 *insn = BPF_EXIT_INSN();
820 break;
821
822 /* Store to stack. */
823 case BPF_ST:
824 case BPF_STX:
825 stack_off = fp->k * 4 + 4;
826 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
827 BPF_ST ? BPF_REG_A : BPF_REG_X,
828 -stack_off);
829 /* check_load_and_stores() verifies that classic BPF can
830 * load from stack only after write, so tracking
831 * stack_depth for ST|STX insns is enough
832 */
833 if (new_prog && new_prog->aux->stack_depth < stack_off)
834 new_prog->aux->stack_depth = stack_off;
835 break;
836
837 /* Load from stack. */
838 case BPF_LD | BPF_MEM:
839 case BPF_LDX | BPF_MEM:
840 stack_off = fp->k * 4 + 4;
841 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
842 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
843 -stack_off);
844 break;
845
846 /* A = K or X = K */
847 case BPF_LD | BPF_IMM:
848 case BPF_LDX | BPF_IMM:
849 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
850 BPF_REG_A : BPF_REG_X, fp->k);
851 break;
852
853 /* X = A */
854 case BPF_MISC | BPF_TAX:
855 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
856 break;
857
858 /* A = X */
859 case BPF_MISC | BPF_TXA:
860 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
861 break;
862
863 /* A = skb->len or X = skb->len */
864 case BPF_LD | BPF_W | BPF_LEN:
865 case BPF_LDX | BPF_W | BPF_LEN:
866 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
867 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
868 offsetof(struct sk_buff, len));
869 break;
870
871 /* Access seccomp_data fields. */
872 case BPF_LDX | BPF_ABS | BPF_W:
873 /* A = *(u32 *) (ctx + K) */
874 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
875 break;
876
877 /* Unknown instruction. */
878 default:
879 goto err;
880 }
881
882 insn++;
883 if (new_prog)
884 memcpy(new_insn, tmp_insns,
885 sizeof(*insn) * (insn - tmp_insns));
886 new_insn += insn - tmp_insns;
887 }
888
889 if (!new_prog) {
890 /* Only calculating new length. */
891 *new_len = new_insn - first_insn;
892 if (*seen_ld_abs)
893 *new_len += 4; /* Prologue bits. */
894 return 0;
895 }
896
897 pass++;
898 if (new_flen != new_insn - first_insn) {
899 new_flen = new_insn - first_insn;
900 if (pass > 2)
901 goto err;
902 goto do_pass;
903 }
904
905 kfree(addrs);
906 BUG_ON(*new_len != new_flen);
907 return 0;
908 err:
909 kfree(addrs);
910 return -EINVAL;
911 }
912
913 /* Security:
914 *
915 * As we dont want to clear mem[] array for each packet going through
916 * __bpf_prog_run(), we check that filter loaded by user never try to read
917 * a cell if not previously written, and we check all branches to be sure
918 * a malicious user doesn't try to abuse us.
919 */
check_load_and_stores(const struct sock_filter * filter,int flen)920 static int check_load_and_stores(const struct sock_filter *filter, int flen)
921 {
922 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
923 int pc, ret = 0;
924
925 BUILD_BUG_ON(BPF_MEMWORDS > 16);
926
927 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
928 if (!masks)
929 return -ENOMEM;
930
931 memset(masks, 0xff, flen * sizeof(*masks));
932
933 for (pc = 0; pc < flen; pc++) {
934 memvalid &= masks[pc];
935
936 switch (filter[pc].code) {
937 case BPF_ST:
938 case BPF_STX:
939 memvalid |= (1 << filter[pc].k);
940 break;
941 case BPF_LD | BPF_MEM:
942 case BPF_LDX | BPF_MEM:
943 if (!(memvalid & (1 << filter[pc].k))) {
944 ret = -EINVAL;
945 goto error;
946 }
947 break;
948 case BPF_JMP | BPF_JA:
949 /* A jump must set masks on target */
950 masks[pc + 1 + filter[pc].k] &= memvalid;
951 memvalid = ~0;
952 break;
953 case BPF_JMP | BPF_JEQ | BPF_K:
954 case BPF_JMP | BPF_JEQ | BPF_X:
955 case BPF_JMP | BPF_JGE | BPF_K:
956 case BPF_JMP | BPF_JGE | BPF_X:
957 case BPF_JMP | BPF_JGT | BPF_K:
958 case BPF_JMP | BPF_JGT | BPF_X:
959 case BPF_JMP | BPF_JSET | BPF_K:
960 case BPF_JMP | BPF_JSET | BPF_X:
961 /* A jump must set masks on targets */
962 masks[pc + 1 + filter[pc].jt] &= memvalid;
963 masks[pc + 1 + filter[pc].jf] &= memvalid;
964 memvalid = ~0;
965 break;
966 }
967 }
968 error:
969 kfree(masks);
970 return ret;
971 }
972
chk_code_allowed(u16 code_to_probe)973 static bool chk_code_allowed(u16 code_to_probe)
974 {
975 static const bool codes[] = {
976 /* 32 bit ALU operations */
977 [BPF_ALU | BPF_ADD | BPF_K] = true,
978 [BPF_ALU | BPF_ADD | BPF_X] = true,
979 [BPF_ALU | BPF_SUB | BPF_K] = true,
980 [BPF_ALU | BPF_SUB | BPF_X] = true,
981 [BPF_ALU | BPF_MUL | BPF_K] = true,
982 [BPF_ALU | BPF_MUL | BPF_X] = true,
983 [BPF_ALU | BPF_DIV | BPF_K] = true,
984 [BPF_ALU | BPF_DIV | BPF_X] = true,
985 [BPF_ALU | BPF_MOD | BPF_K] = true,
986 [BPF_ALU | BPF_MOD | BPF_X] = true,
987 [BPF_ALU | BPF_AND | BPF_K] = true,
988 [BPF_ALU | BPF_AND | BPF_X] = true,
989 [BPF_ALU | BPF_OR | BPF_K] = true,
990 [BPF_ALU | BPF_OR | BPF_X] = true,
991 [BPF_ALU | BPF_XOR | BPF_K] = true,
992 [BPF_ALU | BPF_XOR | BPF_X] = true,
993 [BPF_ALU | BPF_LSH | BPF_K] = true,
994 [BPF_ALU | BPF_LSH | BPF_X] = true,
995 [BPF_ALU | BPF_RSH | BPF_K] = true,
996 [BPF_ALU | BPF_RSH | BPF_X] = true,
997 [BPF_ALU | BPF_NEG] = true,
998 /* Load instructions */
999 [BPF_LD | BPF_W | BPF_ABS] = true,
1000 [BPF_LD | BPF_H | BPF_ABS] = true,
1001 [BPF_LD | BPF_B | BPF_ABS] = true,
1002 [BPF_LD | BPF_W | BPF_LEN] = true,
1003 [BPF_LD | BPF_W | BPF_IND] = true,
1004 [BPF_LD | BPF_H | BPF_IND] = true,
1005 [BPF_LD | BPF_B | BPF_IND] = true,
1006 [BPF_LD | BPF_IMM] = true,
1007 [BPF_LD | BPF_MEM] = true,
1008 [BPF_LDX | BPF_W | BPF_LEN] = true,
1009 [BPF_LDX | BPF_B | BPF_MSH] = true,
1010 [BPF_LDX | BPF_IMM] = true,
1011 [BPF_LDX | BPF_MEM] = true,
1012 /* Store instructions */
1013 [BPF_ST] = true,
1014 [BPF_STX] = true,
1015 /* Misc instructions */
1016 [BPF_MISC | BPF_TAX] = true,
1017 [BPF_MISC | BPF_TXA] = true,
1018 /* Return instructions */
1019 [BPF_RET | BPF_K] = true,
1020 [BPF_RET | BPF_A] = true,
1021 /* Jump instructions */
1022 [BPF_JMP | BPF_JA] = true,
1023 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1024 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1025 [BPF_JMP | BPF_JGE | BPF_K] = true,
1026 [BPF_JMP | BPF_JGE | BPF_X] = true,
1027 [BPF_JMP | BPF_JGT | BPF_K] = true,
1028 [BPF_JMP | BPF_JGT | BPF_X] = true,
1029 [BPF_JMP | BPF_JSET | BPF_K] = true,
1030 [BPF_JMP | BPF_JSET | BPF_X] = true,
1031 };
1032
1033 if (code_to_probe >= ARRAY_SIZE(codes))
1034 return false;
1035
1036 return codes[code_to_probe];
1037 }
1038
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1039 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1040 unsigned int flen)
1041 {
1042 if (filter == NULL)
1043 return false;
1044 if (flen == 0 || flen > BPF_MAXINSNS)
1045 return false;
1046
1047 return true;
1048 }
1049
1050 /**
1051 * bpf_check_classic - verify socket filter code
1052 * @filter: filter to verify
1053 * @flen: length of filter
1054 *
1055 * Check the user's filter code. If we let some ugly
1056 * filter code slip through kaboom! The filter must contain
1057 * no references or jumps that are out of range, no illegal
1058 * instructions, and must end with a RET instruction.
1059 *
1060 * All jumps are forward as they are not signed.
1061 *
1062 * Returns 0 if the rule set is legal or -EINVAL if not.
1063 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1064 static int bpf_check_classic(const struct sock_filter *filter,
1065 unsigned int flen)
1066 {
1067 bool anc_found;
1068 int pc;
1069
1070 /* Check the filter code now */
1071 for (pc = 0; pc < flen; pc++) {
1072 const struct sock_filter *ftest = &filter[pc];
1073
1074 /* May we actually operate on this code? */
1075 if (!chk_code_allowed(ftest->code))
1076 return -EINVAL;
1077
1078 /* Some instructions need special checks */
1079 switch (ftest->code) {
1080 case BPF_ALU | BPF_DIV | BPF_K:
1081 case BPF_ALU | BPF_MOD | BPF_K:
1082 /* Check for division by zero */
1083 if (ftest->k == 0)
1084 return -EINVAL;
1085 break;
1086 case BPF_ALU | BPF_LSH | BPF_K:
1087 case BPF_ALU | BPF_RSH | BPF_K:
1088 if (ftest->k >= 32)
1089 return -EINVAL;
1090 break;
1091 case BPF_LD | BPF_MEM:
1092 case BPF_LDX | BPF_MEM:
1093 case BPF_ST:
1094 case BPF_STX:
1095 /* Check for invalid memory addresses */
1096 if (ftest->k >= BPF_MEMWORDS)
1097 return -EINVAL;
1098 break;
1099 case BPF_JMP | BPF_JA:
1100 /* Note, the large ftest->k might cause loops.
1101 * Compare this with conditional jumps below,
1102 * where offsets are limited. --ANK (981016)
1103 */
1104 if (ftest->k >= (unsigned int)(flen - pc - 1))
1105 return -EINVAL;
1106 break;
1107 case BPF_JMP | BPF_JEQ | BPF_K:
1108 case BPF_JMP | BPF_JEQ | BPF_X:
1109 case BPF_JMP | BPF_JGE | BPF_K:
1110 case BPF_JMP | BPF_JGE | BPF_X:
1111 case BPF_JMP | BPF_JGT | BPF_K:
1112 case BPF_JMP | BPF_JGT | BPF_X:
1113 case BPF_JMP | BPF_JSET | BPF_K:
1114 case BPF_JMP | BPF_JSET | BPF_X:
1115 /* Both conditionals must be safe */
1116 if (pc + ftest->jt + 1 >= flen ||
1117 pc + ftest->jf + 1 >= flen)
1118 return -EINVAL;
1119 break;
1120 case BPF_LD | BPF_W | BPF_ABS:
1121 case BPF_LD | BPF_H | BPF_ABS:
1122 case BPF_LD | BPF_B | BPF_ABS:
1123 anc_found = false;
1124 if (bpf_anc_helper(ftest) & BPF_ANC)
1125 anc_found = true;
1126 /* Ancillary operation unknown or unsupported */
1127 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1128 return -EINVAL;
1129 }
1130 }
1131
1132 /* Last instruction must be a RET code */
1133 switch (filter[flen - 1].code) {
1134 case BPF_RET | BPF_K:
1135 case BPF_RET | BPF_A:
1136 return check_load_and_stores(filter, flen);
1137 }
1138
1139 return -EINVAL;
1140 }
1141
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1142 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1143 const struct sock_fprog *fprog)
1144 {
1145 unsigned int fsize = bpf_classic_proglen(fprog);
1146 struct sock_fprog_kern *fkprog;
1147
1148 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1149 if (!fp->orig_prog)
1150 return -ENOMEM;
1151
1152 fkprog = fp->orig_prog;
1153 fkprog->len = fprog->len;
1154
1155 fkprog->filter = kmemdup(fp->insns, fsize,
1156 GFP_KERNEL | __GFP_NOWARN);
1157 if (!fkprog->filter) {
1158 kfree(fp->orig_prog);
1159 return -ENOMEM;
1160 }
1161
1162 return 0;
1163 }
1164
bpf_release_orig_filter(struct bpf_prog * fp)1165 static void bpf_release_orig_filter(struct bpf_prog *fp)
1166 {
1167 struct sock_fprog_kern *fprog = fp->orig_prog;
1168
1169 if (fprog) {
1170 kfree(fprog->filter);
1171 kfree(fprog);
1172 }
1173 }
1174
__bpf_prog_release(struct bpf_prog * prog)1175 static void __bpf_prog_release(struct bpf_prog *prog)
1176 {
1177 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1178 bpf_prog_put(prog);
1179 } else {
1180 bpf_release_orig_filter(prog);
1181 bpf_prog_free(prog);
1182 }
1183 }
1184
__sk_filter_release(struct sk_filter * fp)1185 static void __sk_filter_release(struct sk_filter *fp)
1186 {
1187 __bpf_prog_release(fp->prog);
1188 kfree(fp);
1189 }
1190
1191 /**
1192 * sk_filter_release_rcu - Release a socket filter by rcu_head
1193 * @rcu: rcu_head that contains the sk_filter to free
1194 */
sk_filter_release_rcu(struct rcu_head * rcu)1195 static void sk_filter_release_rcu(struct rcu_head *rcu)
1196 {
1197 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1198
1199 __sk_filter_release(fp);
1200 }
1201
1202 /**
1203 * sk_filter_release - release a socket filter
1204 * @fp: filter to remove
1205 *
1206 * Remove a filter from a socket and release its resources.
1207 */
sk_filter_release(struct sk_filter * fp)1208 static void sk_filter_release(struct sk_filter *fp)
1209 {
1210 if (refcount_dec_and_test(&fp->refcnt))
1211 call_rcu(&fp->rcu, sk_filter_release_rcu);
1212 }
1213
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1214 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 u32 filter_size = bpf_prog_size(fp->prog->len);
1217
1218 atomic_sub(filter_size, &sk->sk_omem_alloc);
1219 sk_filter_release(fp);
1220 }
1221
1222 /* try to charge the socket memory if there is space available
1223 * return true on success
1224 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1225 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1228 u32 filter_size = bpf_prog_size(fp->prog->len);
1229
1230 /* same check as in sock_kmalloc() */
1231 if (filter_size <= optmem_max &&
1232 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1233 atomic_add(filter_size, &sk->sk_omem_alloc);
1234 return true;
1235 }
1236 return false;
1237 }
1238
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1239 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1240 {
1241 if (!refcount_inc_not_zero(&fp->refcnt))
1242 return false;
1243
1244 if (!__sk_filter_charge(sk, fp)) {
1245 sk_filter_release(fp);
1246 return false;
1247 }
1248 return true;
1249 }
1250
bpf_migrate_filter(struct bpf_prog * fp)1251 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1252 {
1253 struct sock_filter *old_prog;
1254 struct bpf_prog *old_fp;
1255 int err, new_len, old_len = fp->len;
1256 bool seen_ld_abs = false;
1257
1258 /* We are free to overwrite insns et al right here as it won't be used at
1259 * this point in time anymore internally after the migration to the eBPF
1260 * instruction representation.
1261 */
1262 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1263 sizeof(struct bpf_insn));
1264
1265 /* Conversion cannot happen on overlapping memory areas,
1266 * so we need to keep the user BPF around until the 2nd
1267 * pass. At this time, the user BPF is stored in fp->insns.
1268 */
1269 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1270 GFP_KERNEL | __GFP_NOWARN);
1271 if (!old_prog) {
1272 err = -ENOMEM;
1273 goto out_err;
1274 }
1275
1276 /* 1st pass: calculate the new program length. */
1277 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1278 &seen_ld_abs);
1279 if (err)
1280 goto out_err_free;
1281
1282 /* Expand fp for appending the new filter representation. */
1283 old_fp = fp;
1284 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1285 if (!fp) {
1286 /* The old_fp is still around in case we couldn't
1287 * allocate new memory, so uncharge on that one.
1288 */
1289 fp = old_fp;
1290 err = -ENOMEM;
1291 goto out_err_free;
1292 }
1293
1294 fp->len = new_len;
1295
1296 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1297 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1298 &seen_ld_abs);
1299 if (err)
1300 /* 2nd bpf_convert_filter() can fail only if it fails
1301 * to allocate memory, remapping must succeed. Note,
1302 * that at this time old_fp has already been released
1303 * by krealloc().
1304 */
1305 goto out_err_free;
1306
1307 fp = bpf_prog_select_runtime(fp, &err);
1308 if (err)
1309 goto out_err_free;
1310
1311 kfree(old_prog);
1312 return fp;
1313
1314 out_err_free:
1315 kfree(old_prog);
1316 out_err:
1317 __bpf_prog_release(fp);
1318 return ERR_PTR(err);
1319 }
1320
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1321 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1322 bpf_aux_classic_check_t trans)
1323 {
1324 int err;
1325
1326 fp->bpf_func = NULL;
1327 fp->jited = 0;
1328
1329 err = bpf_check_classic(fp->insns, fp->len);
1330 if (err) {
1331 __bpf_prog_release(fp);
1332 return ERR_PTR(err);
1333 }
1334
1335 /* There might be additional checks and transformations
1336 * needed on classic filters, f.e. in case of seccomp.
1337 */
1338 if (trans) {
1339 err = trans(fp->insns, fp->len);
1340 if (err) {
1341 __bpf_prog_release(fp);
1342 return ERR_PTR(err);
1343 }
1344 }
1345
1346 /* Probe if we can JIT compile the filter and if so, do
1347 * the compilation of the filter.
1348 */
1349 bpf_jit_compile(fp);
1350
1351 /* JIT compiler couldn't process this filter, so do the eBPF translation
1352 * for the optimized interpreter.
1353 */
1354 if (!fp->jited)
1355 fp = bpf_migrate_filter(fp);
1356
1357 return fp;
1358 }
1359
1360 /**
1361 * bpf_prog_create - create an unattached filter
1362 * @pfp: the unattached filter that is created
1363 * @fprog: the filter program
1364 *
1365 * Create a filter independent of any socket. We first run some
1366 * sanity checks on it to make sure it does not explode on us later.
1367 * If an error occurs or there is insufficient memory for the filter
1368 * a negative errno code is returned. On success the return is zero.
1369 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1370 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1371 {
1372 unsigned int fsize = bpf_classic_proglen(fprog);
1373 struct bpf_prog *fp;
1374
1375 /* Make sure new filter is there and in the right amounts. */
1376 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1377 return -EINVAL;
1378
1379 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1380 if (!fp)
1381 return -ENOMEM;
1382
1383 memcpy(fp->insns, fprog->filter, fsize);
1384
1385 fp->len = fprog->len;
1386 /* Since unattached filters are not copied back to user
1387 * space through sk_get_filter(), we do not need to hold
1388 * a copy here, and can spare us the work.
1389 */
1390 fp->orig_prog = NULL;
1391
1392 /* bpf_prepare_filter() already takes care of freeing
1393 * memory in case something goes wrong.
1394 */
1395 fp = bpf_prepare_filter(fp, NULL);
1396 if (IS_ERR(fp))
1397 return PTR_ERR(fp);
1398
1399 *pfp = fp;
1400 return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(bpf_prog_create);
1403
1404 /**
1405 * bpf_prog_create_from_user - create an unattached filter from user buffer
1406 * @pfp: the unattached filter that is created
1407 * @fprog: the filter program
1408 * @trans: post-classic verifier transformation handler
1409 * @save_orig: save classic BPF program
1410 *
1411 * This function effectively does the same as bpf_prog_create(), only
1412 * that it builds up its insns buffer from user space provided buffer.
1413 * It also allows for passing a bpf_aux_classic_check_t handler.
1414 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1415 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1416 bpf_aux_classic_check_t trans, bool save_orig)
1417 {
1418 unsigned int fsize = bpf_classic_proglen(fprog);
1419 struct bpf_prog *fp;
1420 int err;
1421
1422 /* Make sure new filter is there and in the right amounts. */
1423 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1424 return -EINVAL;
1425
1426 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1427 if (!fp)
1428 return -ENOMEM;
1429
1430 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1431 __bpf_prog_free(fp);
1432 return -EFAULT;
1433 }
1434
1435 fp->len = fprog->len;
1436 fp->orig_prog = NULL;
1437
1438 if (save_orig) {
1439 err = bpf_prog_store_orig_filter(fp, fprog);
1440 if (err) {
1441 __bpf_prog_free(fp);
1442 return -ENOMEM;
1443 }
1444 }
1445
1446 /* bpf_prepare_filter() already takes care of freeing
1447 * memory in case something goes wrong.
1448 */
1449 fp = bpf_prepare_filter(fp, trans);
1450 if (IS_ERR(fp))
1451 return PTR_ERR(fp);
1452
1453 *pfp = fp;
1454 return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1457
bpf_prog_destroy(struct bpf_prog * fp)1458 void bpf_prog_destroy(struct bpf_prog *fp)
1459 {
1460 __bpf_prog_release(fp);
1461 }
1462 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1463
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1464 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1465 {
1466 struct sk_filter *fp, *old_fp;
1467
1468 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1469 if (!fp)
1470 return -ENOMEM;
1471
1472 fp->prog = prog;
1473
1474 if (!__sk_filter_charge(sk, fp)) {
1475 kfree(fp);
1476 return -ENOMEM;
1477 }
1478 refcount_set(&fp->refcnt, 1);
1479
1480 old_fp = rcu_dereference_protected(sk->sk_filter,
1481 lockdep_sock_is_held(sk));
1482 rcu_assign_pointer(sk->sk_filter, fp);
1483
1484 if (old_fp)
1485 sk_filter_uncharge(sk, old_fp);
1486
1487 return 0;
1488 }
1489
1490 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1491 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1492 {
1493 unsigned int fsize = bpf_classic_proglen(fprog);
1494 struct bpf_prog *prog;
1495 int err;
1496
1497 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1498 return ERR_PTR(-EPERM);
1499
1500 /* Make sure new filter is there and in the right amounts. */
1501 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1502 return ERR_PTR(-EINVAL);
1503
1504 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1505 if (!prog)
1506 return ERR_PTR(-ENOMEM);
1507
1508 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1509 __bpf_prog_free(prog);
1510 return ERR_PTR(-EFAULT);
1511 }
1512
1513 prog->len = fprog->len;
1514
1515 err = bpf_prog_store_orig_filter(prog, fprog);
1516 if (err) {
1517 __bpf_prog_free(prog);
1518 return ERR_PTR(-ENOMEM);
1519 }
1520
1521 /* bpf_prepare_filter() already takes care of freeing
1522 * memory in case something goes wrong.
1523 */
1524 return bpf_prepare_filter(prog, NULL);
1525 }
1526
1527 /**
1528 * sk_attach_filter - attach a socket filter
1529 * @fprog: the filter program
1530 * @sk: the socket to use
1531 *
1532 * Attach the user's filter code. We first run some sanity checks on
1533 * it to make sure it does not explode on us later. If an error
1534 * occurs or there is insufficient memory for the filter a negative
1535 * errno code is returned. On success the return is zero.
1536 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1537 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1538 {
1539 struct bpf_prog *prog = __get_filter(fprog, sk);
1540 int err;
1541
1542 if (IS_ERR(prog))
1543 return PTR_ERR(prog);
1544
1545 err = __sk_attach_prog(prog, sk);
1546 if (err < 0) {
1547 __bpf_prog_release(prog);
1548 return err;
1549 }
1550
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(sk_attach_filter);
1554
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1555 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1556 {
1557 struct bpf_prog *prog = __get_filter(fprog, sk);
1558 int err, optmem_max;
1559
1560 if (IS_ERR(prog))
1561 return PTR_ERR(prog);
1562
1563 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1564 if (bpf_prog_size(prog->len) > optmem_max)
1565 err = -ENOMEM;
1566 else
1567 err = reuseport_attach_prog(sk, prog);
1568
1569 if (err)
1570 __bpf_prog_release(prog);
1571
1572 return err;
1573 }
1574
__get_bpf(u32 ufd,struct sock * sk)1575 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1576 {
1577 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1578 return ERR_PTR(-EPERM);
1579
1580 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1581 }
1582
sk_attach_bpf(u32 ufd,struct sock * sk)1583 int sk_attach_bpf(u32 ufd, struct sock *sk)
1584 {
1585 struct bpf_prog *prog = __get_bpf(ufd, sk);
1586 int err;
1587
1588 if (IS_ERR(prog))
1589 return PTR_ERR(prog);
1590
1591 err = __sk_attach_prog(prog, sk);
1592 if (err < 0) {
1593 bpf_prog_put(prog);
1594 return err;
1595 }
1596
1597 return 0;
1598 }
1599
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 struct bpf_prog *prog;
1603 int err, optmem_max;
1604
1605 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1606 return -EPERM;
1607
1608 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1609 if (PTR_ERR(prog) == -EINVAL)
1610 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1611 if (IS_ERR(prog))
1612 return PTR_ERR(prog);
1613
1614 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1615 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1616 * bpf prog (e.g. sockmap). It depends on the
1617 * limitation imposed by bpf_prog_load().
1618 * Hence, sysctl_optmem_max is not checked.
1619 */
1620 if ((sk->sk_type != SOCK_STREAM &&
1621 sk->sk_type != SOCK_DGRAM) ||
1622 (sk->sk_protocol != IPPROTO_UDP &&
1623 sk->sk_protocol != IPPROTO_TCP) ||
1624 (sk->sk_family != AF_INET &&
1625 sk->sk_family != AF_INET6)) {
1626 err = -ENOTSUPP;
1627 goto err_prog_put;
1628 }
1629 } else {
1630 /* BPF_PROG_TYPE_SOCKET_FILTER */
1631 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1632 if (bpf_prog_size(prog->len) > optmem_max) {
1633 err = -ENOMEM;
1634 goto err_prog_put;
1635 }
1636 }
1637
1638 err = reuseport_attach_prog(sk, prog);
1639 err_prog_put:
1640 if (err)
1641 bpf_prog_put(prog);
1642
1643 return err;
1644 }
1645
sk_reuseport_prog_free(struct bpf_prog * prog)1646 void sk_reuseport_prog_free(struct bpf_prog *prog)
1647 {
1648 if (!prog)
1649 return;
1650
1651 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1652 bpf_prog_put(prog);
1653 else
1654 bpf_prog_destroy(prog);
1655 }
1656
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 unsigned int write_len)
1659 {
1660 #ifdef CONFIG_DEBUG_NET
1661 /* Avoid a splat in pskb_may_pull_reason() */
1662 if (write_len > INT_MAX)
1663 return -EINVAL;
1664 #endif
1665 return skb_ensure_writable(skb, write_len);
1666 }
1667
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1668 static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 unsigned int write_len)
1670 {
1671 int err = __bpf_try_make_writable(skb, write_len);
1672
1673 bpf_compute_data_pointers(skb);
1674 return err;
1675 }
1676
bpf_try_make_head_writable(struct sk_buff * skb)1677 static int bpf_try_make_head_writable(struct sk_buff *skb)
1678 {
1679 return bpf_try_make_writable(skb, skb_headlen(skb));
1680 }
1681
bpf_push_mac_rcsum(struct sk_buff * skb)1682 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683 {
1684 if (skb_at_tc_ingress(skb))
1685 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686 }
1687
bpf_pull_mac_rcsum(struct sk_buff * skb)1688 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689 {
1690 if (skb_at_tc_ingress(skb))
1691 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692 }
1693
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1694 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 const void *, from, u32, len, u64, flags)
1696 {
1697 void *ptr;
1698
1699 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 return -EINVAL;
1701 if (unlikely(offset > INT_MAX))
1702 return -EFAULT;
1703 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 return -EFAULT;
1705
1706 ptr = skb->data + offset;
1707 if (flags & BPF_F_RECOMPUTE_CSUM)
1708 __skb_postpull_rcsum(skb, ptr, len, offset);
1709
1710 memcpy(ptr, from, len);
1711
1712 if (flags & BPF_F_RECOMPUTE_CSUM)
1713 __skb_postpush_rcsum(skb, ptr, len, offset);
1714 if (flags & BPF_F_INVALIDATE_HASH)
1715 skb_clear_hash(skb);
1716
1717 return 0;
1718 }
1719
1720 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 .func = bpf_skb_store_bytes,
1722 .gpl_only = false,
1723 .ret_type = RET_INTEGER,
1724 .arg1_type = ARG_PTR_TO_CTX,
1725 .arg2_type = ARG_ANYTHING,
1726 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1727 .arg4_type = ARG_CONST_SIZE,
1728 .arg5_type = ARG_ANYTHING,
1729 };
1730
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1731 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 u32 len, u64 flags)
1733 {
1734 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735 }
1736
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1737 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 void *, to, u32, len)
1739 {
1740 void *ptr;
1741
1742 if (unlikely(offset > INT_MAX))
1743 goto err_clear;
1744
1745 ptr = skb_header_pointer(skb, offset, len, to);
1746 if (unlikely(!ptr))
1747 goto err_clear;
1748 if (ptr != to)
1749 memcpy(to, ptr, len);
1750
1751 return 0;
1752 err_clear:
1753 memset(to, 0, len);
1754 return -EFAULT;
1755 }
1756
1757 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 .func = bpf_skb_load_bytes,
1759 .gpl_only = false,
1760 .ret_type = RET_INTEGER,
1761 .arg1_type = ARG_PTR_TO_CTX,
1762 .arg2_type = ARG_ANYTHING,
1763 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1764 .arg4_type = ARG_CONST_SIZE,
1765 };
1766
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1767 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768 {
1769 return ____bpf_skb_load_bytes(skb, offset, to, len);
1770 }
1771
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1772 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 const struct bpf_flow_dissector *, ctx, u32, offset,
1774 void *, to, u32, len)
1775 {
1776 void *ptr;
1777
1778 if (unlikely(offset > 0xffff))
1779 goto err_clear;
1780
1781 if (unlikely(!ctx->skb))
1782 goto err_clear;
1783
1784 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785 if (unlikely(!ptr))
1786 goto err_clear;
1787 if (ptr != to)
1788 memcpy(to, ptr, len);
1789
1790 return 0;
1791 err_clear:
1792 memset(to, 0, len);
1793 return -EFAULT;
1794 }
1795
1796 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 .func = bpf_flow_dissector_load_bytes,
1798 .gpl_only = false,
1799 .ret_type = RET_INTEGER,
1800 .arg1_type = ARG_PTR_TO_CTX,
1801 .arg2_type = ARG_ANYTHING,
1802 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1803 .arg4_type = ARG_CONST_SIZE,
1804 };
1805
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1806 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 u32, offset, void *, to, u32, len, u32, start_header)
1808 {
1809 u8 *end = skb_tail_pointer(skb);
1810 u8 *start, *ptr;
1811
1812 if (unlikely(offset > 0xffff))
1813 goto err_clear;
1814
1815 switch (start_header) {
1816 case BPF_HDR_START_MAC:
1817 if (unlikely(!skb_mac_header_was_set(skb)))
1818 goto err_clear;
1819 start = skb_mac_header(skb);
1820 break;
1821 case BPF_HDR_START_NET:
1822 start = skb_network_header(skb);
1823 break;
1824 default:
1825 goto err_clear;
1826 }
1827
1828 ptr = start + offset;
1829
1830 if (likely(ptr + len <= end)) {
1831 memcpy(to, ptr, len);
1832 return 0;
1833 }
1834
1835 err_clear:
1836 memset(to, 0, len);
1837 return -EFAULT;
1838 }
1839
1840 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 .func = bpf_skb_load_bytes_relative,
1842 .gpl_only = false,
1843 .ret_type = RET_INTEGER,
1844 .arg1_type = ARG_PTR_TO_CTX,
1845 .arg2_type = ARG_ANYTHING,
1846 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1847 .arg4_type = ARG_CONST_SIZE,
1848 .arg5_type = ARG_ANYTHING,
1849 };
1850
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 /* Idea is the following: should the needed direct read/write
1854 * test fail during runtime, we can pull in more data and redo
1855 * again, since implicitly, we invalidate previous checks here.
1856 *
1857 * Or, since we know how much we need to make read/writeable,
1858 * this can be done once at the program beginning for direct
1859 * access case. By this we overcome limitations of only current
1860 * headroom being accessible.
1861 */
1862 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864
1865 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 .func = bpf_skb_pull_data,
1867 .gpl_only = false,
1868 .ret_type = RET_INTEGER,
1869 .arg1_type = ARG_PTR_TO_CTX,
1870 .arg2_type = ARG_ANYTHING,
1871 };
1872
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1873 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874 {
1875 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876 }
1877
1878 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 .func = bpf_sk_fullsock,
1880 .gpl_only = false,
1881 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1882 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1883 };
1884
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1885 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 unsigned int write_len)
1887 {
1888 return __bpf_try_make_writable(skb, write_len);
1889 }
1890
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1891 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892 {
1893 /* Idea is the following: should the needed direct read/write
1894 * test fail during runtime, we can pull in more data and redo
1895 * again, since implicitly, we invalidate previous checks here.
1896 *
1897 * Or, since we know how much we need to make read/writeable,
1898 * this can be done once at the program beginning for direct
1899 * access case. By this we overcome limitations of only current
1900 * headroom being accessible.
1901 */
1902 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903 }
1904
1905 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 .func = sk_skb_pull_data,
1907 .gpl_only = false,
1908 .ret_type = RET_INTEGER,
1909 .arg1_type = ARG_PTR_TO_CTX,
1910 .arg2_type = ARG_ANYTHING,
1911 };
1912
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1913 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 u64, from, u64, to, u64, flags)
1915 {
1916 __sum16 *ptr;
1917
1918 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 return -EINVAL;
1920 if (unlikely(offset > 0xffff || offset & 1))
1921 return -EFAULT;
1922 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 return -EFAULT;
1924
1925 ptr = (__sum16 *)(skb->data + offset);
1926 switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 case 0:
1928 if (unlikely(from != 0))
1929 return -EINVAL;
1930
1931 csum_replace_by_diff(ptr, to);
1932 break;
1933 case 2:
1934 csum_replace2(ptr, from, to);
1935 break;
1936 case 4:
1937 csum_replace4(ptr, from, to);
1938 break;
1939 default:
1940 return -EINVAL;
1941 }
1942
1943 return 0;
1944 }
1945
1946 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 .func = bpf_l3_csum_replace,
1948 .gpl_only = false,
1949 .ret_type = RET_INTEGER,
1950 .arg1_type = ARG_PTR_TO_CTX,
1951 .arg2_type = ARG_ANYTHING,
1952 .arg3_type = ARG_ANYTHING,
1953 .arg4_type = ARG_ANYTHING,
1954 .arg5_type = ARG_ANYTHING,
1955 };
1956
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1957 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 u64, from, u64, to, u64, flags)
1959 {
1960 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 __sum16 *ptr;
1964
1965 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 return -EINVAL;
1968 if (unlikely(offset > 0xffff || offset & 1))
1969 return -EFAULT;
1970 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 return -EFAULT;
1972
1973 ptr = (__sum16 *)(skb->data + offset);
1974 if (is_mmzero && !do_mforce && !*ptr)
1975 return 0;
1976
1977 switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 case 0:
1979 if (unlikely(from != 0))
1980 return -EINVAL;
1981
1982 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983 break;
1984 case 2:
1985 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986 break;
1987 case 4:
1988 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989 break;
1990 default:
1991 return -EINVAL;
1992 }
1993
1994 if (is_mmzero && !*ptr)
1995 *ptr = CSUM_MANGLED_0;
1996 return 0;
1997 }
1998
1999 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 .func = bpf_l4_csum_replace,
2001 .gpl_only = false,
2002 .ret_type = RET_INTEGER,
2003 .arg1_type = ARG_PTR_TO_CTX,
2004 .arg2_type = ARG_ANYTHING,
2005 .arg3_type = ARG_ANYTHING,
2006 .arg4_type = ARG_ANYTHING,
2007 .arg5_type = ARG_ANYTHING,
2008 };
2009
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2010 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 __be32 *, to, u32, to_size, __wsum, seed)
2012 {
2013 /* This is quite flexible, some examples:
2014 *
2015 * from_size == 0, to_size > 0, seed := csum --> pushing data
2016 * from_size > 0, to_size == 0, seed := csum --> pulling data
2017 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2018 *
2019 * Even for diffing, from_size and to_size don't need to be equal.
2020 */
2021
2022 __wsum ret = seed;
2023
2024 if (from_size && to_size)
2025 ret = csum_sub(csum_partial(to, to_size, ret),
2026 csum_partial(from, from_size, 0));
2027 else if (to_size)
2028 ret = csum_partial(to, to_size, ret);
2029
2030 else if (from_size)
2031 ret = ~csum_partial(from, from_size, ~ret);
2032
2033 return csum_from32to16((__force unsigned int)ret);
2034 }
2035
2036 static const struct bpf_func_proto bpf_csum_diff_proto = {
2037 .func = bpf_csum_diff,
2038 .gpl_only = false,
2039 .pkt_access = true,
2040 .ret_type = RET_INTEGER,
2041 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2042 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2043 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2044 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2045 .arg5_type = ARG_ANYTHING,
2046 };
2047
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2048 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2049 {
2050 /* The interface is to be used in combination with bpf_csum_diff()
2051 * for direct packet writes. csum rotation for alignment as well
2052 * as emulating csum_sub() can be done from the eBPF program.
2053 */
2054 if (skb->ip_summed == CHECKSUM_COMPLETE)
2055 return (skb->csum = csum_add(skb->csum, csum));
2056
2057 return -ENOTSUPP;
2058 }
2059
2060 static const struct bpf_func_proto bpf_csum_update_proto = {
2061 .func = bpf_csum_update,
2062 .gpl_only = false,
2063 .ret_type = RET_INTEGER,
2064 .arg1_type = ARG_PTR_TO_CTX,
2065 .arg2_type = ARG_ANYTHING,
2066 };
2067
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2068 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2069 {
2070 /* The interface is to be used in combination with bpf_skb_adjust_room()
2071 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2072 * is passed as flags, for example.
2073 */
2074 switch (level) {
2075 case BPF_CSUM_LEVEL_INC:
2076 __skb_incr_checksum_unnecessary(skb);
2077 break;
2078 case BPF_CSUM_LEVEL_DEC:
2079 __skb_decr_checksum_unnecessary(skb);
2080 break;
2081 case BPF_CSUM_LEVEL_RESET:
2082 __skb_reset_checksum_unnecessary(skb);
2083 break;
2084 case BPF_CSUM_LEVEL_QUERY:
2085 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2086 skb->csum_level : -EACCES;
2087 default:
2088 return -EINVAL;
2089 }
2090
2091 return 0;
2092 }
2093
2094 static const struct bpf_func_proto bpf_csum_level_proto = {
2095 .func = bpf_csum_level,
2096 .gpl_only = false,
2097 .ret_type = RET_INTEGER,
2098 .arg1_type = ARG_PTR_TO_CTX,
2099 .arg2_type = ARG_ANYTHING,
2100 };
2101
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2102 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 return dev_forward_skb_nomtu(dev, skb);
2105 }
2106
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2107 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2108 struct sk_buff *skb)
2109 {
2110 int ret = ____dev_forward_skb(dev, skb, false);
2111
2112 if (likely(!ret)) {
2113 skb->dev = dev;
2114 ret = netif_rx(skb);
2115 }
2116
2117 return ret;
2118 }
2119
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 int ret;
2123
2124 if (dev_xmit_recursion()) {
2125 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2126 kfree_skb(skb);
2127 return -ENETDOWN;
2128 }
2129
2130 skb->dev = dev;
2131 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2132 skb_clear_tstamp(skb);
2133
2134 dev_xmit_recursion_inc();
2135 ret = dev_queue_xmit(skb);
2136 dev_xmit_recursion_dec();
2137
2138 return ret;
2139 }
2140
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2141 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2142 u32 flags)
2143 {
2144 unsigned int mlen = skb_network_offset(skb);
2145
2146 if (unlikely(skb->len <= mlen)) {
2147 kfree_skb(skb);
2148 return -ERANGE;
2149 }
2150
2151 if (mlen) {
2152 __skb_pull(skb, mlen);
2153
2154 /* At ingress, the mac header has already been pulled once.
2155 * At egress, skb_pospull_rcsum has to be done in case that
2156 * the skb is originated from ingress (i.e. a forwarded skb)
2157 * to ensure that rcsum starts at net header.
2158 */
2159 if (!skb_at_tc_ingress(skb))
2160 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2161 }
2162 skb_pop_mac_header(skb);
2163 skb_reset_mac_len(skb);
2164 return flags & BPF_F_INGRESS ?
2165 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2169 u32 flags)
2170 {
2171 /* Verify that a link layer header is carried */
2172 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2173 kfree_skb(skb);
2174 return -ERANGE;
2175 }
2176
2177 bpf_push_mac_rcsum(skb);
2178 return flags & BPF_F_INGRESS ?
2179 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2180 }
2181
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2182 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2183 u32 flags)
2184 {
2185 if (dev_is_mac_header_xmit(dev))
2186 return __bpf_redirect_common(skb, dev, flags);
2187 else
2188 return __bpf_redirect_no_mac(skb, dev, flags);
2189 }
2190
2191 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2192 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2193 struct net_device *dev, struct bpf_nh_params *nh)
2194 {
2195 u32 hh_len = LL_RESERVED_SPACE(dev);
2196 const struct in6_addr *nexthop;
2197 struct dst_entry *dst = NULL;
2198 struct neighbour *neigh;
2199
2200 if (dev_xmit_recursion()) {
2201 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2202 goto out_drop;
2203 }
2204
2205 skb->dev = dev;
2206 skb_clear_tstamp(skb);
2207
2208 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2209 skb = skb_expand_head(skb, hh_len);
2210 if (!skb)
2211 return -ENOMEM;
2212 }
2213
2214 rcu_read_lock();
2215 if (!nh) {
2216 dst = skb_dst(skb);
2217 nexthop = rt6_nexthop(dst_rt6_info(dst),
2218 &ipv6_hdr(skb)->daddr);
2219 } else {
2220 nexthop = &nh->ipv6_nh;
2221 }
2222 neigh = ip_neigh_gw6(dev, nexthop);
2223 if (likely(!IS_ERR(neigh))) {
2224 int ret;
2225
2226 sock_confirm_neigh(skb, neigh);
2227 local_bh_disable();
2228 dev_xmit_recursion_inc();
2229 ret = neigh_output(neigh, skb, false);
2230 dev_xmit_recursion_dec();
2231 local_bh_enable();
2232 rcu_read_unlock();
2233 return ret;
2234 }
2235 rcu_read_unlock();
2236 if (dst)
2237 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2238 out_drop:
2239 kfree_skb(skb);
2240 return -ENETDOWN;
2241 }
2242
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2243 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2244 struct bpf_nh_params *nh)
2245 {
2246 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2247 struct net *net = dev_net(dev);
2248 int err, ret = NET_XMIT_DROP;
2249
2250 if (!nh) {
2251 struct dst_entry *dst;
2252 struct flowi6 fl6 = {
2253 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2254 .flowi6_mark = skb->mark,
2255 .flowlabel = ip6_flowinfo(ip6h),
2256 .flowi6_oif = dev->ifindex,
2257 .flowi6_proto = ip6h->nexthdr,
2258 .daddr = ip6h->daddr,
2259 .saddr = ip6h->saddr,
2260 };
2261
2262 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2263 if (IS_ERR(dst))
2264 goto out_drop;
2265
2266 skb_dst_set(skb, dst);
2267 } else if (nh->nh_family != AF_INET6) {
2268 goto out_drop;
2269 }
2270
2271 err = bpf_out_neigh_v6(net, skb, dev, nh);
2272 if (unlikely(net_xmit_eval(err)))
2273 DEV_STATS_INC(dev, tx_errors);
2274 else
2275 ret = NET_XMIT_SUCCESS;
2276 goto out_xmit;
2277 out_drop:
2278 DEV_STATS_INC(dev, tx_errors);
2279 kfree_skb(skb);
2280 out_xmit:
2281 return ret;
2282 }
2283 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2284 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2285 struct bpf_nh_params *nh)
2286 {
2287 kfree_skb(skb);
2288 return NET_XMIT_DROP;
2289 }
2290 #endif /* CONFIG_IPV6 */
2291
2292 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2293 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2294 struct net_device *dev, struct bpf_nh_params *nh)
2295 {
2296 u32 hh_len = LL_RESERVED_SPACE(dev);
2297 struct neighbour *neigh;
2298 bool is_v6gw = false;
2299
2300 if (dev_xmit_recursion()) {
2301 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2302 goto out_drop;
2303 }
2304
2305 skb->dev = dev;
2306 skb_clear_tstamp(skb);
2307
2308 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2309 skb = skb_expand_head(skb, hh_len);
2310 if (!skb)
2311 return -ENOMEM;
2312 }
2313
2314 rcu_read_lock();
2315 if (!nh) {
2316 struct rtable *rt = skb_rtable(skb);
2317
2318 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2319 } else if (nh->nh_family == AF_INET6) {
2320 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2321 is_v6gw = true;
2322 } else if (nh->nh_family == AF_INET) {
2323 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2324 } else {
2325 rcu_read_unlock();
2326 goto out_drop;
2327 }
2328
2329 if (likely(!IS_ERR(neigh))) {
2330 int ret;
2331
2332 sock_confirm_neigh(skb, neigh);
2333 local_bh_disable();
2334 dev_xmit_recursion_inc();
2335 ret = neigh_output(neigh, skb, is_v6gw);
2336 dev_xmit_recursion_dec();
2337 local_bh_enable();
2338 rcu_read_unlock();
2339 return ret;
2340 }
2341 rcu_read_unlock();
2342 out_drop:
2343 kfree_skb(skb);
2344 return -ENETDOWN;
2345 }
2346
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2347 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2348 struct bpf_nh_params *nh)
2349 {
2350 const struct iphdr *ip4h = ip_hdr(skb);
2351 struct net *net = dev_net(dev);
2352 int err, ret = NET_XMIT_DROP;
2353
2354 if (!nh) {
2355 struct flowi4 fl4 = {
2356 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2357 .flowi4_mark = skb->mark,
2358 .flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2359 .flowi4_oif = dev->ifindex,
2360 .flowi4_proto = ip4h->protocol,
2361 .daddr = ip4h->daddr,
2362 .saddr = ip4h->saddr,
2363 };
2364 struct rtable *rt;
2365
2366 rt = ip_route_output_flow(net, &fl4, NULL);
2367 if (IS_ERR(rt))
2368 goto out_drop;
2369 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2370 ip_rt_put(rt);
2371 goto out_drop;
2372 }
2373
2374 skb_dst_set(skb, &rt->dst);
2375 }
2376
2377 err = bpf_out_neigh_v4(net, skb, dev, nh);
2378 if (unlikely(net_xmit_eval(err)))
2379 DEV_STATS_INC(dev, tx_errors);
2380 else
2381 ret = NET_XMIT_SUCCESS;
2382 goto out_xmit;
2383 out_drop:
2384 DEV_STATS_INC(dev, tx_errors);
2385 kfree_skb(skb);
2386 out_xmit:
2387 return ret;
2388 }
2389 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2390 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2391 struct bpf_nh_params *nh)
2392 {
2393 kfree_skb(skb);
2394 return NET_XMIT_DROP;
2395 }
2396 #endif /* CONFIG_INET */
2397
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2399 struct bpf_nh_params *nh)
2400 {
2401 struct ethhdr *ethh = eth_hdr(skb);
2402
2403 if (unlikely(skb->mac_header >= skb->network_header))
2404 goto out;
2405 bpf_push_mac_rcsum(skb);
2406 if (is_multicast_ether_addr(ethh->h_dest))
2407 goto out;
2408
2409 skb_pull(skb, sizeof(*ethh));
2410 skb_unset_mac_header(skb);
2411 skb_reset_network_header(skb);
2412
2413 if (skb->protocol == htons(ETH_P_IP))
2414 return __bpf_redirect_neigh_v4(skb, dev, nh);
2415 else if (skb->protocol == htons(ETH_P_IPV6))
2416 return __bpf_redirect_neigh_v6(skb, dev, nh);
2417 out:
2418 kfree_skb(skb);
2419 return -ENOTSUPP;
2420 }
2421
2422 /* Internal, non-exposed redirect flags. */
2423 enum {
2424 BPF_F_NEIGH = (1ULL << 16),
2425 BPF_F_PEER = (1ULL << 17),
2426 BPF_F_NEXTHOP = (1ULL << 18),
2427 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2428 };
2429
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2430 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2431 {
2432 struct net_device *dev;
2433 struct sk_buff *clone;
2434 int ret;
2435
2436 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2437
2438 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2439 return -EINVAL;
2440
2441 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2442 if (unlikely(!dev))
2443 return -EINVAL;
2444
2445 clone = skb_clone(skb, GFP_ATOMIC);
2446 if (unlikely(!clone))
2447 return -ENOMEM;
2448
2449 /* For direct write, we need to keep the invariant that the skbs
2450 * we're dealing with need to be uncloned. Should uncloning fail
2451 * here, we need to free the just generated clone to unclone once
2452 * again.
2453 */
2454 ret = bpf_try_make_head_writable(skb);
2455 if (unlikely(ret)) {
2456 kfree_skb(clone);
2457 return -ENOMEM;
2458 }
2459
2460 return __bpf_redirect(clone, dev, flags);
2461 }
2462
2463 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2464 .func = bpf_clone_redirect,
2465 .gpl_only = false,
2466 .ret_type = RET_INTEGER,
2467 .arg1_type = ARG_PTR_TO_CTX,
2468 .arg2_type = ARG_ANYTHING,
2469 .arg3_type = ARG_ANYTHING,
2470 };
2471
skb_get_peer_dev(struct net_device * dev)2472 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2473 {
2474 const struct net_device_ops *ops = dev->netdev_ops;
2475
2476 if (likely(ops->ndo_get_peer_dev))
2477 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2478 netkit_peer_dev, dev);
2479 return NULL;
2480 }
2481
skb_do_redirect(struct sk_buff * skb)2482 int skb_do_redirect(struct sk_buff *skb)
2483 {
2484 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2485 struct net *net = dev_net(skb->dev);
2486 struct net_device *dev;
2487 u32 flags = ri->flags;
2488
2489 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2490 ri->tgt_index = 0;
2491 ri->flags = 0;
2492 if (unlikely(!dev))
2493 goto out_drop;
2494 if (flags & BPF_F_PEER) {
2495 if (unlikely(!skb_at_tc_ingress(skb)))
2496 goto out_drop;
2497 dev = skb_get_peer_dev(dev);
2498 if (unlikely(!dev ||
2499 !(dev->flags & IFF_UP) ||
2500 net_eq(net, dev_net(dev))))
2501 goto out_drop;
2502 skb->dev = dev;
2503 dev_sw_netstats_rx_add(dev, skb->len);
2504 return -EAGAIN;
2505 }
2506 return flags & BPF_F_NEIGH ?
2507 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2508 &ri->nh : NULL) :
2509 __bpf_redirect(skb, dev, flags);
2510 out_drop:
2511 kfree_skb(skb);
2512 return -EINVAL;
2513 }
2514
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2515 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2516 {
2517 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2518
2519 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2520 return TC_ACT_SHOT;
2521
2522 ri->flags = flags;
2523 ri->tgt_index = ifindex;
2524
2525 return TC_ACT_REDIRECT;
2526 }
2527
2528 static const struct bpf_func_proto bpf_redirect_proto = {
2529 .func = bpf_redirect,
2530 .gpl_only = false,
2531 .ret_type = RET_INTEGER,
2532 .arg1_type = ARG_ANYTHING,
2533 .arg2_type = ARG_ANYTHING,
2534 };
2535
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2536 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2537 {
2538 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2539
2540 if (unlikely(flags))
2541 return TC_ACT_SHOT;
2542
2543 ri->flags = BPF_F_PEER;
2544 ri->tgt_index = ifindex;
2545
2546 return TC_ACT_REDIRECT;
2547 }
2548
2549 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2550 .func = bpf_redirect_peer,
2551 .gpl_only = false,
2552 .ret_type = RET_INTEGER,
2553 .arg1_type = ARG_ANYTHING,
2554 .arg2_type = ARG_ANYTHING,
2555 };
2556
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2557 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2558 int, plen, u64, flags)
2559 {
2560 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2561
2562 if (unlikely((plen && plen < sizeof(*params)) || flags))
2563 return TC_ACT_SHOT;
2564
2565 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2566 ri->tgt_index = ifindex;
2567
2568 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2569 if (plen)
2570 memcpy(&ri->nh, params, sizeof(ri->nh));
2571
2572 return TC_ACT_REDIRECT;
2573 }
2574
2575 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2576 .func = bpf_redirect_neigh,
2577 .gpl_only = false,
2578 .ret_type = RET_INTEGER,
2579 .arg1_type = ARG_ANYTHING,
2580 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2581 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2582 .arg4_type = ARG_ANYTHING,
2583 };
2584
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2585 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2586 {
2587 msg->apply_bytes = bytes;
2588 return 0;
2589 }
2590
2591 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2592 .func = bpf_msg_apply_bytes,
2593 .gpl_only = false,
2594 .ret_type = RET_INTEGER,
2595 .arg1_type = ARG_PTR_TO_CTX,
2596 .arg2_type = ARG_ANYTHING,
2597 };
2598
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2599 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2600 {
2601 msg->cork_bytes = bytes;
2602 return 0;
2603 }
2604
sk_msg_reset_curr(struct sk_msg * msg)2605 static void sk_msg_reset_curr(struct sk_msg *msg)
2606 {
2607 if (!msg->sg.size) {
2608 msg->sg.curr = msg->sg.start;
2609 msg->sg.copybreak = 0;
2610 } else {
2611 u32 i = msg->sg.end;
2612
2613 sk_msg_iter_var_prev(i);
2614 msg->sg.curr = i;
2615 msg->sg.copybreak = msg->sg.data[i].length;
2616 }
2617 }
2618
2619 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2620 .func = bpf_msg_cork_bytes,
2621 .gpl_only = false,
2622 .ret_type = RET_INTEGER,
2623 .arg1_type = ARG_PTR_TO_CTX,
2624 .arg2_type = ARG_ANYTHING,
2625 };
2626
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2627 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2628 u32, end, u64, flags)
2629 {
2630 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2631 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2632 struct scatterlist *sge;
2633 u8 *raw, *to, *from;
2634 struct page *page;
2635
2636 if (unlikely(flags || end <= start))
2637 return -EINVAL;
2638
2639 /* First find the starting scatterlist element */
2640 i = msg->sg.start;
2641 do {
2642 offset += len;
2643 len = sk_msg_elem(msg, i)->length;
2644 if (start < offset + len)
2645 break;
2646 sk_msg_iter_var_next(i);
2647 } while (i != msg->sg.end);
2648
2649 if (unlikely(start >= offset + len))
2650 return -EINVAL;
2651
2652 first_sge = i;
2653 /* The start may point into the sg element so we need to also
2654 * account for the headroom.
2655 */
2656 bytes_sg_total = start - offset + bytes;
2657 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2658 goto out;
2659
2660 /* At this point we need to linearize multiple scatterlist
2661 * elements or a single shared page. Either way we need to
2662 * copy into a linear buffer exclusively owned by BPF. Then
2663 * place the buffer in the scatterlist and fixup the original
2664 * entries by removing the entries now in the linear buffer
2665 * and shifting the remaining entries. For now we do not try
2666 * to copy partial entries to avoid complexity of running out
2667 * of sg_entry slots. The downside is reading a single byte
2668 * will copy the entire sg entry.
2669 */
2670 do {
2671 copy += sk_msg_elem(msg, i)->length;
2672 sk_msg_iter_var_next(i);
2673 if (bytes_sg_total <= copy)
2674 break;
2675 } while (i != msg->sg.end);
2676 last_sge = i;
2677
2678 if (unlikely(bytes_sg_total > copy))
2679 return -EINVAL;
2680
2681 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2682 get_order(copy));
2683 if (unlikely(!page))
2684 return -ENOMEM;
2685
2686 raw = page_address(page);
2687 i = first_sge;
2688 do {
2689 sge = sk_msg_elem(msg, i);
2690 from = sg_virt(sge);
2691 len = sge->length;
2692 to = raw + poffset;
2693
2694 memcpy(to, from, len);
2695 poffset += len;
2696 sge->length = 0;
2697 put_page(sg_page(sge));
2698
2699 sk_msg_iter_var_next(i);
2700 } while (i != last_sge);
2701
2702 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2703
2704 /* To repair sg ring we need to shift entries. If we only
2705 * had a single entry though we can just replace it and
2706 * be done. Otherwise walk the ring and shift the entries.
2707 */
2708 WARN_ON_ONCE(last_sge == first_sge);
2709 shift = last_sge > first_sge ?
2710 last_sge - first_sge - 1 :
2711 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2712 if (!shift)
2713 goto out;
2714
2715 i = first_sge;
2716 sk_msg_iter_var_next(i);
2717 do {
2718 u32 move_from;
2719
2720 if (i + shift >= NR_MSG_FRAG_IDS)
2721 move_from = i + shift - NR_MSG_FRAG_IDS;
2722 else
2723 move_from = i + shift;
2724 if (move_from == msg->sg.end)
2725 break;
2726
2727 msg->sg.data[i] = msg->sg.data[move_from];
2728 msg->sg.data[move_from].length = 0;
2729 msg->sg.data[move_from].page_link = 0;
2730 msg->sg.data[move_from].offset = 0;
2731 sk_msg_iter_var_next(i);
2732 } while (1);
2733
2734 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2735 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2736 msg->sg.end - shift;
2737 out:
2738 sk_msg_reset_curr(msg);
2739 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2740 msg->data_end = msg->data + bytes;
2741 return 0;
2742 }
2743
2744 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2745 .func = bpf_msg_pull_data,
2746 .gpl_only = false,
2747 .ret_type = RET_INTEGER,
2748 .arg1_type = ARG_PTR_TO_CTX,
2749 .arg2_type = ARG_ANYTHING,
2750 .arg3_type = ARG_ANYTHING,
2751 .arg4_type = ARG_ANYTHING,
2752 };
2753
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2754 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2755 u32, len, u64, flags)
2756 {
2757 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2758 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2759 u8 *raw, *to, *from;
2760 struct page *page;
2761
2762 if (unlikely(flags))
2763 return -EINVAL;
2764
2765 if (unlikely(len == 0))
2766 return 0;
2767
2768 /* First find the starting scatterlist element */
2769 i = msg->sg.start;
2770 do {
2771 offset += l;
2772 l = sk_msg_elem(msg, i)->length;
2773
2774 if (start < offset + l)
2775 break;
2776 sk_msg_iter_var_next(i);
2777 } while (i != msg->sg.end);
2778
2779 if (start > offset + l)
2780 return -EINVAL;
2781
2782 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2783
2784 /* If no space available will fallback to copy, we need at
2785 * least one scatterlist elem available to push data into
2786 * when start aligns to the beginning of an element or two
2787 * when it falls inside an element. We handle the start equals
2788 * offset case because its the common case for inserting a
2789 * header.
2790 */
2791 if (!space || (space == 1 && start != offset))
2792 copy = msg->sg.data[i].length;
2793
2794 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2795 get_order(copy + len));
2796 if (unlikely(!page))
2797 return -ENOMEM;
2798
2799 if (copy) {
2800 int front, back;
2801
2802 raw = page_address(page);
2803
2804 if (i == msg->sg.end)
2805 sk_msg_iter_var_prev(i);
2806 psge = sk_msg_elem(msg, i);
2807 front = start - offset;
2808 back = psge->length - front;
2809 from = sg_virt(psge);
2810
2811 if (front)
2812 memcpy(raw, from, front);
2813
2814 if (back) {
2815 from += front;
2816 to = raw + front + len;
2817
2818 memcpy(to, from, back);
2819 }
2820
2821 put_page(sg_page(psge));
2822 new = i;
2823 goto place_new;
2824 }
2825
2826 if (start - offset) {
2827 if (i == msg->sg.end)
2828 sk_msg_iter_var_prev(i);
2829 psge = sk_msg_elem(msg, i);
2830 rsge = sk_msg_elem_cpy(msg, i);
2831
2832 psge->length = start - offset;
2833 rsge.length -= psge->length;
2834 rsge.offset += start;
2835
2836 sk_msg_iter_var_next(i);
2837 sg_unmark_end(psge);
2838 sg_unmark_end(&rsge);
2839 }
2840
2841 /* Slot(s) to place newly allocated data */
2842 sk_msg_iter_next(msg, end);
2843 new = i;
2844 sk_msg_iter_var_next(i);
2845
2846 if (i == msg->sg.end) {
2847 if (!rsge.length)
2848 goto place_new;
2849 sk_msg_iter_next(msg, end);
2850 goto place_new;
2851 }
2852
2853 /* Shift one or two slots as needed */
2854 sge = sk_msg_elem_cpy(msg, new);
2855 sg_unmark_end(&sge);
2856
2857 nsge = sk_msg_elem_cpy(msg, i);
2858 if (rsge.length) {
2859 sk_msg_iter_var_next(i);
2860 nnsge = sk_msg_elem_cpy(msg, i);
2861 sk_msg_iter_next(msg, end);
2862 }
2863
2864 while (i != msg->sg.end) {
2865 msg->sg.data[i] = sge;
2866 sge = nsge;
2867 sk_msg_iter_var_next(i);
2868 if (rsge.length) {
2869 nsge = nnsge;
2870 nnsge = sk_msg_elem_cpy(msg, i);
2871 } else {
2872 nsge = sk_msg_elem_cpy(msg, i);
2873 }
2874 }
2875
2876 place_new:
2877 /* Place newly allocated data buffer */
2878 sk_mem_charge(msg->sk, len);
2879 msg->sg.size += len;
2880 __clear_bit(new, msg->sg.copy);
2881 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2882 if (rsge.length) {
2883 get_page(sg_page(&rsge));
2884 sk_msg_iter_var_next(new);
2885 msg->sg.data[new] = rsge;
2886 }
2887
2888 sk_msg_reset_curr(msg);
2889 sk_msg_compute_data_pointers(msg);
2890 return 0;
2891 }
2892
2893 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2894 .func = bpf_msg_push_data,
2895 .gpl_only = false,
2896 .ret_type = RET_INTEGER,
2897 .arg1_type = ARG_PTR_TO_CTX,
2898 .arg2_type = ARG_ANYTHING,
2899 .arg3_type = ARG_ANYTHING,
2900 .arg4_type = ARG_ANYTHING,
2901 };
2902
sk_msg_shift_left(struct sk_msg * msg,int i)2903 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2904 {
2905 struct scatterlist *sge = sk_msg_elem(msg, i);
2906 int prev;
2907
2908 put_page(sg_page(sge));
2909 do {
2910 prev = i;
2911 sk_msg_iter_var_next(i);
2912 msg->sg.data[prev] = msg->sg.data[i];
2913 } while (i != msg->sg.end);
2914
2915 sk_msg_iter_prev(msg, end);
2916 }
2917
sk_msg_shift_right(struct sk_msg * msg,int i)2918 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2919 {
2920 struct scatterlist tmp, sge;
2921
2922 sk_msg_iter_next(msg, end);
2923 sge = sk_msg_elem_cpy(msg, i);
2924 sk_msg_iter_var_next(i);
2925 tmp = sk_msg_elem_cpy(msg, i);
2926
2927 while (i != msg->sg.end) {
2928 msg->sg.data[i] = sge;
2929 sk_msg_iter_var_next(i);
2930 sge = tmp;
2931 tmp = sk_msg_elem_cpy(msg, i);
2932 }
2933 }
2934
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2935 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2936 u32, len, u64, flags)
2937 {
2938 u32 i = 0, l = 0, space, offset = 0;
2939 u64 last = start + len;
2940 int pop;
2941
2942 if (unlikely(flags))
2943 return -EINVAL;
2944
2945 if (unlikely(len == 0))
2946 return 0;
2947
2948 /* First find the starting scatterlist element */
2949 i = msg->sg.start;
2950 do {
2951 offset += l;
2952 l = sk_msg_elem(msg, i)->length;
2953
2954 if (start < offset + l)
2955 break;
2956 sk_msg_iter_var_next(i);
2957 } while (i != msg->sg.end);
2958
2959 /* Bounds checks: start and pop must be inside message */
2960 if (start >= offset + l || last > msg->sg.size)
2961 return -EINVAL;
2962
2963 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2964
2965 pop = len;
2966 /* --------------| offset
2967 * -| start |-------- len -------|
2968 *
2969 * |----- a ----|-------- pop -------|----- b ----|
2970 * |______________________________________________| length
2971 *
2972 *
2973 * a: region at front of scatter element to save
2974 * b: region at back of scatter element to save when length > A + pop
2975 * pop: region to pop from element, same as input 'pop' here will be
2976 * decremented below per iteration.
2977 *
2978 * Two top-level cases to handle when start != offset, first B is non
2979 * zero and second B is zero corresponding to when a pop includes more
2980 * than one element.
2981 *
2982 * Then if B is non-zero AND there is no space allocate space and
2983 * compact A, B regions into page. If there is space shift ring to
2984 * the right free'ing the next element in ring to place B, leaving
2985 * A untouched except to reduce length.
2986 */
2987 if (start != offset) {
2988 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2989 int a = start - offset;
2990 int b = sge->length - pop - a;
2991
2992 sk_msg_iter_var_next(i);
2993
2994 if (b > 0) {
2995 if (space) {
2996 sge->length = a;
2997 sk_msg_shift_right(msg, i);
2998 nsge = sk_msg_elem(msg, i);
2999 get_page(sg_page(sge));
3000 sg_set_page(nsge,
3001 sg_page(sge),
3002 b, sge->offset + pop + a);
3003 } else {
3004 struct page *page, *orig;
3005 u8 *to, *from;
3006
3007 page = alloc_pages(__GFP_NOWARN |
3008 __GFP_COMP | GFP_ATOMIC,
3009 get_order(a + b));
3010 if (unlikely(!page))
3011 return -ENOMEM;
3012
3013 orig = sg_page(sge);
3014 from = sg_virt(sge);
3015 to = page_address(page);
3016 memcpy(to, from, a);
3017 memcpy(to + a, from + a + pop, b);
3018 sg_set_page(sge, page, a + b, 0);
3019 put_page(orig);
3020 }
3021 pop = 0;
3022 } else {
3023 pop -= (sge->length - a);
3024 sge->length = a;
3025 }
3026 }
3027
3028 /* From above the current layout _must_ be as follows,
3029 *
3030 * -| offset
3031 * -| start
3032 *
3033 * |---- pop ---|---------------- b ------------|
3034 * |____________________________________________| length
3035 *
3036 * Offset and start of the current msg elem are equal because in the
3037 * previous case we handled offset != start and either consumed the
3038 * entire element and advanced to the next element OR pop == 0.
3039 *
3040 * Two cases to handle here are first pop is less than the length
3041 * leaving some remainder b above. Simply adjust the element's layout
3042 * in this case. Or pop >= length of the element so that b = 0. In this
3043 * case advance to next element decrementing pop.
3044 */
3045 while (pop) {
3046 struct scatterlist *sge = sk_msg_elem(msg, i);
3047
3048 if (pop < sge->length) {
3049 sge->length -= pop;
3050 sge->offset += pop;
3051 pop = 0;
3052 } else {
3053 pop -= sge->length;
3054 sk_msg_shift_left(msg, i);
3055 }
3056 }
3057
3058 sk_mem_uncharge(msg->sk, len - pop);
3059 msg->sg.size -= (len - pop);
3060 sk_msg_reset_curr(msg);
3061 sk_msg_compute_data_pointers(msg);
3062 return 0;
3063 }
3064
3065 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3066 .func = bpf_msg_pop_data,
3067 .gpl_only = false,
3068 .ret_type = RET_INTEGER,
3069 .arg1_type = ARG_PTR_TO_CTX,
3070 .arg2_type = ARG_ANYTHING,
3071 .arg3_type = ARG_ANYTHING,
3072 .arg4_type = ARG_ANYTHING,
3073 };
3074
3075 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3076 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3077 {
3078 return __task_get_classid(current);
3079 }
3080
3081 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3082 .func = bpf_get_cgroup_classid_curr,
3083 .gpl_only = false,
3084 .ret_type = RET_INTEGER,
3085 };
3086
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3087 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3088 {
3089 struct sock *sk = skb_to_full_sk(skb);
3090
3091 if (!sk || !sk_fullsock(sk))
3092 return 0;
3093
3094 return sock_cgroup_classid(&sk->sk_cgrp_data);
3095 }
3096
3097 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3098 .func = bpf_skb_cgroup_classid,
3099 .gpl_only = false,
3100 .ret_type = RET_INTEGER,
3101 .arg1_type = ARG_PTR_TO_CTX,
3102 };
3103 #endif
3104
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3105 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3106 {
3107 return task_get_classid(skb);
3108 }
3109
3110 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3111 .func = bpf_get_cgroup_classid,
3112 .gpl_only = false,
3113 .ret_type = RET_INTEGER,
3114 .arg1_type = ARG_PTR_TO_CTX,
3115 };
3116
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3117 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3118 {
3119 return dst_tclassid(skb);
3120 }
3121
3122 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3123 .func = bpf_get_route_realm,
3124 .gpl_only = false,
3125 .ret_type = RET_INTEGER,
3126 .arg1_type = ARG_PTR_TO_CTX,
3127 };
3128
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3129 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3130 {
3131 /* If skb_clear_hash() was called due to mangling, we can
3132 * trigger SW recalculation here. Later access to hash
3133 * can then use the inline skb->hash via context directly
3134 * instead of calling this helper again.
3135 */
3136 return skb_get_hash(skb);
3137 }
3138
3139 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3140 .func = bpf_get_hash_recalc,
3141 .gpl_only = false,
3142 .ret_type = RET_INTEGER,
3143 .arg1_type = ARG_PTR_TO_CTX,
3144 };
3145
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3146 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3147 {
3148 /* After all direct packet write, this can be used once for
3149 * triggering a lazy recalc on next skb_get_hash() invocation.
3150 */
3151 skb_clear_hash(skb);
3152 return 0;
3153 }
3154
3155 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3156 .func = bpf_set_hash_invalid,
3157 .gpl_only = false,
3158 .ret_type = RET_INTEGER,
3159 .arg1_type = ARG_PTR_TO_CTX,
3160 };
3161
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3162 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3163 {
3164 /* Set user specified hash as L4(+), so that it gets returned
3165 * on skb_get_hash() call unless BPF prog later on triggers a
3166 * skb_clear_hash().
3167 */
3168 __skb_set_sw_hash(skb, hash, true);
3169 return 0;
3170 }
3171
3172 static const struct bpf_func_proto bpf_set_hash_proto = {
3173 .func = bpf_set_hash,
3174 .gpl_only = false,
3175 .ret_type = RET_INTEGER,
3176 .arg1_type = ARG_PTR_TO_CTX,
3177 .arg2_type = ARG_ANYTHING,
3178 };
3179
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3180 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3181 u16, vlan_tci)
3182 {
3183 int ret;
3184
3185 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3186 vlan_proto != htons(ETH_P_8021AD)))
3187 vlan_proto = htons(ETH_P_8021Q);
3188
3189 bpf_push_mac_rcsum(skb);
3190 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3191 bpf_pull_mac_rcsum(skb);
3192 skb_reset_mac_len(skb);
3193
3194 bpf_compute_data_pointers(skb);
3195 return ret;
3196 }
3197
3198 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3199 .func = bpf_skb_vlan_push,
3200 .gpl_only = false,
3201 .ret_type = RET_INTEGER,
3202 .arg1_type = ARG_PTR_TO_CTX,
3203 .arg2_type = ARG_ANYTHING,
3204 .arg3_type = ARG_ANYTHING,
3205 };
3206
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3207 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3208 {
3209 int ret;
3210
3211 bpf_push_mac_rcsum(skb);
3212 ret = skb_vlan_pop(skb);
3213 bpf_pull_mac_rcsum(skb);
3214
3215 bpf_compute_data_pointers(skb);
3216 return ret;
3217 }
3218
3219 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3220 .func = bpf_skb_vlan_pop,
3221 .gpl_only = false,
3222 .ret_type = RET_INTEGER,
3223 .arg1_type = ARG_PTR_TO_CTX,
3224 };
3225
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3226 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228 /* Caller already did skb_cow() with len as headroom,
3229 * so no need to do it here.
3230 */
3231 skb_push(skb, len);
3232 memmove(skb->data, skb->data + len, off);
3233 memset(skb->data + off, 0, len);
3234
3235 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3236 * needed here as it does not change the skb->csum
3237 * result for checksum complete when summing over
3238 * zeroed blocks.
3239 */
3240 return 0;
3241 }
3242
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3243 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3244 {
3245 void *old_data;
3246
3247 /* skb_ensure_writable() is not needed here, as we're
3248 * already working on an uncloned skb.
3249 */
3250 if (unlikely(!pskb_may_pull(skb, off + len)))
3251 return -ENOMEM;
3252
3253 old_data = skb->data;
3254 __skb_pull(skb, len);
3255 skb_postpull_rcsum(skb, old_data + off, len);
3256 memmove(skb->data, old_data, off);
3257
3258 return 0;
3259 }
3260
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3261 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3262 {
3263 bool trans_same = skb->transport_header == skb->network_header;
3264 int ret;
3265
3266 /* There's no need for __skb_push()/__skb_pull() pair to
3267 * get to the start of the mac header as we're guaranteed
3268 * to always start from here under eBPF.
3269 */
3270 ret = bpf_skb_generic_push(skb, off, len);
3271 if (likely(!ret)) {
3272 skb->mac_header -= len;
3273 skb->network_header -= len;
3274 if (trans_same)
3275 skb->transport_header = skb->network_header;
3276 }
3277
3278 return ret;
3279 }
3280
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3281 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3282 {
3283 bool trans_same = skb->transport_header == skb->network_header;
3284 int ret;
3285
3286 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3287 ret = bpf_skb_generic_pop(skb, off, len);
3288 if (likely(!ret)) {
3289 skb->mac_header += len;
3290 skb->network_header += len;
3291 if (trans_same)
3292 skb->transport_header = skb->network_header;
3293 }
3294
3295 return ret;
3296 }
3297
bpf_skb_proto_4_to_6(struct sk_buff * skb)3298 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3299 {
3300 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3301 u32 off = skb_mac_header_len(skb);
3302 int ret;
3303
3304 ret = skb_cow(skb, len_diff);
3305 if (unlikely(ret < 0))
3306 return ret;
3307
3308 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3309 if (unlikely(ret < 0))
3310 return ret;
3311
3312 if (skb_is_gso(skb)) {
3313 struct skb_shared_info *shinfo = skb_shinfo(skb);
3314
3315 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3316 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3317 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3318 shinfo->gso_type |= SKB_GSO_TCPV6;
3319 }
3320 }
3321
3322 skb->protocol = htons(ETH_P_IPV6);
3323 skb_clear_hash(skb);
3324
3325 return 0;
3326 }
3327
bpf_skb_proto_6_to_4(struct sk_buff * skb)3328 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3329 {
3330 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3331 u32 off = skb_mac_header_len(skb);
3332 int ret;
3333
3334 ret = skb_unclone(skb, GFP_ATOMIC);
3335 if (unlikely(ret < 0))
3336 return ret;
3337
3338 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3339 if (unlikely(ret < 0))
3340 return ret;
3341
3342 if (skb_is_gso(skb)) {
3343 struct skb_shared_info *shinfo = skb_shinfo(skb);
3344
3345 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3346 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3347 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3348 shinfo->gso_type |= SKB_GSO_TCPV4;
3349 }
3350 }
3351
3352 skb->protocol = htons(ETH_P_IP);
3353 skb_clear_hash(skb);
3354
3355 return 0;
3356 }
3357
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3358 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3359 {
3360 __be16 from_proto = skb->protocol;
3361
3362 if (from_proto == htons(ETH_P_IP) &&
3363 to_proto == htons(ETH_P_IPV6))
3364 return bpf_skb_proto_4_to_6(skb);
3365
3366 if (from_proto == htons(ETH_P_IPV6) &&
3367 to_proto == htons(ETH_P_IP))
3368 return bpf_skb_proto_6_to_4(skb);
3369
3370 return -ENOTSUPP;
3371 }
3372
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3373 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3374 u64, flags)
3375 {
3376 int ret;
3377
3378 if (unlikely(flags))
3379 return -EINVAL;
3380
3381 /* General idea is that this helper does the basic groundwork
3382 * needed for changing the protocol, and eBPF program fills the
3383 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3384 * and other helpers, rather than passing a raw buffer here.
3385 *
3386 * The rationale is to keep this minimal and without a need to
3387 * deal with raw packet data. F.e. even if we would pass buffers
3388 * here, the program still needs to call the bpf_lX_csum_replace()
3389 * helpers anyway. Plus, this way we keep also separation of
3390 * concerns, since f.e. bpf_skb_store_bytes() should only take
3391 * care of stores.
3392 *
3393 * Currently, additional options and extension header space are
3394 * not supported, but flags register is reserved so we can adapt
3395 * that. For offloads, we mark packet as dodgy, so that headers
3396 * need to be verified first.
3397 */
3398 ret = bpf_skb_proto_xlat(skb, proto);
3399 bpf_compute_data_pointers(skb);
3400 return ret;
3401 }
3402
3403 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3404 .func = bpf_skb_change_proto,
3405 .gpl_only = false,
3406 .ret_type = RET_INTEGER,
3407 .arg1_type = ARG_PTR_TO_CTX,
3408 .arg2_type = ARG_ANYTHING,
3409 .arg3_type = ARG_ANYTHING,
3410 };
3411
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3412 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3413 {
3414 /* We only allow a restricted subset to be changed for now. */
3415 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3416 !skb_pkt_type_ok(pkt_type)))
3417 return -EINVAL;
3418
3419 skb->pkt_type = pkt_type;
3420 return 0;
3421 }
3422
3423 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3424 .func = bpf_skb_change_type,
3425 .gpl_only = false,
3426 .ret_type = RET_INTEGER,
3427 .arg1_type = ARG_PTR_TO_CTX,
3428 .arg2_type = ARG_ANYTHING,
3429 };
3430
bpf_skb_net_base_len(const struct sk_buff * skb)3431 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3432 {
3433 switch (skb->protocol) {
3434 case htons(ETH_P_IP):
3435 return sizeof(struct iphdr);
3436 case htons(ETH_P_IPV6):
3437 return sizeof(struct ipv6hdr);
3438 default:
3439 return ~0U;
3440 }
3441 }
3442
3443 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3444 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445
3446 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3447 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3448
3449 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3450 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3451 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3452 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3453 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3454 BPF_F_ADJ_ROOM_ENCAP_L2( \
3455 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3456 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3457
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3458 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3459 u64 flags)
3460 {
3461 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3462 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3463 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3464 unsigned int gso_type = SKB_GSO_DODGY;
3465 int ret;
3466
3467 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3468 /* udp gso_size delineates datagrams, only allow if fixed */
3469 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3470 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3471 return -ENOTSUPP;
3472 }
3473
3474 ret = skb_cow_head(skb, len_diff);
3475 if (unlikely(ret < 0))
3476 return ret;
3477
3478 if (encap) {
3479 if (skb->protocol != htons(ETH_P_IP) &&
3480 skb->protocol != htons(ETH_P_IPV6))
3481 return -ENOTSUPP;
3482
3483 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3484 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3485 return -EINVAL;
3486
3487 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3488 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3489 return -EINVAL;
3490
3491 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3492 inner_mac_len < ETH_HLEN)
3493 return -EINVAL;
3494
3495 if (skb->encapsulation)
3496 return -EALREADY;
3497
3498 mac_len = skb->network_header - skb->mac_header;
3499 inner_net = skb->network_header;
3500 if (inner_mac_len > len_diff)
3501 return -EINVAL;
3502 inner_trans = skb->transport_header;
3503 }
3504
3505 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3506 if (unlikely(ret < 0))
3507 return ret;
3508
3509 if (encap) {
3510 skb->inner_mac_header = inner_net - inner_mac_len;
3511 skb->inner_network_header = inner_net;
3512 skb->inner_transport_header = inner_trans;
3513
3514 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3515 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3516 else
3517 skb_set_inner_protocol(skb, skb->protocol);
3518
3519 skb->encapsulation = 1;
3520 skb_set_network_header(skb, mac_len);
3521
3522 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3523 gso_type |= SKB_GSO_UDP_TUNNEL;
3524 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3525 gso_type |= SKB_GSO_GRE;
3526 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3527 gso_type |= SKB_GSO_IPXIP6;
3528 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3529 gso_type |= SKB_GSO_IPXIP4;
3530
3531 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3532 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3533 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3534 sizeof(struct ipv6hdr) :
3535 sizeof(struct iphdr);
3536
3537 skb_set_transport_header(skb, mac_len + nh_len);
3538 }
3539
3540 /* Match skb->protocol to new outer l3 protocol */
3541 if (skb->protocol == htons(ETH_P_IP) &&
3542 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3543 skb->protocol = htons(ETH_P_IPV6);
3544 else if (skb->protocol == htons(ETH_P_IPV6) &&
3545 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3546 skb->protocol = htons(ETH_P_IP);
3547 }
3548
3549 if (skb_is_gso(skb)) {
3550 struct skb_shared_info *shinfo = skb_shinfo(skb);
3551
3552 /* Header must be checked, and gso_segs recomputed. */
3553 shinfo->gso_type |= gso_type;
3554 shinfo->gso_segs = 0;
3555
3556 /* Due to header growth, MSS needs to be downgraded.
3557 * There is a BUG_ON() when segmenting the frag_list with
3558 * head_frag true, so linearize the skb after downgrading
3559 * the MSS.
3560 */
3561 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3562 skb_decrease_gso_size(shinfo, len_diff);
3563 if (shinfo->frag_list)
3564 return skb_linearize(skb);
3565 }
3566 }
3567
3568 return 0;
3569 }
3570
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3571 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3572 u64 flags)
3573 {
3574 int ret;
3575
3576 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3577 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3578 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3579 return -EINVAL;
3580
3581 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3582 /* udp gso_size delineates datagrams, only allow if fixed */
3583 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3584 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3585 return -ENOTSUPP;
3586 }
3587
3588 ret = skb_unclone(skb, GFP_ATOMIC);
3589 if (unlikely(ret < 0))
3590 return ret;
3591
3592 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3593 if (unlikely(ret < 0))
3594 return ret;
3595
3596 /* Match skb->protocol to new outer l3 protocol */
3597 if (skb->protocol == htons(ETH_P_IP) &&
3598 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3599 skb->protocol = htons(ETH_P_IPV6);
3600 else if (skb->protocol == htons(ETH_P_IPV6) &&
3601 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3602 skb->protocol = htons(ETH_P_IP);
3603
3604 if (skb_is_gso(skb)) {
3605 struct skb_shared_info *shinfo = skb_shinfo(skb);
3606
3607 /* Due to header shrink, MSS can be upgraded. */
3608 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3609 skb_increase_gso_size(shinfo, len_diff);
3610
3611 /* Header must be checked, and gso_segs recomputed. */
3612 shinfo->gso_type |= SKB_GSO_DODGY;
3613 shinfo->gso_segs = 0;
3614 }
3615
3616 return 0;
3617 }
3618
3619 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3620
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3621 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3622 u32, mode, u64, flags)
3623 {
3624 u32 len_diff_abs = abs(len_diff);
3625 bool shrink = len_diff < 0;
3626 int ret = 0;
3627
3628 if (unlikely(flags || mode))
3629 return -EINVAL;
3630 if (unlikely(len_diff_abs > 0xfffU))
3631 return -EFAULT;
3632
3633 if (!shrink) {
3634 ret = skb_cow(skb, len_diff);
3635 if (unlikely(ret < 0))
3636 return ret;
3637 __skb_push(skb, len_diff_abs);
3638 memset(skb->data, 0, len_diff_abs);
3639 } else {
3640 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3641 return -ENOMEM;
3642 __skb_pull(skb, len_diff_abs);
3643 }
3644 if (tls_sw_has_ctx_rx(skb->sk)) {
3645 struct strp_msg *rxm = strp_msg(skb);
3646
3647 rxm->full_len += len_diff;
3648 }
3649 return ret;
3650 }
3651
3652 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3653 .func = sk_skb_adjust_room,
3654 .gpl_only = false,
3655 .ret_type = RET_INTEGER,
3656 .arg1_type = ARG_PTR_TO_CTX,
3657 .arg2_type = ARG_ANYTHING,
3658 .arg3_type = ARG_ANYTHING,
3659 .arg4_type = ARG_ANYTHING,
3660 };
3661
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3662 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3663 u32, mode, u64, flags)
3664 {
3665 u32 len_cur, len_diff_abs = abs(len_diff);
3666 u32 len_min = bpf_skb_net_base_len(skb);
3667 u32 len_max = BPF_SKB_MAX_LEN;
3668 __be16 proto = skb->protocol;
3669 bool shrink = len_diff < 0;
3670 u32 off;
3671 int ret;
3672
3673 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3674 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3675 return -EINVAL;
3676 if (unlikely(len_diff_abs > 0xfffU))
3677 return -EFAULT;
3678 if (unlikely(proto != htons(ETH_P_IP) &&
3679 proto != htons(ETH_P_IPV6)))
3680 return -ENOTSUPP;
3681
3682 off = skb_mac_header_len(skb);
3683 switch (mode) {
3684 case BPF_ADJ_ROOM_NET:
3685 off += bpf_skb_net_base_len(skb);
3686 break;
3687 case BPF_ADJ_ROOM_MAC:
3688 break;
3689 default:
3690 return -ENOTSUPP;
3691 }
3692
3693 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3694 if (!shrink)
3695 return -EINVAL;
3696
3697 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3698 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3699 len_min = sizeof(struct iphdr);
3700 break;
3701 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3702 len_min = sizeof(struct ipv6hdr);
3703 break;
3704 default:
3705 return -EINVAL;
3706 }
3707 }
3708
3709 len_cur = skb->len - skb_network_offset(skb);
3710 if ((shrink && (len_diff_abs >= len_cur ||
3711 len_cur - len_diff_abs < len_min)) ||
3712 (!shrink && (skb->len + len_diff_abs > len_max &&
3713 !skb_is_gso(skb))))
3714 return -ENOTSUPP;
3715
3716 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3717 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3718 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3719 __skb_reset_checksum_unnecessary(skb);
3720
3721 bpf_compute_data_pointers(skb);
3722 return ret;
3723 }
3724
3725 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3726 .func = bpf_skb_adjust_room,
3727 .gpl_only = false,
3728 .ret_type = RET_INTEGER,
3729 .arg1_type = ARG_PTR_TO_CTX,
3730 .arg2_type = ARG_ANYTHING,
3731 .arg3_type = ARG_ANYTHING,
3732 .arg4_type = ARG_ANYTHING,
3733 };
3734
__bpf_skb_min_len(const struct sk_buff * skb)3735 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3736 {
3737 int offset = skb_network_offset(skb);
3738 u32 min_len = 0;
3739
3740 if (offset > 0)
3741 min_len = offset;
3742 if (skb_transport_header_was_set(skb)) {
3743 offset = skb_transport_offset(skb);
3744 if (offset > 0)
3745 min_len = offset;
3746 }
3747 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3748 offset = skb_checksum_start_offset(skb) +
3749 skb->csum_offset + sizeof(__sum16);
3750 if (offset > 0)
3751 min_len = offset;
3752 }
3753 return min_len;
3754 }
3755
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3756 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3757 {
3758 unsigned int old_len = skb->len;
3759 int ret;
3760
3761 ret = __skb_grow_rcsum(skb, new_len);
3762 if (!ret)
3763 memset(skb->data + old_len, 0, new_len - old_len);
3764 return ret;
3765 }
3766
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3767 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3768 {
3769 return __skb_trim_rcsum(skb, new_len);
3770 }
3771
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3772 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3773 u64 flags)
3774 {
3775 u32 max_len = BPF_SKB_MAX_LEN;
3776 u32 min_len = __bpf_skb_min_len(skb);
3777 int ret;
3778
3779 if (unlikely(flags || new_len > max_len || new_len < min_len))
3780 return -EINVAL;
3781 if (skb->encapsulation)
3782 return -ENOTSUPP;
3783
3784 /* The basic idea of this helper is that it's performing the
3785 * needed work to either grow or trim an skb, and eBPF program
3786 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3787 * bpf_lX_csum_replace() and others rather than passing a raw
3788 * buffer here. This one is a slow path helper and intended
3789 * for replies with control messages.
3790 *
3791 * Like in bpf_skb_change_proto(), we want to keep this rather
3792 * minimal and without protocol specifics so that we are able
3793 * to separate concerns as in bpf_skb_store_bytes() should only
3794 * be the one responsible for writing buffers.
3795 *
3796 * It's really expected to be a slow path operation here for
3797 * control message replies, so we're implicitly linearizing,
3798 * uncloning and drop offloads from the skb by this.
3799 */
3800 ret = __bpf_try_make_writable(skb, skb->len);
3801 if (!ret) {
3802 if (new_len > skb->len)
3803 ret = bpf_skb_grow_rcsum(skb, new_len);
3804 else if (new_len < skb->len)
3805 ret = bpf_skb_trim_rcsum(skb, new_len);
3806 if (!ret && skb_is_gso(skb))
3807 skb_gso_reset(skb);
3808 }
3809 return ret;
3810 }
3811
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3812 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3813 u64, flags)
3814 {
3815 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3816
3817 bpf_compute_data_pointers(skb);
3818 return ret;
3819 }
3820
3821 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3822 .func = bpf_skb_change_tail,
3823 .gpl_only = false,
3824 .ret_type = RET_INTEGER,
3825 .arg1_type = ARG_PTR_TO_CTX,
3826 .arg2_type = ARG_ANYTHING,
3827 .arg3_type = ARG_ANYTHING,
3828 };
3829
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3830 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3831 u64, flags)
3832 {
3833 return __bpf_skb_change_tail(skb, new_len, flags);
3834 }
3835
3836 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3837 .func = sk_skb_change_tail,
3838 .gpl_only = false,
3839 .ret_type = RET_INTEGER,
3840 .arg1_type = ARG_PTR_TO_CTX,
3841 .arg2_type = ARG_ANYTHING,
3842 .arg3_type = ARG_ANYTHING,
3843 };
3844
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3845 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3846 u64 flags)
3847 {
3848 u32 max_len = BPF_SKB_MAX_LEN;
3849 u32 new_len = skb->len + head_room;
3850 int ret;
3851
3852 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3853 new_len < skb->len))
3854 return -EINVAL;
3855
3856 ret = skb_cow(skb, head_room);
3857 if (likely(!ret)) {
3858 /* Idea for this helper is that we currently only
3859 * allow to expand on mac header. This means that
3860 * skb->protocol network header, etc, stay as is.
3861 * Compared to bpf_skb_change_tail(), we're more
3862 * flexible due to not needing to linearize or
3863 * reset GSO. Intention for this helper is to be
3864 * used by an L3 skb that needs to push mac header
3865 * for redirection into L2 device.
3866 */
3867 __skb_push(skb, head_room);
3868 memset(skb->data, 0, head_room);
3869 skb_reset_mac_header(skb);
3870 skb_reset_mac_len(skb);
3871 }
3872
3873 return ret;
3874 }
3875
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3876 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3877 u64, flags)
3878 {
3879 int ret = __bpf_skb_change_head(skb, head_room, flags);
3880
3881 bpf_compute_data_pointers(skb);
3882 return ret;
3883 }
3884
3885 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3886 .func = bpf_skb_change_head,
3887 .gpl_only = false,
3888 .ret_type = RET_INTEGER,
3889 .arg1_type = ARG_PTR_TO_CTX,
3890 .arg2_type = ARG_ANYTHING,
3891 .arg3_type = ARG_ANYTHING,
3892 };
3893
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3894 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3895 u64, flags)
3896 {
3897 return __bpf_skb_change_head(skb, head_room, flags);
3898 }
3899
3900 static const struct bpf_func_proto sk_skb_change_head_proto = {
3901 .func = sk_skb_change_head,
3902 .gpl_only = false,
3903 .ret_type = RET_INTEGER,
3904 .arg1_type = ARG_PTR_TO_CTX,
3905 .arg2_type = ARG_ANYTHING,
3906 .arg3_type = ARG_ANYTHING,
3907 };
3908
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3909 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3910 {
3911 return xdp_get_buff_len(xdp);
3912 }
3913
3914 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3915 .func = bpf_xdp_get_buff_len,
3916 .gpl_only = false,
3917 .ret_type = RET_INTEGER,
3918 .arg1_type = ARG_PTR_TO_CTX,
3919 };
3920
3921 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3922
3923 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3924 .func = bpf_xdp_get_buff_len,
3925 .gpl_only = false,
3926 .arg1_type = ARG_PTR_TO_BTF_ID,
3927 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3928 };
3929
xdp_get_metalen(const struct xdp_buff * xdp)3930 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3931 {
3932 return xdp_data_meta_unsupported(xdp) ? 0 :
3933 xdp->data - xdp->data_meta;
3934 }
3935
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3936 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3937 {
3938 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3939 unsigned long metalen = xdp_get_metalen(xdp);
3940 void *data_start = xdp_frame_end + metalen;
3941 void *data = xdp->data + offset;
3942
3943 if (unlikely(data < data_start ||
3944 data > xdp->data_end - ETH_HLEN))
3945 return -EINVAL;
3946
3947 if (metalen)
3948 memmove(xdp->data_meta + offset,
3949 xdp->data_meta, metalen);
3950 xdp->data_meta += offset;
3951 xdp->data = data;
3952
3953 return 0;
3954 }
3955
3956 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3957 .func = bpf_xdp_adjust_head,
3958 .gpl_only = false,
3959 .ret_type = RET_INTEGER,
3960 .arg1_type = ARG_PTR_TO_CTX,
3961 .arg2_type = ARG_ANYTHING,
3962 };
3963
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3964 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3965 void *buf, unsigned long len, bool flush)
3966 {
3967 unsigned long ptr_len, ptr_off = 0;
3968 skb_frag_t *next_frag, *end_frag;
3969 struct skb_shared_info *sinfo;
3970 void *src, *dst;
3971 u8 *ptr_buf;
3972
3973 if (likely(xdp->data_end - xdp->data >= off + len)) {
3974 src = flush ? buf : xdp->data + off;
3975 dst = flush ? xdp->data + off : buf;
3976 memcpy(dst, src, len);
3977 return;
3978 }
3979
3980 sinfo = xdp_get_shared_info_from_buff(xdp);
3981 end_frag = &sinfo->frags[sinfo->nr_frags];
3982 next_frag = &sinfo->frags[0];
3983
3984 ptr_len = xdp->data_end - xdp->data;
3985 ptr_buf = xdp->data;
3986
3987 while (true) {
3988 if (off < ptr_off + ptr_len) {
3989 unsigned long copy_off = off - ptr_off;
3990 unsigned long copy_len = min(len, ptr_len - copy_off);
3991
3992 src = flush ? buf : ptr_buf + copy_off;
3993 dst = flush ? ptr_buf + copy_off : buf;
3994 memcpy(dst, src, copy_len);
3995
3996 off += copy_len;
3997 len -= copy_len;
3998 buf += copy_len;
3999 }
4000
4001 if (!len || next_frag == end_frag)
4002 break;
4003
4004 ptr_off += ptr_len;
4005 ptr_buf = skb_frag_address(next_frag);
4006 ptr_len = skb_frag_size(next_frag);
4007 next_frag++;
4008 }
4009 }
4010
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4011 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4012 {
4013 u32 size = xdp->data_end - xdp->data;
4014 struct skb_shared_info *sinfo;
4015 void *addr = xdp->data;
4016 int i;
4017
4018 if (unlikely(offset > 0xffff || len > 0xffff))
4019 return ERR_PTR(-EFAULT);
4020
4021 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4022 return ERR_PTR(-EINVAL);
4023
4024 if (likely(offset < size)) /* linear area */
4025 goto out;
4026
4027 sinfo = xdp_get_shared_info_from_buff(xdp);
4028 offset -= size;
4029 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4030 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4031
4032 if (offset < frag_size) {
4033 addr = skb_frag_address(&sinfo->frags[i]);
4034 size = frag_size;
4035 break;
4036 }
4037 offset -= frag_size;
4038 }
4039 out:
4040 return offset + len <= size ? addr + offset : NULL;
4041 }
4042
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4043 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4044 void *, buf, u32, len)
4045 {
4046 void *ptr;
4047
4048 ptr = bpf_xdp_pointer(xdp, offset, len);
4049 if (IS_ERR(ptr))
4050 return PTR_ERR(ptr);
4051
4052 if (!ptr)
4053 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4054 else
4055 memcpy(buf, ptr, len);
4056
4057 return 0;
4058 }
4059
4060 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4061 .func = bpf_xdp_load_bytes,
4062 .gpl_only = false,
4063 .ret_type = RET_INTEGER,
4064 .arg1_type = ARG_PTR_TO_CTX,
4065 .arg2_type = ARG_ANYTHING,
4066 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4067 .arg4_type = ARG_CONST_SIZE,
4068 };
4069
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4070 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4071 {
4072 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4073 }
4074
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4075 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4076 void *, buf, u32, len)
4077 {
4078 void *ptr;
4079
4080 ptr = bpf_xdp_pointer(xdp, offset, len);
4081 if (IS_ERR(ptr))
4082 return PTR_ERR(ptr);
4083
4084 if (!ptr)
4085 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4086 else
4087 memcpy(ptr, buf, len);
4088
4089 return 0;
4090 }
4091
4092 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4093 .func = bpf_xdp_store_bytes,
4094 .gpl_only = false,
4095 .ret_type = RET_INTEGER,
4096 .arg1_type = ARG_PTR_TO_CTX,
4097 .arg2_type = ARG_ANYTHING,
4098 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4099 .arg4_type = ARG_CONST_SIZE,
4100 };
4101
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4102 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4103 {
4104 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4105 }
4106
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4107 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4108 {
4109 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4110 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4111 struct xdp_rxq_info *rxq = xdp->rxq;
4112 unsigned int tailroom;
4113
4114 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4115 return -EOPNOTSUPP;
4116
4117 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4118 if (unlikely(offset > tailroom))
4119 return -EINVAL;
4120
4121 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4122 skb_frag_size_add(frag, offset);
4123 sinfo->xdp_frags_size += offset;
4124 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4125 xsk_buff_get_tail(xdp)->data_end += offset;
4126
4127 return 0;
4128 }
4129
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4130 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4131 enum xdp_mem_type mem_type, bool release)
4132 {
4133 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4134
4135 if (release) {
4136 xsk_buff_del_tail(zc_frag);
4137 __xdp_return(0, mem_type, false, zc_frag);
4138 } else {
4139 zc_frag->data_end -= shrink;
4140 }
4141 }
4142
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4143 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4144 int shrink)
4145 {
4146 enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4147 bool release = skb_frag_size(frag) == shrink;
4148
4149 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4150 bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4151 goto out;
4152 }
4153
4154 if (release)
4155 __xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4156
4157 out:
4158 return release;
4159 }
4160
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4161 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4162 {
4163 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4164 int i, n_frags_free = 0, len_free = 0;
4165
4166 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4167 return -EINVAL;
4168
4169 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4170 skb_frag_t *frag = &sinfo->frags[i];
4171 int shrink = min_t(int, offset, skb_frag_size(frag));
4172
4173 len_free += shrink;
4174 offset -= shrink;
4175 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4176 n_frags_free++;
4177 } else {
4178 skb_frag_size_sub(frag, shrink);
4179 break;
4180 }
4181 }
4182 sinfo->nr_frags -= n_frags_free;
4183 sinfo->xdp_frags_size -= len_free;
4184
4185 if (unlikely(!sinfo->nr_frags)) {
4186 xdp_buff_clear_frags_flag(xdp);
4187 xdp->data_end -= offset;
4188 }
4189
4190 return 0;
4191 }
4192
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4193 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4194 {
4195 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4196 void *data_end = xdp->data_end + offset;
4197
4198 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4199 if (offset < 0)
4200 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4201
4202 return bpf_xdp_frags_increase_tail(xdp, offset);
4203 }
4204
4205 /* Notice that xdp_data_hard_end have reserved some tailroom */
4206 if (unlikely(data_end > data_hard_end))
4207 return -EINVAL;
4208
4209 if (unlikely(data_end < xdp->data + ETH_HLEN))
4210 return -EINVAL;
4211
4212 /* Clear memory area on grow, can contain uninit kernel memory */
4213 if (offset > 0)
4214 memset(xdp->data_end, 0, offset);
4215
4216 xdp->data_end = data_end;
4217
4218 return 0;
4219 }
4220
4221 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4222 .func = bpf_xdp_adjust_tail,
4223 .gpl_only = false,
4224 .ret_type = RET_INTEGER,
4225 .arg1_type = ARG_PTR_TO_CTX,
4226 .arg2_type = ARG_ANYTHING,
4227 };
4228
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4229 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4230 {
4231 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4232 void *meta = xdp->data_meta + offset;
4233 unsigned long metalen = xdp->data - meta;
4234
4235 if (xdp_data_meta_unsupported(xdp))
4236 return -ENOTSUPP;
4237 if (unlikely(meta < xdp_frame_end ||
4238 meta > xdp->data))
4239 return -EINVAL;
4240 if (unlikely(xdp_metalen_invalid(metalen)))
4241 return -EACCES;
4242
4243 xdp->data_meta = meta;
4244
4245 return 0;
4246 }
4247
4248 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4249 .func = bpf_xdp_adjust_meta,
4250 .gpl_only = false,
4251 .ret_type = RET_INTEGER,
4252 .arg1_type = ARG_PTR_TO_CTX,
4253 .arg2_type = ARG_ANYTHING,
4254 };
4255
4256 /**
4257 * DOC: xdp redirect
4258 *
4259 * XDP_REDIRECT works by a three-step process, implemented in the functions
4260 * below:
4261 *
4262 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4263 * of the redirect and store it (along with some other metadata) in a per-CPU
4264 * struct bpf_redirect_info.
4265 *
4266 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4267 * call xdp_do_redirect() which will use the information in struct
4268 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4269 * bulk queue structure.
4270 *
4271 * 3. Before exiting its NAPI poll loop, the driver will call
4272 * xdp_do_flush(), which will flush all the different bulk queues,
4273 * thus completing the redirect. Note that xdp_do_flush() must be
4274 * called before napi_complete_done() in the driver, as the
4275 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4276 * through to the xdp_do_flush() call for RCU protection of all
4277 * in-kernel data structures.
4278 */
4279 /*
4280 * Pointers to the map entries will be kept around for this whole sequence of
4281 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4282 * the core code; instead, the RCU protection relies on everything happening
4283 * inside a single NAPI poll sequence, which means it's between a pair of calls
4284 * to local_bh_disable()/local_bh_enable().
4285 *
4286 * The map entries are marked as __rcu and the map code makes sure to
4287 * dereference those pointers with rcu_dereference_check() in a way that works
4288 * for both sections that to hold an rcu_read_lock() and sections that are
4289 * called from NAPI without a separate rcu_read_lock(). The code below does not
4290 * use RCU annotations, but relies on those in the map code.
4291 */
xdp_do_flush(void)4292 void xdp_do_flush(void)
4293 {
4294 struct list_head *lh_map, *lh_dev, *lh_xsk;
4295
4296 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4297 if (lh_dev)
4298 __dev_flush(lh_dev);
4299 if (lh_map)
4300 __cpu_map_flush(lh_map);
4301 if (lh_xsk)
4302 __xsk_map_flush(lh_xsk);
4303 }
4304 EXPORT_SYMBOL_GPL(xdp_do_flush);
4305
4306 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4307 void xdp_do_check_flushed(struct napi_struct *napi)
4308 {
4309 struct list_head *lh_map, *lh_dev, *lh_xsk;
4310 bool missed = false;
4311
4312 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4313 if (lh_dev) {
4314 __dev_flush(lh_dev);
4315 missed = true;
4316 }
4317 if (lh_map) {
4318 __cpu_map_flush(lh_map);
4319 missed = true;
4320 }
4321 if (lh_xsk) {
4322 __xsk_map_flush(lh_xsk);
4323 missed = true;
4324 }
4325
4326 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4327 napi->poll);
4328 }
4329 #endif
4330
4331 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4332 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4333
xdp_master_redirect(struct xdp_buff * xdp)4334 u32 xdp_master_redirect(struct xdp_buff *xdp)
4335 {
4336 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4337 struct net_device *master, *slave;
4338
4339 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4340 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4341 if (slave && slave != xdp->rxq->dev) {
4342 /* The target device is different from the receiving device, so
4343 * redirect it to the new device.
4344 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4345 * drivers to unmap the packet from their rx ring.
4346 */
4347 ri->tgt_index = slave->ifindex;
4348 ri->map_id = INT_MAX;
4349 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4350 return XDP_REDIRECT;
4351 }
4352 return XDP_TX;
4353 }
4354 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4355
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4356 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4357 const struct net_device *dev,
4358 struct xdp_buff *xdp,
4359 const struct bpf_prog *xdp_prog)
4360 {
4361 enum bpf_map_type map_type = ri->map_type;
4362 void *fwd = ri->tgt_value;
4363 u32 map_id = ri->map_id;
4364 int err;
4365
4366 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4367 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4368
4369 err = __xsk_map_redirect(fwd, xdp);
4370 if (unlikely(err))
4371 goto err;
4372
4373 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4374 return 0;
4375 err:
4376 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4377 return err;
4378 }
4379
4380 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4381 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4382 struct xdp_frame *xdpf,
4383 const struct bpf_prog *xdp_prog)
4384 {
4385 enum bpf_map_type map_type = ri->map_type;
4386 void *fwd = ri->tgt_value;
4387 u32 map_id = ri->map_id;
4388 u32 flags = ri->flags;
4389 struct bpf_map *map;
4390 int err;
4391
4392 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4393 ri->flags = 0;
4394 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4395
4396 if (unlikely(!xdpf)) {
4397 err = -EOVERFLOW;
4398 goto err;
4399 }
4400
4401 switch (map_type) {
4402 case BPF_MAP_TYPE_DEVMAP:
4403 fallthrough;
4404 case BPF_MAP_TYPE_DEVMAP_HASH:
4405 if (unlikely(flags & BPF_F_BROADCAST)) {
4406 map = READ_ONCE(ri->map);
4407
4408 /* The map pointer is cleared when the map is being torn
4409 * down by dev_map_free()
4410 */
4411 if (unlikely(!map)) {
4412 err = -ENOENT;
4413 break;
4414 }
4415
4416 WRITE_ONCE(ri->map, NULL);
4417 err = dev_map_enqueue_multi(xdpf, dev, map,
4418 flags & BPF_F_EXCLUDE_INGRESS);
4419 } else {
4420 err = dev_map_enqueue(fwd, xdpf, dev);
4421 }
4422 break;
4423 case BPF_MAP_TYPE_CPUMAP:
4424 err = cpu_map_enqueue(fwd, xdpf, dev);
4425 break;
4426 case BPF_MAP_TYPE_UNSPEC:
4427 if (map_id == INT_MAX) {
4428 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4429 if (unlikely(!fwd)) {
4430 err = -EINVAL;
4431 break;
4432 }
4433 err = dev_xdp_enqueue(fwd, xdpf, dev);
4434 break;
4435 }
4436 fallthrough;
4437 default:
4438 err = -EBADRQC;
4439 }
4440
4441 if (unlikely(err))
4442 goto err;
4443
4444 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4445 return 0;
4446 err:
4447 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4448 return err;
4449 }
4450
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4451 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4452 const struct bpf_prog *xdp_prog)
4453 {
4454 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4455 enum bpf_map_type map_type = ri->map_type;
4456
4457 if (map_type == BPF_MAP_TYPE_XSKMAP)
4458 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4459
4460 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4461 xdp_prog);
4462 }
4463 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4464
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4465 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4466 struct xdp_frame *xdpf,
4467 const struct bpf_prog *xdp_prog)
4468 {
4469 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4470 enum bpf_map_type map_type = ri->map_type;
4471
4472 if (map_type == BPF_MAP_TYPE_XSKMAP)
4473 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4474
4475 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4476 }
4477 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4478
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4479 static int xdp_do_generic_redirect_map(struct net_device *dev,
4480 struct sk_buff *skb,
4481 struct xdp_buff *xdp,
4482 const struct bpf_prog *xdp_prog,
4483 void *fwd, enum bpf_map_type map_type,
4484 u32 map_id, u32 flags)
4485 {
4486 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4487 struct bpf_map *map;
4488 int err;
4489
4490 switch (map_type) {
4491 case BPF_MAP_TYPE_DEVMAP:
4492 fallthrough;
4493 case BPF_MAP_TYPE_DEVMAP_HASH:
4494 if (unlikely(flags & BPF_F_BROADCAST)) {
4495 map = READ_ONCE(ri->map);
4496
4497 /* The map pointer is cleared when the map is being torn
4498 * down by dev_map_free()
4499 */
4500 if (unlikely(!map)) {
4501 err = -ENOENT;
4502 break;
4503 }
4504
4505 WRITE_ONCE(ri->map, NULL);
4506 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4507 flags & BPF_F_EXCLUDE_INGRESS);
4508 } else {
4509 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4510 }
4511 if (unlikely(err))
4512 goto err;
4513 break;
4514 case BPF_MAP_TYPE_XSKMAP:
4515 err = xsk_generic_rcv(fwd, xdp);
4516 if (err)
4517 goto err;
4518 consume_skb(skb);
4519 break;
4520 case BPF_MAP_TYPE_CPUMAP:
4521 err = cpu_map_generic_redirect(fwd, skb);
4522 if (unlikely(err))
4523 goto err;
4524 break;
4525 default:
4526 err = -EBADRQC;
4527 goto err;
4528 }
4529
4530 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4531 return 0;
4532 err:
4533 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4534 return err;
4535 }
4536
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4537 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4538 struct xdp_buff *xdp,
4539 const struct bpf_prog *xdp_prog)
4540 {
4541 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4542 enum bpf_map_type map_type = ri->map_type;
4543 void *fwd = ri->tgt_value;
4544 u32 map_id = ri->map_id;
4545 u32 flags = ri->flags;
4546 int err;
4547
4548 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4549 ri->flags = 0;
4550 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4551
4552 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4553 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4554 if (unlikely(!fwd)) {
4555 err = -EINVAL;
4556 goto err;
4557 }
4558
4559 err = xdp_ok_fwd_dev(fwd, skb->len);
4560 if (unlikely(err))
4561 goto err;
4562
4563 skb->dev = fwd;
4564 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4565 generic_xdp_tx(skb, xdp_prog);
4566 return 0;
4567 }
4568
4569 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4570 err:
4571 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4572 return err;
4573 }
4574
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4575 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4576 {
4577 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4578
4579 if (unlikely(flags))
4580 return XDP_ABORTED;
4581
4582 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4583 * by map_idr) is used for ifindex based XDP redirect.
4584 */
4585 ri->tgt_index = ifindex;
4586 ri->map_id = INT_MAX;
4587 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4588
4589 return XDP_REDIRECT;
4590 }
4591
4592 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4593 .func = bpf_xdp_redirect,
4594 .gpl_only = false,
4595 .ret_type = RET_INTEGER,
4596 .arg1_type = ARG_ANYTHING,
4597 .arg2_type = ARG_ANYTHING,
4598 };
4599
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4600 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4601 u64, flags)
4602 {
4603 return map->ops->map_redirect(map, key, flags);
4604 }
4605
4606 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4607 .func = bpf_xdp_redirect_map,
4608 .gpl_only = false,
4609 .ret_type = RET_INTEGER,
4610 .arg1_type = ARG_CONST_MAP_PTR,
4611 .arg2_type = ARG_ANYTHING,
4612 .arg3_type = ARG_ANYTHING,
4613 };
4614
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4615 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4616 unsigned long off, unsigned long len)
4617 {
4618 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4619
4620 if (unlikely(!ptr))
4621 return len;
4622 if (ptr != dst_buff)
4623 memcpy(dst_buff, ptr, len);
4624
4625 return 0;
4626 }
4627
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4628 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4629 u64, flags, void *, meta, u64, meta_size)
4630 {
4631 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4632
4633 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4634 return -EINVAL;
4635 if (unlikely(!skb || skb_size > skb->len))
4636 return -EFAULT;
4637
4638 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4639 bpf_skb_copy);
4640 }
4641
4642 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4643 .func = bpf_skb_event_output,
4644 .gpl_only = true,
4645 .ret_type = RET_INTEGER,
4646 .arg1_type = ARG_PTR_TO_CTX,
4647 .arg2_type = ARG_CONST_MAP_PTR,
4648 .arg3_type = ARG_ANYTHING,
4649 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4650 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4651 };
4652
4653 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4654
4655 const struct bpf_func_proto bpf_skb_output_proto = {
4656 .func = bpf_skb_event_output,
4657 .gpl_only = true,
4658 .ret_type = RET_INTEGER,
4659 .arg1_type = ARG_PTR_TO_BTF_ID,
4660 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4661 .arg2_type = ARG_CONST_MAP_PTR,
4662 .arg3_type = ARG_ANYTHING,
4663 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4664 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4665 };
4666
bpf_tunnel_key_af(u64 flags)4667 static unsigned short bpf_tunnel_key_af(u64 flags)
4668 {
4669 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4670 }
4671
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4672 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4673 u32, size, u64, flags)
4674 {
4675 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4676 u8 compat[sizeof(struct bpf_tunnel_key)];
4677 void *to_orig = to;
4678 int err;
4679
4680 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4681 BPF_F_TUNINFO_FLAGS)))) {
4682 err = -EINVAL;
4683 goto err_clear;
4684 }
4685 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4686 err = -EPROTO;
4687 goto err_clear;
4688 }
4689 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4690 err = -EINVAL;
4691 switch (size) {
4692 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4693 case offsetof(struct bpf_tunnel_key, tunnel_label):
4694 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4695 goto set_compat;
4696 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4697 /* Fixup deprecated structure layouts here, so we have
4698 * a common path later on.
4699 */
4700 if (ip_tunnel_info_af(info) != AF_INET)
4701 goto err_clear;
4702 set_compat:
4703 to = (struct bpf_tunnel_key *)compat;
4704 break;
4705 default:
4706 goto err_clear;
4707 }
4708 }
4709
4710 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4711 to->tunnel_tos = info->key.tos;
4712 to->tunnel_ttl = info->key.ttl;
4713 if (flags & BPF_F_TUNINFO_FLAGS)
4714 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4715 else
4716 to->tunnel_ext = 0;
4717
4718 if (flags & BPF_F_TUNINFO_IPV6) {
4719 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4720 sizeof(to->remote_ipv6));
4721 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4722 sizeof(to->local_ipv6));
4723 to->tunnel_label = be32_to_cpu(info->key.label);
4724 } else {
4725 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4726 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4727 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4728 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4729 to->tunnel_label = 0;
4730 }
4731
4732 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4733 memcpy(to_orig, to, size);
4734
4735 return 0;
4736 err_clear:
4737 memset(to_orig, 0, size);
4738 return err;
4739 }
4740
4741 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4742 .func = bpf_skb_get_tunnel_key,
4743 .gpl_only = false,
4744 .ret_type = RET_INTEGER,
4745 .arg1_type = ARG_PTR_TO_CTX,
4746 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4747 .arg3_type = ARG_CONST_SIZE,
4748 .arg4_type = ARG_ANYTHING,
4749 };
4750
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4751 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4752 {
4753 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4754 int err;
4755
4756 if (unlikely(!info ||
4757 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4758 err = -ENOENT;
4759 goto err_clear;
4760 }
4761 if (unlikely(size < info->options_len)) {
4762 err = -ENOMEM;
4763 goto err_clear;
4764 }
4765
4766 ip_tunnel_info_opts_get(to, info);
4767 if (size > info->options_len)
4768 memset(to + info->options_len, 0, size - info->options_len);
4769
4770 return info->options_len;
4771 err_clear:
4772 memset(to, 0, size);
4773 return err;
4774 }
4775
4776 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4777 .func = bpf_skb_get_tunnel_opt,
4778 .gpl_only = false,
4779 .ret_type = RET_INTEGER,
4780 .arg1_type = ARG_PTR_TO_CTX,
4781 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4782 .arg3_type = ARG_CONST_SIZE,
4783 };
4784
4785 static struct metadata_dst __percpu *md_dst;
4786
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4787 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4788 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4789 {
4790 struct metadata_dst *md = this_cpu_ptr(md_dst);
4791 u8 compat[sizeof(struct bpf_tunnel_key)];
4792 struct ip_tunnel_info *info;
4793
4794 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4795 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4796 BPF_F_NO_TUNNEL_KEY)))
4797 return -EINVAL;
4798 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4799 switch (size) {
4800 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4801 case offsetof(struct bpf_tunnel_key, tunnel_label):
4802 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4803 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4804 /* Fixup deprecated structure layouts here, so we have
4805 * a common path later on.
4806 */
4807 memcpy(compat, from, size);
4808 memset(compat + size, 0, sizeof(compat) - size);
4809 from = (const struct bpf_tunnel_key *) compat;
4810 break;
4811 default:
4812 return -EINVAL;
4813 }
4814 }
4815 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4816 from->tunnel_ext))
4817 return -EINVAL;
4818
4819 skb_dst_drop(skb);
4820 dst_hold((struct dst_entry *) md);
4821 skb_dst_set(skb, (struct dst_entry *) md);
4822
4823 info = &md->u.tun_info;
4824 memset(info, 0, sizeof(*info));
4825 info->mode = IP_TUNNEL_INFO_TX;
4826
4827 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4828 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4829 flags & BPF_F_DONT_FRAGMENT);
4830 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4831 !(flags & BPF_F_ZERO_CSUM_TX));
4832 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4833 flags & BPF_F_SEQ_NUMBER);
4834 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4835 !(flags & BPF_F_NO_TUNNEL_KEY));
4836
4837 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4838 info->key.tos = from->tunnel_tos;
4839 info->key.ttl = from->tunnel_ttl;
4840
4841 if (flags & BPF_F_TUNINFO_IPV6) {
4842 info->mode |= IP_TUNNEL_INFO_IPV6;
4843 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4844 sizeof(from->remote_ipv6));
4845 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4846 sizeof(from->local_ipv6));
4847 info->key.label = cpu_to_be32(from->tunnel_label) &
4848 IPV6_FLOWLABEL_MASK;
4849 } else {
4850 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4851 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4852 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4853 }
4854
4855 return 0;
4856 }
4857
4858 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4859 .func = bpf_skb_set_tunnel_key,
4860 .gpl_only = false,
4861 .ret_type = RET_INTEGER,
4862 .arg1_type = ARG_PTR_TO_CTX,
4863 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4864 .arg3_type = ARG_CONST_SIZE,
4865 .arg4_type = ARG_ANYTHING,
4866 };
4867
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4868 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4869 const u8 *, from, u32, size)
4870 {
4871 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4872 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4873 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4874
4875 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4876 return -EINVAL;
4877 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4878 return -ENOMEM;
4879
4880 ip_tunnel_set_options_present(present);
4881 ip_tunnel_info_opts_set(info, from, size, present);
4882
4883 return 0;
4884 }
4885
4886 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4887 .func = bpf_skb_set_tunnel_opt,
4888 .gpl_only = false,
4889 .ret_type = RET_INTEGER,
4890 .arg1_type = ARG_PTR_TO_CTX,
4891 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4892 .arg3_type = ARG_CONST_SIZE,
4893 };
4894
4895 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4896 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4897 {
4898 if (!md_dst) {
4899 struct metadata_dst __percpu *tmp;
4900
4901 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4902 METADATA_IP_TUNNEL,
4903 GFP_KERNEL);
4904 if (!tmp)
4905 return NULL;
4906 if (cmpxchg(&md_dst, NULL, tmp))
4907 metadata_dst_free_percpu(tmp);
4908 }
4909
4910 switch (which) {
4911 case BPF_FUNC_skb_set_tunnel_key:
4912 return &bpf_skb_set_tunnel_key_proto;
4913 case BPF_FUNC_skb_set_tunnel_opt:
4914 return &bpf_skb_set_tunnel_opt_proto;
4915 default:
4916 return NULL;
4917 }
4918 }
4919
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4920 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4921 u32, idx)
4922 {
4923 struct bpf_array *array = container_of(map, struct bpf_array, map);
4924 struct cgroup *cgrp;
4925 struct sock *sk;
4926
4927 sk = skb_to_full_sk(skb);
4928 if (!sk || !sk_fullsock(sk))
4929 return -ENOENT;
4930 if (unlikely(idx >= array->map.max_entries))
4931 return -E2BIG;
4932
4933 cgrp = READ_ONCE(array->ptrs[idx]);
4934 if (unlikely(!cgrp))
4935 return -EAGAIN;
4936
4937 return sk_under_cgroup_hierarchy(sk, cgrp);
4938 }
4939
4940 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4941 .func = bpf_skb_under_cgroup,
4942 .gpl_only = false,
4943 .ret_type = RET_INTEGER,
4944 .arg1_type = ARG_PTR_TO_CTX,
4945 .arg2_type = ARG_CONST_MAP_PTR,
4946 .arg3_type = ARG_ANYTHING,
4947 };
4948
4949 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4950 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4951 {
4952 struct cgroup *cgrp;
4953
4954 sk = sk_to_full_sk(sk);
4955 if (!sk || !sk_fullsock(sk))
4956 return 0;
4957
4958 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4959 return cgroup_id(cgrp);
4960 }
4961
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4962 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4963 {
4964 return __bpf_sk_cgroup_id(skb->sk);
4965 }
4966
4967 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4968 .func = bpf_skb_cgroup_id,
4969 .gpl_only = false,
4970 .ret_type = RET_INTEGER,
4971 .arg1_type = ARG_PTR_TO_CTX,
4972 };
4973
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4974 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4975 int ancestor_level)
4976 {
4977 struct cgroup *ancestor;
4978 struct cgroup *cgrp;
4979
4980 sk = sk_to_full_sk(sk);
4981 if (!sk || !sk_fullsock(sk))
4982 return 0;
4983
4984 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4985 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4986 if (!ancestor)
4987 return 0;
4988
4989 return cgroup_id(ancestor);
4990 }
4991
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4992 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4993 ancestor_level)
4994 {
4995 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4996 }
4997
4998 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4999 .func = bpf_skb_ancestor_cgroup_id,
5000 .gpl_only = false,
5001 .ret_type = RET_INTEGER,
5002 .arg1_type = ARG_PTR_TO_CTX,
5003 .arg2_type = ARG_ANYTHING,
5004 };
5005
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5006 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5007 {
5008 return __bpf_sk_cgroup_id(sk);
5009 }
5010
5011 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5012 .func = bpf_sk_cgroup_id,
5013 .gpl_only = false,
5014 .ret_type = RET_INTEGER,
5015 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5016 };
5017
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5018 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5019 {
5020 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5021 }
5022
5023 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5024 .func = bpf_sk_ancestor_cgroup_id,
5025 .gpl_only = false,
5026 .ret_type = RET_INTEGER,
5027 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5028 .arg2_type = ARG_ANYTHING,
5029 };
5030 #endif
5031
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5032 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5033 unsigned long off, unsigned long len)
5034 {
5035 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5036
5037 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5038 return 0;
5039 }
5040
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5041 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5042 u64, flags, void *, meta, u64, meta_size)
5043 {
5044 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5045
5046 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5047 return -EINVAL;
5048
5049 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5050 return -EFAULT;
5051
5052 return bpf_event_output(map, flags, meta, meta_size, xdp,
5053 xdp_size, bpf_xdp_copy);
5054 }
5055
5056 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5057 .func = bpf_xdp_event_output,
5058 .gpl_only = true,
5059 .ret_type = RET_INTEGER,
5060 .arg1_type = ARG_PTR_TO_CTX,
5061 .arg2_type = ARG_CONST_MAP_PTR,
5062 .arg3_type = ARG_ANYTHING,
5063 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5064 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5065 };
5066
5067 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5068
5069 const struct bpf_func_proto bpf_xdp_output_proto = {
5070 .func = bpf_xdp_event_output,
5071 .gpl_only = true,
5072 .ret_type = RET_INTEGER,
5073 .arg1_type = ARG_PTR_TO_BTF_ID,
5074 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5075 .arg2_type = ARG_CONST_MAP_PTR,
5076 .arg3_type = ARG_ANYTHING,
5077 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5078 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5079 };
5080
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5081 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5082 {
5083 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5084 }
5085
5086 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5087 .func = bpf_get_socket_cookie,
5088 .gpl_only = false,
5089 .ret_type = RET_INTEGER,
5090 .arg1_type = ARG_PTR_TO_CTX,
5091 };
5092
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5093 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5094 {
5095 return __sock_gen_cookie(ctx->sk);
5096 }
5097
5098 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5099 .func = bpf_get_socket_cookie_sock_addr,
5100 .gpl_only = false,
5101 .ret_type = RET_INTEGER,
5102 .arg1_type = ARG_PTR_TO_CTX,
5103 };
5104
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5105 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5106 {
5107 return __sock_gen_cookie(ctx);
5108 }
5109
5110 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5111 .func = bpf_get_socket_cookie_sock,
5112 .gpl_only = false,
5113 .ret_type = RET_INTEGER,
5114 .arg1_type = ARG_PTR_TO_CTX,
5115 };
5116
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5117 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5118 {
5119 return sk ? sock_gen_cookie(sk) : 0;
5120 }
5121
5122 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5123 .func = bpf_get_socket_ptr_cookie,
5124 .gpl_only = false,
5125 .ret_type = RET_INTEGER,
5126 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5127 };
5128
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5129 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5130 {
5131 return __sock_gen_cookie(ctx->sk);
5132 }
5133
5134 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5135 .func = bpf_get_socket_cookie_sock_ops,
5136 .gpl_only = false,
5137 .ret_type = RET_INTEGER,
5138 .arg1_type = ARG_PTR_TO_CTX,
5139 };
5140
__bpf_get_netns_cookie(struct sock * sk)5141 static u64 __bpf_get_netns_cookie(struct sock *sk)
5142 {
5143 const struct net *net = sk ? sock_net(sk) : &init_net;
5144
5145 return net->net_cookie;
5146 }
5147
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5148 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5149 {
5150 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5151 }
5152
5153 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5154 .func = bpf_get_netns_cookie,
5155 .ret_type = RET_INTEGER,
5156 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5157 };
5158
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5159 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5160 {
5161 return __bpf_get_netns_cookie(ctx);
5162 }
5163
5164 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5165 .func = bpf_get_netns_cookie_sock,
5166 .gpl_only = false,
5167 .ret_type = RET_INTEGER,
5168 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5169 };
5170
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5171 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5172 {
5173 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5174 }
5175
5176 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5177 .func = bpf_get_netns_cookie_sock_addr,
5178 .gpl_only = false,
5179 .ret_type = RET_INTEGER,
5180 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5181 };
5182
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5183 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5184 {
5185 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5186 }
5187
5188 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5189 .func = bpf_get_netns_cookie_sock_ops,
5190 .gpl_only = false,
5191 .ret_type = RET_INTEGER,
5192 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5193 };
5194
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5195 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5196 {
5197 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5198 }
5199
5200 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5201 .func = bpf_get_netns_cookie_sk_msg,
5202 .gpl_only = false,
5203 .ret_type = RET_INTEGER,
5204 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5205 };
5206
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5207 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5208 {
5209 struct sock *sk = sk_to_full_sk(skb->sk);
5210 kuid_t kuid;
5211
5212 if (!sk || !sk_fullsock(sk))
5213 return overflowuid;
5214 kuid = sock_net_uid(sock_net(sk), sk);
5215 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5216 }
5217
5218 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5219 .func = bpf_get_socket_uid,
5220 .gpl_only = false,
5221 .ret_type = RET_INTEGER,
5222 .arg1_type = ARG_PTR_TO_CTX,
5223 };
5224
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5225 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5226 {
5227 u32 sk_bpf_cb_flags;
5228
5229 if (getopt) {
5230 *(u32 *)optval = sk->sk_bpf_cb_flags;
5231 return 0;
5232 }
5233
5234 sk_bpf_cb_flags = *(u32 *)optval;
5235
5236 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5237 return -EINVAL;
5238
5239 sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5240
5241 return 0;
5242 }
5243
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5244 static int sol_socket_sockopt(struct sock *sk, int optname,
5245 char *optval, int *optlen,
5246 bool getopt)
5247 {
5248 switch (optname) {
5249 case SO_REUSEADDR:
5250 case SO_SNDBUF:
5251 case SO_RCVBUF:
5252 case SO_KEEPALIVE:
5253 case SO_PRIORITY:
5254 case SO_REUSEPORT:
5255 case SO_RCVLOWAT:
5256 case SO_MARK:
5257 case SO_MAX_PACING_RATE:
5258 case SO_BINDTOIFINDEX:
5259 case SO_TXREHASH:
5260 case SK_BPF_CB_FLAGS:
5261 if (*optlen != sizeof(int))
5262 return -EINVAL;
5263 break;
5264 case SO_BINDTODEVICE:
5265 break;
5266 default:
5267 return -EINVAL;
5268 }
5269
5270 if (optname == SK_BPF_CB_FLAGS)
5271 return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5272
5273 if (getopt) {
5274 if (optname == SO_BINDTODEVICE)
5275 return -EINVAL;
5276 return sk_getsockopt(sk, SOL_SOCKET, optname,
5277 KERNEL_SOCKPTR(optval),
5278 KERNEL_SOCKPTR(optlen));
5279 }
5280
5281 return sk_setsockopt(sk, SOL_SOCKET, optname,
5282 KERNEL_SOCKPTR(optval), *optlen);
5283 }
5284
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5285 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5286 char *optval, int optlen)
5287 {
5288 if (optlen != sizeof(int))
5289 return -EINVAL;
5290
5291 switch (optname) {
5292 case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5293 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5294
5295 memcpy(optval, &cb_flags, optlen);
5296 break;
5297 }
5298 case TCP_BPF_RTO_MIN: {
5299 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5300
5301 memcpy(optval, &rto_min_us, optlen);
5302 break;
5303 }
5304 case TCP_BPF_DELACK_MAX: {
5305 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5306
5307 memcpy(optval, &delack_max_us, optlen);
5308 break;
5309 }
5310 default:
5311 return -EINVAL;
5312 }
5313
5314 return 0;
5315 }
5316
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5317 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5318 char *optval, int optlen)
5319 {
5320 struct tcp_sock *tp = tcp_sk(sk);
5321 unsigned long timeout;
5322 int val;
5323
5324 if (optlen != sizeof(int))
5325 return -EINVAL;
5326
5327 val = *(int *)optval;
5328
5329 /* Only some options are supported */
5330 switch (optname) {
5331 case TCP_BPF_IW:
5332 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5333 return -EINVAL;
5334 tcp_snd_cwnd_set(tp, val);
5335 break;
5336 case TCP_BPF_SNDCWND_CLAMP:
5337 if (val <= 0)
5338 return -EINVAL;
5339 tp->snd_cwnd_clamp = val;
5340 tp->snd_ssthresh = val;
5341 break;
5342 case TCP_BPF_DELACK_MAX:
5343 timeout = usecs_to_jiffies(val);
5344 if (timeout > TCP_DELACK_MAX ||
5345 timeout < TCP_TIMEOUT_MIN)
5346 return -EINVAL;
5347 inet_csk(sk)->icsk_delack_max = timeout;
5348 break;
5349 case TCP_BPF_RTO_MIN:
5350 timeout = usecs_to_jiffies(val);
5351 if (timeout > TCP_RTO_MIN ||
5352 timeout < TCP_TIMEOUT_MIN)
5353 return -EINVAL;
5354 inet_csk(sk)->icsk_rto_min = timeout;
5355 break;
5356 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5357 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5358 return -EINVAL;
5359 tp->bpf_sock_ops_cb_flags = val;
5360 break;
5361 default:
5362 return -EINVAL;
5363 }
5364
5365 return 0;
5366 }
5367
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5368 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5369 int *optlen, bool getopt)
5370 {
5371 struct tcp_sock *tp;
5372 int ret;
5373
5374 if (*optlen < 2)
5375 return -EINVAL;
5376
5377 if (getopt) {
5378 if (!inet_csk(sk)->icsk_ca_ops)
5379 return -EINVAL;
5380 /* BPF expects NULL-terminated tcp-cc string */
5381 optval[--(*optlen)] = '\0';
5382 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5383 KERNEL_SOCKPTR(optval),
5384 KERNEL_SOCKPTR(optlen));
5385 }
5386
5387 /* "cdg" is the only cc that alloc a ptr
5388 * in inet_csk_ca area. The bpf-tcp-cc may
5389 * overwrite this ptr after switching to cdg.
5390 */
5391 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5392 return -ENOTSUPP;
5393
5394 /* It stops this looping
5395 *
5396 * .init => bpf_setsockopt(tcp_cc) => .init =>
5397 * bpf_setsockopt(tcp_cc)" => .init => ....
5398 *
5399 * The second bpf_setsockopt(tcp_cc) is not allowed
5400 * in order to break the loop when both .init
5401 * are the same bpf prog.
5402 *
5403 * This applies even the second bpf_setsockopt(tcp_cc)
5404 * does not cause a loop. This limits only the first
5405 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5406 * pick a fallback cc (eg. peer does not support ECN)
5407 * and the second '.init' cannot fallback to
5408 * another.
5409 */
5410 tp = tcp_sk(sk);
5411 if (tp->bpf_chg_cc_inprogress)
5412 return -EBUSY;
5413
5414 tp->bpf_chg_cc_inprogress = 1;
5415 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5416 KERNEL_SOCKPTR(optval), *optlen);
5417 tp->bpf_chg_cc_inprogress = 0;
5418 return ret;
5419 }
5420
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5421 static int sol_tcp_sockopt(struct sock *sk, int optname,
5422 char *optval, int *optlen,
5423 bool getopt)
5424 {
5425 if (sk->sk_protocol != IPPROTO_TCP)
5426 return -EINVAL;
5427
5428 switch (optname) {
5429 case TCP_NODELAY:
5430 case TCP_MAXSEG:
5431 case TCP_KEEPIDLE:
5432 case TCP_KEEPINTVL:
5433 case TCP_KEEPCNT:
5434 case TCP_SYNCNT:
5435 case TCP_WINDOW_CLAMP:
5436 case TCP_THIN_LINEAR_TIMEOUTS:
5437 case TCP_USER_TIMEOUT:
5438 case TCP_NOTSENT_LOWAT:
5439 case TCP_SAVE_SYN:
5440 case TCP_RTO_MAX_MS:
5441 if (*optlen != sizeof(int))
5442 return -EINVAL;
5443 break;
5444 case TCP_CONGESTION:
5445 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5446 case TCP_SAVED_SYN:
5447 if (*optlen < 1)
5448 return -EINVAL;
5449 break;
5450 default:
5451 if (getopt)
5452 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5453 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5454 }
5455
5456 if (getopt) {
5457 if (optname == TCP_SAVED_SYN) {
5458 struct tcp_sock *tp = tcp_sk(sk);
5459
5460 if (!tp->saved_syn ||
5461 *optlen > tcp_saved_syn_len(tp->saved_syn))
5462 return -EINVAL;
5463 memcpy(optval, tp->saved_syn->data, *optlen);
5464 /* It cannot free tp->saved_syn here because it
5465 * does not know if the user space still needs it.
5466 */
5467 return 0;
5468 }
5469
5470 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5471 KERNEL_SOCKPTR(optval),
5472 KERNEL_SOCKPTR(optlen));
5473 }
5474
5475 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5476 KERNEL_SOCKPTR(optval), *optlen);
5477 }
5478
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5479 static int sol_ip_sockopt(struct sock *sk, int optname,
5480 char *optval, int *optlen,
5481 bool getopt)
5482 {
5483 if (sk->sk_family != AF_INET)
5484 return -EINVAL;
5485
5486 switch (optname) {
5487 case IP_TOS:
5488 if (*optlen != sizeof(int))
5489 return -EINVAL;
5490 break;
5491 default:
5492 return -EINVAL;
5493 }
5494
5495 if (getopt)
5496 return do_ip_getsockopt(sk, SOL_IP, optname,
5497 KERNEL_SOCKPTR(optval),
5498 KERNEL_SOCKPTR(optlen));
5499
5500 return do_ip_setsockopt(sk, SOL_IP, optname,
5501 KERNEL_SOCKPTR(optval), *optlen);
5502 }
5503
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5504 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5505 char *optval, int *optlen,
5506 bool getopt)
5507 {
5508 if (sk->sk_family != AF_INET6)
5509 return -EINVAL;
5510
5511 switch (optname) {
5512 case IPV6_TCLASS:
5513 case IPV6_AUTOFLOWLABEL:
5514 if (*optlen != sizeof(int))
5515 return -EINVAL;
5516 break;
5517 default:
5518 return -EINVAL;
5519 }
5520
5521 if (getopt)
5522 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5523 KERNEL_SOCKPTR(optval),
5524 KERNEL_SOCKPTR(optlen));
5525
5526 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5527 KERNEL_SOCKPTR(optval), *optlen);
5528 }
5529
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5530 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5531 char *optval, int optlen)
5532 {
5533 if (!sk_fullsock(sk))
5534 return -EINVAL;
5535
5536 if (level == SOL_SOCKET)
5537 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5538 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5539 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5540 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5541 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5542 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5543 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5544
5545 return -EINVAL;
5546 }
5547
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5548 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5549 {
5550 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5551 }
5552
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5553 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5554 char *optval, int optlen)
5555 {
5556 if (sk_fullsock(sk))
5557 sock_owned_by_me(sk);
5558 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5559 }
5560
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5561 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5562 char *optval, int optlen)
5563 {
5564 int err, saved_optlen = optlen;
5565
5566 if (!sk_fullsock(sk)) {
5567 err = -EINVAL;
5568 goto done;
5569 }
5570
5571 if (level == SOL_SOCKET)
5572 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5573 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5574 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5575 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5576 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5577 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5578 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5579 else
5580 err = -EINVAL;
5581
5582 done:
5583 if (err)
5584 optlen = 0;
5585 if (optlen < saved_optlen)
5586 memset(optval + optlen, 0, saved_optlen - optlen);
5587 return err;
5588 }
5589
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5590 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5591 char *optval, int optlen)
5592 {
5593 if (sk_fullsock(sk))
5594 sock_owned_by_me(sk);
5595 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5596 }
5597
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5598 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5599 int, optname, char *, optval, int, optlen)
5600 {
5601 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5602 }
5603
5604 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5605 .func = bpf_sk_setsockopt,
5606 .gpl_only = false,
5607 .ret_type = RET_INTEGER,
5608 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5609 .arg2_type = ARG_ANYTHING,
5610 .arg3_type = ARG_ANYTHING,
5611 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5612 .arg5_type = ARG_CONST_SIZE,
5613 };
5614
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5615 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5616 int, optname, char *, optval, int, optlen)
5617 {
5618 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5619 }
5620
5621 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5622 .func = bpf_sk_getsockopt,
5623 .gpl_only = false,
5624 .ret_type = RET_INTEGER,
5625 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5626 .arg2_type = ARG_ANYTHING,
5627 .arg3_type = ARG_ANYTHING,
5628 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5629 .arg5_type = ARG_CONST_SIZE,
5630 };
5631
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5632 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5633 int, optname, char *, optval, int, optlen)
5634 {
5635 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5636 }
5637
5638 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5639 .func = bpf_unlocked_sk_setsockopt,
5640 .gpl_only = false,
5641 .ret_type = RET_INTEGER,
5642 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5643 .arg2_type = ARG_ANYTHING,
5644 .arg3_type = ARG_ANYTHING,
5645 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5646 .arg5_type = ARG_CONST_SIZE,
5647 };
5648
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5649 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5650 int, optname, char *, optval, int, optlen)
5651 {
5652 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5653 }
5654
5655 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5656 .func = bpf_unlocked_sk_getsockopt,
5657 .gpl_only = false,
5658 .ret_type = RET_INTEGER,
5659 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5660 .arg2_type = ARG_ANYTHING,
5661 .arg3_type = ARG_ANYTHING,
5662 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5663 .arg5_type = ARG_CONST_SIZE,
5664 };
5665
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5666 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5667 int, level, int, optname, char *, optval, int, optlen)
5668 {
5669 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5670 }
5671
5672 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5673 .func = bpf_sock_addr_setsockopt,
5674 .gpl_only = false,
5675 .ret_type = RET_INTEGER,
5676 .arg1_type = ARG_PTR_TO_CTX,
5677 .arg2_type = ARG_ANYTHING,
5678 .arg3_type = ARG_ANYTHING,
5679 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5680 .arg5_type = ARG_CONST_SIZE,
5681 };
5682
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5683 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5684 int, level, int, optname, char *, optval, int, optlen)
5685 {
5686 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5687 }
5688
5689 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5690 .func = bpf_sock_addr_getsockopt,
5691 .gpl_only = false,
5692 .ret_type = RET_INTEGER,
5693 .arg1_type = ARG_PTR_TO_CTX,
5694 .arg2_type = ARG_ANYTHING,
5695 .arg3_type = ARG_ANYTHING,
5696 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5697 .arg5_type = ARG_CONST_SIZE,
5698 };
5699
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5700 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5701 int, level, int, optname, char *, optval, int, optlen)
5702 {
5703 if (!is_locked_tcp_sock_ops(bpf_sock))
5704 return -EOPNOTSUPP;
5705
5706 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5707 }
5708
5709 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5710 .func = bpf_sock_ops_setsockopt,
5711 .gpl_only = false,
5712 .ret_type = RET_INTEGER,
5713 .arg1_type = ARG_PTR_TO_CTX,
5714 .arg2_type = ARG_ANYTHING,
5715 .arg3_type = ARG_ANYTHING,
5716 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5717 .arg5_type = ARG_CONST_SIZE,
5718 };
5719
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5720 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5721 int optname, const u8 **start)
5722 {
5723 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5724 const u8 *hdr_start;
5725 int ret;
5726
5727 if (syn_skb) {
5728 /* sk is a request_sock here */
5729
5730 if (optname == TCP_BPF_SYN) {
5731 hdr_start = syn_skb->data;
5732 ret = tcp_hdrlen(syn_skb);
5733 } else if (optname == TCP_BPF_SYN_IP) {
5734 hdr_start = skb_network_header(syn_skb);
5735 ret = skb_network_header_len(syn_skb) +
5736 tcp_hdrlen(syn_skb);
5737 } else {
5738 /* optname == TCP_BPF_SYN_MAC */
5739 hdr_start = skb_mac_header(syn_skb);
5740 ret = skb_mac_header_len(syn_skb) +
5741 skb_network_header_len(syn_skb) +
5742 tcp_hdrlen(syn_skb);
5743 }
5744 } else {
5745 struct sock *sk = bpf_sock->sk;
5746 struct saved_syn *saved_syn;
5747
5748 if (sk->sk_state == TCP_NEW_SYN_RECV)
5749 /* synack retransmit. bpf_sock->syn_skb will
5750 * not be available. It has to resort to
5751 * saved_syn (if it is saved).
5752 */
5753 saved_syn = inet_reqsk(sk)->saved_syn;
5754 else
5755 saved_syn = tcp_sk(sk)->saved_syn;
5756
5757 if (!saved_syn)
5758 return -ENOENT;
5759
5760 if (optname == TCP_BPF_SYN) {
5761 hdr_start = saved_syn->data +
5762 saved_syn->mac_hdrlen +
5763 saved_syn->network_hdrlen;
5764 ret = saved_syn->tcp_hdrlen;
5765 } else if (optname == TCP_BPF_SYN_IP) {
5766 hdr_start = saved_syn->data +
5767 saved_syn->mac_hdrlen;
5768 ret = saved_syn->network_hdrlen +
5769 saved_syn->tcp_hdrlen;
5770 } else {
5771 /* optname == TCP_BPF_SYN_MAC */
5772
5773 /* TCP_SAVE_SYN may not have saved the mac hdr */
5774 if (!saved_syn->mac_hdrlen)
5775 return -ENOENT;
5776
5777 hdr_start = saved_syn->data;
5778 ret = saved_syn->mac_hdrlen +
5779 saved_syn->network_hdrlen +
5780 saved_syn->tcp_hdrlen;
5781 }
5782 }
5783
5784 *start = hdr_start;
5785 return ret;
5786 }
5787
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5788 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5789 int, level, int, optname, char *, optval, int, optlen)
5790 {
5791 if (!is_locked_tcp_sock_ops(bpf_sock))
5792 return -EOPNOTSUPP;
5793
5794 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5795 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5796 int ret, copy_len = 0;
5797 const u8 *start;
5798
5799 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5800 if (ret > 0) {
5801 copy_len = ret;
5802 if (optlen < copy_len) {
5803 copy_len = optlen;
5804 ret = -ENOSPC;
5805 }
5806
5807 memcpy(optval, start, copy_len);
5808 }
5809
5810 /* Zero out unused buffer at the end */
5811 memset(optval + copy_len, 0, optlen - copy_len);
5812
5813 return ret;
5814 }
5815
5816 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5817 }
5818
5819 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5820 .func = bpf_sock_ops_getsockopt,
5821 .gpl_only = false,
5822 .ret_type = RET_INTEGER,
5823 .arg1_type = ARG_PTR_TO_CTX,
5824 .arg2_type = ARG_ANYTHING,
5825 .arg3_type = ARG_ANYTHING,
5826 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5827 .arg5_type = ARG_CONST_SIZE,
5828 };
5829
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5830 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5831 int, argval)
5832 {
5833 struct sock *sk = bpf_sock->sk;
5834 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5835
5836 if (!is_locked_tcp_sock_ops(bpf_sock))
5837 return -EOPNOTSUPP;
5838
5839 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5840 return -EINVAL;
5841
5842 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5843
5844 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5845 }
5846
5847 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5848 .func = bpf_sock_ops_cb_flags_set,
5849 .gpl_only = false,
5850 .ret_type = RET_INTEGER,
5851 .arg1_type = ARG_PTR_TO_CTX,
5852 .arg2_type = ARG_ANYTHING,
5853 };
5854
5855 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5856 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5857
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5858 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5859 int, addr_len)
5860 {
5861 #ifdef CONFIG_INET
5862 struct sock *sk = ctx->sk;
5863 u32 flags = BIND_FROM_BPF;
5864 int err;
5865
5866 err = -EINVAL;
5867 if (addr_len < offsetofend(struct sockaddr, sa_family))
5868 return err;
5869 if (addr->sa_family == AF_INET) {
5870 if (addr_len < sizeof(struct sockaddr_in))
5871 return err;
5872 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5873 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5874 return __inet_bind(sk, addr, addr_len, flags);
5875 #if IS_ENABLED(CONFIG_IPV6)
5876 } else if (addr->sa_family == AF_INET6) {
5877 if (addr_len < SIN6_LEN_RFC2133)
5878 return err;
5879 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5880 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5881 /* ipv6_bpf_stub cannot be NULL, since it's called from
5882 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5883 */
5884 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5885 #endif /* CONFIG_IPV6 */
5886 }
5887 #endif /* CONFIG_INET */
5888
5889 return -EAFNOSUPPORT;
5890 }
5891
5892 static const struct bpf_func_proto bpf_bind_proto = {
5893 .func = bpf_bind,
5894 .gpl_only = false,
5895 .ret_type = RET_INTEGER,
5896 .arg1_type = ARG_PTR_TO_CTX,
5897 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5898 .arg3_type = ARG_CONST_SIZE,
5899 };
5900
5901 #ifdef CONFIG_XFRM
5902
5903 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5904 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5905
5906 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5907 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5908
5909 #endif
5910
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5911 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5912 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5913 {
5914 const struct sec_path *sp = skb_sec_path(skb);
5915 const struct xfrm_state *x;
5916
5917 if (!sp || unlikely(index >= sp->len || flags))
5918 goto err_clear;
5919
5920 x = sp->xvec[index];
5921
5922 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5923 goto err_clear;
5924
5925 to->reqid = x->props.reqid;
5926 to->spi = x->id.spi;
5927 to->family = x->props.family;
5928 to->ext = 0;
5929
5930 if (to->family == AF_INET6) {
5931 memcpy(to->remote_ipv6, x->props.saddr.a6,
5932 sizeof(to->remote_ipv6));
5933 } else {
5934 to->remote_ipv4 = x->props.saddr.a4;
5935 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5936 }
5937
5938 return 0;
5939 err_clear:
5940 memset(to, 0, size);
5941 return -EINVAL;
5942 }
5943
5944 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5945 .func = bpf_skb_get_xfrm_state,
5946 .gpl_only = false,
5947 .ret_type = RET_INTEGER,
5948 .arg1_type = ARG_PTR_TO_CTX,
5949 .arg2_type = ARG_ANYTHING,
5950 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5951 .arg4_type = ARG_CONST_SIZE,
5952 .arg5_type = ARG_ANYTHING,
5953 };
5954 #endif
5955
5956 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5957 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5958 {
5959 params->h_vlan_TCI = 0;
5960 params->h_vlan_proto = 0;
5961 if (mtu)
5962 params->mtu_result = mtu; /* union with tot_len */
5963
5964 return 0;
5965 }
5966 #endif
5967
5968 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5969 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5970 u32 flags, bool check_mtu)
5971 {
5972 struct fib_nh_common *nhc;
5973 struct in_device *in_dev;
5974 struct neighbour *neigh;
5975 struct net_device *dev;
5976 struct fib_result res;
5977 struct flowi4 fl4;
5978 u32 mtu = 0;
5979 int err;
5980
5981 dev = dev_get_by_index_rcu(net, params->ifindex);
5982 if (unlikely(!dev))
5983 return -ENODEV;
5984
5985 /* verify forwarding is enabled on this interface */
5986 in_dev = __in_dev_get_rcu(dev);
5987 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5988 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5989
5990 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5991 fl4.flowi4_iif = 1;
5992 fl4.flowi4_oif = params->ifindex;
5993 } else {
5994 fl4.flowi4_iif = params->ifindex;
5995 fl4.flowi4_oif = 0;
5996 }
5997 fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
5998 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5999 fl4.flowi4_flags = 0;
6000
6001 fl4.flowi4_proto = params->l4_protocol;
6002 fl4.daddr = params->ipv4_dst;
6003 fl4.saddr = params->ipv4_src;
6004 fl4.fl4_sport = params->sport;
6005 fl4.fl4_dport = params->dport;
6006 fl4.flowi4_multipath_hash = 0;
6007
6008 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6009 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6010 struct fib_table *tb;
6011
6012 if (flags & BPF_FIB_LOOKUP_TBID) {
6013 tbid = params->tbid;
6014 /* zero out for vlan output */
6015 params->tbid = 0;
6016 }
6017
6018 tb = fib_get_table(net, tbid);
6019 if (unlikely(!tb))
6020 return BPF_FIB_LKUP_RET_NOT_FWDED;
6021
6022 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6023 } else {
6024 if (flags & BPF_FIB_LOOKUP_MARK)
6025 fl4.flowi4_mark = params->mark;
6026 else
6027 fl4.flowi4_mark = 0;
6028 fl4.flowi4_secid = 0;
6029 fl4.flowi4_tun_key.tun_id = 0;
6030 fl4.flowi4_uid = sock_net_uid(net, NULL);
6031
6032 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6033 }
6034
6035 if (err) {
6036 /* map fib lookup errors to RTN_ type */
6037 if (err == -EINVAL)
6038 return BPF_FIB_LKUP_RET_BLACKHOLE;
6039 if (err == -EHOSTUNREACH)
6040 return BPF_FIB_LKUP_RET_UNREACHABLE;
6041 if (err == -EACCES)
6042 return BPF_FIB_LKUP_RET_PROHIBIT;
6043
6044 return BPF_FIB_LKUP_RET_NOT_FWDED;
6045 }
6046
6047 if (res.type != RTN_UNICAST)
6048 return BPF_FIB_LKUP_RET_NOT_FWDED;
6049
6050 if (fib_info_num_path(res.fi) > 1)
6051 fib_select_path(net, &res, &fl4, NULL);
6052
6053 if (check_mtu) {
6054 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6055 if (params->tot_len > mtu) {
6056 params->mtu_result = mtu; /* union with tot_len */
6057 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6058 }
6059 }
6060
6061 nhc = res.nhc;
6062
6063 /* do not handle lwt encaps right now */
6064 if (nhc->nhc_lwtstate)
6065 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6066
6067 dev = nhc->nhc_dev;
6068
6069 params->rt_metric = res.fi->fib_priority;
6070 params->ifindex = dev->ifindex;
6071
6072 if (flags & BPF_FIB_LOOKUP_SRC)
6073 params->ipv4_src = fib_result_prefsrc(net, &res);
6074
6075 /* xdp and cls_bpf programs are run in RCU-bh so
6076 * rcu_read_lock_bh is not needed here
6077 */
6078 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6079 if (nhc->nhc_gw_family)
6080 params->ipv4_dst = nhc->nhc_gw.ipv4;
6081 } else {
6082 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6083
6084 params->family = AF_INET6;
6085 *dst = nhc->nhc_gw.ipv6;
6086 }
6087
6088 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6089 goto set_fwd_params;
6090
6091 if (likely(nhc->nhc_gw_family != AF_INET6))
6092 neigh = __ipv4_neigh_lookup_noref(dev,
6093 (__force u32)params->ipv4_dst);
6094 else
6095 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6096
6097 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6098 return BPF_FIB_LKUP_RET_NO_NEIGH;
6099 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6100 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6101
6102 set_fwd_params:
6103 return bpf_fib_set_fwd_params(params, mtu);
6104 }
6105 #endif
6106
6107 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6108 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6109 u32 flags, bool check_mtu)
6110 {
6111 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6112 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6113 struct fib6_result res = {};
6114 struct neighbour *neigh;
6115 struct net_device *dev;
6116 struct inet6_dev *idev;
6117 struct flowi6 fl6;
6118 int strict = 0;
6119 int oif, err;
6120 u32 mtu = 0;
6121
6122 /* link local addresses are never forwarded */
6123 if (rt6_need_strict(dst) || rt6_need_strict(src))
6124 return BPF_FIB_LKUP_RET_NOT_FWDED;
6125
6126 dev = dev_get_by_index_rcu(net, params->ifindex);
6127 if (unlikely(!dev))
6128 return -ENODEV;
6129
6130 idev = __in6_dev_get_safely(dev);
6131 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6132 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6133
6134 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6135 fl6.flowi6_iif = 1;
6136 oif = fl6.flowi6_oif = params->ifindex;
6137 } else {
6138 oif = fl6.flowi6_iif = params->ifindex;
6139 fl6.flowi6_oif = 0;
6140 strict = RT6_LOOKUP_F_HAS_SADDR;
6141 }
6142 fl6.flowlabel = params->flowinfo;
6143 fl6.flowi6_scope = 0;
6144 fl6.flowi6_flags = 0;
6145 fl6.mp_hash = 0;
6146
6147 fl6.flowi6_proto = params->l4_protocol;
6148 fl6.daddr = *dst;
6149 fl6.saddr = *src;
6150 fl6.fl6_sport = params->sport;
6151 fl6.fl6_dport = params->dport;
6152
6153 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6154 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6155 struct fib6_table *tb;
6156
6157 if (flags & BPF_FIB_LOOKUP_TBID) {
6158 tbid = params->tbid;
6159 /* zero out for vlan output */
6160 params->tbid = 0;
6161 }
6162
6163 tb = ipv6_stub->fib6_get_table(net, tbid);
6164 if (unlikely(!tb))
6165 return BPF_FIB_LKUP_RET_NOT_FWDED;
6166
6167 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6168 strict);
6169 } else {
6170 if (flags & BPF_FIB_LOOKUP_MARK)
6171 fl6.flowi6_mark = params->mark;
6172 else
6173 fl6.flowi6_mark = 0;
6174 fl6.flowi6_secid = 0;
6175 fl6.flowi6_tun_key.tun_id = 0;
6176 fl6.flowi6_uid = sock_net_uid(net, NULL);
6177
6178 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6179 }
6180
6181 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6182 res.f6i == net->ipv6.fib6_null_entry))
6183 return BPF_FIB_LKUP_RET_NOT_FWDED;
6184
6185 switch (res.fib6_type) {
6186 /* only unicast is forwarded */
6187 case RTN_UNICAST:
6188 break;
6189 case RTN_BLACKHOLE:
6190 return BPF_FIB_LKUP_RET_BLACKHOLE;
6191 case RTN_UNREACHABLE:
6192 return BPF_FIB_LKUP_RET_UNREACHABLE;
6193 case RTN_PROHIBIT:
6194 return BPF_FIB_LKUP_RET_PROHIBIT;
6195 default:
6196 return BPF_FIB_LKUP_RET_NOT_FWDED;
6197 }
6198
6199 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6200 fl6.flowi6_oif != 0, NULL, strict);
6201
6202 if (check_mtu) {
6203 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6204 if (params->tot_len > mtu) {
6205 params->mtu_result = mtu; /* union with tot_len */
6206 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6207 }
6208 }
6209
6210 if (res.nh->fib_nh_lws)
6211 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6212
6213 if (res.nh->fib_nh_gw_family)
6214 *dst = res.nh->fib_nh_gw6;
6215
6216 dev = res.nh->fib_nh_dev;
6217 params->rt_metric = res.f6i->fib6_metric;
6218 params->ifindex = dev->ifindex;
6219
6220 if (flags & BPF_FIB_LOOKUP_SRC) {
6221 if (res.f6i->fib6_prefsrc.plen) {
6222 *src = res.f6i->fib6_prefsrc.addr;
6223 } else {
6224 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6225 &fl6.daddr, 0,
6226 src);
6227 if (err)
6228 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6229 }
6230 }
6231
6232 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6233 goto set_fwd_params;
6234
6235 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6236 * not needed here.
6237 */
6238 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6239 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6240 return BPF_FIB_LKUP_RET_NO_NEIGH;
6241 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6242 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6243
6244 set_fwd_params:
6245 return bpf_fib_set_fwd_params(params, mtu);
6246 }
6247 #endif
6248
6249 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6250 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6251 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6252
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6253 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6254 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6255 {
6256 if (plen < sizeof(*params))
6257 return -EINVAL;
6258
6259 if (flags & ~BPF_FIB_LOOKUP_MASK)
6260 return -EINVAL;
6261
6262 switch (params->family) {
6263 #if IS_ENABLED(CONFIG_INET)
6264 case AF_INET:
6265 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6266 flags, true);
6267 #endif
6268 #if IS_ENABLED(CONFIG_IPV6)
6269 case AF_INET6:
6270 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6271 flags, true);
6272 #endif
6273 }
6274 return -EAFNOSUPPORT;
6275 }
6276
6277 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6278 .func = bpf_xdp_fib_lookup,
6279 .gpl_only = true,
6280 .ret_type = RET_INTEGER,
6281 .arg1_type = ARG_PTR_TO_CTX,
6282 .arg2_type = ARG_PTR_TO_MEM,
6283 .arg3_type = ARG_CONST_SIZE,
6284 .arg4_type = ARG_ANYTHING,
6285 };
6286
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6287 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6288 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6289 {
6290 struct net *net = dev_net(skb->dev);
6291 int rc = -EAFNOSUPPORT;
6292 bool check_mtu = false;
6293
6294 if (plen < sizeof(*params))
6295 return -EINVAL;
6296
6297 if (flags & ~BPF_FIB_LOOKUP_MASK)
6298 return -EINVAL;
6299
6300 if (params->tot_len)
6301 check_mtu = true;
6302
6303 switch (params->family) {
6304 #if IS_ENABLED(CONFIG_INET)
6305 case AF_INET:
6306 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6307 break;
6308 #endif
6309 #if IS_ENABLED(CONFIG_IPV6)
6310 case AF_INET6:
6311 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6312 break;
6313 #endif
6314 }
6315
6316 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6317 struct net_device *dev;
6318
6319 /* When tot_len isn't provided by user, check skb
6320 * against MTU of FIB lookup resulting net_device
6321 */
6322 dev = dev_get_by_index_rcu(net, params->ifindex);
6323 if (!is_skb_forwardable(dev, skb))
6324 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6325
6326 params->mtu_result = dev->mtu; /* union with tot_len */
6327 }
6328
6329 return rc;
6330 }
6331
6332 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6333 .func = bpf_skb_fib_lookup,
6334 .gpl_only = true,
6335 .ret_type = RET_INTEGER,
6336 .arg1_type = ARG_PTR_TO_CTX,
6337 .arg2_type = ARG_PTR_TO_MEM,
6338 .arg3_type = ARG_CONST_SIZE,
6339 .arg4_type = ARG_ANYTHING,
6340 };
6341
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6342 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6343 u32 ifindex)
6344 {
6345 struct net *netns = dev_net(dev_curr);
6346
6347 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6348 if (ifindex == 0)
6349 return dev_curr;
6350
6351 return dev_get_by_index_rcu(netns, ifindex);
6352 }
6353
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6354 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6355 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6356 {
6357 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6358 struct net_device *dev = skb->dev;
6359 int mtu, dev_len, skb_len;
6360
6361 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6362 return -EINVAL;
6363 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6364 return -EINVAL;
6365
6366 dev = __dev_via_ifindex(dev, ifindex);
6367 if (unlikely(!dev))
6368 return -ENODEV;
6369
6370 mtu = READ_ONCE(dev->mtu);
6371 dev_len = mtu + dev->hard_header_len;
6372
6373 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6374 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6375
6376 skb_len += len_diff; /* minus result pass check */
6377 if (skb_len <= dev_len) {
6378 ret = BPF_MTU_CHK_RET_SUCCESS;
6379 goto out;
6380 }
6381 /* At this point, skb->len exceed MTU, but as it include length of all
6382 * segments, it can still be below MTU. The SKB can possibly get
6383 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6384 * must choose if segs are to be MTU checked.
6385 */
6386 if (skb_is_gso(skb)) {
6387 ret = BPF_MTU_CHK_RET_SUCCESS;
6388 if (flags & BPF_MTU_CHK_SEGS &&
6389 !skb_gso_validate_network_len(skb, mtu))
6390 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6391 }
6392 out:
6393 *mtu_len = mtu;
6394 return ret;
6395 }
6396
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6397 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6398 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6399 {
6400 struct net_device *dev = xdp->rxq->dev;
6401 int xdp_len = xdp->data_end - xdp->data;
6402 int ret = BPF_MTU_CHK_RET_SUCCESS;
6403 int mtu, dev_len;
6404
6405 /* XDP variant doesn't support multi-buffer segment check (yet) */
6406 if (unlikely(flags))
6407 return -EINVAL;
6408
6409 dev = __dev_via_ifindex(dev, ifindex);
6410 if (unlikely(!dev))
6411 return -ENODEV;
6412
6413 mtu = READ_ONCE(dev->mtu);
6414 dev_len = mtu + dev->hard_header_len;
6415
6416 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6417 if (*mtu_len)
6418 xdp_len = *mtu_len + dev->hard_header_len;
6419
6420 xdp_len += len_diff; /* minus result pass check */
6421 if (xdp_len > dev_len)
6422 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6423
6424 *mtu_len = mtu;
6425 return ret;
6426 }
6427
6428 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6429 .func = bpf_skb_check_mtu,
6430 .gpl_only = true,
6431 .ret_type = RET_INTEGER,
6432 .arg1_type = ARG_PTR_TO_CTX,
6433 .arg2_type = ARG_ANYTHING,
6434 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6435 .arg3_size = sizeof(u32),
6436 .arg4_type = ARG_ANYTHING,
6437 .arg5_type = ARG_ANYTHING,
6438 };
6439
6440 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6441 .func = bpf_xdp_check_mtu,
6442 .gpl_only = true,
6443 .ret_type = RET_INTEGER,
6444 .arg1_type = ARG_PTR_TO_CTX,
6445 .arg2_type = ARG_ANYTHING,
6446 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6447 .arg3_size = sizeof(u32),
6448 .arg4_type = ARG_ANYTHING,
6449 .arg5_type = ARG_ANYTHING,
6450 };
6451
6452 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6453 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6454 {
6455 int err;
6456 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6457
6458 if (!seg6_validate_srh(srh, len, false))
6459 return -EINVAL;
6460
6461 switch (type) {
6462 case BPF_LWT_ENCAP_SEG6_INLINE:
6463 if (skb->protocol != htons(ETH_P_IPV6))
6464 return -EBADMSG;
6465
6466 err = seg6_do_srh_inline(skb, srh);
6467 break;
6468 case BPF_LWT_ENCAP_SEG6:
6469 skb_reset_inner_headers(skb);
6470 skb->encapsulation = 1;
6471 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6472 break;
6473 default:
6474 return -EINVAL;
6475 }
6476
6477 bpf_compute_data_pointers(skb);
6478 if (err)
6479 return err;
6480
6481 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6482
6483 return seg6_lookup_nexthop(skb, NULL, 0);
6484 }
6485 #endif /* CONFIG_IPV6_SEG6_BPF */
6486
6487 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6488 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6489 bool ingress)
6490 {
6491 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6492 }
6493 #endif
6494
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6495 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6496 u32, len)
6497 {
6498 switch (type) {
6499 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6500 case BPF_LWT_ENCAP_SEG6:
6501 case BPF_LWT_ENCAP_SEG6_INLINE:
6502 return bpf_push_seg6_encap(skb, type, hdr, len);
6503 #endif
6504 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6505 case BPF_LWT_ENCAP_IP:
6506 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6507 #endif
6508 default:
6509 return -EINVAL;
6510 }
6511 }
6512
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6513 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6514 void *, hdr, u32, len)
6515 {
6516 switch (type) {
6517 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6518 case BPF_LWT_ENCAP_IP:
6519 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6520 #endif
6521 default:
6522 return -EINVAL;
6523 }
6524 }
6525
6526 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6527 .func = bpf_lwt_in_push_encap,
6528 .gpl_only = false,
6529 .ret_type = RET_INTEGER,
6530 .arg1_type = ARG_PTR_TO_CTX,
6531 .arg2_type = ARG_ANYTHING,
6532 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6533 .arg4_type = ARG_CONST_SIZE
6534 };
6535
6536 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6537 .func = bpf_lwt_xmit_push_encap,
6538 .gpl_only = false,
6539 .ret_type = RET_INTEGER,
6540 .arg1_type = ARG_PTR_TO_CTX,
6541 .arg2_type = ARG_ANYTHING,
6542 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6543 .arg4_type = ARG_CONST_SIZE
6544 };
6545
6546 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6547 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6548 const void *, from, u32, len)
6549 {
6550 struct seg6_bpf_srh_state *srh_state =
6551 this_cpu_ptr(&seg6_bpf_srh_states);
6552 struct ipv6_sr_hdr *srh = srh_state->srh;
6553 void *srh_tlvs, *srh_end, *ptr;
6554 int srhoff = 0;
6555
6556 lockdep_assert_held(&srh_state->bh_lock);
6557 if (srh == NULL)
6558 return -EINVAL;
6559
6560 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6561 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6562
6563 ptr = skb->data + offset;
6564 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6565 srh_state->valid = false;
6566 else if (ptr < (void *)&srh->flags ||
6567 ptr + len > (void *)&srh->segments)
6568 return -EFAULT;
6569
6570 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6571 return -EFAULT;
6572 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6573 return -EINVAL;
6574 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6575
6576 memcpy(skb->data + offset, from, len);
6577 return 0;
6578 }
6579
6580 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6581 .func = bpf_lwt_seg6_store_bytes,
6582 .gpl_only = false,
6583 .ret_type = RET_INTEGER,
6584 .arg1_type = ARG_PTR_TO_CTX,
6585 .arg2_type = ARG_ANYTHING,
6586 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6587 .arg4_type = ARG_CONST_SIZE
6588 };
6589
bpf_update_srh_state(struct sk_buff * skb)6590 static void bpf_update_srh_state(struct sk_buff *skb)
6591 {
6592 struct seg6_bpf_srh_state *srh_state =
6593 this_cpu_ptr(&seg6_bpf_srh_states);
6594 int srhoff = 0;
6595
6596 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6597 srh_state->srh = NULL;
6598 } else {
6599 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6600 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6601 srh_state->valid = true;
6602 }
6603 }
6604
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6605 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6606 u32, action, void *, param, u32, param_len)
6607 {
6608 struct seg6_bpf_srh_state *srh_state =
6609 this_cpu_ptr(&seg6_bpf_srh_states);
6610 int hdroff = 0;
6611 int err;
6612
6613 lockdep_assert_held(&srh_state->bh_lock);
6614 switch (action) {
6615 case SEG6_LOCAL_ACTION_END_X:
6616 if (!seg6_bpf_has_valid_srh(skb))
6617 return -EBADMSG;
6618 if (param_len != sizeof(struct in6_addr))
6619 return -EINVAL;
6620 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6621 case SEG6_LOCAL_ACTION_END_T:
6622 if (!seg6_bpf_has_valid_srh(skb))
6623 return -EBADMSG;
6624 if (param_len != sizeof(int))
6625 return -EINVAL;
6626 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6627 case SEG6_LOCAL_ACTION_END_DT6:
6628 if (!seg6_bpf_has_valid_srh(skb))
6629 return -EBADMSG;
6630 if (param_len != sizeof(int))
6631 return -EINVAL;
6632
6633 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6634 return -EBADMSG;
6635 if (!pskb_pull(skb, hdroff))
6636 return -EBADMSG;
6637
6638 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6639 skb_reset_network_header(skb);
6640 skb_reset_transport_header(skb);
6641 skb->encapsulation = 0;
6642
6643 bpf_compute_data_pointers(skb);
6644 bpf_update_srh_state(skb);
6645 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6646 case SEG6_LOCAL_ACTION_END_B6:
6647 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6648 return -EBADMSG;
6649 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6650 param, param_len);
6651 if (!err)
6652 bpf_update_srh_state(skb);
6653
6654 return err;
6655 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6656 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6657 return -EBADMSG;
6658 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6659 param, param_len);
6660 if (!err)
6661 bpf_update_srh_state(skb);
6662
6663 return err;
6664 default:
6665 return -EINVAL;
6666 }
6667 }
6668
6669 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6670 .func = bpf_lwt_seg6_action,
6671 .gpl_only = false,
6672 .ret_type = RET_INTEGER,
6673 .arg1_type = ARG_PTR_TO_CTX,
6674 .arg2_type = ARG_ANYTHING,
6675 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6676 .arg4_type = ARG_CONST_SIZE
6677 };
6678
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6679 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6680 s32, len)
6681 {
6682 struct seg6_bpf_srh_state *srh_state =
6683 this_cpu_ptr(&seg6_bpf_srh_states);
6684 struct ipv6_sr_hdr *srh = srh_state->srh;
6685 void *srh_end, *srh_tlvs, *ptr;
6686 struct ipv6hdr *hdr;
6687 int srhoff = 0;
6688 int ret;
6689
6690 lockdep_assert_held(&srh_state->bh_lock);
6691 if (unlikely(srh == NULL))
6692 return -EINVAL;
6693
6694 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6695 ((srh->first_segment + 1) << 4));
6696 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6697 srh_state->hdrlen);
6698 ptr = skb->data + offset;
6699
6700 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6701 return -EFAULT;
6702 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6703 return -EFAULT;
6704
6705 if (len > 0) {
6706 ret = skb_cow_head(skb, len);
6707 if (unlikely(ret < 0))
6708 return ret;
6709
6710 ret = bpf_skb_net_hdr_push(skb, offset, len);
6711 } else {
6712 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6713 }
6714
6715 bpf_compute_data_pointers(skb);
6716 if (unlikely(ret < 0))
6717 return ret;
6718
6719 hdr = (struct ipv6hdr *)skb->data;
6720 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6721
6722 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6723 return -EINVAL;
6724 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6725 srh_state->hdrlen += len;
6726 srh_state->valid = false;
6727 return 0;
6728 }
6729
6730 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6731 .func = bpf_lwt_seg6_adjust_srh,
6732 .gpl_only = false,
6733 .ret_type = RET_INTEGER,
6734 .arg1_type = ARG_PTR_TO_CTX,
6735 .arg2_type = ARG_ANYTHING,
6736 .arg3_type = ARG_ANYTHING,
6737 };
6738 #endif /* CONFIG_IPV6_SEG6_BPF */
6739
6740 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6741 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6742 int dif, int sdif, u8 family, u8 proto)
6743 {
6744 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6745 bool refcounted = false;
6746 struct sock *sk = NULL;
6747
6748 if (family == AF_INET) {
6749 __be32 src4 = tuple->ipv4.saddr;
6750 __be32 dst4 = tuple->ipv4.daddr;
6751
6752 if (proto == IPPROTO_TCP)
6753 sk = __inet_lookup(net, hinfo, NULL, 0,
6754 src4, tuple->ipv4.sport,
6755 dst4, tuple->ipv4.dport,
6756 dif, sdif, &refcounted);
6757 else
6758 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6759 dst4, tuple->ipv4.dport,
6760 dif, sdif, net->ipv4.udp_table, NULL);
6761 #if IS_ENABLED(CONFIG_IPV6)
6762 } else {
6763 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6764 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6765
6766 if (proto == IPPROTO_TCP)
6767 sk = __inet6_lookup(net, hinfo, NULL, 0,
6768 src6, tuple->ipv6.sport,
6769 dst6, ntohs(tuple->ipv6.dport),
6770 dif, sdif, &refcounted);
6771 else if (likely(ipv6_bpf_stub))
6772 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6773 src6, tuple->ipv6.sport,
6774 dst6, tuple->ipv6.dport,
6775 dif, sdif,
6776 net->ipv4.udp_table, NULL);
6777 #endif
6778 }
6779
6780 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6781 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6782 sk = NULL;
6783 }
6784 return sk;
6785 }
6786
6787 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6788 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6789 */
6790 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6791 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6792 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6793 u64 flags, int sdif)
6794 {
6795 struct sock *sk = NULL;
6796 struct net *net;
6797 u8 family;
6798
6799 if (len == sizeof(tuple->ipv4))
6800 family = AF_INET;
6801 else if (len == sizeof(tuple->ipv6))
6802 family = AF_INET6;
6803 else
6804 return NULL;
6805
6806 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6807 goto out;
6808
6809 if (sdif < 0) {
6810 if (family == AF_INET)
6811 sdif = inet_sdif(skb);
6812 else
6813 sdif = inet6_sdif(skb);
6814 }
6815
6816 if ((s32)netns_id < 0) {
6817 net = caller_net;
6818 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6819 } else {
6820 net = get_net_ns_by_id(caller_net, netns_id);
6821 if (unlikely(!net))
6822 goto out;
6823 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6824 put_net(net);
6825 }
6826
6827 out:
6828 return sk;
6829 }
6830
6831 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6832 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6833 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6834 u64 flags, int sdif)
6835 {
6836 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6837 ifindex, proto, netns_id, flags,
6838 sdif);
6839
6840 if (sk) {
6841 struct sock *sk2 = sk_to_full_sk(sk);
6842
6843 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6844 * sock refcnt is decremented to prevent a request_sock leak.
6845 */
6846 if (sk2 != sk) {
6847 sock_gen_put(sk);
6848 /* Ensure there is no need to bump sk2 refcnt */
6849 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6850 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6851 return NULL;
6852 }
6853 sk = sk2;
6854 }
6855 }
6856
6857 return sk;
6858 }
6859
6860 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6861 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6862 u8 proto, u64 netns_id, u64 flags)
6863 {
6864 struct net *caller_net;
6865 int ifindex;
6866
6867 if (skb->dev) {
6868 caller_net = dev_net(skb->dev);
6869 ifindex = skb->dev->ifindex;
6870 } else {
6871 caller_net = sock_net(skb->sk);
6872 ifindex = 0;
6873 }
6874
6875 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6876 netns_id, flags, -1);
6877 }
6878
6879 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6880 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6881 u8 proto, u64 netns_id, u64 flags)
6882 {
6883 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6884 flags);
6885
6886 if (sk) {
6887 struct sock *sk2 = sk_to_full_sk(sk);
6888
6889 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6890 * sock refcnt is decremented to prevent a request_sock leak.
6891 */
6892 if (sk2 != sk) {
6893 sock_gen_put(sk);
6894 /* Ensure there is no need to bump sk2 refcnt */
6895 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6896 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6897 return NULL;
6898 }
6899 sk = sk2;
6900 }
6901 }
6902
6903 return sk;
6904 }
6905
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6906 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6907 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6908 {
6909 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6910 netns_id, flags);
6911 }
6912
6913 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6914 .func = bpf_skc_lookup_tcp,
6915 .gpl_only = false,
6916 .pkt_access = true,
6917 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6918 .arg1_type = ARG_PTR_TO_CTX,
6919 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6920 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6921 .arg4_type = ARG_ANYTHING,
6922 .arg5_type = ARG_ANYTHING,
6923 };
6924
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6925 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6926 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6927 {
6928 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6929 netns_id, flags);
6930 }
6931
6932 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6933 .func = bpf_sk_lookup_tcp,
6934 .gpl_only = false,
6935 .pkt_access = true,
6936 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6937 .arg1_type = ARG_PTR_TO_CTX,
6938 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6939 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6940 .arg4_type = ARG_ANYTHING,
6941 .arg5_type = ARG_ANYTHING,
6942 };
6943
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6944 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6945 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6946 {
6947 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6948 netns_id, flags);
6949 }
6950
6951 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6952 .func = bpf_sk_lookup_udp,
6953 .gpl_only = false,
6954 .pkt_access = true,
6955 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6956 .arg1_type = ARG_PTR_TO_CTX,
6957 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6958 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6959 .arg4_type = ARG_ANYTHING,
6960 .arg5_type = ARG_ANYTHING,
6961 };
6962
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6963 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6964 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6965 {
6966 struct net_device *dev = skb->dev;
6967 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6968 struct net *caller_net = dev_net(dev);
6969
6970 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6971 ifindex, IPPROTO_TCP, netns_id,
6972 flags, sdif);
6973 }
6974
6975 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6976 .func = bpf_tc_skc_lookup_tcp,
6977 .gpl_only = false,
6978 .pkt_access = true,
6979 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6980 .arg1_type = ARG_PTR_TO_CTX,
6981 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6982 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6983 .arg4_type = ARG_ANYTHING,
6984 .arg5_type = ARG_ANYTHING,
6985 };
6986
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6987 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6988 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6989 {
6990 struct net_device *dev = skb->dev;
6991 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6992 struct net *caller_net = dev_net(dev);
6993
6994 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6995 ifindex, IPPROTO_TCP, netns_id,
6996 flags, sdif);
6997 }
6998
6999 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7000 .func = bpf_tc_sk_lookup_tcp,
7001 .gpl_only = false,
7002 .pkt_access = true,
7003 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7004 .arg1_type = ARG_PTR_TO_CTX,
7005 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7006 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7007 .arg4_type = ARG_ANYTHING,
7008 .arg5_type = ARG_ANYTHING,
7009 };
7010
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7011 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7012 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7013 {
7014 struct net_device *dev = skb->dev;
7015 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7016 struct net *caller_net = dev_net(dev);
7017
7018 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7019 ifindex, IPPROTO_UDP, netns_id,
7020 flags, sdif);
7021 }
7022
7023 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7024 .func = bpf_tc_sk_lookup_udp,
7025 .gpl_only = false,
7026 .pkt_access = true,
7027 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7028 .arg1_type = ARG_PTR_TO_CTX,
7029 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7030 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7031 .arg4_type = ARG_ANYTHING,
7032 .arg5_type = ARG_ANYTHING,
7033 };
7034
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7035 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7036 {
7037 if (sk && sk_is_refcounted(sk))
7038 sock_gen_put(sk);
7039 return 0;
7040 }
7041
7042 static const struct bpf_func_proto bpf_sk_release_proto = {
7043 .func = bpf_sk_release,
7044 .gpl_only = false,
7045 .ret_type = RET_INTEGER,
7046 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7047 };
7048
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7049 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7050 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7051 {
7052 struct net_device *dev = ctx->rxq->dev;
7053 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7054 struct net *caller_net = dev_net(dev);
7055
7056 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7057 ifindex, IPPROTO_UDP, netns_id,
7058 flags, sdif);
7059 }
7060
7061 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7062 .func = bpf_xdp_sk_lookup_udp,
7063 .gpl_only = false,
7064 .pkt_access = true,
7065 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7066 .arg1_type = ARG_PTR_TO_CTX,
7067 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7068 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7069 .arg4_type = ARG_ANYTHING,
7070 .arg5_type = ARG_ANYTHING,
7071 };
7072
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7073 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7074 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7075 {
7076 struct net_device *dev = ctx->rxq->dev;
7077 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7078 struct net *caller_net = dev_net(dev);
7079
7080 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7081 ifindex, IPPROTO_TCP, netns_id,
7082 flags, sdif);
7083 }
7084
7085 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7086 .func = bpf_xdp_skc_lookup_tcp,
7087 .gpl_only = false,
7088 .pkt_access = true,
7089 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7090 .arg1_type = ARG_PTR_TO_CTX,
7091 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7092 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7093 .arg4_type = ARG_ANYTHING,
7094 .arg5_type = ARG_ANYTHING,
7095 };
7096
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7097 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7098 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7099 {
7100 struct net_device *dev = ctx->rxq->dev;
7101 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7102 struct net *caller_net = dev_net(dev);
7103
7104 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7105 ifindex, IPPROTO_TCP, netns_id,
7106 flags, sdif);
7107 }
7108
7109 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7110 .func = bpf_xdp_sk_lookup_tcp,
7111 .gpl_only = false,
7112 .pkt_access = true,
7113 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7114 .arg1_type = ARG_PTR_TO_CTX,
7115 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7116 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7117 .arg4_type = ARG_ANYTHING,
7118 .arg5_type = ARG_ANYTHING,
7119 };
7120
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7121 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7122 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7123 {
7124 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7125 sock_net(ctx->sk), 0,
7126 IPPROTO_TCP, netns_id, flags,
7127 -1);
7128 }
7129
7130 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7131 .func = bpf_sock_addr_skc_lookup_tcp,
7132 .gpl_only = false,
7133 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7134 .arg1_type = ARG_PTR_TO_CTX,
7135 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7136 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7137 .arg4_type = ARG_ANYTHING,
7138 .arg5_type = ARG_ANYTHING,
7139 };
7140
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7141 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7142 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7143 {
7144 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7145 sock_net(ctx->sk), 0, IPPROTO_TCP,
7146 netns_id, flags, -1);
7147 }
7148
7149 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7150 .func = bpf_sock_addr_sk_lookup_tcp,
7151 .gpl_only = false,
7152 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7153 .arg1_type = ARG_PTR_TO_CTX,
7154 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7155 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7156 .arg4_type = ARG_ANYTHING,
7157 .arg5_type = ARG_ANYTHING,
7158 };
7159
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7160 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7161 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7162 {
7163 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7164 sock_net(ctx->sk), 0, IPPROTO_UDP,
7165 netns_id, flags, -1);
7166 }
7167
7168 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7169 .func = bpf_sock_addr_sk_lookup_udp,
7170 .gpl_only = false,
7171 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7172 .arg1_type = ARG_PTR_TO_CTX,
7173 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7174 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7175 .arg4_type = ARG_ANYTHING,
7176 .arg5_type = ARG_ANYTHING,
7177 };
7178
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7179 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7180 struct bpf_insn_access_aux *info)
7181 {
7182 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7183 icsk_retransmits))
7184 return false;
7185
7186 if (off % size != 0)
7187 return false;
7188
7189 switch (off) {
7190 case offsetof(struct bpf_tcp_sock, bytes_received):
7191 case offsetof(struct bpf_tcp_sock, bytes_acked):
7192 return size == sizeof(__u64);
7193 default:
7194 return size == sizeof(__u32);
7195 }
7196 }
7197
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7198 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7199 const struct bpf_insn *si,
7200 struct bpf_insn *insn_buf,
7201 struct bpf_prog *prog, u32 *target_size)
7202 {
7203 struct bpf_insn *insn = insn_buf;
7204
7205 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7206 do { \
7207 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7208 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7209 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7210 si->dst_reg, si->src_reg, \
7211 offsetof(struct tcp_sock, FIELD)); \
7212 } while (0)
7213
7214 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7215 do { \
7216 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7217 FIELD) > \
7218 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7219 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7220 struct inet_connection_sock, \
7221 FIELD), \
7222 si->dst_reg, si->src_reg, \
7223 offsetof( \
7224 struct inet_connection_sock, \
7225 FIELD)); \
7226 } while (0)
7227
7228 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7229
7230 switch (si->off) {
7231 case offsetof(struct bpf_tcp_sock, rtt_min):
7232 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7233 sizeof(struct minmax));
7234 BUILD_BUG_ON(sizeof(struct minmax) <
7235 sizeof(struct minmax_sample));
7236
7237 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7238 offsetof(struct tcp_sock, rtt_min) +
7239 offsetof(struct minmax_sample, v));
7240 break;
7241 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7242 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7243 break;
7244 case offsetof(struct bpf_tcp_sock, srtt_us):
7245 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7246 break;
7247 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7248 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7249 break;
7250 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7251 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7252 break;
7253 case offsetof(struct bpf_tcp_sock, snd_nxt):
7254 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7255 break;
7256 case offsetof(struct bpf_tcp_sock, snd_una):
7257 BPF_TCP_SOCK_GET_COMMON(snd_una);
7258 break;
7259 case offsetof(struct bpf_tcp_sock, mss_cache):
7260 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7261 break;
7262 case offsetof(struct bpf_tcp_sock, ecn_flags):
7263 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7264 break;
7265 case offsetof(struct bpf_tcp_sock, rate_delivered):
7266 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7267 break;
7268 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7269 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7270 break;
7271 case offsetof(struct bpf_tcp_sock, packets_out):
7272 BPF_TCP_SOCK_GET_COMMON(packets_out);
7273 break;
7274 case offsetof(struct bpf_tcp_sock, retrans_out):
7275 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7276 break;
7277 case offsetof(struct bpf_tcp_sock, total_retrans):
7278 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7279 break;
7280 case offsetof(struct bpf_tcp_sock, segs_in):
7281 BPF_TCP_SOCK_GET_COMMON(segs_in);
7282 break;
7283 case offsetof(struct bpf_tcp_sock, data_segs_in):
7284 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7285 break;
7286 case offsetof(struct bpf_tcp_sock, segs_out):
7287 BPF_TCP_SOCK_GET_COMMON(segs_out);
7288 break;
7289 case offsetof(struct bpf_tcp_sock, data_segs_out):
7290 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7291 break;
7292 case offsetof(struct bpf_tcp_sock, lost_out):
7293 BPF_TCP_SOCK_GET_COMMON(lost_out);
7294 break;
7295 case offsetof(struct bpf_tcp_sock, sacked_out):
7296 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7297 break;
7298 case offsetof(struct bpf_tcp_sock, bytes_received):
7299 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7300 break;
7301 case offsetof(struct bpf_tcp_sock, bytes_acked):
7302 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7303 break;
7304 case offsetof(struct bpf_tcp_sock, dsack_dups):
7305 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7306 break;
7307 case offsetof(struct bpf_tcp_sock, delivered):
7308 BPF_TCP_SOCK_GET_COMMON(delivered);
7309 break;
7310 case offsetof(struct bpf_tcp_sock, delivered_ce):
7311 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7312 break;
7313 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7314 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7315 break;
7316 }
7317
7318 return insn - insn_buf;
7319 }
7320
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7321 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7322 {
7323 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7324 return (unsigned long)sk;
7325
7326 return (unsigned long)NULL;
7327 }
7328
7329 const struct bpf_func_proto bpf_tcp_sock_proto = {
7330 .func = bpf_tcp_sock,
7331 .gpl_only = false,
7332 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7333 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7334 };
7335
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7336 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7337 {
7338 sk = sk_to_full_sk(sk);
7339
7340 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7341 return (unsigned long)sk;
7342
7343 return (unsigned long)NULL;
7344 }
7345
7346 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7347 .func = bpf_get_listener_sock,
7348 .gpl_only = false,
7349 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7350 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7351 };
7352
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7353 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7354 {
7355 unsigned int iphdr_len;
7356
7357 switch (skb_protocol(skb, true)) {
7358 case cpu_to_be16(ETH_P_IP):
7359 iphdr_len = sizeof(struct iphdr);
7360 break;
7361 case cpu_to_be16(ETH_P_IPV6):
7362 iphdr_len = sizeof(struct ipv6hdr);
7363 break;
7364 default:
7365 return 0;
7366 }
7367
7368 if (skb_headlen(skb) < iphdr_len)
7369 return 0;
7370
7371 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7372 return 0;
7373
7374 return INET_ECN_set_ce(skb);
7375 }
7376
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7377 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7378 struct bpf_insn_access_aux *info)
7379 {
7380 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7381 return false;
7382
7383 if (off % size != 0)
7384 return false;
7385
7386 switch (off) {
7387 default:
7388 return size == sizeof(__u32);
7389 }
7390 }
7391
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7392 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7393 const struct bpf_insn *si,
7394 struct bpf_insn *insn_buf,
7395 struct bpf_prog *prog, u32 *target_size)
7396 {
7397 struct bpf_insn *insn = insn_buf;
7398
7399 #define BPF_XDP_SOCK_GET(FIELD) \
7400 do { \
7401 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7402 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7403 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7404 si->dst_reg, si->src_reg, \
7405 offsetof(struct xdp_sock, FIELD)); \
7406 } while (0)
7407
7408 switch (si->off) {
7409 case offsetof(struct bpf_xdp_sock, queue_id):
7410 BPF_XDP_SOCK_GET(queue_id);
7411 break;
7412 }
7413
7414 return insn - insn_buf;
7415 }
7416
7417 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7418 .func = bpf_skb_ecn_set_ce,
7419 .gpl_only = false,
7420 .ret_type = RET_INTEGER,
7421 .arg1_type = ARG_PTR_TO_CTX,
7422 };
7423
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7424 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7425 struct tcphdr *, th, u32, th_len)
7426 {
7427 #ifdef CONFIG_SYN_COOKIES
7428 int ret;
7429
7430 if (unlikely(!sk || th_len < sizeof(*th)))
7431 return -EINVAL;
7432
7433 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7434 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7435 return -EINVAL;
7436
7437 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7438 return -EINVAL;
7439
7440 if (!th->ack || th->rst || th->syn)
7441 return -ENOENT;
7442
7443 if (unlikely(iph_len < sizeof(struct iphdr)))
7444 return -EINVAL;
7445
7446 if (tcp_synq_no_recent_overflow(sk))
7447 return -ENOENT;
7448
7449 /* Both struct iphdr and struct ipv6hdr have the version field at the
7450 * same offset so we can cast to the shorter header (struct iphdr).
7451 */
7452 switch (((struct iphdr *)iph)->version) {
7453 case 4:
7454 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7455 return -EINVAL;
7456
7457 ret = __cookie_v4_check((struct iphdr *)iph, th);
7458 break;
7459
7460 #if IS_BUILTIN(CONFIG_IPV6)
7461 case 6:
7462 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7463 return -EINVAL;
7464
7465 if (sk->sk_family != AF_INET6)
7466 return -EINVAL;
7467
7468 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7469 break;
7470 #endif /* CONFIG_IPV6 */
7471
7472 default:
7473 return -EPROTONOSUPPORT;
7474 }
7475
7476 if (ret > 0)
7477 return 0;
7478
7479 return -ENOENT;
7480 #else
7481 return -ENOTSUPP;
7482 #endif
7483 }
7484
7485 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7486 .func = bpf_tcp_check_syncookie,
7487 .gpl_only = true,
7488 .pkt_access = true,
7489 .ret_type = RET_INTEGER,
7490 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7491 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7492 .arg3_type = ARG_CONST_SIZE,
7493 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7494 .arg5_type = ARG_CONST_SIZE,
7495 };
7496
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7497 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7498 struct tcphdr *, th, u32, th_len)
7499 {
7500 #ifdef CONFIG_SYN_COOKIES
7501 u32 cookie;
7502 u16 mss;
7503
7504 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7505 return -EINVAL;
7506
7507 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7508 return -EINVAL;
7509
7510 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7511 return -ENOENT;
7512
7513 if (!th->syn || th->ack || th->fin || th->rst)
7514 return -EINVAL;
7515
7516 if (unlikely(iph_len < sizeof(struct iphdr)))
7517 return -EINVAL;
7518
7519 /* Both struct iphdr and struct ipv6hdr have the version field at the
7520 * same offset so we can cast to the shorter header (struct iphdr).
7521 */
7522 switch (((struct iphdr *)iph)->version) {
7523 case 4:
7524 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7525 return -EINVAL;
7526
7527 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7528 break;
7529
7530 #if IS_BUILTIN(CONFIG_IPV6)
7531 case 6:
7532 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7533 return -EINVAL;
7534
7535 if (sk->sk_family != AF_INET6)
7536 return -EINVAL;
7537
7538 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7539 break;
7540 #endif /* CONFIG_IPV6 */
7541
7542 default:
7543 return -EPROTONOSUPPORT;
7544 }
7545 if (mss == 0)
7546 return -ENOENT;
7547
7548 return cookie | ((u64)mss << 32);
7549 #else
7550 return -EOPNOTSUPP;
7551 #endif /* CONFIG_SYN_COOKIES */
7552 }
7553
7554 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7555 .func = bpf_tcp_gen_syncookie,
7556 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7557 .pkt_access = true,
7558 .ret_type = RET_INTEGER,
7559 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7560 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7561 .arg3_type = ARG_CONST_SIZE,
7562 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7563 .arg5_type = ARG_CONST_SIZE,
7564 };
7565
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7566 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7567 {
7568 if (!sk || flags != 0)
7569 return -EINVAL;
7570 if (!skb_at_tc_ingress(skb))
7571 return -EOPNOTSUPP;
7572 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7573 return -ENETUNREACH;
7574 if (sk_unhashed(sk))
7575 return -EOPNOTSUPP;
7576 if (sk_is_refcounted(sk) &&
7577 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7578 return -ENOENT;
7579
7580 skb_orphan(skb);
7581 skb->sk = sk;
7582 skb->destructor = sock_pfree;
7583
7584 return 0;
7585 }
7586
7587 static const struct bpf_func_proto bpf_sk_assign_proto = {
7588 .func = bpf_sk_assign,
7589 .gpl_only = false,
7590 .ret_type = RET_INTEGER,
7591 .arg1_type = ARG_PTR_TO_CTX,
7592 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7593 .arg3_type = ARG_ANYTHING,
7594 };
7595
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7596 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7597 u8 search_kind, const u8 *magic,
7598 u8 magic_len, bool *eol)
7599 {
7600 u8 kind, kind_len;
7601
7602 *eol = false;
7603
7604 while (op < opend) {
7605 kind = op[0];
7606
7607 if (kind == TCPOPT_EOL) {
7608 *eol = true;
7609 return ERR_PTR(-ENOMSG);
7610 } else if (kind == TCPOPT_NOP) {
7611 op++;
7612 continue;
7613 }
7614
7615 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7616 /* Something is wrong in the received header.
7617 * Follow the TCP stack's tcp_parse_options()
7618 * and just bail here.
7619 */
7620 return ERR_PTR(-EFAULT);
7621
7622 kind_len = op[1];
7623 if (search_kind == kind) {
7624 if (!magic_len)
7625 return op;
7626
7627 if (magic_len > kind_len - 2)
7628 return ERR_PTR(-ENOMSG);
7629
7630 if (!memcmp(&op[2], magic, magic_len))
7631 return op;
7632 }
7633
7634 op += kind_len;
7635 }
7636
7637 return ERR_PTR(-ENOMSG);
7638 }
7639
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7640 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7641 void *, search_res, u32, len, u64, flags)
7642 {
7643 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7644 const u8 *op, *opend, *magic, *search = search_res;
7645 u8 search_kind, search_len, copy_len, magic_len;
7646 int ret;
7647
7648 if (!is_locked_tcp_sock_ops(bpf_sock))
7649 return -EOPNOTSUPP;
7650
7651 /* 2 byte is the minimal option len except TCPOPT_NOP and
7652 * TCPOPT_EOL which are useless for the bpf prog to learn
7653 * and this helper disallow loading them also.
7654 */
7655 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7656 return -EINVAL;
7657
7658 search_kind = search[0];
7659 search_len = search[1];
7660
7661 if (search_len > len || search_kind == TCPOPT_NOP ||
7662 search_kind == TCPOPT_EOL)
7663 return -EINVAL;
7664
7665 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7666 /* 16 or 32 bit magic. +2 for kind and kind length */
7667 if (search_len != 4 && search_len != 6)
7668 return -EINVAL;
7669 magic = &search[2];
7670 magic_len = search_len - 2;
7671 } else {
7672 if (search_len)
7673 return -EINVAL;
7674 magic = NULL;
7675 magic_len = 0;
7676 }
7677
7678 if (load_syn) {
7679 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7680 if (ret < 0)
7681 return ret;
7682
7683 opend = op + ret;
7684 op += sizeof(struct tcphdr);
7685 } else {
7686 if (!bpf_sock->skb ||
7687 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7688 /* This bpf_sock->op cannot call this helper */
7689 return -EPERM;
7690
7691 opend = bpf_sock->skb_data_end;
7692 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7693 }
7694
7695 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7696 &eol);
7697 if (IS_ERR(op))
7698 return PTR_ERR(op);
7699
7700 copy_len = op[1];
7701 ret = copy_len;
7702 if (copy_len > len) {
7703 ret = -ENOSPC;
7704 copy_len = len;
7705 }
7706
7707 memcpy(search_res, op, copy_len);
7708 return ret;
7709 }
7710
7711 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7712 .func = bpf_sock_ops_load_hdr_opt,
7713 .gpl_only = false,
7714 .ret_type = RET_INTEGER,
7715 .arg1_type = ARG_PTR_TO_CTX,
7716 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7717 .arg3_type = ARG_CONST_SIZE,
7718 .arg4_type = ARG_ANYTHING,
7719 };
7720
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7721 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7722 const void *, from, u32, len, u64, flags)
7723 {
7724 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7725 const u8 *op, *new_op, *magic = NULL;
7726 struct sk_buff *skb;
7727 bool eol;
7728
7729 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7730 return -EPERM;
7731
7732 if (len < 2 || flags)
7733 return -EINVAL;
7734
7735 new_op = from;
7736 new_kind = new_op[0];
7737 new_kind_len = new_op[1];
7738
7739 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7740 new_kind == TCPOPT_EOL)
7741 return -EINVAL;
7742
7743 if (new_kind_len > bpf_sock->remaining_opt_len)
7744 return -ENOSPC;
7745
7746 /* 253 is another experimental kind */
7747 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7748 if (new_kind_len < 4)
7749 return -EINVAL;
7750 /* Match for the 2 byte magic also.
7751 * RFC 6994: the magic could be 2 or 4 bytes.
7752 * Hence, matching by 2 byte only is on the
7753 * conservative side but it is the right
7754 * thing to do for the 'search-for-duplication'
7755 * purpose.
7756 */
7757 magic = &new_op[2];
7758 magic_len = 2;
7759 }
7760
7761 /* Check for duplication */
7762 skb = bpf_sock->skb;
7763 op = skb->data + sizeof(struct tcphdr);
7764 opend = bpf_sock->skb_data_end;
7765
7766 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7767 &eol);
7768 if (!IS_ERR(op))
7769 return -EEXIST;
7770
7771 if (PTR_ERR(op) != -ENOMSG)
7772 return PTR_ERR(op);
7773
7774 if (eol)
7775 /* The option has been ended. Treat it as no more
7776 * header option can be written.
7777 */
7778 return -ENOSPC;
7779
7780 /* No duplication found. Store the header option. */
7781 memcpy(opend, from, new_kind_len);
7782
7783 bpf_sock->remaining_opt_len -= new_kind_len;
7784 bpf_sock->skb_data_end += new_kind_len;
7785
7786 return 0;
7787 }
7788
7789 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7790 .func = bpf_sock_ops_store_hdr_opt,
7791 .gpl_only = false,
7792 .ret_type = RET_INTEGER,
7793 .arg1_type = ARG_PTR_TO_CTX,
7794 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7795 .arg3_type = ARG_CONST_SIZE,
7796 .arg4_type = ARG_ANYTHING,
7797 };
7798
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7799 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7800 u32, len, u64, flags)
7801 {
7802 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7803 return -EPERM;
7804
7805 if (flags || len < 2)
7806 return -EINVAL;
7807
7808 if (len > bpf_sock->remaining_opt_len)
7809 return -ENOSPC;
7810
7811 bpf_sock->remaining_opt_len -= len;
7812
7813 return 0;
7814 }
7815
7816 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7817 .func = bpf_sock_ops_reserve_hdr_opt,
7818 .gpl_only = false,
7819 .ret_type = RET_INTEGER,
7820 .arg1_type = ARG_PTR_TO_CTX,
7821 .arg2_type = ARG_ANYTHING,
7822 .arg3_type = ARG_ANYTHING,
7823 };
7824
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7825 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7826 u64, tstamp, u32, tstamp_type)
7827 {
7828 /* skb_clear_delivery_time() is done for inet protocol */
7829 if (skb->protocol != htons(ETH_P_IP) &&
7830 skb->protocol != htons(ETH_P_IPV6))
7831 return -EOPNOTSUPP;
7832
7833 switch (tstamp_type) {
7834 case BPF_SKB_CLOCK_REALTIME:
7835 skb->tstamp = tstamp;
7836 skb->tstamp_type = SKB_CLOCK_REALTIME;
7837 break;
7838 case BPF_SKB_CLOCK_MONOTONIC:
7839 if (!tstamp)
7840 return -EINVAL;
7841 skb->tstamp = tstamp;
7842 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7843 break;
7844 case BPF_SKB_CLOCK_TAI:
7845 if (!tstamp)
7846 return -EINVAL;
7847 skb->tstamp = tstamp;
7848 skb->tstamp_type = SKB_CLOCK_TAI;
7849 break;
7850 default:
7851 return -EINVAL;
7852 }
7853
7854 return 0;
7855 }
7856
7857 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7858 .func = bpf_skb_set_tstamp,
7859 .gpl_only = false,
7860 .ret_type = RET_INTEGER,
7861 .arg1_type = ARG_PTR_TO_CTX,
7862 .arg2_type = ARG_ANYTHING,
7863 .arg3_type = ARG_ANYTHING,
7864 };
7865
7866 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7867 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7868 struct tcphdr *, th, u32, th_len)
7869 {
7870 u32 cookie;
7871 u16 mss;
7872
7873 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7874 return -EINVAL;
7875
7876 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7877 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7878
7879 return cookie | ((u64)mss << 32);
7880 }
7881
7882 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7883 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7884 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7885 .pkt_access = true,
7886 .ret_type = RET_INTEGER,
7887 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7888 .arg1_size = sizeof(struct iphdr),
7889 .arg2_type = ARG_PTR_TO_MEM,
7890 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7891 };
7892
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7893 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7894 struct tcphdr *, th, u32, th_len)
7895 {
7896 #if IS_BUILTIN(CONFIG_IPV6)
7897 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7898 sizeof(struct ipv6hdr);
7899 u32 cookie;
7900 u16 mss;
7901
7902 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7903 return -EINVAL;
7904
7905 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7906 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7907
7908 return cookie | ((u64)mss << 32);
7909 #else
7910 return -EPROTONOSUPPORT;
7911 #endif
7912 }
7913
7914 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7915 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7916 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7917 .pkt_access = true,
7918 .ret_type = RET_INTEGER,
7919 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7920 .arg1_size = sizeof(struct ipv6hdr),
7921 .arg2_type = ARG_PTR_TO_MEM,
7922 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7923 };
7924
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7925 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7926 struct tcphdr *, th)
7927 {
7928 if (__cookie_v4_check(iph, th) > 0)
7929 return 0;
7930
7931 return -EACCES;
7932 }
7933
7934 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7935 .func = bpf_tcp_raw_check_syncookie_ipv4,
7936 .gpl_only = true, /* __cookie_v4_check is GPL */
7937 .pkt_access = true,
7938 .ret_type = RET_INTEGER,
7939 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7940 .arg1_size = sizeof(struct iphdr),
7941 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7942 .arg2_size = sizeof(struct tcphdr),
7943 };
7944
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7945 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7946 struct tcphdr *, th)
7947 {
7948 #if IS_BUILTIN(CONFIG_IPV6)
7949 if (__cookie_v6_check(iph, th) > 0)
7950 return 0;
7951
7952 return -EACCES;
7953 #else
7954 return -EPROTONOSUPPORT;
7955 #endif
7956 }
7957
7958 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7959 .func = bpf_tcp_raw_check_syncookie_ipv6,
7960 .gpl_only = true, /* __cookie_v6_check is GPL */
7961 .pkt_access = true,
7962 .ret_type = RET_INTEGER,
7963 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7964 .arg1_size = sizeof(struct ipv6hdr),
7965 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7966 .arg2_size = sizeof(struct tcphdr),
7967 };
7968 #endif /* CONFIG_SYN_COOKIES */
7969
7970 #endif /* CONFIG_INET */
7971
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7972 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7973 {
7974 switch (func_id) {
7975 case BPF_FUNC_clone_redirect:
7976 case BPF_FUNC_l3_csum_replace:
7977 case BPF_FUNC_l4_csum_replace:
7978 case BPF_FUNC_lwt_push_encap:
7979 case BPF_FUNC_lwt_seg6_action:
7980 case BPF_FUNC_lwt_seg6_adjust_srh:
7981 case BPF_FUNC_lwt_seg6_store_bytes:
7982 case BPF_FUNC_msg_pop_data:
7983 case BPF_FUNC_msg_pull_data:
7984 case BPF_FUNC_msg_push_data:
7985 case BPF_FUNC_skb_adjust_room:
7986 case BPF_FUNC_skb_change_head:
7987 case BPF_FUNC_skb_change_proto:
7988 case BPF_FUNC_skb_change_tail:
7989 case BPF_FUNC_skb_pull_data:
7990 case BPF_FUNC_skb_store_bytes:
7991 case BPF_FUNC_skb_vlan_pop:
7992 case BPF_FUNC_skb_vlan_push:
7993 case BPF_FUNC_store_hdr_opt:
7994 case BPF_FUNC_xdp_adjust_head:
7995 case BPF_FUNC_xdp_adjust_meta:
7996 case BPF_FUNC_xdp_adjust_tail:
7997 /* tail-called program could call any of the above */
7998 case BPF_FUNC_tail_call:
7999 return true;
8000 default:
8001 return false;
8002 }
8003 }
8004
8005 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8006 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8007
8008 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8009 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8010 {
8011 const struct bpf_func_proto *func_proto;
8012
8013 func_proto = cgroup_common_func_proto(func_id, prog);
8014 if (func_proto)
8015 return func_proto;
8016
8017 func_proto = cgroup_current_func_proto(func_id, prog);
8018 if (func_proto)
8019 return func_proto;
8020
8021 switch (func_id) {
8022 case BPF_FUNC_get_socket_cookie:
8023 return &bpf_get_socket_cookie_sock_proto;
8024 case BPF_FUNC_get_netns_cookie:
8025 return &bpf_get_netns_cookie_sock_proto;
8026 case BPF_FUNC_perf_event_output:
8027 return &bpf_event_output_data_proto;
8028 case BPF_FUNC_sk_storage_get:
8029 return &bpf_sk_storage_get_cg_sock_proto;
8030 case BPF_FUNC_ktime_get_coarse_ns:
8031 return &bpf_ktime_get_coarse_ns_proto;
8032 default:
8033 return bpf_base_func_proto(func_id, prog);
8034 }
8035 }
8036
8037 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8038 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8039 {
8040 const struct bpf_func_proto *func_proto;
8041
8042 func_proto = cgroup_common_func_proto(func_id, prog);
8043 if (func_proto)
8044 return func_proto;
8045
8046 func_proto = cgroup_current_func_proto(func_id, prog);
8047 if (func_proto)
8048 return func_proto;
8049
8050 switch (func_id) {
8051 case BPF_FUNC_bind:
8052 switch (prog->expected_attach_type) {
8053 case BPF_CGROUP_INET4_CONNECT:
8054 case BPF_CGROUP_INET6_CONNECT:
8055 return &bpf_bind_proto;
8056 default:
8057 return NULL;
8058 }
8059 case BPF_FUNC_get_socket_cookie:
8060 return &bpf_get_socket_cookie_sock_addr_proto;
8061 case BPF_FUNC_get_netns_cookie:
8062 return &bpf_get_netns_cookie_sock_addr_proto;
8063 case BPF_FUNC_perf_event_output:
8064 return &bpf_event_output_data_proto;
8065 #ifdef CONFIG_INET
8066 case BPF_FUNC_sk_lookup_tcp:
8067 return &bpf_sock_addr_sk_lookup_tcp_proto;
8068 case BPF_FUNC_sk_lookup_udp:
8069 return &bpf_sock_addr_sk_lookup_udp_proto;
8070 case BPF_FUNC_sk_release:
8071 return &bpf_sk_release_proto;
8072 case BPF_FUNC_skc_lookup_tcp:
8073 return &bpf_sock_addr_skc_lookup_tcp_proto;
8074 #endif /* CONFIG_INET */
8075 case BPF_FUNC_sk_storage_get:
8076 return &bpf_sk_storage_get_proto;
8077 case BPF_FUNC_sk_storage_delete:
8078 return &bpf_sk_storage_delete_proto;
8079 case BPF_FUNC_setsockopt:
8080 switch (prog->expected_attach_type) {
8081 case BPF_CGROUP_INET4_BIND:
8082 case BPF_CGROUP_INET6_BIND:
8083 case BPF_CGROUP_INET4_CONNECT:
8084 case BPF_CGROUP_INET6_CONNECT:
8085 case BPF_CGROUP_UNIX_CONNECT:
8086 case BPF_CGROUP_UDP4_RECVMSG:
8087 case BPF_CGROUP_UDP6_RECVMSG:
8088 case BPF_CGROUP_UNIX_RECVMSG:
8089 case BPF_CGROUP_UDP4_SENDMSG:
8090 case BPF_CGROUP_UDP6_SENDMSG:
8091 case BPF_CGROUP_UNIX_SENDMSG:
8092 case BPF_CGROUP_INET4_GETPEERNAME:
8093 case BPF_CGROUP_INET6_GETPEERNAME:
8094 case BPF_CGROUP_UNIX_GETPEERNAME:
8095 case BPF_CGROUP_INET4_GETSOCKNAME:
8096 case BPF_CGROUP_INET6_GETSOCKNAME:
8097 case BPF_CGROUP_UNIX_GETSOCKNAME:
8098 return &bpf_sock_addr_setsockopt_proto;
8099 default:
8100 return NULL;
8101 }
8102 case BPF_FUNC_getsockopt:
8103 switch (prog->expected_attach_type) {
8104 case BPF_CGROUP_INET4_BIND:
8105 case BPF_CGROUP_INET6_BIND:
8106 case BPF_CGROUP_INET4_CONNECT:
8107 case BPF_CGROUP_INET6_CONNECT:
8108 case BPF_CGROUP_UNIX_CONNECT:
8109 case BPF_CGROUP_UDP4_RECVMSG:
8110 case BPF_CGROUP_UDP6_RECVMSG:
8111 case BPF_CGROUP_UNIX_RECVMSG:
8112 case BPF_CGROUP_UDP4_SENDMSG:
8113 case BPF_CGROUP_UDP6_SENDMSG:
8114 case BPF_CGROUP_UNIX_SENDMSG:
8115 case BPF_CGROUP_INET4_GETPEERNAME:
8116 case BPF_CGROUP_INET6_GETPEERNAME:
8117 case BPF_CGROUP_UNIX_GETPEERNAME:
8118 case BPF_CGROUP_INET4_GETSOCKNAME:
8119 case BPF_CGROUP_INET6_GETSOCKNAME:
8120 case BPF_CGROUP_UNIX_GETSOCKNAME:
8121 return &bpf_sock_addr_getsockopt_proto;
8122 default:
8123 return NULL;
8124 }
8125 default:
8126 return bpf_sk_base_func_proto(func_id, prog);
8127 }
8128 }
8129
8130 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8131 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8132 {
8133 switch (func_id) {
8134 case BPF_FUNC_skb_load_bytes:
8135 return &bpf_skb_load_bytes_proto;
8136 case BPF_FUNC_skb_load_bytes_relative:
8137 return &bpf_skb_load_bytes_relative_proto;
8138 case BPF_FUNC_get_socket_cookie:
8139 return &bpf_get_socket_cookie_proto;
8140 case BPF_FUNC_get_socket_uid:
8141 return &bpf_get_socket_uid_proto;
8142 case BPF_FUNC_perf_event_output:
8143 return &bpf_skb_event_output_proto;
8144 default:
8145 return bpf_sk_base_func_proto(func_id, prog);
8146 }
8147 }
8148
8149 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8150 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8151
8152 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8153 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8154 {
8155 const struct bpf_func_proto *func_proto;
8156
8157 func_proto = cgroup_common_func_proto(func_id, prog);
8158 if (func_proto)
8159 return func_proto;
8160
8161 switch (func_id) {
8162 case BPF_FUNC_sk_fullsock:
8163 return &bpf_sk_fullsock_proto;
8164 case BPF_FUNC_sk_storage_get:
8165 return &bpf_sk_storage_get_proto;
8166 case BPF_FUNC_sk_storage_delete:
8167 return &bpf_sk_storage_delete_proto;
8168 case BPF_FUNC_perf_event_output:
8169 return &bpf_skb_event_output_proto;
8170 #ifdef CONFIG_SOCK_CGROUP_DATA
8171 case BPF_FUNC_skb_cgroup_id:
8172 return &bpf_skb_cgroup_id_proto;
8173 case BPF_FUNC_skb_ancestor_cgroup_id:
8174 return &bpf_skb_ancestor_cgroup_id_proto;
8175 case BPF_FUNC_sk_cgroup_id:
8176 return &bpf_sk_cgroup_id_proto;
8177 case BPF_FUNC_sk_ancestor_cgroup_id:
8178 return &bpf_sk_ancestor_cgroup_id_proto;
8179 #endif
8180 #ifdef CONFIG_INET
8181 case BPF_FUNC_sk_lookup_tcp:
8182 return &bpf_sk_lookup_tcp_proto;
8183 case BPF_FUNC_sk_lookup_udp:
8184 return &bpf_sk_lookup_udp_proto;
8185 case BPF_FUNC_sk_release:
8186 return &bpf_sk_release_proto;
8187 case BPF_FUNC_skc_lookup_tcp:
8188 return &bpf_skc_lookup_tcp_proto;
8189 case BPF_FUNC_tcp_sock:
8190 return &bpf_tcp_sock_proto;
8191 case BPF_FUNC_get_listener_sock:
8192 return &bpf_get_listener_sock_proto;
8193 case BPF_FUNC_skb_ecn_set_ce:
8194 return &bpf_skb_ecn_set_ce_proto;
8195 #endif
8196 default:
8197 return sk_filter_func_proto(func_id, prog);
8198 }
8199 }
8200
8201 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8202 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8203 {
8204 switch (func_id) {
8205 case BPF_FUNC_skb_store_bytes:
8206 return &bpf_skb_store_bytes_proto;
8207 case BPF_FUNC_skb_load_bytes:
8208 return &bpf_skb_load_bytes_proto;
8209 case BPF_FUNC_skb_load_bytes_relative:
8210 return &bpf_skb_load_bytes_relative_proto;
8211 case BPF_FUNC_skb_pull_data:
8212 return &bpf_skb_pull_data_proto;
8213 case BPF_FUNC_csum_diff:
8214 return &bpf_csum_diff_proto;
8215 case BPF_FUNC_csum_update:
8216 return &bpf_csum_update_proto;
8217 case BPF_FUNC_csum_level:
8218 return &bpf_csum_level_proto;
8219 case BPF_FUNC_l3_csum_replace:
8220 return &bpf_l3_csum_replace_proto;
8221 case BPF_FUNC_l4_csum_replace:
8222 return &bpf_l4_csum_replace_proto;
8223 case BPF_FUNC_clone_redirect:
8224 return &bpf_clone_redirect_proto;
8225 case BPF_FUNC_get_cgroup_classid:
8226 return &bpf_get_cgroup_classid_proto;
8227 case BPF_FUNC_skb_vlan_push:
8228 return &bpf_skb_vlan_push_proto;
8229 case BPF_FUNC_skb_vlan_pop:
8230 return &bpf_skb_vlan_pop_proto;
8231 case BPF_FUNC_skb_change_proto:
8232 return &bpf_skb_change_proto_proto;
8233 case BPF_FUNC_skb_change_type:
8234 return &bpf_skb_change_type_proto;
8235 case BPF_FUNC_skb_adjust_room:
8236 return &bpf_skb_adjust_room_proto;
8237 case BPF_FUNC_skb_change_tail:
8238 return &bpf_skb_change_tail_proto;
8239 case BPF_FUNC_skb_change_head:
8240 return &bpf_skb_change_head_proto;
8241 case BPF_FUNC_skb_get_tunnel_key:
8242 return &bpf_skb_get_tunnel_key_proto;
8243 case BPF_FUNC_skb_set_tunnel_key:
8244 return bpf_get_skb_set_tunnel_proto(func_id);
8245 case BPF_FUNC_skb_get_tunnel_opt:
8246 return &bpf_skb_get_tunnel_opt_proto;
8247 case BPF_FUNC_skb_set_tunnel_opt:
8248 return bpf_get_skb_set_tunnel_proto(func_id);
8249 case BPF_FUNC_redirect:
8250 return &bpf_redirect_proto;
8251 case BPF_FUNC_redirect_neigh:
8252 return &bpf_redirect_neigh_proto;
8253 case BPF_FUNC_redirect_peer:
8254 return &bpf_redirect_peer_proto;
8255 case BPF_FUNC_get_route_realm:
8256 return &bpf_get_route_realm_proto;
8257 case BPF_FUNC_get_hash_recalc:
8258 return &bpf_get_hash_recalc_proto;
8259 case BPF_FUNC_set_hash_invalid:
8260 return &bpf_set_hash_invalid_proto;
8261 case BPF_FUNC_set_hash:
8262 return &bpf_set_hash_proto;
8263 case BPF_FUNC_perf_event_output:
8264 return &bpf_skb_event_output_proto;
8265 case BPF_FUNC_get_smp_processor_id:
8266 return &bpf_get_smp_processor_id_proto;
8267 case BPF_FUNC_skb_under_cgroup:
8268 return &bpf_skb_under_cgroup_proto;
8269 case BPF_FUNC_get_socket_cookie:
8270 return &bpf_get_socket_cookie_proto;
8271 case BPF_FUNC_get_netns_cookie:
8272 return &bpf_get_netns_cookie_proto;
8273 case BPF_FUNC_get_socket_uid:
8274 return &bpf_get_socket_uid_proto;
8275 case BPF_FUNC_fib_lookup:
8276 return &bpf_skb_fib_lookup_proto;
8277 case BPF_FUNC_check_mtu:
8278 return &bpf_skb_check_mtu_proto;
8279 case BPF_FUNC_sk_fullsock:
8280 return &bpf_sk_fullsock_proto;
8281 case BPF_FUNC_sk_storage_get:
8282 return &bpf_sk_storage_get_proto;
8283 case BPF_FUNC_sk_storage_delete:
8284 return &bpf_sk_storage_delete_proto;
8285 #ifdef CONFIG_XFRM
8286 case BPF_FUNC_skb_get_xfrm_state:
8287 return &bpf_skb_get_xfrm_state_proto;
8288 #endif
8289 #ifdef CONFIG_CGROUP_NET_CLASSID
8290 case BPF_FUNC_skb_cgroup_classid:
8291 return &bpf_skb_cgroup_classid_proto;
8292 #endif
8293 #ifdef CONFIG_SOCK_CGROUP_DATA
8294 case BPF_FUNC_skb_cgroup_id:
8295 return &bpf_skb_cgroup_id_proto;
8296 case BPF_FUNC_skb_ancestor_cgroup_id:
8297 return &bpf_skb_ancestor_cgroup_id_proto;
8298 #endif
8299 #ifdef CONFIG_INET
8300 case BPF_FUNC_sk_lookup_tcp:
8301 return &bpf_tc_sk_lookup_tcp_proto;
8302 case BPF_FUNC_sk_lookup_udp:
8303 return &bpf_tc_sk_lookup_udp_proto;
8304 case BPF_FUNC_sk_release:
8305 return &bpf_sk_release_proto;
8306 case BPF_FUNC_tcp_sock:
8307 return &bpf_tcp_sock_proto;
8308 case BPF_FUNC_get_listener_sock:
8309 return &bpf_get_listener_sock_proto;
8310 case BPF_FUNC_skc_lookup_tcp:
8311 return &bpf_tc_skc_lookup_tcp_proto;
8312 case BPF_FUNC_tcp_check_syncookie:
8313 return &bpf_tcp_check_syncookie_proto;
8314 case BPF_FUNC_skb_ecn_set_ce:
8315 return &bpf_skb_ecn_set_ce_proto;
8316 case BPF_FUNC_tcp_gen_syncookie:
8317 return &bpf_tcp_gen_syncookie_proto;
8318 case BPF_FUNC_sk_assign:
8319 return &bpf_sk_assign_proto;
8320 case BPF_FUNC_skb_set_tstamp:
8321 return &bpf_skb_set_tstamp_proto;
8322 #ifdef CONFIG_SYN_COOKIES
8323 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8324 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8325 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8326 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8327 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8328 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8329 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8330 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8331 #endif
8332 #endif
8333 default:
8334 return bpf_sk_base_func_proto(func_id, prog);
8335 }
8336 }
8337
8338 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8339 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8340 {
8341 switch (func_id) {
8342 case BPF_FUNC_perf_event_output:
8343 return &bpf_xdp_event_output_proto;
8344 case BPF_FUNC_get_smp_processor_id:
8345 return &bpf_get_smp_processor_id_proto;
8346 case BPF_FUNC_csum_diff:
8347 return &bpf_csum_diff_proto;
8348 case BPF_FUNC_xdp_adjust_head:
8349 return &bpf_xdp_adjust_head_proto;
8350 case BPF_FUNC_xdp_adjust_meta:
8351 return &bpf_xdp_adjust_meta_proto;
8352 case BPF_FUNC_redirect:
8353 return &bpf_xdp_redirect_proto;
8354 case BPF_FUNC_redirect_map:
8355 return &bpf_xdp_redirect_map_proto;
8356 case BPF_FUNC_xdp_adjust_tail:
8357 return &bpf_xdp_adjust_tail_proto;
8358 case BPF_FUNC_xdp_get_buff_len:
8359 return &bpf_xdp_get_buff_len_proto;
8360 case BPF_FUNC_xdp_load_bytes:
8361 return &bpf_xdp_load_bytes_proto;
8362 case BPF_FUNC_xdp_store_bytes:
8363 return &bpf_xdp_store_bytes_proto;
8364 case BPF_FUNC_fib_lookup:
8365 return &bpf_xdp_fib_lookup_proto;
8366 case BPF_FUNC_check_mtu:
8367 return &bpf_xdp_check_mtu_proto;
8368 #ifdef CONFIG_INET
8369 case BPF_FUNC_sk_lookup_udp:
8370 return &bpf_xdp_sk_lookup_udp_proto;
8371 case BPF_FUNC_sk_lookup_tcp:
8372 return &bpf_xdp_sk_lookup_tcp_proto;
8373 case BPF_FUNC_sk_release:
8374 return &bpf_sk_release_proto;
8375 case BPF_FUNC_skc_lookup_tcp:
8376 return &bpf_xdp_skc_lookup_tcp_proto;
8377 case BPF_FUNC_tcp_check_syncookie:
8378 return &bpf_tcp_check_syncookie_proto;
8379 case BPF_FUNC_tcp_gen_syncookie:
8380 return &bpf_tcp_gen_syncookie_proto;
8381 #ifdef CONFIG_SYN_COOKIES
8382 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8383 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8384 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8385 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8386 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8387 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8388 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8389 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8390 #endif
8391 #endif
8392 default:
8393 return bpf_sk_base_func_proto(func_id, prog);
8394 }
8395
8396 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8397 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8398 * kfuncs are defined in two different modules, and we want to be able
8399 * to use them interchangeably with the same BTF type ID. Because modules
8400 * can't de-duplicate BTF IDs between each other, we need the type to be
8401 * referenced in the vmlinux BTF or the verifier will get confused about
8402 * the different types. So we add this dummy type reference which will
8403 * be included in vmlinux BTF, allowing both modules to refer to the
8404 * same type ID.
8405 */
8406 BTF_TYPE_EMIT(struct nf_conn___init);
8407 #endif
8408 }
8409
8410 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8411 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8412
8413 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8414 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8415 {
8416 const struct bpf_func_proto *func_proto;
8417
8418 func_proto = cgroup_common_func_proto(func_id, prog);
8419 if (func_proto)
8420 return func_proto;
8421
8422 switch (func_id) {
8423 case BPF_FUNC_setsockopt:
8424 return &bpf_sock_ops_setsockopt_proto;
8425 case BPF_FUNC_getsockopt:
8426 return &bpf_sock_ops_getsockopt_proto;
8427 case BPF_FUNC_sock_ops_cb_flags_set:
8428 return &bpf_sock_ops_cb_flags_set_proto;
8429 case BPF_FUNC_sock_map_update:
8430 return &bpf_sock_map_update_proto;
8431 case BPF_FUNC_sock_hash_update:
8432 return &bpf_sock_hash_update_proto;
8433 case BPF_FUNC_get_socket_cookie:
8434 return &bpf_get_socket_cookie_sock_ops_proto;
8435 case BPF_FUNC_perf_event_output:
8436 return &bpf_event_output_data_proto;
8437 case BPF_FUNC_sk_storage_get:
8438 return &bpf_sk_storage_get_proto;
8439 case BPF_FUNC_sk_storage_delete:
8440 return &bpf_sk_storage_delete_proto;
8441 case BPF_FUNC_get_netns_cookie:
8442 return &bpf_get_netns_cookie_sock_ops_proto;
8443 #ifdef CONFIG_INET
8444 case BPF_FUNC_load_hdr_opt:
8445 return &bpf_sock_ops_load_hdr_opt_proto;
8446 case BPF_FUNC_store_hdr_opt:
8447 return &bpf_sock_ops_store_hdr_opt_proto;
8448 case BPF_FUNC_reserve_hdr_opt:
8449 return &bpf_sock_ops_reserve_hdr_opt_proto;
8450 case BPF_FUNC_tcp_sock:
8451 return &bpf_tcp_sock_proto;
8452 #endif /* CONFIG_INET */
8453 default:
8454 return bpf_sk_base_func_proto(func_id, prog);
8455 }
8456 }
8457
8458 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8459 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8460
8461 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8462 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8463 {
8464 switch (func_id) {
8465 case BPF_FUNC_msg_redirect_map:
8466 return &bpf_msg_redirect_map_proto;
8467 case BPF_FUNC_msg_redirect_hash:
8468 return &bpf_msg_redirect_hash_proto;
8469 case BPF_FUNC_msg_apply_bytes:
8470 return &bpf_msg_apply_bytes_proto;
8471 case BPF_FUNC_msg_cork_bytes:
8472 return &bpf_msg_cork_bytes_proto;
8473 case BPF_FUNC_msg_pull_data:
8474 return &bpf_msg_pull_data_proto;
8475 case BPF_FUNC_msg_push_data:
8476 return &bpf_msg_push_data_proto;
8477 case BPF_FUNC_msg_pop_data:
8478 return &bpf_msg_pop_data_proto;
8479 case BPF_FUNC_perf_event_output:
8480 return &bpf_event_output_data_proto;
8481 case BPF_FUNC_get_current_uid_gid:
8482 return &bpf_get_current_uid_gid_proto;
8483 case BPF_FUNC_sk_storage_get:
8484 return &bpf_sk_storage_get_proto;
8485 case BPF_FUNC_sk_storage_delete:
8486 return &bpf_sk_storage_delete_proto;
8487 case BPF_FUNC_get_netns_cookie:
8488 return &bpf_get_netns_cookie_sk_msg_proto;
8489 #ifdef CONFIG_CGROUP_NET_CLASSID
8490 case BPF_FUNC_get_cgroup_classid:
8491 return &bpf_get_cgroup_classid_curr_proto;
8492 #endif
8493 default:
8494 return bpf_sk_base_func_proto(func_id, prog);
8495 }
8496 }
8497
8498 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8499 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8500
8501 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8502 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8503 {
8504 switch (func_id) {
8505 case BPF_FUNC_skb_store_bytes:
8506 return &bpf_skb_store_bytes_proto;
8507 case BPF_FUNC_skb_load_bytes:
8508 return &bpf_skb_load_bytes_proto;
8509 case BPF_FUNC_skb_pull_data:
8510 return &sk_skb_pull_data_proto;
8511 case BPF_FUNC_skb_change_tail:
8512 return &sk_skb_change_tail_proto;
8513 case BPF_FUNC_skb_change_head:
8514 return &sk_skb_change_head_proto;
8515 case BPF_FUNC_skb_adjust_room:
8516 return &sk_skb_adjust_room_proto;
8517 case BPF_FUNC_get_socket_cookie:
8518 return &bpf_get_socket_cookie_proto;
8519 case BPF_FUNC_get_socket_uid:
8520 return &bpf_get_socket_uid_proto;
8521 case BPF_FUNC_sk_redirect_map:
8522 return &bpf_sk_redirect_map_proto;
8523 case BPF_FUNC_sk_redirect_hash:
8524 return &bpf_sk_redirect_hash_proto;
8525 case BPF_FUNC_perf_event_output:
8526 return &bpf_skb_event_output_proto;
8527 #ifdef CONFIG_INET
8528 case BPF_FUNC_sk_lookup_tcp:
8529 return &bpf_sk_lookup_tcp_proto;
8530 case BPF_FUNC_sk_lookup_udp:
8531 return &bpf_sk_lookup_udp_proto;
8532 case BPF_FUNC_sk_release:
8533 return &bpf_sk_release_proto;
8534 case BPF_FUNC_skc_lookup_tcp:
8535 return &bpf_skc_lookup_tcp_proto;
8536 #endif
8537 default:
8538 return bpf_sk_base_func_proto(func_id, prog);
8539 }
8540 }
8541
8542 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8543 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8544 {
8545 switch (func_id) {
8546 case BPF_FUNC_skb_load_bytes:
8547 return &bpf_flow_dissector_load_bytes_proto;
8548 default:
8549 return bpf_sk_base_func_proto(func_id, prog);
8550 }
8551 }
8552
8553 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8554 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8555 {
8556 switch (func_id) {
8557 case BPF_FUNC_skb_load_bytes:
8558 return &bpf_skb_load_bytes_proto;
8559 case BPF_FUNC_skb_pull_data:
8560 return &bpf_skb_pull_data_proto;
8561 case BPF_FUNC_csum_diff:
8562 return &bpf_csum_diff_proto;
8563 case BPF_FUNC_get_cgroup_classid:
8564 return &bpf_get_cgroup_classid_proto;
8565 case BPF_FUNC_get_route_realm:
8566 return &bpf_get_route_realm_proto;
8567 case BPF_FUNC_get_hash_recalc:
8568 return &bpf_get_hash_recalc_proto;
8569 case BPF_FUNC_perf_event_output:
8570 return &bpf_skb_event_output_proto;
8571 case BPF_FUNC_get_smp_processor_id:
8572 return &bpf_get_smp_processor_id_proto;
8573 case BPF_FUNC_skb_under_cgroup:
8574 return &bpf_skb_under_cgroup_proto;
8575 default:
8576 return bpf_sk_base_func_proto(func_id, prog);
8577 }
8578 }
8579
8580 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8581 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8582 {
8583 switch (func_id) {
8584 case BPF_FUNC_lwt_push_encap:
8585 return &bpf_lwt_in_push_encap_proto;
8586 default:
8587 return lwt_out_func_proto(func_id, prog);
8588 }
8589 }
8590
8591 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8592 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8593 {
8594 switch (func_id) {
8595 case BPF_FUNC_skb_get_tunnel_key:
8596 return &bpf_skb_get_tunnel_key_proto;
8597 case BPF_FUNC_skb_set_tunnel_key:
8598 return bpf_get_skb_set_tunnel_proto(func_id);
8599 case BPF_FUNC_skb_get_tunnel_opt:
8600 return &bpf_skb_get_tunnel_opt_proto;
8601 case BPF_FUNC_skb_set_tunnel_opt:
8602 return bpf_get_skb_set_tunnel_proto(func_id);
8603 case BPF_FUNC_redirect:
8604 return &bpf_redirect_proto;
8605 case BPF_FUNC_clone_redirect:
8606 return &bpf_clone_redirect_proto;
8607 case BPF_FUNC_skb_change_tail:
8608 return &bpf_skb_change_tail_proto;
8609 case BPF_FUNC_skb_change_head:
8610 return &bpf_skb_change_head_proto;
8611 case BPF_FUNC_skb_store_bytes:
8612 return &bpf_skb_store_bytes_proto;
8613 case BPF_FUNC_csum_update:
8614 return &bpf_csum_update_proto;
8615 case BPF_FUNC_csum_level:
8616 return &bpf_csum_level_proto;
8617 case BPF_FUNC_l3_csum_replace:
8618 return &bpf_l3_csum_replace_proto;
8619 case BPF_FUNC_l4_csum_replace:
8620 return &bpf_l4_csum_replace_proto;
8621 case BPF_FUNC_set_hash_invalid:
8622 return &bpf_set_hash_invalid_proto;
8623 case BPF_FUNC_lwt_push_encap:
8624 return &bpf_lwt_xmit_push_encap_proto;
8625 default:
8626 return lwt_out_func_proto(func_id, prog);
8627 }
8628 }
8629
8630 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8631 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8632 {
8633 switch (func_id) {
8634 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8635 case BPF_FUNC_lwt_seg6_store_bytes:
8636 return &bpf_lwt_seg6_store_bytes_proto;
8637 case BPF_FUNC_lwt_seg6_action:
8638 return &bpf_lwt_seg6_action_proto;
8639 case BPF_FUNC_lwt_seg6_adjust_srh:
8640 return &bpf_lwt_seg6_adjust_srh_proto;
8641 #endif
8642 default:
8643 return lwt_out_func_proto(func_id, prog);
8644 }
8645 }
8646
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8647 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8648 const struct bpf_prog *prog,
8649 struct bpf_insn_access_aux *info)
8650 {
8651 const int size_default = sizeof(__u32);
8652
8653 if (off < 0 || off >= sizeof(struct __sk_buff))
8654 return false;
8655
8656 /* The verifier guarantees that size > 0. */
8657 if (off % size != 0)
8658 return false;
8659
8660 switch (off) {
8661 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8662 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8663 return false;
8664 break;
8665 case bpf_ctx_range(struct __sk_buff, data):
8666 case bpf_ctx_range(struct __sk_buff, data_meta):
8667 case bpf_ctx_range(struct __sk_buff, data_end):
8668 if (info->is_ldsx || size != size_default)
8669 return false;
8670 break;
8671 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8672 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8673 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8674 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8675 if (size != size_default)
8676 return false;
8677 break;
8678 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8679 return false;
8680 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8681 if (type == BPF_WRITE || size != sizeof(__u64))
8682 return false;
8683 break;
8684 case bpf_ctx_range(struct __sk_buff, tstamp):
8685 if (size != sizeof(__u64))
8686 return false;
8687 break;
8688 case offsetof(struct __sk_buff, sk):
8689 if (type == BPF_WRITE || size != sizeof(__u64))
8690 return false;
8691 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8692 break;
8693 case offsetof(struct __sk_buff, tstamp_type):
8694 return false;
8695 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8696 /* Explicitly prohibit access to padding in __sk_buff. */
8697 return false;
8698 default:
8699 /* Only narrow read access allowed for now. */
8700 if (type == BPF_WRITE) {
8701 if (size != size_default)
8702 return false;
8703 } else {
8704 bpf_ctx_record_field_size(info, size_default);
8705 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8706 return false;
8707 }
8708 }
8709
8710 return true;
8711 }
8712
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8713 static bool sk_filter_is_valid_access(int off, int size,
8714 enum bpf_access_type type,
8715 const struct bpf_prog *prog,
8716 struct bpf_insn_access_aux *info)
8717 {
8718 switch (off) {
8719 case bpf_ctx_range(struct __sk_buff, tc_classid):
8720 case bpf_ctx_range(struct __sk_buff, data):
8721 case bpf_ctx_range(struct __sk_buff, data_meta):
8722 case bpf_ctx_range(struct __sk_buff, data_end):
8723 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8724 case bpf_ctx_range(struct __sk_buff, tstamp):
8725 case bpf_ctx_range(struct __sk_buff, wire_len):
8726 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8727 return false;
8728 }
8729
8730 if (type == BPF_WRITE) {
8731 switch (off) {
8732 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8733 break;
8734 default:
8735 return false;
8736 }
8737 }
8738
8739 return bpf_skb_is_valid_access(off, size, type, prog, info);
8740 }
8741
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8742 static bool cg_skb_is_valid_access(int off, int size,
8743 enum bpf_access_type type,
8744 const struct bpf_prog *prog,
8745 struct bpf_insn_access_aux *info)
8746 {
8747 switch (off) {
8748 case bpf_ctx_range(struct __sk_buff, tc_classid):
8749 case bpf_ctx_range(struct __sk_buff, data_meta):
8750 case bpf_ctx_range(struct __sk_buff, wire_len):
8751 return false;
8752 case bpf_ctx_range(struct __sk_buff, data):
8753 case bpf_ctx_range(struct __sk_buff, data_end):
8754 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8755 return false;
8756 break;
8757 }
8758
8759 if (type == BPF_WRITE) {
8760 switch (off) {
8761 case bpf_ctx_range(struct __sk_buff, mark):
8762 case bpf_ctx_range(struct __sk_buff, priority):
8763 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8764 break;
8765 case bpf_ctx_range(struct __sk_buff, tstamp):
8766 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8767 return false;
8768 break;
8769 default:
8770 return false;
8771 }
8772 }
8773
8774 switch (off) {
8775 case bpf_ctx_range(struct __sk_buff, data):
8776 info->reg_type = PTR_TO_PACKET;
8777 break;
8778 case bpf_ctx_range(struct __sk_buff, data_end):
8779 info->reg_type = PTR_TO_PACKET_END;
8780 break;
8781 }
8782
8783 return bpf_skb_is_valid_access(off, size, type, prog, info);
8784 }
8785
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8786 static bool lwt_is_valid_access(int off, int size,
8787 enum bpf_access_type type,
8788 const struct bpf_prog *prog,
8789 struct bpf_insn_access_aux *info)
8790 {
8791 switch (off) {
8792 case bpf_ctx_range(struct __sk_buff, tc_classid):
8793 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8794 case bpf_ctx_range(struct __sk_buff, data_meta):
8795 case bpf_ctx_range(struct __sk_buff, tstamp):
8796 case bpf_ctx_range(struct __sk_buff, wire_len):
8797 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8798 return false;
8799 }
8800
8801 if (type == BPF_WRITE) {
8802 switch (off) {
8803 case bpf_ctx_range(struct __sk_buff, mark):
8804 case bpf_ctx_range(struct __sk_buff, priority):
8805 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8806 break;
8807 default:
8808 return false;
8809 }
8810 }
8811
8812 switch (off) {
8813 case bpf_ctx_range(struct __sk_buff, data):
8814 info->reg_type = PTR_TO_PACKET;
8815 break;
8816 case bpf_ctx_range(struct __sk_buff, data_end):
8817 info->reg_type = PTR_TO_PACKET_END;
8818 break;
8819 }
8820
8821 return bpf_skb_is_valid_access(off, size, type, prog, info);
8822 }
8823
8824 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8825 static bool __sock_filter_check_attach_type(int off,
8826 enum bpf_access_type access_type,
8827 enum bpf_attach_type attach_type)
8828 {
8829 switch (off) {
8830 case offsetof(struct bpf_sock, bound_dev_if):
8831 case offsetof(struct bpf_sock, mark):
8832 case offsetof(struct bpf_sock, priority):
8833 switch (attach_type) {
8834 case BPF_CGROUP_INET_SOCK_CREATE:
8835 case BPF_CGROUP_INET_SOCK_RELEASE:
8836 goto full_access;
8837 default:
8838 return false;
8839 }
8840 case bpf_ctx_range(struct bpf_sock, src_ip4):
8841 switch (attach_type) {
8842 case BPF_CGROUP_INET4_POST_BIND:
8843 goto read_only;
8844 default:
8845 return false;
8846 }
8847 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8848 switch (attach_type) {
8849 case BPF_CGROUP_INET6_POST_BIND:
8850 goto read_only;
8851 default:
8852 return false;
8853 }
8854 case bpf_ctx_range(struct bpf_sock, src_port):
8855 switch (attach_type) {
8856 case BPF_CGROUP_INET4_POST_BIND:
8857 case BPF_CGROUP_INET6_POST_BIND:
8858 goto read_only;
8859 default:
8860 return false;
8861 }
8862 }
8863 read_only:
8864 return access_type == BPF_READ;
8865 full_access:
8866 return true;
8867 }
8868
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8869 bool bpf_sock_common_is_valid_access(int off, int size,
8870 enum bpf_access_type type,
8871 struct bpf_insn_access_aux *info)
8872 {
8873 switch (off) {
8874 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8875 return false;
8876 default:
8877 return bpf_sock_is_valid_access(off, size, type, info);
8878 }
8879 }
8880
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8881 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8882 struct bpf_insn_access_aux *info)
8883 {
8884 const int size_default = sizeof(__u32);
8885 int field_size;
8886
8887 if (off < 0 || off >= sizeof(struct bpf_sock))
8888 return false;
8889 if (off % size != 0)
8890 return false;
8891
8892 switch (off) {
8893 case offsetof(struct bpf_sock, state):
8894 case offsetof(struct bpf_sock, family):
8895 case offsetof(struct bpf_sock, type):
8896 case offsetof(struct bpf_sock, protocol):
8897 case offsetof(struct bpf_sock, src_port):
8898 case offsetof(struct bpf_sock, rx_queue_mapping):
8899 case bpf_ctx_range(struct bpf_sock, src_ip4):
8900 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8901 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8902 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8903 bpf_ctx_record_field_size(info, size_default);
8904 return bpf_ctx_narrow_access_ok(off, size, size_default);
8905 case bpf_ctx_range(struct bpf_sock, dst_port):
8906 field_size = size == size_default ?
8907 size_default : sizeof_field(struct bpf_sock, dst_port);
8908 bpf_ctx_record_field_size(info, field_size);
8909 return bpf_ctx_narrow_access_ok(off, size, field_size);
8910 case offsetofend(struct bpf_sock, dst_port) ...
8911 offsetof(struct bpf_sock, dst_ip4) - 1:
8912 return false;
8913 }
8914
8915 return size == size_default;
8916 }
8917
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8918 static bool sock_filter_is_valid_access(int off, int size,
8919 enum bpf_access_type type,
8920 const struct bpf_prog *prog,
8921 struct bpf_insn_access_aux *info)
8922 {
8923 if (!bpf_sock_is_valid_access(off, size, type, info))
8924 return false;
8925 return __sock_filter_check_attach_type(off, type,
8926 prog->expected_attach_type);
8927 }
8928
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8929 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8930 const struct bpf_prog *prog)
8931 {
8932 /* Neither direct read nor direct write requires any preliminary
8933 * action.
8934 */
8935 return 0;
8936 }
8937
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8938 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8939 const struct bpf_prog *prog, int drop_verdict)
8940 {
8941 struct bpf_insn *insn = insn_buf;
8942
8943 if (!direct_write)
8944 return 0;
8945
8946 /* if (!skb->cloned)
8947 * goto start;
8948 *
8949 * (Fast-path, otherwise approximation that we might be
8950 * a clone, do the rest in helper.)
8951 */
8952 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8953 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8954 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8955
8956 /* ret = bpf_skb_pull_data(skb, 0); */
8957 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8958 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8959 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8960 BPF_FUNC_skb_pull_data);
8961 /* if (!ret)
8962 * goto restore;
8963 * return TC_ACT_SHOT;
8964 */
8965 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8966 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8967 *insn++ = BPF_EXIT_INSN();
8968
8969 /* restore: */
8970 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8971 /* start: */
8972 *insn++ = prog->insnsi[0];
8973
8974 return insn - insn_buf;
8975 }
8976
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8977 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8978 struct bpf_insn *insn_buf)
8979 {
8980 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8981 struct bpf_insn *insn = insn_buf;
8982
8983 if (!indirect) {
8984 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8985 } else {
8986 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8987 if (orig->imm)
8988 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8989 }
8990 /* We're guaranteed here that CTX is in R6. */
8991 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8992
8993 switch (BPF_SIZE(orig->code)) {
8994 case BPF_B:
8995 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8996 break;
8997 case BPF_H:
8998 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8999 break;
9000 case BPF_W:
9001 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9002 break;
9003 }
9004
9005 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9006 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9007 *insn++ = BPF_EXIT_INSN();
9008
9009 return insn - insn_buf;
9010 }
9011
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9012 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9013 const struct bpf_prog *prog)
9014 {
9015 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9016 }
9017
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9018 static bool tc_cls_act_is_valid_access(int off, int size,
9019 enum bpf_access_type type,
9020 const struct bpf_prog *prog,
9021 struct bpf_insn_access_aux *info)
9022 {
9023 if (type == BPF_WRITE) {
9024 switch (off) {
9025 case bpf_ctx_range(struct __sk_buff, mark):
9026 case bpf_ctx_range(struct __sk_buff, tc_index):
9027 case bpf_ctx_range(struct __sk_buff, priority):
9028 case bpf_ctx_range(struct __sk_buff, tc_classid):
9029 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9030 case bpf_ctx_range(struct __sk_buff, tstamp):
9031 case bpf_ctx_range(struct __sk_buff, queue_mapping):
9032 break;
9033 default:
9034 return false;
9035 }
9036 }
9037
9038 switch (off) {
9039 case bpf_ctx_range(struct __sk_buff, data):
9040 info->reg_type = PTR_TO_PACKET;
9041 break;
9042 case bpf_ctx_range(struct __sk_buff, data_meta):
9043 info->reg_type = PTR_TO_PACKET_META;
9044 break;
9045 case bpf_ctx_range(struct __sk_buff, data_end):
9046 info->reg_type = PTR_TO_PACKET_END;
9047 break;
9048 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9049 return false;
9050 case offsetof(struct __sk_buff, tstamp_type):
9051 /* The convert_ctx_access() on reading and writing
9052 * __sk_buff->tstamp depends on whether the bpf prog
9053 * has used __sk_buff->tstamp_type or not.
9054 * Thus, we need to set prog->tstamp_type_access
9055 * earlier during is_valid_access() here.
9056 */
9057 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
9058 return size == sizeof(__u8);
9059 }
9060
9061 return bpf_skb_is_valid_access(off, size, type, prog, info);
9062 }
9063
9064 DEFINE_MUTEX(nf_conn_btf_access_lock);
9065 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9066
9067 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9068 const struct bpf_reg_state *reg,
9069 int off, int size);
9070 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9071
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9072 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9073 const struct bpf_reg_state *reg,
9074 int off, int size)
9075 {
9076 int ret = -EACCES;
9077
9078 mutex_lock(&nf_conn_btf_access_lock);
9079 if (nfct_btf_struct_access)
9080 ret = nfct_btf_struct_access(log, reg, off, size);
9081 mutex_unlock(&nf_conn_btf_access_lock);
9082
9083 return ret;
9084 }
9085
__is_valid_xdp_access(int off,int size)9086 static bool __is_valid_xdp_access(int off, int size)
9087 {
9088 if (off < 0 || off >= sizeof(struct xdp_md))
9089 return false;
9090 if (off % size != 0)
9091 return false;
9092 if (size != sizeof(__u32))
9093 return false;
9094
9095 return true;
9096 }
9097
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9098 static bool xdp_is_valid_access(int off, int size,
9099 enum bpf_access_type type,
9100 const struct bpf_prog *prog,
9101 struct bpf_insn_access_aux *info)
9102 {
9103 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9104 switch (off) {
9105 case offsetof(struct xdp_md, egress_ifindex):
9106 return false;
9107 }
9108 }
9109
9110 if (type == BPF_WRITE) {
9111 if (bpf_prog_is_offloaded(prog->aux)) {
9112 switch (off) {
9113 case offsetof(struct xdp_md, rx_queue_index):
9114 return __is_valid_xdp_access(off, size);
9115 }
9116 }
9117 return false;
9118 } else {
9119 switch (off) {
9120 case offsetof(struct xdp_md, data_meta):
9121 case offsetof(struct xdp_md, data):
9122 case offsetof(struct xdp_md, data_end):
9123 if (info->is_ldsx)
9124 return false;
9125 }
9126 }
9127
9128 switch (off) {
9129 case offsetof(struct xdp_md, data):
9130 info->reg_type = PTR_TO_PACKET;
9131 break;
9132 case offsetof(struct xdp_md, data_meta):
9133 info->reg_type = PTR_TO_PACKET_META;
9134 break;
9135 case offsetof(struct xdp_md, data_end):
9136 info->reg_type = PTR_TO_PACKET_END;
9137 break;
9138 }
9139
9140 return __is_valid_xdp_access(off, size);
9141 }
9142
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9143 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9144 const struct bpf_prog *prog, u32 act)
9145 {
9146 const u32 act_max = XDP_REDIRECT;
9147
9148 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9149 act > act_max ? "Illegal" : "Driver unsupported",
9150 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9151 }
9152 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9153
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9154 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9155 const struct bpf_reg_state *reg,
9156 int off, int size)
9157 {
9158 int ret = -EACCES;
9159
9160 mutex_lock(&nf_conn_btf_access_lock);
9161 if (nfct_btf_struct_access)
9162 ret = nfct_btf_struct_access(log, reg, off, size);
9163 mutex_unlock(&nf_conn_btf_access_lock);
9164
9165 return ret;
9166 }
9167
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9168 static bool sock_addr_is_valid_access(int off, int size,
9169 enum bpf_access_type type,
9170 const struct bpf_prog *prog,
9171 struct bpf_insn_access_aux *info)
9172 {
9173 const int size_default = sizeof(__u32);
9174
9175 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9176 return false;
9177 if (off % size != 0)
9178 return false;
9179
9180 /* Disallow access to fields not belonging to the attach type's address
9181 * family.
9182 */
9183 switch (off) {
9184 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9185 switch (prog->expected_attach_type) {
9186 case BPF_CGROUP_INET4_BIND:
9187 case BPF_CGROUP_INET4_CONNECT:
9188 case BPF_CGROUP_INET4_GETPEERNAME:
9189 case BPF_CGROUP_INET4_GETSOCKNAME:
9190 case BPF_CGROUP_UDP4_SENDMSG:
9191 case BPF_CGROUP_UDP4_RECVMSG:
9192 break;
9193 default:
9194 return false;
9195 }
9196 break;
9197 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9198 switch (prog->expected_attach_type) {
9199 case BPF_CGROUP_INET6_BIND:
9200 case BPF_CGROUP_INET6_CONNECT:
9201 case BPF_CGROUP_INET6_GETPEERNAME:
9202 case BPF_CGROUP_INET6_GETSOCKNAME:
9203 case BPF_CGROUP_UDP6_SENDMSG:
9204 case BPF_CGROUP_UDP6_RECVMSG:
9205 break;
9206 default:
9207 return false;
9208 }
9209 break;
9210 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9211 switch (prog->expected_attach_type) {
9212 case BPF_CGROUP_UDP4_SENDMSG:
9213 break;
9214 default:
9215 return false;
9216 }
9217 break;
9218 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9219 msg_src_ip6[3]):
9220 switch (prog->expected_attach_type) {
9221 case BPF_CGROUP_UDP6_SENDMSG:
9222 break;
9223 default:
9224 return false;
9225 }
9226 break;
9227 }
9228
9229 switch (off) {
9230 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9231 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9232 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9233 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9234 msg_src_ip6[3]):
9235 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9236 if (type == BPF_READ) {
9237 bpf_ctx_record_field_size(info, size_default);
9238
9239 if (bpf_ctx_wide_access_ok(off, size,
9240 struct bpf_sock_addr,
9241 user_ip6))
9242 return true;
9243
9244 if (bpf_ctx_wide_access_ok(off, size,
9245 struct bpf_sock_addr,
9246 msg_src_ip6))
9247 return true;
9248
9249 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9250 return false;
9251 } else {
9252 if (bpf_ctx_wide_access_ok(off, size,
9253 struct bpf_sock_addr,
9254 user_ip6))
9255 return true;
9256
9257 if (bpf_ctx_wide_access_ok(off, size,
9258 struct bpf_sock_addr,
9259 msg_src_ip6))
9260 return true;
9261
9262 if (size != size_default)
9263 return false;
9264 }
9265 break;
9266 case offsetof(struct bpf_sock_addr, sk):
9267 if (type != BPF_READ)
9268 return false;
9269 if (size != sizeof(__u64))
9270 return false;
9271 info->reg_type = PTR_TO_SOCKET;
9272 break;
9273 default:
9274 if (type == BPF_READ) {
9275 if (size != size_default)
9276 return false;
9277 } else {
9278 return false;
9279 }
9280 }
9281
9282 return true;
9283 }
9284
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9285 static bool sock_ops_is_valid_access(int off, int size,
9286 enum bpf_access_type type,
9287 const struct bpf_prog *prog,
9288 struct bpf_insn_access_aux *info)
9289 {
9290 const int size_default = sizeof(__u32);
9291
9292 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9293 return false;
9294
9295 /* The verifier guarantees that size > 0. */
9296 if (off % size != 0)
9297 return false;
9298
9299 if (type == BPF_WRITE) {
9300 switch (off) {
9301 case offsetof(struct bpf_sock_ops, reply):
9302 case offsetof(struct bpf_sock_ops, sk_txhash):
9303 if (size != size_default)
9304 return false;
9305 break;
9306 default:
9307 return false;
9308 }
9309 } else {
9310 switch (off) {
9311 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9312 bytes_acked):
9313 if (size != sizeof(__u64))
9314 return false;
9315 break;
9316 case offsetof(struct bpf_sock_ops, sk):
9317 if (size != sizeof(__u64))
9318 return false;
9319 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9320 break;
9321 case offsetof(struct bpf_sock_ops, skb_data):
9322 if (size != sizeof(__u64))
9323 return false;
9324 info->reg_type = PTR_TO_PACKET;
9325 break;
9326 case offsetof(struct bpf_sock_ops, skb_data_end):
9327 if (size != sizeof(__u64))
9328 return false;
9329 info->reg_type = PTR_TO_PACKET_END;
9330 break;
9331 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9332 bpf_ctx_record_field_size(info, size_default);
9333 return bpf_ctx_narrow_access_ok(off, size,
9334 size_default);
9335 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9336 if (size != sizeof(__u64))
9337 return false;
9338 break;
9339 default:
9340 if (size != size_default)
9341 return false;
9342 break;
9343 }
9344 }
9345
9346 return true;
9347 }
9348
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9349 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9350 const struct bpf_prog *prog)
9351 {
9352 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9353 }
9354
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9355 static bool sk_skb_is_valid_access(int off, int size,
9356 enum bpf_access_type type,
9357 const struct bpf_prog *prog,
9358 struct bpf_insn_access_aux *info)
9359 {
9360 switch (off) {
9361 case bpf_ctx_range(struct __sk_buff, tc_classid):
9362 case bpf_ctx_range(struct __sk_buff, data_meta):
9363 case bpf_ctx_range(struct __sk_buff, tstamp):
9364 case bpf_ctx_range(struct __sk_buff, wire_len):
9365 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9366 return false;
9367 }
9368
9369 if (type == BPF_WRITE) {
9370 switch (off) {
9371 case bpf_ctx_range(struct __sk_buff, tc_index):
9372 case bpf_ctx_range(struct __sk_buff, priority):
9373 break;
9374 default:
9375 return false;
9376 }
9377 }
9378
9379 switch (off) {
9380 case bpf_ctx_range(struct __sk_buff, mark):
9381 return false;
9382 case bpf_ctx_range(struct __sk_buff, data):
9383 info->reg_type = PTR_TO_PACKET;
9384 break;
9385 case bpf_ctx_range(struct __sk_buff, data_end):
9386 info->reg_type = PTR_TO_PACKET_END;
9387 break;
9388 }
9389
9390 return bpf_skb_is_valid_access(off, size, type, prog, info);
9391 }
9392
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9393 static bool sk_msg_is_valid_access(int off, int size,
9394 enum bpf_access_type type,
9395 const struct bpf_prog *prog,
9396 struct bpf_insn_access_aux *info)
9397 {
9398 if (type == BPF_WRITE)
9399 return false;
9400
9401 if (off % size != 0)
9402 return false;
9403
9404 switch (off) {
9405 case offsetof(struct sk_msg_md, data):
9406 info->reg_type = PTR_TO_PACKET;
9407 if (size != sizeof(__u64))
9408 return false;
9409 break;
9410 case offsetof(struct sk_msg_md, data_end):
9411 info->reg_type = PTR_TO_PACKET_END;
9412 if (size != sizeof(__u64))
9413 return false;
9414 break;
9415 case offsetof(struct sk_msg_md, sk):
9416 if (size != sizeof(__u64))
9417 return false;
9418 info->reg_type = PTR_TO_SOCKET;
9419 break;
9420 case bpf_ctx_range(struct sk_msg_md, family):
9421 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9422 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9423 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9424 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9425 case bpf_ctx_range(struct sk_msg_md, remote_port):
9426 case bpf_ctx_range(struct sk_msg_md, local_port):
9427 case bpf_ctx_range(struct sk_msg_md, size):
9428 if (size != sizeof(__u32))
9429 return false;
9430 break;
9431 default:
9432 return false;
9433 }
9434 return true;
9435 }
9436
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9437 static bool flow_dissector_is_valid_access(int off, int size,
9438 enum bpf_access_type type,
9439 const struct bpf_prog *prog,
9440 struct bpf_insn_access_aux *info)
9441 {
9442 const int size_default = sizeof(__u32);
9443
9444 if (off < 0 || off >= sizeof(struct __sk_buff))
9445 return false;
9446
9447 if (type == BPF_WRITE)
9448 return false;
9449
9450 switch (off) {
9451 case bpf_ctx_range(struct __sk_buff, data):
9452 if (info->is_ldsx || size != size_default)
9453 return false;
9454 info->reg_type = PTR_TO_PACKET;
9455 return true;
9456 case bpf_ctx_range(struct __sk_buff, data_end):
9457 if (info->is_ldsx || size != size_default)
9458 return false;
9459 info->reg_type = PTR_TO_PACKET_END;
9460 return true;
9461 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9462 if (size != sizeof(__u64))
9463 return false;
9464 info->reg_type = PTR_TO_FLOW_KEYS;
9465 return true;
9466 default:
9467 return false;
9468 }
9469 }
9470
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9471 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9472 const struct bpf_insn *si,
9473 struct bpf_insn *insn_buf,
9474 struct bpf_prog *prog,
9475 u32 *target_size)
9476
9477 {
9478 struct bpf_insn *insn = insn_buf;
9479
9480 switch (si->off) {
9481 case offsetof(struct __sk_buff, data):
9482 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9483 si->dst_reg, si->src_reg,
9484 offsetof(struct bpf_flow_dissector, data));
9485 break;
9486
9487 case offsetof(struct __sk_buff, data_end):
9488 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9489 si->dst_reg, si->src_reg,
9490 offsetof(struct bpf_flow_dissector, data_end));
9491 break;
9492
9493 case offsetof(struct __sk_buff, flow_keys):
9494 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9495 si->dst_reg, si->src_reg,
9496 offsetof(struct bpf_flow_dissector, flow_keys));
9497 break;
9498 }
9499
9500 return insn - insn_buf;
9501 }
9502
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9503 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9504 struct bpf_insn *insn)
9505 {
9506 __u8 value_reg = si->dst_reg;
9507 __u8 skb_reg = si->src_reg;
9508 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9509 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9510 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9511 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9512 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9513 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9514 #ifdef __BIG_ENDIAN_BITFIELD
9515 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9516 #else
9517 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9518 #endif
9519
9520 return insn;
9521 }
9522
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9523 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9524 struct bpf_insn *insn)
9525 {
9526 /* si->dst_reg = skb_shinfo(SKB); */
9527 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9528 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9529 BPF_REG_AX, skb_reg,
9530 offsetof(struct sk_buff, end));
9531 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9532 dst_reg, skb_reg,
9533 offsetof(struct sk_buff, head));
9534 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9535 #else
9536 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9537 dst_reg, skb_reg,
9538 offsetof(struct sk_buff, end));
9539 #endif
9540
9541 return insn;
9542 }
9543
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9544 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9545 const struct bpf_insn *si,
9546 struct bpf_insn *insn)
9547 {
9548 __u8 value_reg = si->dst_reg;
9549 __u8 skb_reg = si->src_reg;
9550
9551 #ifdef CONFIG_NET_XGRESS
9552 /* If the tstamp_type is read,
9553 * the bpf prog is aware the tstamp could have delivery time.
9554 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9555 */
9556 if (!prog->tstamp_type_access) {
9557 /* AX is needed because src_reg and dst_reg could be the same */
9558 __u8 tmp_reg = BPF_REG_AX;
9559
9560 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9561 /* check if ingress mask bits is set */
9562 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9563 *insn++ = BPF_JMP_A(4);
9564 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9565 *insn++ = BPF_JMP_A(2);
9566 /* skb->tc_at_ingress && skb->tstamp_type,
9567 * read 0 as the (rcv) timestamp.
9568 */
9569 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9570 *insn++ = BPF_JMP_A(1);
9571 }
9572 #endif
9573
9574 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9575 offsetof(struct sk_buff, tstamp));
9576 return insn;
9577 }
9578
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9579 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9580 const struct bpf_insn *si,
9581 struct bpf_insn *insn)
9582 {
9583 __u8 value_reg = si->src_reg;
9584 __u8 skb_reg = si->dst_reg;
9585
9586 #ifdef CONFIG_NET_XGRESS
9587 /* If the tstamp_type is read,
9588 * the bpf prog is aware the tstamp could have delivery time.
9589 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9590 * Otherwise, writing at ingress will have to clear the
9591 * skb->tstamp_type bit also.
9592 */
9593 if (!prog->tstamp_type_access) {
9594 __u8 tmp_reg = BPF_REG_AX;
9595
9596 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9597 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9598 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9599 /* goto <store> */
9600 *insn++ = BPF_JMP_A(2);
9601 /* <clear>: skb->tstamp_type */
9602 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9603 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9604 }
9605 #endif
9606
9607 /* <store>: skb->tstamp = tstamp */
9608 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9609 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9610 return insn;
9611 }
9612
9613 #define BPF_EMIT_STORE(size, si, off) \
9614 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9615 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9616
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9617 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9618 const struct bpf_insn *si,
9619 struct bpf_insn *insn_buf,
9620 struct bpf_prog *prog, u32 *target_size)
9621 {
9622 struct bpf_insn *insn = insn_buf;
9623 int off;
9624
9625 switch (si->off) {
9626 case offsetof(struct __sk_buff, len):
9627 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9628 bpf_target_off(struct sk_buff, len, 4,
9629 target_size));
9630 break;
9631
9632 case offsetof(struct __sk_buff, protocol):
9633 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9634 bpf_target_off(struct sk_buff, protocol, 2,
9635 target_size));
9636 break;
9637
9638 case offsetof(struct __sk_buff, vlan_proto):
9639 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9640 bpf_target_off(struct sk_buff, vlan_proto, 2,
9641 target_size));
9642 break;
9643
9644 case offsetof(struct __sk_buff, priority):
9645 if (type == BPF_WRITE)
9646 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9647 bpf_target_off(struct sk_buff, priority, 4,
9648 target_size));
9649 else
9650 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9651 bpf_target_off(struct sk_buff, priority, 4,
9652 target_size));
9653 break;
9654
9655 case offsetof(struct __sk_buff, ingress_ifindex):
9656 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9657 bpf_target_off(struct sk_buff, skb_iif, 4,
9658 target_size));
9659 break;
9660
9661 case offsetof(struct __sk_buff, ifindex):
9662 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9663 si->dst_reg, si->src_reg,
9664 offsetof(struct sk_buff, dev));
9665 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9666 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9667 bpf_target_off(struct net_device, ifindex, 4,
9668 target_size));
9669 break;
9670
9671 case offsetof(struct __sk_buff, hash):
9672 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9673 bpf_target_off(struct sk_buff, hash, 4,
9674 target_size));
9675 break;
9676
9677 case offsetof(struct __sk_buff, mark):
9678 if (type == BPF_WRITE)
9679 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9680 bpf_target_off(struct sk_buff, mark, 4,
9681 target_size));
9682 else
9683 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9684 bpf_target_off(struct sk_buff, mark, 4,
9685 target_size));
9686 break;
9687
9688 case offsetof(struct __sk_buff, pkt_type):
9689 *target_size = 1;
9690 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9691 PKT_TYPE_OFFSET);
9692 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9693 #ifdef __BIG_ENDIAN_BITFIELD
9694 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9695 #endif
9696 break;
9697
9698 case offsetof(struct __sk_buff, queue_mapping):
9699 if (type == BPF_WRITE) {
9700 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9701
9702 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9703 *insn++ = BPF_JMP_A(0); /* noop */
9704 break;
9705 }
9706
9707 if (BPF_CLASS(si->code) == BPF_STX)
9708 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9709 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9710 } else {
9711 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9712 bpf_target_off(struct sk_buff,
9713 queue_mapping,
9714 2, target_size));
9715 }
9716 break;
9717
9718 case offsetof(struct __sk_buff, vlan_present):
9719 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9720 bpf_target_off(struct sk_buff,
9721 vlan_all, 4, target_size));
9722 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9723 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9724 break;
9725
9726 case offsetof(struct __sk_buff, vlan_tci):
9727 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9728 bpf_target_off(struct sk_buff, vlan_tci, 2,
9729 target_size));
9730 break;
9731
9732 case offsetof(struct __sk_buff, cb[0]) ...
9733 offsetofend(struct __sk_buff, cb[4]) - 1:
9734 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9735 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9736 offsetof(struct qdisc_skb_cb, data)) %
9737 sizeof(__u64));
9738
9739 prog->cb_access = 1;
9740 off = si->off;
9741 off -= offsetof(struct __sk_buff, cb[0]);
9742 off += offsetof(struct sk_buff, cb);
9743 off += offsetof(struct qdisc_skb_cb, data);
9744 if (type == BPF_WRITE)
9745 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9746 else
9747 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9748 si->src_reg, off);
9749 break;
9750
9751 case offsetof(struct __sk_buff, tc_classid):
9752 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9753
9754 off = si->off;
9755 off -= offsetof(struct __sk_buff, tc_classid);
9756 off += offsetof(struct sk_buff, cb);
9757 off += offsetof(struct qdisc_skb_cb, tc_classid);
9758 *target_size = 2;
9759 if (type == BPF_WRITE)
9760 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9761 else
9762 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9763 si->src_reg, off);
9764 break;
9765
9766 case offsetof(struct __sk_buff, data):
9767 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9768 si->dst_reg, si->src_reg,
9769 offsetof(struct sk_buff, data));
9770 break;
9771
9772 case offsetof(struct __sk_buff, data_meta):
9773 off = si->off;
9774 off -= offsetof(struct __sk_buff, data_meta);
9775 off += offsetof(struct sk_buff, cb);
9776 off += offsetof(struct bpf_skb_data_end, data_meta);
9777 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9778 si->src_reg, off);
9779 break;
9780
9781 case offsetof(struct __sk_buff, data_end):
9782 off = si->off;
9783 off -= offsetof(struct __sk_buff, data_end);
9784 off += offsetof(struct sk_buff, cb);
9785 off += offsetof(struct bpf_skb_data_end, data_end);
9786 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9787 si->src_reg, off);
9788 break;
9789
9790 case offsetof(struct __sk_buff, tc_index):
9791 #ifdef CONFIG_NET_SCHED
9792 if (type == BPF_WRITE)
9793 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9794 bpf_target_off(struct sk_buff, tc_index, 2,
9795 target_size));
9796 else
9797 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9798 bpf_target_off(struct sk_buff, tc_index, 2,
9799 target_size));
9800 #else
9801 *target_size = 2;
9802 if (type == BPF_WRITE)
9803 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9804 else
9805 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9806 #endif
9807 break;
9808
9809 case offsetof(struct __sk_buff, napi_id):
9810 #if defined(CONFIG_NET_RX_BUSY_POLL)
9811 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9812 bpf_target_off(struct sk_buff, napi_id, 4,
9813 target_size));
9814 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9815 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9816 #else
9817 *target_size = 4;
9818 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9819 #endif
9820 break;
9821 case offsetof(struct __sk_buff, family):
9822 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9823
9824 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9825 si->dst_reg, si->src_reg,
9826 offsetof(struct sk_buff, sk));
9827 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9828 bpf_target_off(struct sock_common,
9829 skc_family,
9830 2, target_size));
9831 break;
9832 case offsetof(struct __sk_buff, remote_ip4):
9833 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9834
9835 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9836 si->dst_reg, si->src_reg,
9837 offsetof(struct sk_buff, sk));
9838 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9839 bpf_target_off(struct sock_common,
9840 skc_daddr,
9841 4, target_size));
9842 break;
9843 case offsetof(struct __sk_buff, local_ip4):
9844 BUILD_BUG_ON(sizeof_field(struct sock_common,
9845 skc_rcv_saddr) != 4);
9846
9847 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9848 si->dst_reg, si->src_reg,
9849 offsetof(struct sk_buff, sk));
9850 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9851 bpf_target_off(struct sock_common,
9852 skc_rcv_saddr,
9853 4, target_size));
9854 break;
9855 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9856 offsetof(struct __sk_buff, remote_ip6[3]):
9857 #if IS_ENABLED(CONFIG_IPV6)
9858 BUILD_BUG_ON(sizeof_field(struct sock_common,
9859 skc_v6_daddr.s6_addr32[0]) != 4);
9860
9861 off = si->off;
9862 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9863
9864 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9865 si->dst_reg, si->src_reg,
9866 offsetof(struct sk_buff, sk));
9867 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9868 offsetof(struct sock_common,
9869 skc_v6_daddr.s6_addr32[0]) +
9870 off);
9871 #else
9872 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9873 #endif
9874 break;
9875 case offsetof(struct __sk_buff, local_ip6[0]) ...
9876 offsetof(struct __sk_buff, local_ip6[3]):
9877 #if IS_ENABLED(CONFIG_IPV6)
9878 BUILD_BUG_ON(sizeof_field(struct sock_common,
9879 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9880
9881 off = si->off;
9882 off -= offsetof(struct __sk_buff, local_ip6[0]);
9883
9884 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9885 si->dst_reg, si->src_reg,
9886 offsetof(struct sk_buff, sk));
9887 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9888 offsetof(struct sock_common,
9889 skc_v6_rcv_saddr.s6_addr32[0]) +
9890 off);
9891 #else
9892 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9893 #endif
9894 break;
9895
9896 case offsetof(struct __sk_buff, remote_port):
9897 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9898
9899 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9900 si->dst_reg, si->src_reg,
9901 offsetof(struct sk_buff, sk));
9902 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9903 bpf_target_off(struct sock_common,
9904 skc_dport,
9905 2, target_size));
9906 #ifndef __BIG_ENDIAN_BITFIELD
9907 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9908 #endif
9909 break;
9910
9911 case offsetof(struct __sk_buff, local_port):
9912 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9913
9914 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9915 si->dst_reg, si->src_reg,
9916 offsetof(struct sk_buff, sk));
9917 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9918 bpf_target_off(struct sock_common,
9919 skc_num, 2, target_size));
9920 break;
9921
9922 case offsetof(struct __sk_buff, tstamp):
9923 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9924
9925 if (type == BPF_WRITE)
9926 insn = bpf_convert_tstamp_write(prog, si, insn);
9927 else
9928 insn = bpf_convert_tstamp_read(prog, si, insn);
9929 break;
9930
9931 case offsetof(struct __sk_buff, tstamp_type):
9932 insn = bpf_convert_tstamp_type_read(si, insn);
9933 break;
9934
9935 case offsetof(struct __sk_buff, gso_segs):
9936 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9937 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9938 si->dst_reg, si->dst_reg,
9939 bpf_target_off(struct skb_shared_info,
9940 gso_segs, 2,
9941 target_size));
9942 break;
9943 case offsetof(struct __sk_buff, gso_size):
9944 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9945 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9946 si->dst_reg, si->dst_reg,
9947 bpf_target_off(struct skb_shared_info,
9948 gso_size, 2,
9949 target_size));
9950 break;
9951 case offsetof(struct __sk_buff, wire_len):
9952 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9953
9954 off = si->off;
9955 off -= offsetof(struct __sk_buff, wire_len);
9956 off += offsetof(struct sk_buff, cb);
9957 off += offsetof(struct qdisc_skb_cb, pkt_len);
9958 *target_size = 4;
9959 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9960 break;
9961
9962 case offsetof(struct __sk_buff, sk):
9963 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9964 si->dst_reg, si->src_reg,
9965 offsetof(struct sk_buff, sk));
9966 break;
9967 case offsetof(struct __sk_buff, hwtstamp):
9968 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9969 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9970
9971 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9972 *insn++ = BPF_LDX_MEM(BPF_DW,
9973 si->dst_reg, si->dst_reg,
9974 bpf_target_off(struct skb_shared_info,
9975 hwtstamps, 8,
9976 target_size));
9977 break;
9978 }
9979
9980 return insn - insn_buf;
9981 }
9982
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9983 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9984 const struct bpf_insn *si,
9985 struct bpf_insn *insn_buf,
9986 struct bpf_prog *prog, u32 *target_size)
9987 {
9988 struct bpf_insn *insn = insn_buf;
9989 int off;
9990
9991 switch (si->off) {
9992 case offsetof(struct bpf_sock, bound_dev_if):
9993 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9994
9995 if (type == BPF_WRITE)
9996 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9997 offsetof(struct sock, sk_bound_dev_if));
9998 else
9999 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10000 offsetof(struct sock, sk_bound_dev_if));
10001 break;
10002
10003 case offsetof(struct bpf_sock, mark):
10004 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10005
10006 if (type == BPF_WRITE)
10007 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10008 offsetof(struct sock, sk_mark));
10009 else
10010 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10011 offsetof(struct sock, sk_mark));
10012 break;
10013
10014 case offsetof(struct bpf_sock, priority):
10015 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10016
10017 if (type == BPF_WRITE)
10018 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10019 offsetof(struct sock, sk_priority));
10020 else
10021 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10022 offsetof(struct sock, sk_priority));
10023 break;
10024
10025 case offsetof(struct bpf_sock, family):
10026 *insn++ = BPF_LDX_MEM(
10027 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10028 si->dst_reg, si->src_reg,
10029 bpf_target_off(struct sock_common,
10030 skc_family,
10031 sizeof_field(struct sock_common,
10032 skc_family),
10033 target_size));
10034 break;
10035
10036 case offsetof(struct bpf_sock, type):
10037 *insn++ = BPF_LDX_MEM(
10038 BPF_FIELD_SIZEOF(struct sock, sk_type),
10039 si->dst_reg, si->src_reg,
10040 bpf_target_off(struct sock, sk_type,
10041 sizeof_field(struct sock, sk_type),
10042 target_size));
10043 break;
10044
10045 case offsetof(struct bpf_sock, protocol):
10046 *insn++ = BPF_LDX_MEM(
10047 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10048 si->dst_reg, si->src_reg,
10049 bpf_target_off(struct sock, sk_protocol,
10050 sizeof_field(struct sock, sk_protocol),
10051 target_size));
10052 break;
10053
10054 case offsetof(struct bpf_sock, src_ip4):
10055 *insn++ = BPF_LDX_MEM(
10056 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10057 bpf_target_off(struct sock_common, skc_rcv_saddr,
10058 sizeof_field(struct sock_common,
10059 skc_rcv_saddr),
10060 target_size));
10061 break;
10062
10063 case offsetof(struct bpf_sock, dst_ip4):
10064 *insn++ = BPF_LDX_MEM(
10065 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10066 bpf_target_off(struct sock_common, skc_daddr,
10067 sizeof_field(struct sock_common,
10068 skc_daddr),
10069 target_size));
10070 break;
10071
10072 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10073 #if IS_ENABLED(CONFIG_IPV6)
10074 off = si->off;
10075 off -= offsetof(struct bpf_sock, src_ip6[0]);
10076 *insn++ = BPF_LDX_MEM(
10077 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10078 bpf_target_off(
10079 struct sock_common,
10080 skc_v6_rcv_saddr.s6_addr32[0],
10081 sizeof_field(struct sock_common,
10082 skc_v6_rcv_saddr.s6_addr32[0]),
10083 target_size) + off);
10084 #else
10085 (void)off;
10086 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10087 #endif
10088 break;
10089
10090 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10091 #if IS_ENABLED(CONFIG_IPV6)
10092 off = si->off;
10093 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10094 *insn++ = BPF_LDX_MEM(
10095 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10096 bpf_target_off(struct sock_common,
10097 skc_v6_daddr.s6_addr32[0],
10098 sizeof_field(struct sock_common,
10099 skc_v6_daddr.s6_addr32[0]),
10100 target_size) + off);
10101 #else
10102 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10103 *target_size = 4;
10104 #endif
10105 break;
10106
10107 case offsetof(struct bpf_sock, src_port):
10108 *insn++ = BPF_LDX_MEM(
10109 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10110 si->dst_reg, si->src_reg,
10111 bpf_target_off(struct sock_common, skc_num,
10112 sizeof_field(struct sock_common,
10113 skc_num),
10114 target_size));
10115 break;
10116
10117 case offsetof(struct bpf_sock, dst_port):
10118 *insn++ = BPF_LDX_MEM(
10119 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10120 si->dst_reg, si->src_reg,
10121 bpf_target_off(struct sock_common, skc_dport,
10122 sizeof_field(struct sock_common,
10123 skc_dport),
10124 target_size));
10125 break;
10126
10127 case offsetof(struct bpf_sock, state):
10128 *insn++ = BPF_LDX_MEM(
10129 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10130 si->dst_reg, si->src_reg,
10131 bpf_target_off(struct sock_common, skc_state,
10132 sizeof_field(struct sock_common,
10133 skc_state),
10134 target_size));
10135 break;
10136 case offsetof(struct bpf_sock, rx_queue_mapping):
10137 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10138 *insn++ = BPF_LDX_MEM(
10139 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10140 si->dst_reg, si->src_reg,
10141 bpf_target_off(struct sock, sk_rx_queue_mapping,
10142 sizeof_field(struct sock,
10143 sk_rx_queue_mapping),
10144 target_size));
10145 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10146 1);
10147 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10148 #else
10149 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10150 *target_size = 2;
10151 #endif
10152 break;
10153 }
10154
10155 return insn - insn_buf;
10156 }
10157
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10158 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10159 const struct bpf_insn *si,
10160 struct bpf_insn *insn_buf,
10161 struct bpf_prog *prog, u32 *target_size)
10162 {
10163 struct bpf_insn *insn = insn_buf;
10164
10165 switch (si->off) {
10166 case offsetof(struct __sk_buff, ifindex):
10167 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10168 si->dst_reg, si->src_reg,
10169 offsetof(struct sk_buff, dev));
10170 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10171 bpf_target_off(struct net_device, ifindex, 4,
10172 target_size));
10173 break;
10174 default:
10175 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10176 target_size);
10177 }
10178
10179 return insn - insn_buf;
10180 }
10181
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10182 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10183 const struct bpf_insn *si,
10184 struct bpf_insn *insn_buf,
10185 struct bpf_prog *prog, u32 *target_size)
10186 {
10187 struct bpf_insn *insn = insn_buf;
10188
10189 switch (si->off) {
10190 case offsetof(struct xdp_md, data):
10191 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10192 si->dst_reg, si->src_reg,
10193 offsetof(struct xdp_buff, data));
10194 break;
10195 case offsetof(struct xdp_md, data_meta):
10196 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10197 si->dst_reg, si->src_reg,
10198 offsetof(struct xdp_buff, data_meta));
10199 break;
10200 case offsetof(struct xdp_md, data_end):
10201 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10202 si->dst_reg, si->src_reg,
10203 offsetof(struct xdp_buff, data_end));
10204 break;
10205 case offsetof(struct xdp_md, ingress_ifindex):
10206 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10207 si->dst_reg, si->src_reg,
10208 offsetof(struct xdp_buff, rxq));
10209 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10210 si->dst_reg, si->dst_reg,
10211 offsetof(struct xdp_rxq_info, dev));
10212 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10213 offsetof(struct net_device, ifindex));
10214 break;
10215 case offsetof(struct xdp_md, rx_queue_index):
10216 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10217 si->dst_reg, si->src_reg,
10218 offsetof(struct xdp_buff, rxq));
10219 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10220 offsetof(struct xdp_rxq_info,
10221 queue_index));
10222 break;
10223 case offsetof(struct xdp_md, egress_ifindex):
10224 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10225 si->dst_reg, si->src_reg,
10226 offsetof(struct xdp_buff, txq));
10227 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10228 si->dst_reg, si->dst_reg,
10229 offsetof(struct xdp_txq_info, dev));
10230 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10231 offsetof(struct net_device, ifindex));
10232 break;
10233 }
10234
10235 return insn - insn_buf;
10236 }
10237
10238 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10239 * context Structure, F is Field in context structure that contains a pointer
10240 * to Nested Structure of type NS that has the field NF.
10241 *
10242 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10243 * sure that SIZE is not greater than actual size of S.F.NF.
10244 *
10245 * If offset OFF is provided, the load happens from that offset relative to
10246 * offset of NF.
10247 */
10248 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10249 do { \
10250 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10251 si->src_reg, offsetof(S, F)); \
10252 *insn++ = BPF_LDX_MEM( \
10253 SIZE, si->dst_reg, si->dst_reg, \
10254 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10255 target_size) \
10256 + OFF); \
10257 } while (0)
10258
10259 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10260 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10261 BPF_FIELD_SIZEOF(NS, NF), 0)
10262
10263 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10264 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10265 *
10266 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10267 * "register" since two registers available in convert_ctx_access are not
10268 * enough: we can't override neither SRC, since it contains value to store, nor
10269 * DST since it contains pointer to context that may be used by later
10270 * instructions. But we need a temporary place to save pointer to nested
10271 * structure whose field we want to store to.
10272 */
10273 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10274 do { \
10275 int tmp_reg = BPF_REG_9; \
10276 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10277 --tmp_reg; \
10278 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10279 --tmp_reg; \
10280 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10281 offsetof(S, TF)); \
10282 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10283 si->dst_reg, offsetof(S, F)); \
10284 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10285 tmp_reg, si->src_reg, \
10286 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10287 target_size) \
10288 + OFF, \
10289 si->imm); \
10290 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10291 offsetof(S, TF)); \
10292 } while (0)
10293
10294 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10295 TF) \
10296 do { \
10297 if (type == BPF_WRITE) { \
10298 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10299 OFF, TF); \
10300 } else { \
10301 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10302 S, NS, F, NF, SIZE, OFF); \
10303 } \
10304 } while (0)
10305
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10306 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10307 const struct bpf_insn *si,
10308 struct bpf_insn *insn_buf,
10309 struct bpf_prog *prog, u32 *target_size)
10310 {
10311 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10312 struct bpf_insn *insn = insn_buf;
10313
10314 switch (si->off) {
10315 case offsetof(struct bpf_sock_addr, user_family):
10316 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10317 struct sockaddr, uaddr, sa_family);
10318 break;
10319
10320 case offsetof(struct bpf_sock_addr, user_ip4):
10321 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10322 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10323 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10324 break;
10325
10326 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10327 off = si->off;
10328 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10329 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10330 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10331 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10332 tmp_reg);
10333 break;
10334
10335 case offsetof(struct bpf_sock_addr, user_port):
10336 /* To get port we need to know sa_family first and then treat
10337 * sockaddr as either sockaddr_in or sockaddr_in6.
10338 * Though we can simplify since port field has same offset and
10339 * size in both structures.
10340 * Here we check this invariant and use just one of the
10341 * structures if it's true.
10342 */
10343 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10344 offsetof(struct sockaddr_in6, sin6_port));
10345 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10346 sizeof_field(struct sockaddr_in6, sin6_port));
10347 /* Account for sin6_port being smaller than user_port. */
10348 port_size = min(port_size, BPF_LDST_BYTES(si));
10349 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10350 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10351 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10352 break;
10353
10354 case offsetof(struct bpf_sock_addr, family):
10355 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10356 struct sock, sk, sk_family);
10357 break;
10358
10359 case offsetof(struct bpf_sock_addr, type):
10360 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10361 struct sock, sk, sk_type);
10362 break;
10363
10364 case offsetof(struct bpf_sock_addr, protocol):
10365 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10366 struct sock, sk, sk_protocol);
10367 break;
10368
10369 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10370 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10371 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10372 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10373 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10374 break;
10375
10376 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10377 msg_src_ip6[3]):
10378 off = si->off;
10379 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10380 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10381 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10382 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10383 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10384 break;
10385 case offsetof(struct bpf_sock_addr, sk):
10386 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10387 si->dst_reg, si->src_reg,
10388 offsetof(struct bpf_sock_addr_kern, sk));
10389 break;
10390 }
10391
10392 return insn - insn_buf;
10393 }
10394
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10395 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10396 const struct bpf_insn *si,
10397 struct bpf_insn *insn_buf,
10398 struct bpf_prog *prog,
10399 u32 *target_size)
10400 {
10401 struct bpf_insn *insn = insn_buf;
10402 int off;
10403
10404 /* Helper macro for adding read access to tcp_sock or sock fields. */
10405 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10406 do { \
10407 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10408 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10409 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10410 if (si->dst_reg == reg || si->src_reg == reg) \
10411 reg--; \
10412 if (si->dst_reg == reg || si->src_reg == reg) \
10413 reg--; \
10414 if (si->dst_reg == si->src_reg) { \
10415 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10416 offsetof(struct bpf_sock_ops_kern, \
10417 temp)); \
10418 fullsock_reg = reg; \
10419 jmp += 2; \
10420 } \
10421 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10422 struct bpf_sock_ops_kern, \
10423 is_locked_tcp_sock), \
10424 fullsock_reg, si->src_reg, \
10425 offsetof(struct bpf_sock_ops_kern, \
10426 is_locked_tcp_sock)); \
10427 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10428 if (si->dst_reg == si->src_reg) \
10429 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10430 offsetof(struct bpf_sock_ops_kern, \
10431 temp)); \
10432 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10433 struct bpf_sock_ops_kern, sk),\
10434 si->dst_reg, si->src_reg, \
10435 offsetof(struct bpf_sock_ops_kern, sk));\
10436 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10437 OBJ_FIELD), \
10438 si->dst_reg, si->dst_reg, \
10439 offsetof(OBJ, OBJ_FIELD)); \
10440 if (si->dst_reg == si->src_reg) { \
10441 *insn++ = BPF_JMP_A(1); \
10442 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10443 offsetof(struct bpf_sock_ops_kern, \
10444 temp)); \
10445 } \
10446 } while (0)
10447
10448 #define SOCK_OPS_GET_SK() \
10449 do { \
10450 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10451 if (si->dst_reg == reg || si->src_reg == reg) \
10452 reg--; \
10453 if (si->dst_reg == reg || si->src_reg == reg) \
10454 reg--; \
10455 if (si->dst_reg == si->src_reg) { \
10456 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10457 offsetof(struct bpf_sock_ops_kern, \
10458 temp)); \
10459 fullsock_reg = reg; \
10460 jmp += 2; \
10461 } \
10462 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10463 struct bpf_sock_ops_kern, \
10464 is_fullsock), \
10465 fullsock_reg, si->src_reg, \
10466 offsetof(struct bpf_sock_ops_kern, \
10467 is_fullsock)); \
10468 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10469 if (si->dst_reg == si->src_reg) \
10470 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10471 offsetof(struct bpf_sock_ops_kern, \
10472 temp)); \
10473 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10474 struct bpf_sock_ops_kern, sk),\
10475 si->dst_reg, si->src_reg, \
10476 offsetof(struct bpf_sock_ops_kern, sk));\
10477 if (si->dst_reg == si->src_reg) { \
10478 *insn++ = BPF_JMP_A(1); \
10479 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10480 offsetof(struct bpf_sock_ops_kern, \
10481 temp)); \
10482 } \
10483 } while (0)
10484
10485 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10486 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10487
10488 /* Helper macro for adding write access to tcp_sock or sock fields.
10489 * The macro is called with two registers, dst_reg which contains a pointer
10490 * to ctx (context) and src_reg which contains the value that should be
10491 * stored. However, we need an additional register since we cannot overwrite
10492 * dst_reg because it may be used later in the program.
10493 * Instead we "borrow" one of the other register. We first save its value
10494 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10495 * it at the end of the macro.
10496 */
10497 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10498 do { \
10499 int reg = BPF_REG_9; \
10500 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10501 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10502 if (si->dst_reg == reg || si->src_reg == reg) \
10503 reg--; \
10504 if (si->dst_reg == reg || si->src_reg == reg) \
10505 reg--; \
10506 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10507 offsetof(struct bpf_sock_ops_kern, \
10508 temp)); \
10509 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10510 struct bpf_sock_ops_kern, \
10511 is_locked_tcp_sock), \
10512 reg, si->dst_reg, \
10513 offsetof(struct bpf_sock_ops_kern, \
10514 is_locked_tcp_sock)); \
10515 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10516 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10517 struct bpf_sock_ops_kern, sk),\
10518 reg, si->dst_reg, \
10519 offsetof(struct bpf_sock_ops_kern, sk));\
10520 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10521 BPF_MEM | BPF_CLASS(si->code), \
10522 reg, si->src_reg, \
10523 offsetof(OBJ, OBJ_FIELD), \
10524 si->imm); \
10525 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10526 offsetof(struct bpf_sock_ops_kern, \
10527 temp)); \
10528 } while (0)
10529
10530 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10531 do { \
10532 if (TYPE == BPF_WRITE) \
10533 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10534 else \
10535 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10536 } while (0)
10537
10538 switch (si->off) {
10539 case offsetof(struct bpf_sock_ops, op):
10540 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10541 op),
10542 si->dst_reg, si->src_reg,
10543 offsetof(struct bpf_sock_ops_kern, op));
10544 break;
10545
10546 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10547 offsetof(struct bpf_sock_ops, replylong[3]):
10548 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10549 sizeof_field(struct bpf_sock_ops_kern, reply));
10550 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10551 sizeof_field(struct bpf_sock_ops_kern, replylong));
10552 off = si->off;
10553 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10554 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10555 if (type == BPF_WRITE)
10556 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10557 else
10558 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10559 off);
10560 break;
10561
10562 case offsetof(struct bpf_sock_ops, family):
10563 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10564
10565 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10566 struct bpf_sock_ops_kern, sk),
10567 si->dst_reg, si->src_reg,
10568 offsetof(struct bpf_sock_ops_kern, sk));
10569 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10570 offsetof(struct sock_common, skc_family));
10571 break;
10572
10573 case offsetof(struct bpf_sock_ops, remote_ip4):
10574 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10575
10576 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10577 struct bpf_sock_ops_kern, sk),
10578 si->dst_reg, si->src_reg,
10579 offsetof(struct bpf_sock_ops_kern, sk));
10580 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10581 offsetof(struct sock_common, skc_daddr));
10582 break;
10583
10584 case offsetof(struct bpf_sock_ops, local_ip4):
10585 BUILD_BUG_ON(sizeof_field(struct sock_common,
10586 skc_rcv_saddr) != 4);
10587
10588 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10589 struct bpf_sock_ops_kern, sk),
10590 si->dst_reg, si->src_reg,
10591 offsetof(struct bpf_sock_ops_kern, sk));
10592 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10593 offsetof(struct sock_common,
10594 skc_rcv_saddr));
10595 break;
10596
10597 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10598 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10599 #if IS_ENABLED(CONFIG_IPV6)
10600 BUILD_BUG_ON(sizeof_field(struct sock_common,
10601 skc_v6_daddr.s6_addr32[0]) != 4);
10602
10603 off = si->off;
10604 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10605 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10606 struct bpf_sock_ops_kern, sk),
10607 si->dst_reg, si->src_reg,
10608 offsetof(struct bpf_sock_ops_kern, sk));
10609 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10610 offsetof(struct sock_common,
10611 skc_v6_daddr.s6_addr32[0]) +
10612 off);
10613 #else
10614 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10615 #endif
10616 break;
10617
10618 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10619 offsetof(struct bpf_sock_ops, local_ip6[3]):
10620 #if IS_ENABLED(CONFIG_IPV6)
10621 BUILD_BUG_ON(sizeof_field(struct sock_common,
10622 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10623
10624 off = si->off;
10625 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10626 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10627 struct bpf_sock_ops_kern, sk),
10628 si->dst_reg, si->src_reg,
10629 offsetof(struct bpf_sock_ops_kern, sk));
10630 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10631 offsetof(struct sock_common,
10632 skc_v6_rcv_saddr.s6_addr32[0]) +
10633 off);
10634 #else
10635 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10636 #endif
10637 break;
10638
10639 case offsetof(struct bpf_sock_ops, remote_port):
10640 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10641
10642 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10643 struct bpf_sock_ops_kern, sk),
10644 si->dst_reg, si->src_reg,
10645 offsetof(struct bpf_sock_ops_kern, sk));
10646 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10647 offsetof(struct sock_common, skc_dport));
10648 #ifndef __BIG_ENDIAN_BITFIELD
10649 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10650 #endif
10651 break;
10652
10653 case offsetof(struct bpf_sock_ops, local_port):
10654 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10655
10656 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10657 struct bpf_sock_ops_kern, sk),
10658 si->dst_reg, si->src_reg,
10659 offsetof(struct bpf_sock_ops_kern, sk));
10660 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10661 offsetof(struct sock_common, skc_num));
10662 break;
10663
10664 case offsetof(struct bpf_sock_ops, is_fullsock):
10665 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10666 struct bpf_sock_ops_kern,
10667 is_fullsock),
10668 si->dst_reg, si->src_reg,
10669 offsetof(struct bpf_sock_ops_kern,
10670 is_fullsock));
10671 break;
10672
10673 case offsetof(struct bpf_sock_ops, state):
10674 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10675
10676 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10677 struct bpf_sock_ops_kern, sk),
10678 si->dst_reg, si->src_reg,
10679 offsetof(struct bpf_sock_ops_kern, sk));
10680 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10681 offsetof(struct sock_common, skc_state));
10682 break;
10683
10684 case offsetof(struct bpf_sock_ops, rtt_min):
10685 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10686 sizeof(struct minmax));
10687 BUILD_BUG_ON(sizeof(struct minmax) <
10688 sizeof(struct minmax_sample));
10689
10690 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10691 struct bpf_sock_ops_kern, sk),
10692 si->dst_reg, si->src_reg,
10693 offsetof(struct bpf_sock_ops_kern, sk));
10694 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10695 offsetof(struct tcp_sock, rtt_min) +
10696 sizeof_field(struct minmax_sample, t));
10697 break;
10698
10699 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10700 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10701 struct tcp_sock);
10702 break;
10703
10704 case offsetof(struct bpf_sock_ops, sk_txhash):
10705 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10706 struct sock, type);
10707 break;
10708 case offsetof(struct bpf_sock_ops, snd_cwnd):
10709 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10710 break;
10711 case offsetof(struct bpf_sock_ops, srtt_us):
10712 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10713 break;
10714 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10715 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10716 break;
10717 case offsetof(struct bpf_sock_ops, rcv_nxt):
10718 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10719 break;
10720 case offsetof(struct bpf_sock_ops, snd_nxt):
10721 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10722 break;
10723 case offsetof(struct bpf_sock_ops, snd_una):
10724 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10725 break;
10726 case offsetof(struct bpf_sock_ops, mss_cache):
10727 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10728 break;
10729 case offsetof(struct bpf_sock_ops, ecn_flags):
10730 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10731 break;
10732 case offsetof(struct bpf_sock_ops, rate_delivered):
10733 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10734 break;
10735 case offsetof(struct bpf_sock_ops, rate_interval_us):
10736 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10737 break;
10738 case offsetof(struct bpf_sock_ops, packets_out):
10739 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10740 break;
10741 case offsetof(struct bpf_sock_ops, retrans_out):
10742 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10743 break;
10744 case offsetof(struct bpf_sock_ops, total_retrans):
10745 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10746 break;
10747 case offsetof(struct bpf_sock_ops, segs_in):
10748 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10749 break;
10750 case offsetof(struct bpf_sock_ops, data_segs_in):
10751 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10752 break;
10753 case offsetof(struct bpf_sock_ops, segs_out):
10754 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10755 break;
10756 case offsetof(struct bpf_sock_ops, data_segs_out):
10757 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10758 break;
10759 case offsetof(struct bpf_sock_ops, lost_out):
10760 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10761 break;
10762 case offsetof(struct bpf_sock_ops, sacked_out):
10763 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10764 break;
10765 case offsetof(struct bpf_sock_ops, bytes_received):
10766 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10767 break;
10768 case offsetof(struct bpf_sock_ops, bytes_acked):
10769 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10770 break;
10771 case offsetof(struct bpf_sock_ops, sk):
10772 SOCK_OPS_GET_SK();
10773 break;
10774 case offsetof(struct bpf_sock_ops, skb_data_end):
10775 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10776 skb_data_end),
10777 si->dst_reg, si->src_reg,
10778 offsetof(struct bpf_sock_ops_kern,
10779 skb_data_end));
10780 break;
10781 case offsetof(struct bpf_sock_ops, skb_data):
10782 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10783 skb),
10784 si->dst_reg, si->src_reg,
10785 offsetof(struct bpf_sock_ops_kern,
10786 skb));
10787 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10788 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10789 si->dst_reg, si->dst_reg,
10790 offsetof(struct sk_buff, data));
10791 break;
10792 case offsetof(struct bpf_sock_ops, skb_len):
10793 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10794 skb),
10795 si->dst_reg, si->src_reg,
10796 offsetof(struct bpf_sock_ops_kern,
10797 skb));
10798 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10799 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10800 si->dst_reg, si->dst_reg,
10801 offsetof(struct sk_buff, len));
10802 break;
10803 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10804 off = offsetof(struct sk_buff, cb);
10805 off += offsetof(struct tcp_skb_cb, tcp_flags);
10806 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10807 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10808 skb),
10809 si->dst_reg, si->src_reg,
10810 offsetof(struct bpf_sock_ops_kern,
10811 skb));
10812 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10813 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10814 tcp_flags),
10815 si->dst_reg, si->dst_reg, off);
10816 break;
10817 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10818 struct bpf_insn *jmp_on_null_skb;
10819
10820 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10821 skb),
10822 si->dst_reg, si->src_reg,
10823 offsetof(struct bpf_sock_ops_kern,
10824 skb));
10825 /* Reserve one insn to test skb == NULL */
10826 jmp_on_null_skb = insn++;
10827 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10828 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10829 bpf_target_off(struct skb_shared_info,
10830 hwtstamps, 8,
10831 target_size));
10832 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10833 insn - jmp_on_null_skb - 1);
10834 break;
10835 }
10836 }
10837 return insn - insn_buf;
10838 }
10839
10840 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10841 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10842 struct bpf_insn *insn)
10843 {
10844 int reg;
10845 int temp_reg_off = offsetof(struct sk_buff, cb) +
10846 offsetof(struct sk_skb_cb, temp_reg);
10847
10848 if (si->src_reg == si->dst_reg) {
10849 /* We need an extra register, choose and save a register. */
10850 reg = BPF_REG_9;
10851 if (si->src_reg == reg || si->dst_reg == reg)
10852 reg--;
10853 if (si->src_reg == reg || si->dst_reg == reg)
10854 reg--;
10855 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10856 } else {
10857 reg = si->dst_reg;
10858 }
10859
10860 /* reg = skb->data */
10861 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10862 reg, si->src_reg,
10863 offsetof(struct sk_buff, data));
10864 /* AX = skb->len */
10865 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10866 BPF_REG_AX, si->src_reg,
10867 offsetof(struct sk_buff, len));
10868 /* reg = skb->data + skb->len */
10869 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10870 /* AX = skb->data_len */
10871 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10872 BPF_REG_AX, si->src_reg,
10873 offsetof(struct sk_buff, data_len));
10874
10875 /* reg = skb->data + skb->len - skb->data_len */
10876 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10877
10878 if (si->src_reg == si->dst_reg) {
10879 /* Restore the saved register */
10880 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10881 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10882 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10883 }
10884
10885 return insn;
10886 }
10887
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10888 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10889 const struct bpf_insn *si,
10890 struct bpf_insn *insn_buf,
10891 struct bpf_prog *prog, u32 *target_size)
10892 {
10893 struct bpf_insn *insn = insn_buf;
10894 int off;
10895
10896 switch (si->off) {
10897 case offsetof(struct __sk_buff, data_end):
10898 insn = bpf_convert_data_end_access(si, insn);
10899 break;
10900 case offsetof(struct __sk_buff, cb[0]) ...
10901 offsetofend(struct __sk_buff, cb[4]) - 1:
10902 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10903 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10904 offsetof(struct sk_skb_cb, data)) %
10905 sizeof(__u64));
10906
10907 prog->cb_access = 1;
10908 off = si->off;
10909 off -= offsetof(struct __sk_buff, cb[0]);
10910 off += offsetof(struct sk_buff, cb);
10911 off += offsetof(struct sk_skb_cb, data);
10912 if (type == BPF_WRITE)
10913 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10914 else
10915 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10916 si->src_reg, off);
10917 break;
10918
10919
10920 default:
10921 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10922 target_size);
10923 }
10924
10925 return insn - insn_buf;
10926 }
10927
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10928 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10929 const struct bpf_insn *si,
10930 struct bpf_insn *insn_buf,
10931 struct bpf_prog *prog, u32 *target_size)
10932 {
10933 struct bpf_insn *insn = insn_buf;
10934 #if IS_ENABLED(CONFIG_IPV6)
10935 int off;
10936 #endif
10937
10938 /* convert ctx uses the fact sg element is first in struct */
10939 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10940
10941 switch (si->off) {
10942 case offsetof(struct sk_msg_md, data):
10943 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10944 si->dst_reg, si->src_reg,
10945 offsetof(struct sk_msg, data));
10946 break;
10947 case offsetof(struct sk_msg_md, data_end):
10948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10949 si->dst_reg, si->src_reg,
10950 offsetof(struct sk_msg, data_end));
10951 break;
10952 case offsetof(struct sk_msg_md, family):
10953 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10954
10955 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10956 struct sk_msg, sk),
10957 si->dst_reg, si->src_reg,
10958 offsetof(struct sk_msg, sk));
10959 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10960 offsetof(struct sock_common, skc_family));
10961 break;
10962
10963 case offsetof(struct sk_msg_md, remote_ip4):
10964 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10965
10966 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10967 struct sk_msg, sk),
10968 si->dst_reg, si->src_reg,
10969 offsetof(struct sk_msg, sk));
10970 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10971 offsetof(struct sock_common, skc_daddr));
10972 break;
10973
10974 case offsetof(struct sk_msg_md, local_ip4):
10975 BUILD_BUG_ON(sizeof_field(struct sock_common,
10976 skc_rcv_saddr) != 4);
10977
10978 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10979 struct sk_msg, sk),
10980 si->dst_reg, si->src_reg,
10981 offsetof(struct sk_msg, sk));
10982 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10983 offsetof(struct sock_common,
10984 skc_rcv_saddr));
10985 break;
10986
10987 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10988 offsetof(struct sk_msg_md, remote_ip6[3]):
10989 #if IS_ENABLED(CONFIG_IPV6)
10990 BUILD_BUG_ON(sizeof_field(struct sock_common,
10991 skc_v6_daddr.s6_addr32[0]) != 4);
10992
10993 off = si->off;
10994 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10995 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10996 struct sk_msg, sk),
10997 si->dst_reg, si->src_reg,
10998 offsetof(struct sk_msg, sk));
10999 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11000 offsetof(struct sock_common,
11001 skc_v6_daddr.s6_addr32[0]) +
11002 off);
11003 #else
11004 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11005 #endif
11006 break;
11007
11008 case offsetof(struct sk_msg_md, local_ip6[0]) ...
11009 offsetof(struct sk_msg_md, local_ip6[3]):
11010 #if IS_ENABLED(CONFIG_IPV6)
11011 BUILD_BUG_ON(sizeof_field(struct sock_common,
11012 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11013
11014 off = si->off;
11015 off -= offsetof(struct sk_msg_md, local_ip6[0]);
11016 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11017 struct sk_msg, sk),
11018 si->dst_reg, si->src_reg,
11019 offsetof(struct sk_msg, sk));
11020 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11021 offsetof(struct sock_common,
11022 skc_v6_rcv_saddr.s6_addr32[0]) +
11023 off);
11024 #else
11025 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11026 #endif
11027 break;
11028
11029 case offsetof(struct sk_msg_md, remote_port):
11030 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11031
11032 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11033 struct sk_msg, sk),
11034 si->dst_reg, si->src_reg,
11035 offsetof(struct sk_msg, sk));
11036 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11037 offsetof(struct sock_common, skc_dport));
11038 #ifndef __BIG_ENDIAN_BITFIELD
11039 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11040 #endif
11041 break;
11042
11043 case offsetof(struct sk_msg_md, local_port):
11044 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11045
11046 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11047 struct sk_msg, sk),
11048 si->dst_reg, si->src_reg,
11049 offsetof(struct sk_msg, sk));
11050 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11051 offsetof(struct sock_common, skc_num));
11052 break;
11053
11054 case offsetof(struct sk_msg_md, size):
11055 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11056 si->dst_reg, si->src_reg,
11057 offsetof(struct sk_msg_sg, size));
11058 break;
11059
11060 case offsetof(struct sk_msg_md, sk):
11061 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11062 si->dst_reg, si->src_reg,
11063 offsetof(struct sk_msg, sk));
11064 break;
11065 }
11066
11067 return insn - insn_buf;
11068 }
11069
11070 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11071 .get_func_proto = sk_filter_func_proto,
11072 .is_valid_access = sk_filter_is_valid_access,
11073 .convert_ctx_access = bpf_convert_ctx_access,
11074 .gen_ld_abs = bpf_gen_ld_abs,
11075 };
11076
11077 const struct bpf_prog_ops sk_filter_prog_ops = {
11078 .test_run = bpf_prog_test_run_skb,
11079 };
11080
11081 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11082 .get_func_proto = tc_cls_act_func_proto,
11083 .is_valid_access = tc_cls_act_is_valid_access,
11084 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11085 .gen_prologue = tc_cls_act_prologue,
11086 .gen_ld_abs = bpf_gen_ld_abs,
11087 .btf_struct_access = tc_cls_act_btf_struct_access,
11088 };
11089
11090 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11091 .test_run = bpf_prog_test_run_skb,
11092 };
11093
11094 const struct bpf_verifier_ops xdp_verifier_ops = {
11095 .get_func_proto = xdp_func_proto,
11096 .is_valid_access = xdp_is_valid_access,
11097 .convert_ctx_access = xdp_convert_ctx_access,
11098 .gen_prologue = bpf_noop_prologue,
11099 .btf_struct_access = xdp_btf_struct_access,
11100 };
11101
11102 const struct bpf_prog_ops xdp_prog_ops = {
11103 .test_run = bpf_prog_test_run_xdp,
11104 };
11105
11106 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11107 .get_func_proto = cg_skb_func_proto,
11108 .is_valid_access = cg_skb_is_valid_access,
11109 .convert_ctx_access = bpf_convert_ctx_access,
11110 };
11111
11112 const struct bpf_prog_ops cg_skb_prog_ops = {
11113 .test_run = bpf_prog_test_run_skb,
11114 };
11115
11116 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11117 .get_func_proto = lwt_in_func_proto,
11118 .is_valid_access = lwt_is_valid_access,
11119 .convert_ctx_access = bpf_convert_ctx_access,
11120 };
11121
11122 const struct bpf_prog_ops lwt_in_prog_ops = {
11123 .test_run = bpf_prog_test_run_skb,
11124 };
11125
11126 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11127 .get_func_proto = lwt_out_func_proto,
11128 .is_valid_access = lwt_is_valid_access,
11129 .convert_ctx_access = bpf_convert_ctx_access,
11130 };
11131
11132 const struct bpf_prog_ops lwt_out_prog_ops = {
11133 .test_run = bpf_prog_test_run_skb,
11134 };
11135
11136 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11137 .get_func_proto = lwt_xmit_func_proto,
11138 .is_valid_access = lwt_is_valid_access,
11139 .convert_ctx_access = bpf_convert_ctx_access,
11140 .gen_prologue = tc_cls_act_prologue,
11141 };
11142
11143 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11144 .test_run = bpf_prog_test_run_skb,
11145 };
11146
11147 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11148 .get_func_proto = lwt_seg6local_func_proto,
11149 .is_valid_access = lwt_is_valid_access,
11150 .convert_ctx_access = bpf_convert_ctx_access,
11151 };
11152
11153 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11154 };
11155
11156 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11157 .get_func_proto = sock_filter_func_proto,
11158 .is_valid_access = sock_filter_is_valid_access,
11159 .convert_ctx_access = bpf_sock_convert_ctx_access,
11160 };
11161
11162 const struct bpf_prog_ops cg_sock_prog_ops = {
11163 };
11164
11165 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11166 .get_func_proto = sock_addr_func_proto,
11167 .is_valid_access = sock_addr_is_valid_access,
11168 .convert_ctx_access = sock_addr_convert_ctx_access,
11169 };
11170
11171 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11172 };
11173
11174 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11175 .get_func_proto = sock_ops_func_proto,
11176 .is_valid_access = sock_ops_is_valid_access,
11177 .convert_ctx_access = sock_ops_convert_ctx_access,
11178 };
11179
11180 const struct bpf_prog_ops sock_ops_prog_ops = {
11181 };
11182
11183 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11184 .get_func_proto = sk_skb_func_proto,
11185 .is_valid_access = sk_skb_is_valid_access,
11186 .convert_ctx_access = sk_skb_convert_ctx_access,
11187 .gen_prologue = sk_skb_prologue,
11188 };
11189
11190 const struct bpf_prog_ops sk_skb_prog_ops = {
11191 };
11192
11193 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11194 .get_func_proto = sk_msg_func_proto,
11195 .is_valid_access = sk_msg_is_valid_access,
11196 .convert_ctx_access = sk_msg_convert_ctx_access,
11197 .gen_prologue = bpf_noop_prologue,
11198 };
11199
11200 const struct bpf_prog_ops sk_msg_prog_ops = {
11201 };
11202
11203 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11204 .get_func_proto = flow_dissector_func_proto,
11205 .is_valid_access = flow_dissector_is_valid_access,
11206 .convert_ctx_access = flow_dissector_convert_ctx_access,
11207 };
11208
11209 const struct bpf_prog_ops flow_dissector_prog_ops = {
11210 .test_run = bpf_prog_test_run_flow_dissector,
11211 };
11212
sk_detach_filter(struct sock * sk)11213 int sk_detach_filter(struct sock *sk)
11214 {
11215 int ret = -ENOENT;
11216 struct sk_filter *filter;
11217
11218 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11219 return -EPERM;
11220
11221 filter = rcu_dereference_protected(sk->sk_filter,
11222 lockdep_sock_is_held(sk));
11223 if (filter) {
11224 RCU_INIT_POINTER(sk->sk_filter, NULL);
11225 sk_filter_uncharge(sk, filter);
11226 ret = 0;
11227 }
11228
11229 return ret;
11230 }
11231 EXPORT_SYMBOL_GPL(sk_detach_filter);
11232
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11233 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11234 {
11235 struct sock_fprog_kern *fprog;
11236 struct sk_filter *filter;
11237 int ret = 0;
11238
11239 sockopt_lock_sock(sk);
11240 filter = rcu_dereference_protected(sk->sk_filter,
11241 lockdep_sock_is_held(sk));
11242 if (!filter)
11243 goto out;
11244
11245 /* We're copying the filter that has been originally attached,
11246 * so no conversion/decode needed anymore. eBPF programs that
11247 * have no original program cannot be dumped through this.
11248 */
11249 ret = -EACCES;
11250 fprog = filter->prog->orig_prog;
11251 if (!fprog)
11252 goto out;
11253
11254 ret = fprog->len;
11255 if (!len)
11256 /* User space only enquires number of filter blocks. */
11257 goto out;
11258
11259 ret = -EINVAL;
11260 if (len < fprog->len)
11261 goto out;
11262
11263 ret = -EFAULT;
11264 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11265 goto out;
11266
11267 /* Instead of bytes, the API requests to return the number
11268 * of filter blocks.
11269 */
11270 ret = fprog->len;
11271 out:
11272 sockopt_release_sock(sk);
11273 return ret;
11274 }
11275
11276 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11277 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11278 struct sock_reuseport *reuse,
11279 struct sock *sk, struct sk_buff *skb,
11280 struct sock *migrating_sk,
11281 u32 hash)
11282 {
11283 reuse_kern->skb = skb;
11284 reuse_kern->sk = sk;
11285 reuse_kern->selected_sk = NULL;
11286 reuse_kern->migrating_sk = migrating_sk;
11287 reuse_kern->data_end = skb->data + skb_headlen(skb);
11288 reuse_kern->hash = hash;
11289 reuse_kern->reuseport_id = reuse->reuseport_id;
11290 reuse_kern->bind_inany = reuse->bind_inany;
11291 }
11292
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11293 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11294 struct bpf_prog *prog, struct sk_buff *skb,
11295 struct sock *migrating_sk,
11296 u32 hash)
11297 {
11298 struct sk_reuseport_kern reuse_kern;
11299 enum sk_action action;
11300
11301 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11302 action = bpf_prog_run(prog, &reuse_kern);
11303
11304 if (action == SK_PASS)
11305 return reuse_kern.selected_sk;
11306 else
11307 return ERR_PTR(-ECONNREFUSED);
11308 }
11309
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11310 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11311 struct bpf_map *, map, void *, key, u32, flags)
11312 {
11313 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11314 struct sock_reuseport *reuse;
11315 struct sock *selected_sk;
11316 int err;
11317
11318 selected_sk = map->ops->map_lookup_elem(map, key);
11319 if (!selected_sk)
11320 return -ENOENT;
11321
11322 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11323 if (!reuse) {
11324 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11325 * The only (!reuse) case here is - the sk has already been
11326 * unhashed (e.g. by close()), so treat it as -ENOENT.
11327 *
11328 * Other maps (e.g. sock_map) do not provide this guarantee and
11329 * the sk may never be in the reuseport group to begin with.
11330 */
11331 err = is_sockarray ? -ENOENT : -EINVAL;
11332 goto error;
11333 }
11334
11335 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11336 struct sock *sk = reuse_kern->sk;
11337
11338 if (sk->sk_protocol != selected_sk->sk_protocol) {
11339 err = -EPROTOTYPE;
11340 } else if (sk->sk_family != selected_sk->sk_family) {
11341 err = -EAFNOSUPPORT;
11342 } else {
11343 /* Catch all. Likely bound to a different sockaddr. */
11344 err = -EBADFD;
11345 }
11346 goto error;
11347 }
11348
11349 reuse_kern->selected_sk = selected_sk;
11350
11351 return 0;
11352 error:
11353 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11354 if (sk_is_refcounted(selected_sk))
11355 sock_put(selected_sk);
11356
11357 return err;
11358 }
11359
11360 static const struct bpf_func_proto sk_select_reuseport_proto = {
11361 .func = sk_select_reuseport,
11362 .gpl_only = false,
11363 .ret_type = RET_INTEGER,
11364 .arg1_type = ARG_PTR_TO_CTX,
11365 .arg2_type = ARG_CONST_MAP_PTR,
11366 .arg3_type = ARG_PTR_TO_MAP_KEY,
11367 .arg4_type = ARG_ANYTHING,
11368 };
11369
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11370 BPF_CALL_4(sk_reuseport_load_bytes,
11371 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11372 void *, to, u32, len)
11373 {
11374 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11375 }
11376
11377 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11378 .func = sk_reuseport_load_bytes,
11379 .gpl_only = false,
11380 .ret_type = RET_INTEGER,
11381 .arg1_type = ARG_PTR_TO_CTX,
11382 .arg2_type = ARG_ANYTHING,
11383 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11384 .arg4_type = ARG_CONST_SIZE,
11385 };
11386
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11387 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11388 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11389 void *, to, u32, len, u32, start_header)
11390 {
11391 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11392 len, start_header);
11393 }
11394
11395 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11396 .func = sk_reuseport_load_bytes_relative,
11397 .gpl_only = false,
11398 .ret_type = RET_INTEGER,
11399 .arg1_type = ARG_PTR_TO_CTX,
11400 .arg2_type = ARG_ANYTHING,
11401 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11402 .arg4_type = ARG_CONST_SIZE,
11403 .arg5_type = ARG_ANYTHING,
11404 };
11405
11406 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11407 sk_reuseport_func_proto(enum bpf_func_id func_id,
11408 const struct bpf_prog *prog)
11409 {
11410 switch (func_id) {
11411 case BPF_FUNC_sk_select_reuseport:
11412 return &sk_select_reuseport_proto;
11413 case BPF_FUNC_skb_load_bytes:
11414 return &sk_reuseport_load_bytes_proto;
11415 case BPF_FUNC_skb_load_bytes_relative:
11416 return &sk_reuseport_load_bytes_relative_proto;
11417 case BPF_FUNC_get_socket_cookie:
11418 return &bpf_get_socket_ptr_cookie_proto;
11419 case BPF_FUNC_ktime_get_coarse_ns:
11420 return &bpf_ktime_get_coarse_ns_proto;
11421 default:
11422 return bpf_base_func_proto(func_id, prog);
11423 }
11424 }
11425
11426 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11427 sk_reuseport_is_valid_access(int off, int size,
11428 enum bpf_access_type type,
11429 const struct bpf_prog *prog,
11430 struct bpf_insn_access_aux *info)
11431 {
11432 const u32 size_default = sizeof(__u32);
11433
11434 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11435 off % size || type != BPF_READ)
11436 return false;
11437
11438 switch (off) {
11439 case offsetof(struct sk_reuseport_md, data):
11440 info->reg_type = PTR_TO_PACKET;
11441 return size == sizeof(__u64);
11442
11443 case offsetof(struct sk_reuseport_md, data_end):
11444 info->reg_type = PTR_TO_PACKET_END;
11445 return size == sizeof(__u64);
11446
11447 case offsetof(struct sk_reuseport_md, hash):
11448 return size == size_default;
11449
11450 case offsetof(struct sk_reuseport_md, sk):
11451 info->reg_type = PTR_TO_SOCKET;
11452 return size == sizeof(__u64);
11453
11454 case offsetof(struct sk_reuseport_md, migrating_sk):
11455 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11456 return size == sizeof(__u64);
11457
11458 /* Fields that allow narrowing */
11459 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11460 if (size < sizeof_field(struct sk_buff, protocol))
11461 return false;
11462 fallthrough;
11463 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11464 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11465 case bpf_ctx_range(struct sk_reuseport_md, len):
11466 bpf_ctx_record_field_size(info, size_default);
11467 return bpf_ctx_narrow_access_ok(off, size, size_default);
11468
11469 default:
11470 return false;
11471 }
11472 }
11473
11474 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11475 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11476 si->dst_reg, si->src_reg, \
11477 bpf_target_off(struct sk_reuseport_kern, F, \
11478 sizeof_field(struct sk_reuseport_kern, F), \
11479 target_size)); \
11480 })
11481
11482 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11483 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11484 struct sk_buff, \
11485 skb, \
11486 SKB_FIELD)
11487
11488 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11489 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11490 struct sock, \
11491 sk, \
11492 SK_FIELD)
11493
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11494 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11495 const struct bpf_insn *si,
11496 struct bpf_insn *insn_buf,
11497 struct bpf_prog *prog,
11498 u32 *target_size)
11499 {
11500 struct bpf_insn *insn = insn_buf;
11501
11502 switch (si->off) {
11503 case offsetof(struct sk_reuseport_md, data):
11504 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11505 break;
11506
11507 case offsetof(struct sk_reuseport_md, len):
11508 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11509 break;
11510
11511 case offsetof(struct sk_reuseport_md, eth_protocol):
11512 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11513 break;
11514
11515 case offsetof(struct sk_reuseport_md, ip_protocol):
11516 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11517 break;
11518
11519 case offsetof(struct sk_reuseport_md, data_end):
11520 SK_REUSEPORT_LOAD_FIELD(data_end);
11521 break;
11522
11523 case offsetof(struct sk_reuseport_md, hash):
11524 SK_REUSEPORT_LOAD_FIELD(hash);
11525 break;
11526
11527 case offsetof(struct sk_reuseport_md, bind_inany):
11528 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11529 break;
11530
11531 case offsetof(struct sk_reuseport_md, sk):
11532 SK_REUSEPORT_LOAD_FIELD(sk);
11533 break;
11534
11535 case offsetof(struct sk_reuseport_md, migrating_sk):
11536 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11537 break;
11538 }
11539
11540 return insn - insn_buf;
11541 }
11542
11543 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11544 .get_func_proto = sk_reuseport_func_proto,
11545 .is_valid_access = sk_reuseport_is_valid_access,
11546 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11547 };
11548
11549 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11550 };
11551
11552 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11553 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11554
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11555 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11556 struct sock *, sk, u64, flags)
11557 {
11558 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11559 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11560 return -EINVAL;
11561 if (unlikely(sk && sk_is_refcounted(sk)))
11562 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11563 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11564 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11565 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11566 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11567
11568 /* Check if socket is suitable for packet L3/L4 protocol */
11569 if (sk && sk->sk_protocol != ctx->protocol)
11570 return -EPROTOTYPE;
11571 if (sk && sk->sk_family != ctx->family &&
11572 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11573 return -EAFNOSUPPORT;
11574
11575 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11576 return -EEXIST;
11577
11578 /* Select socket as lookup result */
11579 ctx->selected_sk = sk;
11580 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11581 return 0;
11582 }
11583
11584 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11585 .func = bpf_sk_lookup_assign,
11586 .gpl_only = false,
11587 .ret_type = RET_INTEGER,
11588 .arg1_type = ARG_PTR_TO_CTX,
11589 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11590 .arg3_type = ARG_ANYTHING,
11591 };
11592
11593 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11594 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11595 {
11596 switch (func_id) {
11597 case BPF_FUNC_perf_event_output:
11598 return &bpf_event_output_data_proto;
11599 case BPF_FUNC_sk_assign:
11600 return &bpf_sk_lookup_assign_proto;
11601 case BPF_FUNC_sk_release:
11602 return &bpf_sk_release_proto;
11603 default:
11604 return bpf_sk_base_func_proto(func_id, prog);
11605 }
11606 }
11607
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11608 static bool sk_lookup_is_valid_access(int off, int size,
11609 enum bpf_access_type type,
11610 const struct bpf_prog *prog,
11611 struct bpf_insn_access_aux *info)
11612 {
11613 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11614 return false;
11615 if (off % size != 0)
11616 return false;
11617 if (type != BPF_READ)
11618 return false;
11619
11620 switch (off) {
11621 case offsetof(struct bpf_sk_lookup, sk):
11622 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11623 return size == sizeof(__u64);
11624
11625 case bpf_ctx_range(struct bpf_sk_lookup, family):
11626 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11627 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11628 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11629 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11630 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11631 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11632 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11633 bpf_ctx_record_field_size(info, sizeof(__u32));
11634 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11635
11636 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11637 /* Allow 4-byte access to 2-byte field for backward compatibility */
11638 if (size == sizeof(__u32))
11639 return true;
11640 bpf_ctx_record_field_size(info, sizeof(__be16));
11641 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11642
11643 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11644 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11645 /* Allow access to zero padding for backward compatibility */
11646 bpf_ctx_record_field_size(info, sizeof(__u16));
11647 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11648
11649 default:
11650 return false;
11651 }
11652 }
11653
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11654 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11655 const struct bpf_insn *si,
11656 struct bpf_insn *insn_buf,
11657 struct bpf_prog *prog,
11658 u32 *target_size)
11659 {
11660 struct bpf_insn *insn = insn_buf;
11661
11662 switch (si->off) {
11663 case offsetof(struct bpf_sk_lookup, sk):
11664 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11665 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11666 break;
11667
11668 case offsetof(struct bpf_sk_lookup, family):
11669 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11670 bpf_target_off(struct bpf_sk_lookup_kern,
11671 family, 2, target_size));
11672 break;
11673
11674 case offsetof(struct bpf_sk_lookup, protocol):
11675 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11676 bpf_target_off(struct bpf_sk_lookup_kern,
11677 protocol, 2, target_size));
11678 break;
11679
11680 case offsetof(struct bpf_sk_lookup, remote_ip4):
11681 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11682 bpf_target_off(struct bpf_sk_lookup_kern,
11683 v4.saddr, 4, target_size));
11684 break;
11685
11686 case offsetof(struct bpf_sk_lookup, local_ip4):
11687 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11688 bpf_target_off(struct bpf_sk_lookup_kern,
11689 v4.daddr, 4, target_size));
11690 break;
11691
11692 case bpf_ctx_range_till(struct bpf_sk_lookup,
11693 remote_ip6[0], remote_ip6[3]): {
11694 #if IS_ENABLED(CONFIG_IPV6)
11695 int off = si->off;
11696
11697 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11698 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11699 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11700 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11701 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11702 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11703 #else
11704 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11705 #endif
11706 break;
11707 }
11708 case bpf_ctx_range_till(struct bpf_sk_lookup,
11709 local_ip6[0], local_ip6[3]): {
11710 #if IS_ENABLED(CONFIG_IPV6)
11711 int off = si->off;
11712
11713 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11714 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11715 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11716 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11717 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11718 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11719 #else
11720 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11721 #endif
11722 break;
11723 }
11724 case offsetof(struct bpf_sk_lookup, remote_port):
11725 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11726 bpf_target_off(struct bpf_sk_lookup_kern,
11727 sport, 2, target_size));
11728 break;
11729
11730 case offsetofend(struct bpf_sk_lookup, remote_port):
11731 *target_size = 2;
11732 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11733 break;
11734
11735 case offsetof(struct bpf_sk_lookup, local_port):
11736 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11737 bpf_target_off(struct bpf_sk_lookup_kern,
11738 dport, 2, target_size));
11739 break;
11740
11741 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11742 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11743 bpf_target_off(struct bpf_sk_lookup_kern,
11744 ingress_ifindex, 4, target_size));
11745 break;
11746 }
11747
11748 return insn - insn_buf;
11749 }
11750
11751 const struct bpf_prog_ops sk_lookup_prog_ops = {
11752 .test_run = bpf_prog_test_run_sk_lookup,
11753 };
11754
11755 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11756 .get_func_proto = sk_lookup_func_proto,
11757 .is_valid_access = sk_lookup_is_valid_access,
11758 .convert_ctx_access = sk_lookup_convert_ctx_access,
11759 };
11760
11761 #endif /* CONFIG_INET */
11762
DEFINE_BPF_DISPATCHER(xdp)11763 DEFINE_BPF_DISPATCHER(xdp)
11764
11765 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11766 {
11767 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11768 }
11769
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11770 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11771 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11772 BTF_SOCK_TYPE_xxx
11773 #undef BTF_SOCK_TYPE
11774
11775 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11776 {
11777 /* tcp6_sock type is not generated in dwarf and hence btf,
11778 * trigger an explicit type generation here.
11779 */
11780 BTF_TYPE_EMIT(struct tcp6_sock);
11781 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11782 sk->sk_family == AF_INET6)
11783 return (unsigned long)sk;
11784
11785 return (unsigned long)NULL;
11786 }
11787
11788 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11789 .func = bpf_skc_to_tcp6_sock,
11790 .gpl_only = false,
11791 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11792 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11793 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11794 };
11795
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11796 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11797 {
11798 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11799 return (unsigned long)sk;
11800
11801 return (unsigned long)NULL;
11802 }
11803
11804 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11805 .func = bpf_skc_to_tcp_sock,
11806 .gpl_only = false,
11807 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11808 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11809 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11810 };
11811
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11812 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11813 {
11814 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11815 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11816 */
11817 BTF_TYPE_EMIT(struct inet_timewait_sock);
11818 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11819
11820 #ifdef CONFIG_INET
11821 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11822 return (unsigned long)sk;
11823 #endif
11824
11825 #if IS_BUILTIN(CONFIG_IPV6)
11826 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11827 return (unsigned long)sk;
11828 #endif
11829
11830 return (unsigned long)NULL;
11831 }
11832
11833 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11834 .func = bpf_skc_to_tcp_timewait_sock,
11835 .gpl_only = false,
11836 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11837 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11838 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11839 };
11840
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11841 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11842 {
11843 #ifdef CONFIG_INET
11844 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11845 return (unsigned long)sk;
11846 #endif
11847
11848 #if IS_BUILTIN(CONFIG_IPV6)
11849 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11850 return (unsigned long)sk;
11851 #endif
11852
11853 return (unsigned long)NULL;
11854 }
11855
11856 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11857 .func = bpf_skc_to_tcp_request_sock,
11858 .gpl_only = false,
11859 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11860 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11861 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11862 };
11863
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11864 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11865 {
11866 /* udp6_sock type is not generated in dwarf and hence btf,
11867 * trigger an explicit type generation here.
11868 */
11869 BTF_TYPE_EMIT(struct udp6_sock);
11870 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11871 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11872 return (unsigned long)sk;
11873
11874 return (unsigned long)NULL;
11875 }
11876
11877 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11878 .func = bpf_skc_to_udp6_sock,
11879 .gpl_only = false,
11880 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11881 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11882 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11883 };
11884
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11885 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11886 {
11887 /* unix_sock type is not generated in dwarf and hence btf,
11888 * trigger an explicit type generation here.
11889 */
11890 BTF_TYPE_EMIT(struct unix_sock);
11891 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11892 return (unsigned long)sk;
11893
11894 return (unsigned long)NULL;
11895 }
11896
11897 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11898 .func = bpf_skc_to_unix_sock,
11899 .gpl_only = false,
11900 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11901 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11902 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11903 };
11904
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11905 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11906 {
11907 BTF_TYPE_EMIT(struct mptcp_sock);
11908 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11909 }
11910
11911 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11912 .func = bpf_skc_to_mptcp_sock,
11913 .gpl_only = false,
11914 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11915 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11916 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11917 };
11918
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11919 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11920 {
11921 return (unsigned long)sock_from_file(file);
11922 }
11923
11924 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11925 BTF_ID(struct, socket)
11926 BTF_ID(struct, file)
11927
11928 const struct bpf_func_proto bpf_sock_from_file_proto = {
11929 .func = bpf_sock_from_file,
11930 .gpl_only = false,
11931 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11932 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11933 .arg1_type = ARG_PTR_TO_BTF_ID,
11934 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11935 };
11936
11937 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11938 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11939 {
11940 const struct bpf_func_proto *func;
11941
11942 switch (func_id) {
11943 case BPF_FUNC_skc_to_tcp6_sock:
11944 func = &bpf_skc_to_tcp6_sock_proto;
11945 break;
11946 case BPF_FUNC_skc_to_tcp_sock:
11947 func = &bpf_skc_to_tcp_sock_proto;
11948 break;
11949 case BPF_FUNC_skc_to_tcp_timewait_sock:
11950 func = &bpf_skc_to_tcp_timewait_sock_proto;
11951 break;
11952 case BPF_FUNC_skc_to_tcp_request_sock:
11953 func = &bpf_skc_to_tcp_request_sock_proto;
11954 break;
11955 case BPF_FUNC_skc_to_udp6_sock:
11956 func = &bpf_skc_to_udp6_sock_proto;
11957 break;
11958 case BPF_FUNC_skc_to_unix_sock:
11959 func = &bpf_skc_to_unix_sock_proto;
11960 break;
11961 case BPF_FUNC_skc_to_mptcp_sock:
11962 func = &bpf_skc_to_mptcp_sock_proto;
11963 break;
11964 case BPF_FUNC_ktime_get_coarse_ns:
11965 return &bpf_ktime_get_coarse_ns_proto;
11966 default:
11967 return bpf_base_func_proto(func_id, prog);
11968 }
11969
11970 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11971 return NULL;
11972
11973 return func;
11974 }
11975
11976 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11977 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11978 struct bpf_dynptr *ptr__uninit)
11979 {
11980 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11981 struct sk_buff *skb = (struct sk_buff *)s;
11982
11983 if (flags) {
11984 bpf_dynptr_set_null(ptr);
11985 return -EINVAL;
11986 }
11987
11988 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11989
11990 return 0;
11991 }
11992
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)11993 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11994 struct bpf_dynptr *ptr__uninit)
11995 {
11996 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11997 struct xdp_buff *xdp = (struct xdp_buff *)x;
11998
11999 if (flags) {
12000 bpf_dynptr_set_null(ptr);
12001 return -EINVAL;
12002 }
12003
12004 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12005
12006 return 0;
12007 }
12008
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12009 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12010 const u8 *sun_path, u32 sun_path__sz)
12011 {
12012 struct sockaddr_un *un;
12013
12014 if (sa_kern->sk->sk_family != AF_UNIX)
12015 return -EINVAL;
12016
12017 /* We do not allow changing the address to unnamed or larger than the
12018 * maximum allowed address size for a unix sockaddr.
12019 */
12020 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12021 return -EINVAL;
12022
12023 un = (struct sockaddr_un *)sa_kern->uaddr;
12024 memcpy(un->sun_path, sun_path, sun_path__sz);
12025 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12026
12027 return 0;
12028 }
12029
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12030 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12031 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12032 {
12033 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12034 struct sk_buff *skb = (struct sk_buff *)s;
12035 const struct request_sock_ops *ops;
12036 struct inet_request_sock *ireq;
12037 struct tcp_request_sock *treq;
12038 struct request_sock *req;
12039 struct net *net;
12040 __u16 min_mss;
12041 u32 tsoff = 0;
12042
12043 if (attrs__sz != sizeof(*attrs) ||
12044 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12045 return -EINVAL;
12046
12047 if (!skb_at_tc_ingress(skb))
12048 return -EINVAL;
12049
12050 net = dev_net(skb->dev);
12051 if (net != sock_net(sk))
12052 return -ENETUNREACH;
12053
12054 switch (skb->protocol) {
12055 case htons(ETH_P_IP):
12056 ops = &tcp_request_sock_ops;
12057 min_mss = 536;
12058 break;
12059 #if IS_BUILTIN(CONFIG_IPV6)
12060 case htons(ETH_P_IPV6):
12061 ops = &tcp6_request_sock_ops;
12062 min_mss = IPV6_MIN_MTU - 60;
12063 break;
12064 #endif
12065 default:
12066 return -EINVAL;
12067 }
12068
12069 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12070 sk_is_mptcp(sk))
12071 return -EINVAL;
12072
12073 if (attrs->mss < min_mss)
12074 return -EINVAL;
12075
12076 if (attrs->wscale_ok) {
12077 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12078 return -EINVAL;
12079
12080 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12081 attrs->rcv_wscale > TCP_MAX_WSCALE)
12082 return -EINVAL;
12083 }
12084
12085 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12086 return -EINVAL;
12087
12088 if (attrs->tstamp_ok) {
12089 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12090 return -EINVAL;
12091
12092 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12093 }
12094
12095 req = inet_reqsk_alloc(ops, sk, false);
12096 if (!req)
12097 return -ENOMEM;
12098
12099 ireq = inet_rsk(req);
12100 treq = tcp_rsk(req);
12101
12102 req->rsk_listener = sk;
12103 req->syncookie = 1;
12104 req->mss = attrs->mss;
12105 req->ts_recent = attrs->rcv_tsval;
12106
12107 ireq->snd_wscale = attrs->snd_wscale;
12108 ireq->rcv_wscale = attrs->rcv_wscale;
12109 ireq->tstamp_ok = !!attrs->tstamp_ok;
12110 ireq->sack_ok = !!attrs->sack_ok;
12111 ireq->wscale_ok = !!attrs->wscale_ok;
12112 ireq->ecn_ok = !!attrs->ecn_ok;
12113
12114 treq->req_usec_ts = !!attrs->usec_ts_ok;
12115 treq->ts_off = tsoff;
12116
12117 skb_orphan(skb);
12118 skb->sk = req_to_sk(req);
12119 skb->destructor = sock_pfree;
12120
12121 return 0;
12122 #else
12123 return -EOPNOTSUPP;
12124 #endif
12125 }
12126
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12127 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12128 u64 flags)
12129 {
12130 struct sk_buff *skb;
12131
12132 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12133 return -EOPNOTSUPP;
12134
12135 if (flags)
12136 return -EINVAL;
12137
12138 skb = skops->skb;
12139 skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12140 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12141 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12142
12143 return 0;
12144 }
12145
12146 __bpf_kfunc_end_defs();
12147
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12148 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12149 struct bpf_dynptr *ptr__uninit)
12150 {
12151 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12152 int err;
12153
12154 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12155 if (err)
12156 return err;
12157
12158 bpf_dynptr_set_rdonly(ptr);
12159
12160 return 0;
12161 }
12162
12163 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12164 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12165 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12166
12167 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12168 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12169 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12170
12171 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12172 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12173 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12174
12175 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12176 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12177 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12178
12179 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12180 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12181 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12182
12183 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12184 .owner = THIS_MODULE,
12185 .set = &bpf_kfunc_check_set_skb,
12186 };
12187
12188 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12189 .owner = THIS_MODULE,
12190 .set = &bpf_kfunc_check_set_xdp,
12191 };
12192
12193 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12194 .owner = THIS_MODULE,
12195 .set = &bpf_kfunc_check_set_sock_addr,
12196 };
12197
12198 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12199 .owner = THIS_MODULE,
12200 .set = &bpf_kfunc_check_set_tcp_reqsk,
12201 };
12202
12203 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12204 .owner = THIS_MODULE,
12205 .set = &bpf_kfunc_check_set_sock_ops,
12206 };
12207
bpf_kfunc_init(void)12208 static int __init bpf_kfunc_init(void)
12209 {
12210 int ret;
12211
12212 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12213 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12214 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12215 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12216 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12217 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12218 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12219 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12220 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12221 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12222 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12223 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12224 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12225 &bpf_kfunc_set_sock_addr);
12226 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12227 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12228 }
12229 late_initcall(bpf_kfunc_init);
12230
12231 __bpf_kfunc_start_defs();
12232
12233 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12234 *
12235 * The function expects a non-NULL pointer to a socket, and invokes the
12236 * protocol specific socket destroy handlers.
12237 *
12238 * The helper can only be called from BPF contexts that have acquired the socket
12239 * locks.
12240 *
12241 * Parameters:
12242 * @sock: Pointer to socket to be destroyed
12243 *
12244 * Return:
12245 * On error, may return EPROTONOSUPPORT, EINVAL.
12246 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12247 * 0 otherwise
12248 */
bpf_sock_destroy(struct sock_common * sock)12249 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12250 {
12251 struct sock *sk = (struct sock *)sock;
12252
12253 /* The locking semantics that allow for synchronous execution of the
12254 * destroy handlers are only supported for TCP and UDP.
12255 * Supporting protocols will need to acquire sock lock in the BPF context
12256 * prior to invoking this kfunc.
12257 */
12258 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12259 sk->sk_protocol != IPPROTO_UDP))
12260 return -EOPNOTSUPP;
12261
12262 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12263 }
12264
12265 __bpf_kfunc_end_defs();
12266
12267 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12268 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12269 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12270
12271 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12272 {
12273 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12274 prog->expected_attach_type != BPF_TRACE_ITER)
12275 return -EACCES;
12276 return 0;
12277 }
12278
12279 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12280 .owner = THIS_MODULE,
12281 .set = &bpf_sk_iter_kfunc_ids,
12282 .filter = tracing_iter_filter,
12283 };
12284
init_subsystem(void)12285 static int init_subsystem(void)
12286 {
12287 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12288 }
12289 late_initcall(init_subsystem);
12290