xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c (revision e6e941e659ab7b3db6786103c1cdc30735a82e32)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
24  * Copyright (c) 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2023, 2024, Klara Inc.
26  * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
27  */
28 
29 /*
30  * See abd.c for a general overview of the arc buffered data (ABD).
31  *
32  * Linear buffers act exactly like normal buffers and are always mapped into the
33  * kernel's virtual memory space, while scattered ABD data chunks are allocated
34  * as physical pages and then mapped in only while they are actually being
35  * accessed through one of the abd_* library functions. Using scattered ABDs
36  * provides several benefits:
37  *
38  *  (1) They avoid use of kmem_*, preventing performance problems where running
39  *      kmem_reap on very large memory systems never finishes and causes
40  *      constant TLB shootdowns.
41  *
42  *  (2) Fragmentation is less of an issue since when we are at the limit of
43  *      allocatable space, we won't have to search around for a long free
44  *      hole in the VA space for large ARC allocations. Each chunk is mapped in
45  *      individually, so even if we are using HIGHMEM (see next point) we
46  *      wouldn't need to worry about finding a contiguous address range.
47  *
48  *  (3) If we are not using HIGHMEM, then all physical memory is always
49  *      mapped into the kernel's address space, so we also avoid the map /
50  *      unmap costs on each ABD access.
51  *
52  * If we are not using HIGHMEM, scattered buffers which have only one chunk
53  * can be treated as linear buffers, because they are contiguous in the
54  * kernel's virtual address space.  See abd_alloc_chunks() for details.
55  */
56 
57 #include <sys/abd_impl.h>
58 #include <sys/param.h>
59 #include <sys/zio.h>
60 #include <sys/arc.h>
61 #include <sys/zfs_context.h>
62 #include <sys/zfs_znode.h>
63 #include <linux/kmap_compat.h>
64 #include <linux/mm_compat.h>
65 #include <linux/scatterlist.h>
66 #include <linux/version.h>
67 
68 #if defined(MAX_ORDER)
69 #define	ABD_MAX_ORDER	(MAX_ORDER)
70 #elif defined(MAX_PAGE_ORDER)
71 #define	ABD_MAX_ORDER	(MAX_PAGE_ORDER)
72 #endif
73 
74 typedef struct abd_stats {
75 	kstat_named_t abdstat_struct_size;
76 	kstat_named_t abdstat_linear_cnt;
77 	kstat_named_t abdstat_linear_data_size;
78 	kstat_named_t abdstat_scatter_cnt;
79 	kstat_named_t abdstat_scatter_data_size;
80 	kstat_named_t abdstat_scatter_chunk_waste;
81 	kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER];
82 	kstat_named_t abdstat_scatter_page_multi_chunk;
83 	kstat_named_t abdstat_scatter_page_multi_zone;
84 	kstat_named_t abdstat_scatter_page_alloc_retry;
85 	kstat_named_t abdstat_scatter_sg_table_retry;
86 } abd_stats_t;
87 
88 static abd_stats_t abd_stats = {
89 	/* Amount of memory occupied by all of the abd_t struct allocations */
90 	{ "struct_size",			KSTAT_DATA_UINT64 },
91 	/*
92 	 * The number of linear ABDs which are currently allocated, excluding
93 	 * ABDs which don't own their data (for instance the ones which were
94 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
95 	 * ABD takes ownership of its buf then it will become tracked.
96 	 */
97 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
98 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
99 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
100 	/*
101 	 * The number of scatter ABDs which are currently allocated, excluding
102 	 * ABDs which don't own their data (for instance the ones which were
103 	 * allocated through abd_get_offset()).
104 	 */
105 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
106 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
107 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
108 	/*
109 	 * The amount of space wasted at the end of the last chunk across all
110 	 * scatter ABDs tracked by scatter_cnt.
111 	 */
112 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
113 	/*
114 	 * The number of compound allocations of a given order.  These
115 	 * allocations are spread over all currently allocated ABDs, and
116 	 * act as a measure of memory fragmentation.
117 	 */
118 	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
119 	/*
120 	 * The number of scatter ABDs which contain multiple chunks.
121 	 * ABDs are preferentially allocated from the minimum number of
122 	 * contiguous multi-page chunks, a single chunk is optimal.
123 	 */
124 	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
125 	/*
126 	 * The number of scatter ABDs which are split across memory zones.
127 	 * ABDs are preferentially allocated using pages from a single zone.
128 	 */
129 	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
130 	/*
131 	 *  The total number of retries encountered when attempting to
132 	 *  allocate the pages to populate the scatter ABD.
133 	 */
134 	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
135 	/*
136 	 *  The total number of retries encountered when attempting to
137 	 *  allocate the sg table for an ABD.
138 	 */
139 	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
140 };
141 
142 static struct {
143 	wmsum_t abdstat_struct_size;
144 	wmsum_t abdstat_linear_cnt;
145 	wmsum_t abdstat_linear_data_size;
146 	wmsum_t abdstat_scatter_cnt;
147 	wmsum_t abdstat_scatter_data_size;
148 	wmsum_t abdstat_scatter_chunk_waste;
149 	wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER];
150 	wmsum_t abdstat_scatter_page_multi_chunk;
151 	wmsum_t abdstat_scatter_page_multi_zone;
152 	wmsum_t abdstat_scatter_page_alloc_retry;
153 	wmsum_t abdstat_scatter_sg_table_retry;
154 } abd_sums;
155 
156 #define	abd_for_each_sg(abd, sg, n, i)	\
157 	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
158 
159 /*
160  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
161  * ABD's.  Smaller allocations will use linear ABD's which uses
162  * zio_[data_]buf_alloc().
163  *
164  * Scatter ABD's use at least one page each, so sub-page allocations waste
165  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
166  * half of each page).  Using linear ABD's for small allocations means that
167  * they will be put on slabs which contain many allocations.  This can
168  * improve memory efficiency, but it also makes it much harder for ARC
169  * evictions to actually free pages, because all the buffers on one slab need
170  * to be freed in order for the slab (and underlying pages) to be freed.
171  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
172  * possible for them to actually waste more memory than scatter (one page per
173  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
174  *
175  * Spill blocks are typically 512B and are heavily used on systems running
176  * selinux with the default dnode size and the `xattr=sa` property set.
177  *
178  * By default we use linear allocations for 512B and 1KB, and scatter
179  * allocations for larger (1.5KB and up).
180  */
181 static int zfs_abd_scatter_min_size = 512 * 3;
182 
183 /*
184  * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
185  * just a single zero'd page. This allows us to conserve memory by
186  * only using a single zero page for the scatterlist.
187  */
188 abd_t *abd_zero_scatter = NULL;
189 
190 struct page;
191 
192 /*
193  * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will
194  * point to ZERO_PAGE if it is available or it will be an allocated zero'd
195  * PAGESIZE buffer.
196  */
197 static struct page *abd_zero_page = NULL;
198 
199 static kmem_cache_t *abd_cache = NULL;
200 static kstat_t *abd_ksp;
201 
202 static uint_t
abd_chunkcnt_for_bytes(size_t size)203 abd_chunkcnt_for_bytes(size_t size)
204 {
205 	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
206 }
207 
208 abd_t *
abd_alloc_struct_impl(size_t size)209 abd_alloc_struct_impl(size_t size)
210 {
211 	/*
212 	 * In Linux we do not use the size passed in during ABD
213 	 * allocation, so we just ignore it.
214 	 */
215 	(void) size;
216 	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
217 	ASSERT3P(abd, !=, NULL);
218 	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
219 
220 	return (abd);
221 }
222 
223 void
abd_free_struct_impl(abd_t * abd)224 abd_free_struct_impl(abd_t *abd)
225 {
226 	kmem_cache_free(abd_cache, abd);
227 	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
228 }
229 
230 static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
231 
232 /*
233  * Mark zfs data pages so they can be excluded from kernel crash dumps
234  */
235 #ifdef _LP64
236 #define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E
237 
238 static inline void
abd_mark_zfs_page(struct page * page)239 abd_mark_zfs_page(struct page *page)
240 {
241 	get_page(page);
242 	SetPagePrivate(page);
243 	set_page_private(page, ABD_FILE_CACHE_PAGE);
244 }
245 
246 static inline void
abd_unmark_zfs_page(struct page * page)247 abd_unmark_zfs_page(struct page *page)
248 {
249 	set_page_private(page, 0UL);
250 	ClearPagePrivate(page);
251 	put_page(page);
252 }
253 #else
254 #define	abd_mark_zfs_page(page)
255 #define	abd_unmark_zfs_page(page)
256 #endif /* _LP64 */
257 
258 #ifndef CONFIG_HIGHMEM
259 
260 /*
261  * The goal is to minimize fragmentation by preferentially populating ABDs
262  * with higher order compound pages from a single zone.  Allocation size is
263  * progressively decreased until it can be satisfied without performing
264  * reclaim or compaction.  When necessary this function will degenerate to
265  * allocating individual pages and allowing reclaim to satisfy allocations.
266  */
267 void
abd_alloc_chunks(abd_t * abd,size_t size)268 abd_alloc_chunks(abd_t *abd, size_t size)
269 {
270 	struct list_head pages;
271 	struct sg_table table;
272 	struct scatterlist *sg;
273 	struct page *page, *tmp_page = NULL;
274 	gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
275 	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
276 	unsigned int max_order = MIN(zfs_abd_scatter_max_order,
277 	    ABD_MAX_ORDER - 1);
278 	unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
279 	unsigned int chunks = 0, zones = 0;
280 	size_t remaining_size;
281 	int nid = NUMA_NO_NODE;
282 	unsigned int alloc_pages = 0;
283 
284 	INIT_LIST_HEAD(&pages);
285 
286 	ASSERT3U(alloc_pages, <, nr_pages);
287 
288 	while (alloc_pages < nr_pages) {
289 		unsigned int chunk_pages;
290 		unsigned int order;
291 
292 		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
293 		chunk_pages = (1U << order);
294 
295 		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
296 		if (page == NULL) {
297 			if (order == 0) {
298 				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
299 				schedule_timeout_interruptible(1);
300 			} else {
301 				max_order = MAX(0, order - 1);
302 			}
303 			continue;
304 		}
305 
306 		list_add_tail(&page->lru, &pages);
307 
308 		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
309 			zones++;
310 
311 		nid = page_to_nid(page);
312 		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
313 		chunks++;
314 		alloc_pages += chunk_pages;
315 	}
316 
317 	ASSERT3S(alloc_pages, ==, nr_pages);
318 
319 	while (sg_alloc_table(&table, chunks, gfp)) {
320 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
321 		schedule_timeout_interruptible(1);
322 	}
323 
324 	sg = table.sgl;
325 	remaining_size = size;
326 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
327 		size_t sg_size = MIN(PAGESIZE << compound_order(page),
328 		    remaining_size);
329 		sg_set_page(sg, page, sg_size, 0);
330 		abd_mark_zfs_page(page);
331 		remaining_size -= sg_size;
332 
333 		sg = sg_next(sg);
334 		list_del(&page->lru);
335 	}
336 
337 	/*
338 	 * These conditions ensure that a possible transformation to a linear
339 	 * ABD would be valid.
340 	 */
341 	ASSERT(!PageHighMem(sg_page(table.sgl)));
342 	ASSERT0(ABD_SCATTER(abd).abd_offset);
343 
344 	if (table.nents == 1) {
345 		/*
346 		 * Since there is only one entry, this ABD can be represented
347 		 * as a linear buffer.  All single-page (4K) ABD's can be
348 		 * represented this way.  Some multi-page ABD's can also be
349 		 * represented this way, if we were able to allocate a single
350 		 * "chunk" (higher-order "page" which represents a power-of-2
351 		 * series of physically-contiguous pages).  This is often the
352 		 * case for 2-page (8K) ABD's.
353 		 *
354 		 * Representing a single-entry scatter ABD as a linear ABD
355 		 * has the performance advantage of avoiding the copy (and
356 		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
357 		 * A performance increase of around 5% has been observed for
358 		 * ARC-cached reads (of small blocks which can take advantage
359 		 * of this).
360 		 *
361 		 * Note that this optimization is only possible because the
362 		 * pages are always mapped into the kernel's address space.
363 		 * This is not the case for highmem pages, so the
364 		 * optimization can not be made there.
365 		 */
366 		abd->abd_flags |= ABD_FLAG_LINEAR;
367 		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
368 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
369 		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
370 	} else if (table.nents > 1) {
371 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
372 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
373 
374 		if (zones) {
375 			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
376 			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
377 		}
378 
379 		ABD_SCATTER(abd).abd_sgl = table.sgl;
380 		ABD_SCATTER(abd).abd_nents = table.nents;
381 	}
382 }
383 #else
384 
385 /*
386  * Allocate N individual pages to construct a scatter ABD.  This function
387  * makes no attempt to request contiguous pages and requires the minimal
388  * number of kernel interfaces.  It's designed for maximum compatibility.
389  */
390 void
abd_alloc_chunks(abd_t * abd,size_t size)391 abd_alloc_chunks(abd_t *abd, size_t size)
392 {
393 	struct scatterlist *sg = NULL;
394 	struct sg_table table;
395 	struct page *page;
396 	gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO;
397 	int nr_pages = abd_chunkcnt_for_bytes(size);
398 	int i = 0;
399 
400 	while (sg_alloc_table(&table, nr_pages, gfp)) {
401 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
402 		schedule_timeout_interruptible(1);
403 	}
404 
405 	ASSERT3U(table.nents, ==, nr_pages);
406 	ABD_SCATTER(abd).abd_sgl = table.sgl;
407 	ABD_SCATTER(abd).abd_nents = nr_pages;
408 
409 	abd_for_each_sg(abd, sg, nr_pages, i) {
410 		while ((page = __page_cache_alloc(gfp)) == NULL) {
411 			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
412 			schedule_timeout_interruptible(1);
413 		}
414 
415 		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
416 		sg_set_page(sg, page, PAGESIZE, 0);
417 		abd_mark_zfs_page(page);
418 	}
419 
420 	if (nr_pages > 1) {
421 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
422 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
423 	}
424 }
425 #endif /* !CONFIG_HIGHMEM */
426 
427 /*
428  * This must be called if any of the sg_table allocation functions
429  * are called.
430  */
431 static void
abd_free_sg_table(abd_t * abd)432 abd_free_sg_table(abd_t *abd)
433 {
434 	struct sg_table table;
435 
436 	table.sgl = ABD_SCATTER(abd).abd_sgl;
437 	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
438 	sg_free_table(&table);
439 }
440 
441 void
abd_free_chunks(abd_t * abd)442 abd_free_chunks(abd_t *abd)
443 {
444 	struct scatterlist *sg = NULL;
445 	struct page *page;
446 	int nr_pages = ABD_SCATTER(abd).abd_nents;
447 	int order, i = 0;
448 
449 	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
450 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
451 
452 	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
453 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
454 
455 	/*
456 	 * Scatter ABDs may be constructed by abd_alloc_from_pages() from
457 	 * an array of pages. In which case they should not be freed.
458 	 */
459 	if (!abd_is_from_pages(abd)) {
460 		abd_for_each_sg(abd, sg, nr_pages, i) {
461 			page = sg_page(sg);
462 			abd_unmark_zfs_page(page);
463 			order = compound_order(page);
464 			__free_pages(page, order);
465 			ASSERT3U(sg->length, <=, PAGE_SIZE << order);
466 			ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
467 		}
468 	}
469 
470 	abd_free_sg_table(abd);
471 }
472 
473 /*
474  * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
475  * the scatterlist will be set to the zero'd out buffer abd_zero_page.
476  */
477 static void
abd_alloc_zero_scatter(void)478 abd_alloc_zero_scatter(void)
479 {
480 	struct scatterlist *sg = NULL;
481 	struct sg_table table;
482 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
483 	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
484 	int i = 0;
485 
486 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
487 	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
488 	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
489 		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
490 		schedule_timeout_interruptible(1);
491 	}
492 	abd_mark_zfs_page(abd_zero_page);
493 #else
494 	abd_zero_page = ZERO_PAGE(0);
495 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
496 
497 	while (sg_alloc_table(&table, nr_pages, gfp)) {
498 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
499 		schedule_timeout_interruptible(1);
500 	}
501 	ASSERT3U(table.nents, ==, nr_pages);
502 
503 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
504 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
505 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
506 	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
507 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
508 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
509 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK;
510 
511 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
512 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
513 	}
514 
515 	ABDSTAT_BUMP(abdstat_scatter_cnt);
516 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
517 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
518 }
519 
520 boolean_t
abd_size_alloc_linear(size_t size)521 abd_size_alloc_linear(size_t size)
522 {
523 	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
524 }
525 
526 void
abd_update_scatter_stats(abd_t * abd,abd_stats_op_t op)527 abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
528 {
529 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
530 	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
531 	if (op == ABDSTAT_INCR) {
532 		ABDSTAT_BUMP(abdstat_scatter_cnt);
533 		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
534 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
535 		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
536 	} else {
537 		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
538 		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
539 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
540 		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
541 	}
542 }
543 
544 void
abd_update_linear_stats(abd_t * abd,abd_stats_op_t op)545 abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
546 {
547 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
548 	if (op == ABDSTAT_INCR) {
549 		ABDSTAT_BUMP(abdstat_linear_cnt);
550 		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
551 	} else {
552 		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
553 		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
554 	}
555 }
556 
557 void
abd_verify_scatter(abd_t * abd)558 abd_verify_scatter(abd_t *abd)
559 {
560 	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
561 	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
562 	    ABD_SCATTER(abd).abd_sgl->length);
563 
564 #ifdef ZFS_DEBUG
565 	struct scatterlist *sg = NULL;
566 	size_t n = ABD_SCATTER(abd).abd_nents;
567 	int i = 0;
568 
569 	abd_for_each_sg(abd, sg, n, i) {
570 		ASSERT3P(sg_page(sg), !=, NULL);
571 	}
572 #endif
573 }
574 
575 static void
abd_free_zero_scatter(void)576 abd_free_zero_scatter(void)
577 {
578 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
579 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
580 	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
581 
582 	abd_free_sg_table(abd_zero_scatter);
583 	abd_free_struct(abd_zero_scatter);
584 	abd_zero_scatter = NULL;
585 	ASSERT3P(abd_zero_page, !=, NULL);
586 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
587 	abd_unmark_zfs_page(abd_zero_page);
588 	__free_page(abd_zero_page);
589 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
590 }
591 
592 static int
abd_kstats_update(kstat_t * ksp,int rw)593 abd_kstats_update(kstat_t *ksp, int rw)
594 {
595 	abd_stats_t *as = ksp->ks_data;
596 
597 	if (rw == KSTAT_WRITE)
598 		return (EACCES);
599 	as->abdstat_struct_size.value.ui64 =
600 	    wmsum_value(&abd_sums.abdstat_struct_size);
601 	as->abdstat_linear_cnt.value.ui64 =
602 	    wmsum_value(&abd_sums.abdstat_linear_cnt);
603 	as->abdstat_linear_data_size.value.ui64 =
604 	    wmsum_value(&abd_sums.abdstat_linear_data_size);
605 	as->abdstat_scatter_cnt.value.ui64 =
606 	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
607 	as->abdstat_scatter_data_size.value.ui64 =
608 	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
609 	as->abdstat_scatter_chunk_waste.value.ui64 =
610 	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
611 	for (int i = 0; i < ABD_MAX_ORDER; i++) {
612 		as->abdstat_scatter_orders[i].value.ui64 =
613 		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
614 	}
615 	as->abdstat_scatter_page_multi_chunk.value.ui64 =
616 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
617 	as->abdstat_scatter_page_multi_zone.value.ui64 =
618 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
619 	as->abdstat_scatter_page_alloc_retry.value.ui64 =
620 	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
621 	as->abdstat_scatter_sg_table_retry.value.ui64 =
622 	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
623 	return (0);
624 }
625 
626 void
abd_init(void)627 abd_init(void)
628 {
629 	int i;
630 
631 	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
632 	    0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE);
633 
634 	wmsum_init(&abd_sums.abdstat_struct_size, 0);
635 	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
636 	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
637 	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
638 	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
639 	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
640 	for (i = 0; i < ABD_MAX_ORDER; i++)
641 		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
642 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
643 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
644 	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
645 	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
646 
647 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
648 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
649 	if (abd_ksp != NULL) {
650 		for (i = 0; i < ABD_MAX_ORDER; i++) {
651 			snprintf(abd_stats.abdstat_scatter_orders[i].name,
652 			    KSTAT_STRLEN, "scatter_order_%d", i);
653 			abd_stats.abdstat_scatter_orders[i].data_type =
654 			    KSTAT_DATA_UINT64;
655 		}
656 		abd_ksp->ks_data = &abd_stats;
657 		abd_ksp->ks_update = abd_kstats_update;
658 		kstat_install(abd_ksp);
659 	}
660 
661 	abd_alloc_zero_scatter();
662 }
663 
664 void
abd_fini(void)665 abd_fini(void)
666 {
667 	abd_free_zero_scatter();
668 
669 	if (abd_ksp != NULL) {
670 		kstat_delete(abd_ksp);
671 		abd_ksp = NULL;
672 	}
673 
674 	wmsum_fini(&abd_sums.abdstat_struct_size);
675 	wmsum_fini(&abd_sums.abdstat_linear_cnt);
676 	wmsum_fini(&abd_sums.abdstat_linear_data_size);
677 	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
678 	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
679 	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
680 	for (int i = 0; i < ABD_MAX_ORDER; i++)
681 		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
682 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
683 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
684 	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
685 	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
686 
687 	if (abd_cache) {
688 		kmem_cache_destroy(abd_cache);
689 		abd_cache = NULL;
690 	}
691 }
692 
693 void
abd_free_linear_page(abd_t * abd)694 abd_free_linear_page(abd_t *abd)
695 {
696 	/* Transform it back into a scatter ABD for freeing */
697 	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
698 
699 	/* When backed by user page unmap it */
700 	if (abd_is_from_pages(abd))
701 		zfs_kunmap(sg_page(sg));
702 	else
703 		abd_update_scatter_stats(abd, ABDSTAT_DECR);
704 
705 	abd->abd_flags &= ~ABD_FLAG_LINEAR;
706 	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
707 	ABD_SCATTER(abd).abd_nents = 1;
708 	ABD_SCATTER(abd).abd_offset = 0;
709 	ABD_SCATTER(abd).abd_sgl = sg;
710 	abd_free_chunks(abd);
711 }
712 
713 /*
714  * Allocate a scatter ABD structure from user pages. The pages must be
715  * pinned with get_user_pages, or similiar, but need not be mapped via
716  * the kmap interfaces.
717  */
718 abd_t *
abd_alloc_from_pages(struct page ** pages,unsigned long offset,uint64_t size)719 abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size)
720 {
721 	uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE);
722 	struct sg_table table;
723 
724 	VERIFY3U(size, <=, DMU_MAX_ACCESS);
725 	ASSERT3U(offset, <, PAGE_SIZE);
726 	ASSERT3P(pages, !=, NULL);
727 
728 	/*
729 	 * Even if this buf is filesystem metadata, we only track that we
730 	 * own the underlying data buffer, which is not true in this case.
731 	 * Therefore, we don't ever use ABD_FLAG_META here.
732 	 */
733 	abd_t *abd = abd_alloc_struct(0);
734 	abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER;
735 	abd->abd_size = size;
736 
737 	while (sg_alloc_table_from_pages(&table, pages, npages, offset,
738 	    size, __GFP_NOWARN | GFP_NOIO) != 0) {
739 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
740 		schedule_timeout_interruptible(1);
741 	}
742 
743 	if ((offset + size) <= PAGE_SIZE) {
744 		/*
745 		 * Since there is only one entry, this ABD can be represented
746 		 * as a linear buffer. All single-page (4K) ABD's constructed
747 		 * from a user page can be represented this way as long as the
748 		 * page is mapped to a virtual address. This allows us to
749 		 * apply an offset in to the mapped page.
750 		 *
751 		 * Note that kmap() must be used, not kmap_atomic(), because
752 		 * the mapping needs to bet set up on all CPUs. Using kmap()
753 		 * also enables the user of highmem pages when required.
754 		 */
755 		abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE;
756 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
757 		zfs_kmap(sg_page(table.sgl));
758 		ABD_LINEAR_BUF(abd) = sg_virt(table.sgl);
759 	} else {
760 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
761 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
762 
763 		ABD_SCATTER(abd).abd_offset = offset;
764 		ABD_SCATTER(abd).abd_sgl = table.sgl;
765 		ABD_SCATTER(abd).abd_nents = table.nents;
766 
767 		ASSERT0(ABD_SCATTER(abd).abd_offset);
768 	}
769 
770 	return (abd);
771 }
772 
773 /*
774  * If we're going to use this ABD for doing I/O using the block layer, the
775  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
776  * plan to store this ABD in memory for a long period of time, we should
777  * allocate the ABD type that requires the least data copying to do the I/O.
778  *
779  * On Linux the optimal thing to do would be to use abd_get_offset() and
780  * construct a new ABD which shares the original pages thereby eliminating
781  * the copy.  But for the moment a new linear ABD is allocated until this
782  * performance optimization can be implemented.
783  */
784 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)785 abd_alloc_for_io(size_t size, boolean_t is_metadata)
786 {
787 	return (abd_alloc(size, is_metadata));
788 }
789 
790 abd_t *
abd_get_offset_scatter(abd_t * abd,abd_t * sabd,size_t off,size_t size)791 abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
792     size_t size)
793 {
794 	(void) size;
795 	int i = 0;
796 	struct scatterlist *sg = NULL;
797 
798 	abd_verify(sabd);
799 	ASSERT3U(off, <=, sabd->abd_size);
800 
801 	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
802 
803 	if (abd == NULL)
804 		abd = abd_alloc_struct(0);
805 
806 	/*
807 	 * Even if this buf is filesystem metadata, we only track that
808 	 * if we own the underlying data buffer, which is not true in
809 	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
810 	 */
811 
812 	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
813 		if (new_offset < sg->length)
814 			break;
815 		new_offset -= sg->length;
816 	}
817 
818 	ABD_SCATTER(abd).abd_sgl = sg;
819 	ABD_SCATTER(abd).abd_offset = new_offset;
820 	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
821 
822 	if (abd_is_from_pages(sabd))
823 		abd->abd_flags |= ABD_FLAG_FROM_PAGES;
824 
825 	return (abd);
826 }
827 
828 /*
829  * Initialize the abd_iter.
830  */
831 void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)832 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
833 {
834 	ASSERT(!abd_is_gang(abd));
835 	abd_verify(abd);
836 	memset(aiter, 0, sizeof (struct abd_iter));
837 	aiter->iter_abd = abd;
838 	if (!abd_is_linear(abd)) {
839 		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
840 		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
841 	}
842 }
843 
844 /*
845  * This is just a helper function to see if we have exhausted the
846  * abd_iter and reached the end.
847  */
848 boolean_t
abd_iter_at_end(struct abd_iter * aiter)849 abd_iter_at_end(struct abd_iter *aiter)
850 {
851 	ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
852 	return (aiter->iter_pos == aiter->iter_abd->abd_size);
853 }
854 
855 /*
856  * Advance the iterator by a certain amount. Cannot be called when a chunk is
857  * in use. This can be safely called when the aiter has already exhausted, in
858  * which case this does nothing.
859  */
860 void
abd_iter_advance(struct abd_iter * aiter,size_t amount)861 abd_iter_advance(struct abd_iter *aiter, size_t amount)
862 {
863 	/*
864 	 * Ensure that last chunk is not in use. abd_iterate_*() must clear
865 	 * this state (directly or abd_iter_unmap()) before advancing.
866 	 */
867 	ASSERT0P(aiter->iter_mapaddr);
868 	ASSERT0(aiter->iter_mapsize);
869 	ASSERT0P(aiter->iter_page);
870 	ASSERT0(aiter->iter_page_doff);
871 	ASSERT0(aiter->iter_page_dsize);
872 
873 	/* There's nothing left to advance to, so do nothing */
874 	if (abd_iter_at_end(aiter))
875 		return;
876 
877 	aiter->iter_pos += amount;
878 	aiter->iter_offset += amount;
879 	if (!abd_is_linear(aiter->iter_abd)) {
880 		while (aiter->iter_offset >= aiter->iter_sg->length) {
881 			aiter->iter_offset -= aiter->iter_sg->length;
882 			aiter->iter_sg = sg_next(aiter->iter_sg);
883 			if (aiter->iter_sg == NULL) {
884 				ASSERT0(aiter->iter_offset);
885 				break;
886 			}
887 		}
888 	}
889 }
890 
891 /*
892  * Map the current chunk into aiter. This can be safely called when the aiter
893  * has already exhausted, in which case this does nothing.
894  */
895 void
abd_iter_map(struct abd_iter * aiter)896 abd_iter_map(struct abd_iter *aiter)
897 {
898 	void *paddr;
899 	size_t offset = 0;
900 
901 	ASSERT0P(aiter->iter_mapaddr);
902 	ASSERT0(aiter->iter_mapsize);
903 
904 	/* There's nothing left to iterate over, so do nothing */
905 	if (abd_iter_at_end(aiter))
906 		return;
907 
908 	if (abd_is_linear(aiter->iter_abd)) {
909 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
910 		offset = aiter->iter_offset;
911 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
912 		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
913 	} else {
914 		offset = aiter->iter_offset;
915 		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
916 		    aiter->iter_abd->abd_size - aiter->iter_pos);
917 
918 		paddr = zfs_kmap_local(sg_page(aiter->iter_sg));
919 	}
920 
921 	aiter->iter_mapaddr = (char *)paddr + offset;
922 }
923 
924 /*
925  * Unmap the current chunk from aiter. This can be safely called when the aiter
926  * has already exhausted, in which case this does nothing.
927  */
928 void
abd_iter_unmap(struct abd_iter * aiter)929 abd_iter_unmap(struct abd_iter *aiter)
930 {
931 	/* There's nothing left to unmap, so do nothing */
932 	if (abd_iter_at_end(aiter))
933 		return;
934 
935 	if (!abd_is_linear(aiter->iter_abd)) {
936 		/* LINTED E_FUNC_SET_NOT_USED */
937 		zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset);
938 	}
939 
940 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
941 	ASSERT3U(aiter->iter_mapsize, >, 0);
942 
943 	aiter->iter_mapaddr = NULL;
944 	aiter->iter_mapsize = 0;
945 }
946 
947 void
abd_cache_reap_now(void)948 abd_cache_reap_now(void)
949 {
950 }
951 
952 /*
953  * Borrow a raw buffer from an ABD without copying the contents of the ABD
954  * into the buffer. If the ABD is scattered, this will allocate a raw buffer
955  * whose contents are undefined. To copy over the existing data in the ABD, use
956  * abd_borrow_buf_copy() instead.
957  */
958 void *
abd_borrow_buf(abd_t * abd,size_t n)959 abd_borrow_buf(abd_t *abd, size_t n)
960 {
961 	void *buf;
962 	abd_verify(abd);
963 	ASSERT3U(abd->abd_size, >=, 0);
964 	/*
965 	 * In the event the ABD is composed of a single user page from Direct
966 	 * I/O we can not direclty return the raw buffer. This is a consequence
967 	 * of not being able to write protect the page and the contents of the
968 	 * page can be changed at any time by the user.
969 	 */
970 	if (abd_is_from_pages(abd)) {
971 		buf = zio_buf_alloc(n);
972 	} else if (abd_is_linear(abd)) {
973 		buf = abd_to_buf(abd);
974 	} else {
975 		buf = zio_buf_alloc(n);
976 	}
977 
978 #ifdef ZFS_DEBUG
979 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
980 #endif
981 	return (buf);
982 }
983 
984 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)985 abd_borrow_buf_copy(abd_t *abd, size_t n)
986 {
987 	void *buf = abd_borrow_buf(abd, n);
988 
989 	/*
990 	 * In the event the ABD is composed of a single user page from Direct
991 	 * I/O we must make sure copy the data over into the newly allocated
992 	 * buffer. This is a consequence of the fact that we can not write
993 	 * protect the user page and there is a risk the contents of the page
994 	 * could be changed by the user at any moment.
995 	 */
996 	if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
997 		abd_copy_to_buf(buf, abd, n);
998 	}
999 	return (buf);
1000 }
1001 
1002 /*
1003  * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will
1004  * not change the contents of the ABD. If you want any changes you made to
1005  * buf to be copied back to abd, use abd_return_buf_copy() instead. If the
1006  * ABD is not constructed from user pages for Direct I/O then an ASSERT
1007  * checks to make sure the contents of buffer have not changed since it was
1008  * borrowed. We can not ASSERT that the contents of the buffer have not changed
1009  * if it is composed of user pages because the pages can not be placed under
1010  * write protection and the user could have possibly changed the contents in
1011  * the pages at any time. This is also an issue for Direct I/O reads. Checksum
1012  * verifications in the ZIO pipeline check for this issue and handle it by
1013  * returning an error on checksum verification failure.
1014  */
1015 void
abd_return_buf(abd_t * abd,void * buf,size_t n)1016 abd_return_buf(abd_t *abd, void *buf, size_t n)
1017 {
1018 	abd_verify(abd);
1019 	ASSERT3U(abd->abd_size, >=, n);
1020 #ifdef ZFS_DEBUG
1021 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
1022 #endif
1023 	if (abd_is_from_pages(abd)) {
1024 		zio_buf_free(buf, n);
1025 	} else if (abd_is_linear(abd)) {
1026 		ASSERT3P(buf, ==, abd_to_buf(abd));
1027 	} else if (abd_is_gang(abd)) {
1028 #ifdef ZFS_DEBUG
1029 		/*
1030 		 * We have to be careful with gang ABD's that we do not ASSERT0
1031 		 * for any ABD's that contain user pages from Direct I/O. In
1032 		 * order to handle this, we just iterate through the gang ABD
1033 		 * and only verify ABDs that are not from user pages.
1034 		 */
1035 		void *cmp_buf = buf;
1036 
1037 		for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
1038 		    cabd != NULL;
1039 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1040 			if (!abd_is_from_pages(cabd)) {
1041 				ASSERT0(abd_cmp_buf(cabd, cmp_buf,
1042 				    cabd->abd_size));
1043 			}
1044 			cmp_buf = (char *)cmp_buf + cabd->abd_size;
1045 		}
1046 #endif
1047 		zio_buf_free(buf, n);
1048 	} else {
1049 		ASSERT0(abd_cmp_buf(abd, buf, n));
1050 		zio_buf_free(buf, n);
1051 	}
1052 }
1053 
1054 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)1055 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
1056 {
1057 	if (!abd_is_linear(abd) || abd_is_from_pages(abd)) {
1058 		abd_copy_from_buf(abd, buf, n);
1059 	}
1060 	abd_return_buf(abd, buf, n);
1061 }
1062 
1063 /*
1064  * This is abd_iter_page(), the function underneath abd_iterate_page_func().
1065  * It yields the next page struct and data offset and size within it, without
1066  * mapping it into the address space.
1067  */
1068 
1069 /*
1070  * "Compound pages" are a group of pages that can be referenced from a single
1071  * struct page *. Its organised as a "head" page, followed by a series of
1072  * "tail" pages.
1073  *
1074  * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we
1075  * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a
1076  * great many of the IO buffers we get are going to be of this type.
1077  *
1078  * The tail pages are just regular PAGESIZE pages, and can be safely used
1079  * as-is. However, the head page has length covering itself and all the tail
1080  * pages. If the ABD chunk spans multiple pages, then we can use the head page
1081  * and a >PAGESIZE length, which is far more efficient.
1082  *
1083  * Before kernel 4.5 however, compound page heads were refcounted separately
1084  * from tail pages, such that moving back to the head page would require us to
1085  * take a reference to it and releasing it once we're completely finished with
1086  * it. In practice, that meant when our caller is done with the ABD, which we
1087  * have no insight into from here. Rather than contort this API to track head
1088  * page references on such ancient kernels, we disabled this special compound
1089  * page handling on kernels before 4.5, instead just using treating each page
1090  * within it as a regular PAGESIZE page (which it is). This is slightly less
1091  * efficient, but makes everything far simpler.
1092  *
1093  * We no longer support kernels before 4.5, so in theory none of this is
1094  * necessary. However, this code is still relatively new in the grand scheme of
1095  * things, so I'm leaving the ability to compile this out for the moment.
1096  *
1097  * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special
1098  * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand
1099  * compound pages, or not, and compiling in/out the support to detect compound
1100  * tail pages and move back to the start.
1101  */
1102 
1103 /* On by default */
1104 #define	ABD_ITER_COMPOUND_PAGES
1105 
1106 #ifdef ABD_ITER_COMPOUND_PAGES
1107 #define	ABD_ITER_PAGE_SIZE(page)	\
1108 	(PageCompound(page) ? page_size(page) : PAGESIZE)
1109 #else
1110 #define	ABD_ITER_PAGE_SIZE(page)	(PAGESIZE)
1111 #endif
1112 
1113 #ifndef nth_page
1114 /*
1115  * Since 6.18 nth_page() no longer exists, and is no longer required to iterate
1116  * within a single SG entry, so we replace it with a simple addition.
1117  */
1118 #define	nth_page(p, n)	((p)+(n))
1119 #endif
1120 
1121 void
abd_iter_page(struct abd_iter * aiter)1122 abd_iter_page(struct abd_iter *aiter)
1123 {
1124 	if (abd_iter_at_end(aiter)) {
1125 		aiter->iter_page = NULL;
1126 		aiter->iter_page_doff = 0;
1127 		aiter->iter_page_dsize = 0;
1128 		return;
1129 	}
1130 
1131 	struct page *page;
1132 	size_t doff, dsize;
1133 
1134 	/*
1135 	 * Find the page, and the start of the data within it. This is computed
1136 	 * differently for linear and scatter ABDs; linear is referenced by
1137 	 * virtual memory location, while scatter is referenced by page
1138 	 * pointer.
1139 	 */
1140 	if (abd_is_linear(aiter->iter_abd)) {
1141 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
1142 
1143 		/* memory address at iter_pos */
1144 		void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos;
1145 
1146 		/* struct page for address */
1147 		page = is_vmalloc_addr(paddr) ?
1148 		    vmalloc_to_page(paddr) : virt_to_page(paddr);
1149 
1150 		/* offset of address within the page */
1151 		doff = offset_in_page(paddr);
1152 	} else {
1153 		ASSERT(!abd_is_gang(aiter->iter_abd));
1154 
1155 		/* current scatter page */
1156 		page = nth_page(sg_page(aiter->iter_sg),
1157 		    aiter->iter_offset >> PAGE_SHIFT);
1158 
1159 		/* position within page */
1160 		doff = aiter->iter_offset & (PAGESIZE - 1);
1161 	}
1162 
1163 #ifdef ABD_ITER_COMPOUND_PAGES
1164 	if (PageTail(page)) {
1165 		/*
1166 		 * If this is a compound tail page, move back to the head, and
1167 		 * adjust the offset to match. This may let us yield a much
1168 		 * larger amount of data from a single logical page, and so
1169 		 * leave our caller with fewer pages to process.
1170 		 */
1171 		struct page *head = compound_head(page);
1172 		doff += ((page - head) * PAGESIZE);
1173 		page = head;
1174 	}
1175 #endif
1176 
1177 	ASSERT(page);
1178 
1179 	/*
1180 	 * Compute the maximum amount of data we can take from this page. This
1181 	 * is the smaller of:
1182 	 * - the remaining space in the page
1183 	 * - the remaining space in this scatterlist entry (which may not cover
1184 	 *   the entire page)
1185 	 * - the remaining space in the abd (which may not cover the entire
1186 	 *   scatterlist entry)
1187 	 */
1188 	dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff,
1189 	    aiter->iter_abd->abd_size - aiter->iter_pos);
1190 	if (!abd_is_linear(aiter->iter_abd))
1191 		dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset);
1192 	ASSERT3U(dsize, >, 0);
1193 
1194 	/* final iterator outputs */
1195 	aiter->iter_page = page;
1196 	aiter->iter_page_doff = doff;
1197 	aiter->iter_page_dsize = dsize;
1198 }
1199 
1200 /*
1201  * Note: ABD BIO functions only needed to support vdev_classic. See comments in
1202  * vdev_disk.c.
1203  */
1204 
1205 /*
1206  * bio_nr_pages for ABD.
1207  * @off is the offset in @abd
1208  */
1209 unsigned long
abd_nr_pages_off(abd_t * abd,unsigned int size,size_t off)1210 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1211 {
1212 	unsigned long pos;
1213 
1214 	if (abd_is_gang(abd)) {
1215 		unsigned long count = 0;
1216 
1217 		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1218 		    cabd != NULL && size != 0;
1219 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1220 			ASSERT3U(off, <, cabd->abd_size);
1221 			int mysize = MIN(size, cabd->abd_size - off);
1222 			count += abd_nr_pages_off(cabd, mysize, off);
1223 			size -= mysize;
1224 			off = 0;
1225 		}
1226 		return (count);
1227 	}
1228 
1229 	if (abd_is_linear(abd))
1230 		pos = (unsigned long)abd_to_buf(abd) + off;
1231 	else
1232 		pos = ABD_SCATTER(abd).abd_offset + off;
1233 
1234 	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1235 	    (pos >> PAGE_SHIFT));
1236 }
1237 
1238 static unsigned int
bio_map(struct bio * bio,void * buf_ptr,unsigned int bio_size)1239 bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1240 {
1241 	unsigned int offset, size, i;
1242 	struct page *page;
1243 
1244 	offset = offset_in_page(buf_ptr);
1245 	for (i = 0; i < bio->bi_max_vecs; i++) {
1246 		size = PAGE_SIZE - offset;
1247 
1248 		if (bio_size <= 0)
1249 			break;
1250 
1251 		if (size > bio_size)
1252 			size = bio_size;
1253 
1254 		if (is_vmalloc_addr(buf_ptr))
1255 			page = vmalloc_to_page(buf_ptr);
1256 		else
1257 			page = virt_to_page(buf_ptr);
1258 
1259 		/*
1260 		 * Some network related block device uses tcp_sendpage, which
1261 		 * doesn't behave well when using 0-count page, this is a
1262 		 * safety net to catch them.
1263 		 */
1264 		ASSERT3S(page_count(page), >, 0);
1265 
1266 		if (bio_add_page(bio, page, size, offset) != size)
1267 			break;
1268 
1269 		buf_ptr += size;
1270 		bio_size -= size;
1271 		offset = 0;
1272 	}
1273 
1274 	return (bio_size);
1275 }
1276 
1277 /*
1278  * bio_map for gang ABD.
1279  */
1280 static unsigned int
abd_gang_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1281 abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1282     unsigned int io_size, size_t off)
1283 {
1284 	ASSERT(abd_is_gang(abd));
1285 
1286 	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1287 	    cabd != NULL;
1288 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1289 		ASSERT3U(off, <, cabd->abd_size);
1290 		int size = MIN(io_size, cabd->abd_size - off);
1291 		int remainder = abd_bio_map_off(bio, cabd, size, off);
1292 		io_size -= (size - remainder);
1293 		if (io_size == 0 || remainder > 0)
1294 			return (io_size);
1295 		off = 0;
1296 	}
1297 	ASSERT0(io_size);
1298 	return (io_size);
1299 }
1300 
1301 /*
1302  * bio_map for ABD.
1303  * @off is the offset in @abd
1304  * Remaining IO size is returned
1305  */
1306 unsigned int
abd_bio_map_off(struct bio * bio,abd_t * abd,unsigned int io_size,size_t off)1307 abd_bio_map_off(struct bio *bio, abd_t *abd,
1308     unsigned int io_size, size_t off)
1309 {
1310 	struct abd_iter aiter;
1311 
1312 	ASSERT3U(io_size, <=, abd->abd_size - off);
1313 	if (abd_is_linear(abd))
1314 		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1315 
1316 	ASSERT(!abd_is_linear(abd));
1317 	if (abd_is_gang(abd))
1318 		return (abd_gang_bio_map_off(bio, abd, io_size, off));
1319 
1320 	abd_iter_init(&aiter, abd);
1321 	abd_iter_advance(&aiter, off);
1322 
1323 	for (int i = 0; i < bio->bi_max_vecs; i++) {
1324 		struct page *pg;
1325 		size_t len, sgoff, pgoff;
1326 		struct scatterlist *sg;
1327 
1328 		if (io_size <= 0)
1329 			break;
1330 
1331 		sg = aiter.iter_sg;
1332 		sgoff = aiter.iter_offset;
1333 		pgoff = sgoff & (PAGESIZE - 1);
1334 		len = MIN(io_size, PAGESIZE - pgoff);
1335 		ASSERT(len > 0);
1336 
1337 		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1338 		if (bio_add_page(bio, pg, len, pgoff) != len)
1339 			break;
1340 
1341 		io_size -= len;
1342 		abd_iter_advance(&aiter, len);
1343 	}
1344 
1345 	return (io_size);
1346 }
1347 
1348 EXPORT_SYMBOL(abd_alloc_from_pages);
1349 
1350 /* Tunable Parameters */
1351 module_param(zfs_abd_scatter_enabled, int, 0644);
1352 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1353 	"Toggle whether ABD allocations must be linear.");
1354 module_param(zfs_abd_scatter_min_size, int, 0644);
1355 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1356 	"Minimum size of scatter allocations.");
1357 module_param(zfs_abd_scatter_max_order, uint, 0644);
1358 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1359 	"Maximum order allocation used for a scatter ABD.");
1360