1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sprintf.h>
35 #include <linux/shrinker.h>
36 #include <linux/types.h>
37 #include <linux/debugfs.h>
38 #include <linux/zsmalloc.h>
39 #include <linux/zpool.h>
40 #include <linux/fs.h>
41 #include <linux/workqueue.h>
42 #include "zpdesc.h"
43
44 #define ZSPAGE_MAGIC 0x58
45
46 /*
47 * This must be power of 2 and greater than or equal to sizeof(link_free).
48 * These two conditions ensure that any 'struct link_free' itself doesn't
49 * span more than 1 page which avoids complex case of mapping 2 pages simply
50 * to restore link_free pointer values.
51 */
52 #define ZS_ALIGN 8
53
54 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
55
56 /*
57 * Object location (<PFN>, <obj_idx>) is encoded as
58 * a single (unsigned long) handle value.
59 *
60 * Note that object index <obj_idx> starts from 0.
61 *
62 * This is made more complicated by various memory models and PAE.
63 */
64
65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
66 #ifdef MAX_PHYSMEM_BITS
67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
68 #else
69 /*
70 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
71 * be PAGE_SHIFT
72 */
73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
74 #endif
75 #endif
76
77 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
78
79 /*
80 * Head in allocated object should have OBJ_ALLOCATED_TAG
81 * to identify the object was allocated or not.
82 * It's okay to add the status bit in the least bit because
83 * header keeps handle which is 4byte-aligned address so we
84 * have room for two bit at least.
85 */
86 #define OBJ_ALLOCATED_TAG 1
87
88 #define OBJ_TAG_BITS 1
89 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
90
91 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
92 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
93
94 #define HUGE_BITS 1
95 #define FULLNESS_BITS 4
96 #define CLASS_BITS 8
97 #define MAGIC_VAL_BITS 8
98
99 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
100
101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
102 #define ZS_MIN_ALLOC_SIZE \
103 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
104 /* each chunk includes extra space to keep handle */
105 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
106
107 /*
108 * On systems with 4K page size, this gives 255 size classes! There is a
109 * trader-off here:
110 * - Large number of size classes is potentially wasteful as free page are
111 * spread across these classes
112 * - Small number of size classes causes large internal fragmentation
113 * - Probably its better to use specific size classes (empirically
114 * determined). NOTE: all those class sizes must be set as multiple of
115 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
116 *
117 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
118 * (reason above)
119 */
120 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
121 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
122 ZS_SIZE_CLASS_DELTA) + 1)
123
124 /*
125 * Pages are distinguished by the ratio of used memory (that is the ratio
126 * of ->inuse objects to all objects that page can store). For example,
127 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
128 *
129 * The number of fullness groups is not random. It allows us to keep
130 * difference between the least busy page in the group (minimum permitted
131 * number of ->inuse objects) and the most busy page (maximum permitted
132 * number of ->inuse objects) at a reasonable value.
133 */
134 enum fullness_group {
135 ZS_INUSE_RATIO_0,
136 ZS_INUSE_RATIO_10,
137 /* NOTE: 8 more fullness groups here */
138 ZS_INUSE_RATIO_99 = 10,
139 ZS_INUSE_RATIO_100,
140 NR_FULLNESS_GROUPS,
141 };
142
143 enum class_stat_type {
144 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
145 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
146 ZS_OBJS_INUSE,
147 NR_CLASS_STAT_TYPES,
148 };
149
150 struct zs_size_stat {
151 unsigned long objs[NR_CLASS_STAT_TYPES];
152 };
153
154 #ifdef CONFIG_ZSMALLOC_STAT
155 static struct dentry *zs_stat_root;
156 #endif
157
158 static size_t huge_class_size;
159
160 struct size_class {
161 spinlock_t lock;
162 struct list_head fullness_list[NR_FULLNESS_GROUPS];
163 /*
164 * Size of objects stored in this class. Must be multiple
165 * of ZS_ALIGN.
166 */
167 int size;
168 int objs_per_zspage;
169 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
170 int pages_per_zspage;
171
172 unsigned int index;
173 struct zs_size_stat stats;
174 };
175
176 /*
177 * Placed within free objects to form a singly linked list.
178 * For every zspage, zspage->freeobj gives head of this list.
179 *
180 * This must be power of 2 and less than or equal to ZS_ALIGN
181 */
182 struct link_free {
183 union {
184 /*
185 * Free object index;
186 * It's valid for non-allocated object
187 */
188 unsigned long next;
189 /*
190 * Handle of allocated object.
191 */
192 unsigned long handle;
193 };
194 };
195
196 struct zs_pool {
197 const char *name;
198
199 struct size_class *size_class[ZS_SIZE_CLASSES];
200 struct kmem_cache *handle_cachep;
201 struct kmem_cache *zspage_cachep;
202
203 atomic_long_t pages_allocated;
204
205 struct zs_pool_stats stats;
206
207 /* Compact classes */
208 struct shrinker *shrinker;
209
210 #ifdef CONFIG_ZSMALLOC_STAT
211 struct dentry *stat_dentry;
212 #endif
213 #ifdef CONFIG_COMPACTION
214 struct work_struct free_work;
215 #endif
216 /* protect zspage migration/compaction */
217 rwlock_t lock;
218 atomic_t compaction_in_progress;
219 };
220
zpdesc_set_first(struct zpdesc * zpdesc)221 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
222 {
223 SetPagePrivate(zpdesc_page(zpdesc));
224 }
225
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)226 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
227 {
228 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
229 }
230
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)231 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
232 {
233 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
234 }
235
alloc_zpdesc(gfp_t gfp,const int nid)236 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
237 {
238 struct page *page = alloc_pages_node(nid, gfp, 0);
239
240 return page_zpdesc(page);
241 }
242
free_zpdesc(struct zpdesc * zpdesc)243 static inline void free_zpdesc(struct zpdesc *zpdesc)
244 {
245 struct page *page = zpdesc_page(zpdesc);
246
247 __free_page(page);
248 }
249
250 #define ZS_PAGE_UNLOCKED 0
251 #define ZS_PAGE_WRLOCKED -1
252
253 struct zspage_lock {
254 spinlock_t lock;
255 int cnt;
256 struct lockdep_map dep_map;
257 };
258
259 struct zspage {
260 struct {
261 unsigned int huge:HUGE_BITS;
262 unsigned int fullness:FULLNESS_BITS;
263 unsigned int class:CLASS_BITS + 1;
264 unsigned int magic:MAGIC_VAL_BITS;
265 };
266 unsigned int inuse;
267 unsigned int freeobj;
268 struct zpdesc *first_zpdesc;
269 struct list_head list; /* fullness list */
270 struct zs_pool *pool;
271 struct zspage_lock zsl;
272 };
273
zspage_lock_init(struct zspage * zspage)274 static void zspage_lock_init(struct zspage *zspage)
275 {
276 static struct lock_class_key __key;
277 struct zspage_lock *zsl = &zspage->zsl;
278
279 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
280 spin_lock_init(&zsl->lock);
281 zsl->cnt = ZS_PAGE_UNLOCKED;
282 }
283
284 /*
285 * The zspage lock can be held from atomic contexts, but it needs to remain
286 * preemptible when held for reading because it remains held outside of those
287 * atomic contexts, otherwise we unnecessarily lose preemptibility.
288 *
289 * To achieve this, the following rules are enforced on readers and writers:
290 *
291 * - Writers are blocked by both writers and readers, while readers are only
292 * blocked by writers (i.e. normal rwlock semantics).
293 *
294 * - Writers are always atomic (to allow readers to spin waiting for them).
295 *
296 * - Writers always use trylock (as the lock may be held be sleeping readers).
297 *
298 * - Readers may spin on the lock (as they can only wait for atomic writers).
299 *
300 * - Readers may sleep while holding the lock (as writes only use trylock).
301 */
zspage_read_lock(struct zspage * zspage)302 static void zspage_read_lock(struct zspage *zspage)
303 {
304 struct zspage_lock *zsl = &zspage->zsl;
305
306 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
307
308 spin_lock(&zsl->lock);
309 zsl->cnt++;
310 spin_unlock(&zsl->lock);
311
312 lock_acquired(&zsl->dep_map, _RET_IP_);
313 }
314
zspage_read_unlock(struct zspage * zspage)315 static void zspage_read_unlock(struct zspage *zspage)
316 {
317 struct zspage_lock *zsl = &zspage->zsl;
318
319 rwsem_release(&zsl->dep_map, _RET_IP_);
320
321 spin_lock(&zsl->lock);
322 zsl->cnt--;
323 spin_unlock(&zsl->lock);
324 }
325
zspage_write_trylock(struct zspage * zspage)326 static __must_check bool zspage_write_trylock(struct zspage *zspage)
327 {
328 struct zspage_lock *zsl = &zspage->zsl;
329
330 spin_lock(&zsl->lock);
331 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
332 zsl->cnt = ZS_PAGE_WRLOCKED;
333 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
334 lock_acquired(&zsl->dep_map, _RET_IP_);
335 return true;
336 }
337
338 spin_unlock(&zsl->lock);
339 return false;
340 }
341
zspage_write_unlock(struct zspage * zspage)342 static void zspage_write_unlock(struct zspage *zspage)
343 {
344 struct zspage_lock *zsl = &zspage->zsl;
345
346 rwsem_release(&zsl->dep_map, _RET_IP_);
347
348 zsl->cnt = ZS_PAGE_UNLOCKED;
349 spin_unlock(&zsl->lock);
350 }
351
352 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)353 static void SetZsHugePage(struct zspage *zspage)
354 {
355 zspage->huge = 1;
356 }
357
ZsHugePage(struct zspage * zspage)358 static bool ZsHugePage(struct zspage *zspage)
359 {
360 return zspage->huge;
361 }
362
363 #ifdef CONFIG_COMPACTION
364 static void kick_deferred_free(struct zs_pool *pool);
365 static void init_deferred_free(struct zs_pool *pool);
366 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
367 #else
kick_deferred_free(struct zs_pool * pool)368 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)369 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)370 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
371 #endif
372
create_cache(struct zs_pool * pool)373 static int create_cache(struct zs_pool *pool)
374 {
375 char *name;
376
377 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
378 if (!name)
379 return -ENOMEM;
380 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
381 0, 0, NULL);
382 kfree(name);
383 if (!pool->handle_cachep)
384 return -EINVAL;
385
386 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
387 if (!name)
388 return -ENOMEM;
389 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
390 0, 0, NULL);
391 kfree(name);
392 if (!pool->zspage_cachep) {
393 kmem_cache_destroy(pool->handle_cachep);
394 pool->handle_cachep = NULL;
395 return -EINVAL;
396 }
397
398 return 0;
399 }
400
destroy_cache(struct zs_pool * pool)401 static void destroy_cache(struct zs_pool *pool)
402 {
403 kmem_cache_destroy(pool->handle_cachep);
404 kmem_cache_destroy(pool->zspage_cachep);
405 }
406
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)407 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
408 {
409 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
410 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
411 }
412
cache_free_handle(struct zs_pool * pool,unsigned long handle)413 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
414 {
415 kmem_cache_free(pool->handle_cachep, (void *)handle);
416 }
417
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)418 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
419 {
420 return kmem_cache_zalloc(pool->zspage_cachep,
421 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
422 }
423
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)424 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
425 {
426 kmem_cache_free(pool->zspage_cachep, zspage);
427 }
428
429 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)430 static void record_obj(unsigned long handle, unsigned long obj)
431 {
432 *(unsigned long *)handle = obj;
433 }
434
435 /* zpool driver */
436
437 #ifdef CONFIG_ZPOOL
438
zs_zpool_create(const char * name,gfp_t gfp)439 static void *zs_zpool_create(const char *name, gfp_t gfp)
440 {
441 /*
442 * Ignore global gfp flags: zs_malloc() may be invoked from
443 * different contexts and its caller must provide a valid
444 * gfp mask.
445 */
446 return zs_create_pool(name);
447 }
448
zs_zpool_destroy(void * pool)449 static void zs_zpool_destroy(void *pool)
450 {
451 zs_destroy_pool(pool);
452 }
453
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle,const int nid)454 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
455 unsigned long *handle, const int nid)
456 {
457 *handle = zs_malloc(pool, size, gfp, nid);
458
459 if (IS_ERR_VALUE(*handle))
460 return PTR_ERR((void *)*handle);
461 return 0;
462 }
zs_zpool_free(void * pool,unsigned long handle)463 static void zs_zpool_free(void *pool, unsigned long handle)
464 {
465 zs_free(pool, handle);
466 }
467
zs_zpool_obj_read_begin(void * pool,unsigned long handle,void * local_copy)468 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle,
469 void *local_copy)
470 {
471 return zs_obj_read_begin(pool, handle, local_copy);
472 }
473
zs_zpool_obj_read_end(void * pool,unsigned long handle,void * handle_mem)474 static void zs_zpool_obj_read_end(void *pool, unsigned long handle,
475 void *handle_mem)
476 {
477 zs_obj_read_end(pool, handle, handle_mem);
478 }
479
zs_zpool_obj_write(void * pool,unsigned long handle,void * handle_mem,size_t mem_len)480 static void zs_zpool_obj_write(void *pool, unsigned long handle,
481 void *handle_mem, size_t mem_len)
482 {
483 zs_obj_write(pool, handle, handle_mem, mem_len);
484 }
485
zs_zpool_total_pages(void * pool)486 static u64 zs_zpool_total_pages(void *pool)
487 {
488 return zs_get_total_pages(pool);
489 }
490
491 static struct zpool_driver zs_zpool_driver = {
492 .type = "zsmalloc",
493 .owner = THIS_MODULE,
494 .create = zs_zpool_create,
495 .destroy = zs_zpool_destroy,
496 .malloc = zs_zpool_malloc,
497 .free = zs_zpool_free,
498 .obj_read_begin = zs_zpool_obj_read_begin,
499 .obj_read_end = zs_zpool_obj_read_end,
500 .obj_write = zs_zpool_obj_write,
501 .total_pages = zs_zpool_total_pages,
502 };
503
504 MODULE_ALIAS("zpool-zsmalloc");
505 #endif /* CONFIG_ZPOOL */
506
is_first_zpdesc(struct zpdesc * zpdesc)507 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
508 {
509 return PagePrivate(zpdesc_page(zpdesc));
510 }
511
512 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)513 static inline int get_zspage_inuse(struct zspage *zspage)
514 {
515 return zspage->inuse;
516 }
517
mod_zspage_inuse(struct zspage * zspage,int val)518 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
519 {
520 zspage->inuse += val;
521 }
522
get_first_zpdesc(struct zspage * zspage)523 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
524 {
525 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
526
527 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
528 return first_zpdesc;
529 }
530
531 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
532
get_first_obj_offset(struct zpdesc * zpdesc)533 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
534 {
535 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
536 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
537 }
538
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)539 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
540 {
541 /* With 24 bits available, we can support offsets into 16 MiB pages. */
542 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
543 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
544 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
545 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
546 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
547 }
548
get_freeobj(struct zspage * zspage)549 static inline unsigned int get_freeobj(struct zspage *zspage)
550 {
551 return zspage->freeobj;
552 }
553
set_freeobj(struct zspage * zspage,unsigned int obj)554 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
555 {
556 zspage->freeobj = obj;
557 }
558
zspage_class(struct zs_pool * pool,struct zspage * zspage)559 static struct size_class *zspage_class(struct zs_pool *pool,
560 struct zspage *zspage)
561 {
562 return pool->size_class[zspage->class];
563 }
564
565 /*
566 * zsmalloc divides the pool into various size classes where each
567 * class maintains a list of zspages where each zspage is divided
568 * into equal sized chunks. Each allocation falls into one of these
569 * classes depending on its size. This function returns index of the
570 * size class which has chunk size big enough to hold the given size.
571 */
get_size_class_index(int size)572 static int get_size_class_index(int size)
573 {
574 int idx = 0;
575
576 if (likely(size > ZS_MIN_ALLOC_SIZE))
577 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
578 ZS_SIZE_CLASS_DELTA);
579
580 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
581 }
582
class_stat_add(struct size_class * class,int type,unsigned long cnt)583 static inline void class_stat_add(struct size_class *class, int type,
584 unsigned long cnt)
585 {
586 class->stats.objs[type] += cnt;
587 }
588
class_stat_sub(struct size_class * class,int type,unsigned long cnt)589 static inline void class_stat_sub(struct size_class *class, int type,
590 unsigned long cnt)
591 {
592 class->stats.objs[type] -= cnt;
593 }
594
class_stat_read(struct size_class * class,int type)595 static inline unsigned long class_stat_read(struct size_class *class, int type)
596 {
597 return class->stats.objs[type];
598 }
599
600 #ifdef CONFIG_ZSMALLOC_STAT
601
zs_stat_init(void)602 static void __init zs_stat_init(void)
603 {
604 if (!debugfs_initialized()) {
605 pr_warn("debugfs not available, stat dir not created\n");
606 return;
607 }
608
609 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
610 }
611
zs_stat_exit(void)612 static void __exit zs_stat_exit(void)
613 {
614 debugfs_remove_recursive(zs_stat_root);
615 }
616
617 static unsigned long zs_can_compact(struct size_class *class);
618
zs_stats_size_show(struct seq_file * s,void * v)619 static int zs_stats_size_show(struct seq_file *s, void *v)
620 {
621 int i, fg;
622 struct zs_pool *pool = s->private;
623 struct size_class *class;
624 int objs_per_zspage;
625 unsigned long obj_allocated, obj_used, pages_used, freeable;
626 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
627 unsigned long total_freeable = 0;
628 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
629
630 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
631 "class", "size", "10%", "20%", "30%", "40%",
632 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
633 "obj_allocated", "obj_used", "pages_used",
634 "pages_per_zspage", "freeable");
635
636 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
637
638 class = pool->size_class[i];
639
640 if (class->index != i)
641 continue;
642
643 spin_lock(&class->lock);
644
645 seq_printf(s, " %5u %5u ", i, class->size);
646 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
647 inuse_totals[fg] += class_stat_read(class, fg);
648 seq_printf(s, "%9lu ", class_stat_read(class, fg));
649 }
650
651 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
652 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
653 freeable = zs_can_compact(class);
654 spin_unlock(&class->lock);
655
656 objs_per_zspage = class->objs_per_zspage;
657 pages_used = obj_allocated / objs_per_zspage *
658 class->pages_per_zspage;
659
660 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
661 obj_allocated, obj_used, pages_used,
662 class->pages_per_zspage, freeable);
663
664 total_objs += obj_allocated;
665 total_used_objs += obj_used;
666 total_pages += pages_used;
667 total_freeable += freeable;
668 }
669
670 seq_puts(s, "\n");
671 seq_printf(s, " %5s %5s ", "Total", "");
672
673 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
674 seq_printf(s, "%9lu ", inuse_totals[fg]);
675
676 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
677 total_objs, total_used_objs, total_pages, "",
678 total_freeable);
679
680 return 0;
681 }
682 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
683
zs_pool_stat_create(struct zs_pool * pool,const char * name)684 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
685 {
686 if (!zs_stat_root) {
687 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
688 return;
689 }
690
691 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
692
693 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
694 &zs_stats_size_fops);
695 }
696
zs_pool_stat_destroy(struct zs_pool * pool)697 static void zs_pool_stat_destroy(struct zs_pool *pool)
698 {
699 debugfs_remove_recursive(pool->stat_dentry);
700 }
701
702 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)703 static void __init zs_stat_init(void)
704 {
705 }
706
zs_stat_exit(void)707 static void __exit zs_stat_exit(void)
708 {
709 }
710
zs_pool_stat_create(struct zs_pool * pool,const char * name)711 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
712 {
713 }
714
zs_pool_stat_destroy(struct zs_pool * pool)715 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
716 {
717 }
718 #endif
719
720
721 /*
722 * For each size class, zspages are divided into different groups
723 * depending on their usage ratio. This function returns fullness
724 * status of the given page.
725 */
get_fullness_group(struct size_class * class,struct zspage * zspage)726 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
727 {
728 int inuse, objs_per_zspage, ratio;
729
730 inuse = get_zspage_inuse(zspage);
731 objs_per_zspage = class->objs_per_zspage;
732
733 if (inuse == 0)
734 return ZS_INUSE_RATIO_0;
735 if (inuse == objs_per_zspage)
736 return ZS_INUSE_RATIO_100;
737
738 ratio = 100 * inuse / objs_per_zspage;
739 /*
740 * Take integer division into consideration: a page with one inuse
741 * object out of 127 possible, will end up having 0 usage ratio,
742 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
743 */
744 return ratio / 10 + 1;
745 }
746
747 /*
748 * Each size class maintains various freelists and zspages are assigned
749 * to one of these freelists based on the number of live objects they
750 * have. This functions inserts the given zspage into the freelist
751 * identified by <class, fullness_group>.
752 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)753 static void insert_zspage(struct size_class *class,
754 struct zspage *zspage,
755 int fullness)
756 {
757 class_stat_add(class, fullness, 1);
758 list_add(&zspage->list, &class->fullness_list[fullness]);
759 zspage->fullness = fullness;
760 }
761
762 /*
763 * This function removes the given zspage from the freelist identified
764 * by <class, fullness_group>.
765 */
remove_zspage(struct size_class * class,struct zspage * zspage)766 static void remove_zspage(struct size_class *class, struct zspage *zspage)
767 {
768 int fullness = zspage->fullness;
769
770 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
771
772 list_del_init(&zspage->list);
773 class_stat_sub(class, fullness, 1);
774 }
775
776 /*
777 * Each size class maintains zspages in different fullness groups depending
778 * on the number of live objects they contain. When allocating or freeing
779 * objects, the fullness status of the page can change, for instance, from
780 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
781 * checks if such a status change has occurred for the given page and
782 * accordingly moves the page from the list of the old fullness group to that
783 * of the new fullness group.
784 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)785 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
786 {
787 int newfg;
788
789 newfg = get_fullness_group(class, zspage);
790 if (newfg == zspage->fullness)
791 goto out;
792
793 remove_zspage(class, zspage);
794 insert_zspage(class, zspage, newfg);
795 out:
796 return newfg;
797 }
798
get_zspage(struct zpdesc * zpdesc)799 static struct zspage *get_zspage(struct zpdesc *zpdesc)
800 {
801 struct zspage *zspage = zpdesc->zspage;
802
803 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
804 return zspage;
805 }
806
get_next_zpdesc(struct zpdesc * zpdesc)807 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
808 {
809 struct zspage *zspage = get_zspage(zpdesc);
810
811 if (unlikely(ZsHugePage(zspage)))
812 return NULL;
813
814 return zpdesc->next;
815 }
816
817 /**
818 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
819 * @obj: the encoded object value
820 * @zpdesc: zpdesc object resides in zspage
821 * @obj_idx: object index
822 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)823 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
824 unsigned int *obj_idx)
825 {
826 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
827 *obj_idx = (obj & OBJ_INDEX_MASK);
828 }
829
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)830 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
831 {
832 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
833 }
834
835 /**
836 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
837 * @zpdesc: zpdesc object resides in zspage
838 * @obj_idx: object index
839 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)840 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
841 {
842 unsigned long obj;
843
844 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
845 obj |= obj_idx & OBJ_INDEX_MASK;
846
847 return obj;
848 }
849
handle_to_obj(unsigned long handle)850 static unsigned long handle_to_obj(unsigned long handle)
851 {
852 return *(unsigned long *)handle;
853 }
854
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)855 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
856 unsigned long *phandle)
857 {
858 unsigned long handle;
859 struct zspage *zspage = get_zspage(zpdesc);
860
861 if (unlikely(ZsHugePage(zspage))) {
862 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
863 handle = zpdesc->handle;
864 } else
865 handle = *(unsigned long *)obj;
866
867 if (!(handle & OBJ_ALLOCATED_TAG))
868 return false;
869
870 /* Clear all tags before returning the handle */
871 *phandle = handle & ~OBJ_TAG_MASK;
872 return true;
873 }
874
reset_zpdesc(struct zpdesc * zpdesc)875 static void reset_zpdesc(struct zpdesc *zpdesc)
876 {
877 struct page *page = zpdesc_page(zpdesc);
878
879 __ClearPageMovable(page);
880 ClearPagePrivate(page);
881 zpdesc->zspage = NULL;
882 zpdesc->next = NULL;
883 __ClearPageZsmalloc(page);
884 }
885
trylock_zspage(struct zspage * zspage)886 static int trylock_zspage(struct zspage *zspage)
887 {
888 struct zpdesc *cursor, *fail;
889
890 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
891 get_next_zpdesc(cursor)) {
892 if (!zpdesc_trylock(cursor)) {
893 fail = cursor;
894 goto unlock;
895 }
896 }
897
898 return 1;
899 unlock:
900 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
901 get_next_zpdesc(cursor))
902 zpdesc_unlock(cursor);
903
904 return 0;
905 }
906
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)907 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
908 struct zspage *zspage)
909 {
910 struct zpdesc *zpdesc, *next;
911
912 assert_spin_locked(&class->lock);
913
914 VM_BUG_ON(get_zspage_inuse(zspage));
915 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
916
917 next = zpdesc = get_first_zpdesc(zspage);
918 do {
919 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
920 next = get_next_zpdesc(zpdesc);
921 reset_zpdesc(zpdesc);
922 zpdesc_unlock(zpdesc);
923 zpdesc_dec_zone_page_state(zpdesc);
924 zpdesc_put(zpdesc);
925 zpdesc = next;
926 } while (zpdesc != NULL);
927
928 cache_free_zspage(pool, zspage);
929
930 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
931 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
932 }
933
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)934 static void free_zspage(struct zs_pool *pool, struct size_class *class,
935 struct zspage *zspage)
936 {
937 VM_BUG_ON(get_zspage_inuse(zspage));
938 VM_BUG_ON(list_empty(&zspage->list));
939
940 /*
941 * Since zs_free couldn't be sleepable, this function cannot call
942 * lock_page. The page locks trylock_zspage got will be released
943 * by __free_zspage.
944 */
945 if (!trylock_zspage(zspage)) {
946 kick_deferred_free(pool);
947 return;
948 }
949
950 remove_zspage(class, zspage);
951 __free_zspage(pool, class, zspage);
952 }
953
954 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)955 static void init_zspage(struct size_class *class, struct zspage *zspage)
956 {
957 unsigned int freeobj = 1;
958 unsigned long off = 0;
959 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
960
961 while (zpdesc) {
962 struct zpdesc *next_zpdesc;
963 struct link_free *link;
964 void *vaddr;
965
966 set_first_obj_offset(zpdesc, off);
967
968 vaddr = kmap_local_zpdesc(zpdesc);
969 link = (struct link_free *)vaddr + off / sizeof(*link);
970
971 while ((off += class->size) < PAGE_SIZE) {
972 link->next = freeobj++ << OBJ_TAG_BITS;
973 link += class->size / sizeof(*link);
974 }
975
976 /*
977 * We now come to the last (full or partial) object on this
978 * page, which must point to the first object on the next
979 * page (if present)
980 */
981 next_zpdesc = get_next_zpdesc(zpdesc);
982 if (next_zpdesc) {
983 link->next = freeobj++ << OBJ_TAG_BITS;
984 } else {
985 /*
986 * Reset OBJ_TAG_BITS bit to last link to tell
987 * whether it's allocated object or not.
988 */
989 link->next = -1UL << OBJ_TAG_BITS;
990 }
991 kunmap_local(vaddr);
992 zpdesc = next_zpdesc;
993 off %= PAGE_SIZE;
994 }
995
996 set_freeobj(zspage, 0);
997 }
998
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])999 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1000 struct zpdesc *zpdescs[])
1001 {
1002 int i;
1003 struct zpdesc *zpdesc;
1004 struct zpdesc *prev_zpdesc = NULL;
1005 int nr_zpdescs = class->pages_per_zspage;
1006
1007 /*
1008 * Allocate individual pages and link them together as:
1009 * 1. all pages are linked together using zpdesc->next
1010 * 2. each sub-page point to zspage using zpdesc->zspage
1011 *
1012 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
1013 * has this flag set).
1014 */
1015 for (i = 0; i < nr_zpdescs; i++) {
1016 zpdesc = zpdescs[i];
1017 zpdesc->zspage = zspage;
1018 zpdesc->next = NULL;
1019 if (i == 0) {
1020 zspage->first_zpdesc = zpdesc;
1021 zpdesc_set_first(zpdesc);
1022 if (unlikely(class->objs_per_zspage == 1 &&
1023 class->pages_per_zspage == 1))
1024 SetZsHugePage(zspage);
1025 } else {
1026 prev_zpdesc->next = zpdesc;
1027 }
1028 prev_zpdesc = zpdesc;
1029 }
1030 }
1031
1032 /*
1033 * Allocate a zspage for the given size class
1034 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)1035 static struct zspage *alloc_zspage(struct zs_pool *pool,
1036 struct size_class *class,
1037 gfp_t gfp, const int nid)
1038 {
1039 int i;
1040 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
1041 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1042
1043 if (!zspage)
1044 return NULL;
1045
1046 zspage->magic = ZSPAGE_MAGIC;
1047 zspage->pool = pool;
1048 zspage->class = class->index;
1049 zspage_lock_init(zspage);
1050
1051 for (i = 0; i < class->pages_per_zspage; i++) {
1052 struct zpdesc *zpdesc;
1053
1054 zpdesc = alloc_zpdesc(gfp, nid);
1055 if (!zpdesc) {
1056 while (--i >= 0) {
1057 zpdesc_dec_zone_page_state(zpdescs[i]);
1058 __zpdesc_clear_zsmalloc(zpdescs[i]);
1059 free_zpdesc(zpdescs[i]);
1060 }
1061 cache_free_zspage(pool, zspage);
1062 return NULL;
1063 }
1064 __zpdesc_set_zsmalloc(zpdesc);
1065
1066 zpdesc_inc_zone_page_state(zpdesc);
1067 zpdescs[i] = zpdesc;
1068 }
1069
1070 create_page_chain(class, zspage, zpdescs);
1071 init_zspage(class, zspage);
1072
1073 return zspage;
1074 }
1075
find_get_zspage(struct size_class * class)1076 static struct zspage *find_get_zspage(struct size_class *class)
1077 {
1078 int i;
1079 struct zspage *zspage;
1080
1081 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1082 zspage = list_first_entry_or_null(&class->fullness_list[i],
1083 struct zspage, list);
1084 if (zspage)
1085 break;
1086 }
1087
1088 return zspage;
1089 }
1090
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1091 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1092 int objs_per_zspage)
1093 {
1094 if (prev->pages_per_zspage == pages_per_zspage &&
1095 prev->objs_per_zspage == objs_per_zspage)
1096 return true;
1097
1098 return false;
1099 }
1100
zspage_full(struct size_class * class,struct zspage * zspage)1101 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1102 {
1103 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1104 }
1105
zspage_empty(struct zspage * zspage)1106 static bool zspage_empty(struct zspage *zspage)
1107 {
1108 return get_zspage_inuse(zspage) == 0;
1109 }
1110
1111 /**
1112 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1113 * that hold objects of the provided size.
1114 * @pool: zsmalloc pool to use
1115 * @size: object size
1116 *
1117 * Context: Any context.
1118 *
1119 * Return: the index of the zsmalloc &size_class that hold objects of the
1120 * provided size.
1121 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1122 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1123 {
1124 struct size_class *class;
1125
1126 class = pool->size_class[get_size_class_index(size)];
1127
1128 return class->index;
1129 }
1130 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1131
zs_get_total_pages(struct zs_pool * pool)1132 unsigned long zs_get_total_pages(struct zs_pool *pool)
1133 {
1134 return atomic_long_read(&pool->pages_allocated);
1135 }
1136 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1137
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1138 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1139 void *local_copy)
1140 {
1141 struct zspage *zspage;
1142 struct zpdesc *zpdesc;
1143 unsigned long obj, off;
1144 unsigned int obj_idx;
1145 struct size_class *class;
1146 void *addr;
1147
1148 /* Guarantee we can get zspage from handle safely */
1149 read_lock(&pool->lock);
1150 obj = handle_to_obj(handle);
1151 obj_to_location(obj, &zpdesc, &obj_idx);
1152 zspage = get_zspage(zpdesc);
1153
1154 /* Make sure migration doesn't move any pages in this zspage */
1155 zspage_read_lock(zspage);
1156 read_unlock(&pool->lock);
1157
1158 class = zspage_class(pool, zspage);
1159 off = offset_in_page(class->size * obj_idx);
1160
1161 if (off + class->size <= PAGE_SIZE) {
1162 /* this object is contained entirely within a page */
1163 addr = kmap_local_zpdesc(zpdesc);
1164 addr += off;
1165 } else {
1166 size_t sizes[2];
1167
1168 /* this object spans two pages */
1169 sizes[0] = PAGE_SIZE - off;
1170 sizes[1] = class->size - sizes[0];
1171 addr = local_copy;
1172
1173 memcpy_from_page(addr, zpdesc_page(zpdesc),
1174 off, sizes[0]);
1175 zpdesc = get_next_zpdesc(zpdesc);
1176 memcpy_from_page(addr + sizes[0],
1177 zpdesc_page(zpdesc),
1178 0, sizes[1]);
1179 }
1180
1181 if (!ZsHugePage(zspage))
1182 addr += ZS_HANDLE_SIZE;
1183
1184 return addr;
1185 }
1186 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1187
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1188 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1189 void *handle_mem)
1190 {
1191 struct zspage *zspage;
1192 struct zpdesc *zpdesc;
1193 unsigned long obj, off;
1194 unsigned int obj_idx;
1195 struct size_class *class;
1196
1197 obj = handle_to_obj(handle);
1198 obj_to_location(obj, &zpdesc, &obj_idx);
1199 zspage = get_zspage(zpdesc);
1200 class = zspage_class(pool, zspage);
1201 off = offset_in_page(class->size * obj_idx);
1202
1203 if (off + class->size <= PAGE_SIZE) {
1204 if (!ZsHugePage(zspage))
1205 off += ZS_HANDLE_SIZE;
1206 handle_mem -= off;
1207 kunmap_local(handle_mem);
1208 }
1209
1210 zspage_read_unlock(zspage);
1211 }
1212 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1213
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1214 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1215 void *handle_mem, size_t mem_len)
1216 {
1217 struct zspage *zspage;
1218 struct zpdesc *zpdesc;
1219 unsigned long obj, off;
1220 unsigned int obj_idx;
1221 struct size_class *class;
1222
1223 /* Guarantee we can get zspage from handle safely */
1224 read_lock(&pool->lock);
1225 obj = handle_to_obj(handle);
1226 obj_to_location(obj, &zpdesc, &obj_idx);
1227 zspage = get_zspage(zpdesc);
1228
1229 /* Make sure migration doesn't move any pages in this zspage */
1230 zspage_read_lock(zspage);
1231 read_unlock(&pool->lock);
1232
1233 class = zspage_class(pool, zspage);
1234 off = offset_in_page(class->size * obj_idx);
1235
1236 if (!ZsHugePage(zspage))
1237 off += ZS_HANDLE_SIZE;
1238
1239 if (off + mem_len <= PAGE_SIZE) {
1240 /* this object is contained entirely within a page */
1241 void *dst = kmap_local_zpdesc(zpdesc);
1242
1243 memcpy(dst + off, handle_mem, mem_len);
1244 kunmap_local(dst);
1245 } else {
1246 /* this object spans two pages */
1247 size_t sizes[2];
1248
1249 sizes[0] = PAGE_SIZE - off;
1250 sizes[1] = mem_len - sizes[0];
1251
1252 memcpy_to_page(zpdesc_page(zpdesc), off,
1253 handle_mem, sizes[0]);
1254 zpdesc = get_next_zpdesc(zpdesc);
1255 memcpy_to_page(zpdesc_page(zpdesc), 0,
1256 handle_mem + sizes[0], sizes[1]);
1257 }
1258
1259 zspage_read_unlock(zspage);
1260 }
1261 EXPORT_SYMBOL_GPL(zs_obj_write);
1262
1263 /**
1264 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1265 * zsmalloc &size_class.
1266 * @pool: zsmalloc pool to use
1267 *
1268 * The function returns the size of the first huge class - any object of equal
1269 * or bigger size will be stored in zspage consisting of a single physical
1270 * page.
1271 *
1272 * Context: Any context.
1273 *
1274 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1275 */
zs_huge_class_size(struct zs_pool * pool)1276 size_t zs_huge_class_size(struct zs_pool *pool)
1277 {
1278 return huge_class_size;
1279 }
1280 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1281
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1282 static unsigned long obj_malloc(struct zs_pool *pool,
1283 struct zspage *zspage, unsigned long handle)
1284 {
1285 int i, nr_zpdesc, offset;
1286 unsigned long obj;
1287 struct link_free *link;
1288 struct size_class *class;
1289
1290 struct zpdesc *m_zpdesc;
1291 unsigned long m_offset;
1292 void *vaddr;
1293
1294 class = pool->size_class[zspage->class];
1295 obj = get_freeobj(zspage);
1296
1297 offset = obj * class->size;
1298 nr_zpdesc = offset >> PAGE_SHIFT;
1299 m_offset = offset_in_page(offset);
1300 m_zpdesc = get_first_zpdesc(zspage);
1301
1302 for (i = 0; i < nr_zpdesc; i++)
1303 m_zpdesc = get_next_zpdesc(m_zpdesc);
1304
1305 vaddr = kmap_local_zpdesc(m_zpdesc);
1306 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1307 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1308 if (likely(!ZsHugePage(zspage)))
1309 /* record handle in the header of allocated chunk */
1310 link->handle = handle | OBJ_ALLOCATED_TAG;
1311 else
1312 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1313
1314 kunmap_local(vaddr);
1315 mod_zspage_inuse(zspage, 1);
1316
1317 obj = location_to_obj(m_zpdesc, obj);
1318 record_obj(handle, obj);
1319
1320 return obj;
1321 }
1322
1323
1324 /**
1325 * zs_malloc - Allocate block of given size from pool.
1326 * @pool: pool to allocate from
1327 * @size: size of block to allocate
1328 * @gfp: gfp flags when allocating object
1329 * @nid: The preferred node id to allocate new zspage (if needed)
1330 *
1331 * On success, handle to the allocated object is returned,
1332 * otherwise an ERR_PTR().
1333 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1334 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1335 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1336 const int nid)
1337 {
1338 unsigned long handle;
1339 struct size_class *class;
1340 int newfg;
1341 struct zspage *zspage;
1342
1343 if (unlikely(!size))
1344 return (unsigned long)ERR_PTR(-EINVAL);
1345
1346 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1347 return (unsigned long)ERR_PTR(-ENOSPC);
1348
1349 handle = cache_alloc_handle(pool, gfp);
1350 if (!handle)
1351 return (unsigned long)ERR_PTR(-ENOMEM);
1352
1353 /* extra space in chunk to keep the handle */
1354 size += ZS_HANDLE_SIZE;
1355 class = pool->size_class[get_size_class_index(size)];
1356
1357 /* class->lock effectively protects the zpage migration */
1358 spin_lock(&class->lock);
1359 zspage = find_get_zspage(class);
1360 if (likely(zspage)) {
1361 obj_malloc(pool, zspage, handle);
1362 /* Now move the zspage to another fullness group, if required */
1363 fix_fullness_group(class, zspage);
1364 class_stat_add(class, ZS_OBJS_INUSE, 1);
1365
1366 goto out;
1367 }
1368
1369 spin_unlock(&class->lock);
1370
1371 zspage = alloc_zspage(pool, class, gfp, nid);
1372 if (!zspage) {
1373 cache_free_handle(pool, handle);
1374 return (unsigned long)ERR_PTR(-ENOMEM);
1375 }
1376
1377 spin_lock(&class->lock);
1378 obj_malloc(pool, zspage, handle);
1379 newfg = get_fullness_group(class, zspage);
1380 insert_zspage(class, zspage, newfg);
1381 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1382 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1383 class_stat_add(class, ZS_OBJS_INUSE, 1);
1384
1385 /* We completely set up zspage so mark them as movable */
1386 SetZsPageMovable(pool, zspage);
1387 out:
1388 spin_unlock(&class->lock);
1389
1390 return handle;
1391 }
1392 EXPORT_SYMBOL_GPL(zs_malloc);
1393
obj_free(int class_size,unsigned long obj)1394 static void obj_free(int class_size, unsigned long obj)
1395 {
1396 struct link_free *link;
1397 struct zspage *zspage;
1398 struct zpdesc *f_zpdesc;
1399 unsigned long f_offset;
1400 unsigned int f_objidx;
1401 void *vaddr;
1402
1403
1404 obj_to_location(obj, &f_zpdesc, &f_objidx);
1405 f_offset = offset_in_page(class_size * f_objidx);
1406 zspage = get_zspage(f_zpdesc);
1407
1408 vaddr = kmap_local_zpdesc(f_zpdesc);
1409 link = (struct link_free *)(vaddr + f_offset);
1410
1411 /* Insert this object in containing zspage's freelist */
1412 if (likely(!ZsHugePage(zspage)))
1413 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1414 else
1415 f_zpdesc->handle = 0;
1416 set_freeobj(zspage, f_objidx);
1417
1418 kunmap_local(vaddr);
1419 mod_zspage_inuse(zspage, -1);
1420 }
1421
zs_free(struct zs_pool * pool,unsigned long handle)1422 void zs_free(struct zs_pool *pool, unsigned long handle)
1423 {
1424 struct zspage *zspage;
1425 struct zpdesc *f_zpdesc;
1426 unsigned long obj;
1427 struct size_class *class;
1428 int fullness;
1429
1430 if (IS_ERR_OR_NULL((void *)handle))
1431 return;
1432
1433 /*
1434 * The pool->lock protects the race with zpage's migration
1435 * so it's safe to get the page from handle.
1436 */
1437 read_lock(&pool->lock);
1438 obj = handle_to_obj(handle);
1439 obj_to_zpdesc(obj, &f_zpdesc);
1440 zspage = get_zspage(f_zpdesc);
1441 class = zspage_class(pool, zspage);
1442 spin_lock(&class->lock);
1443 read_unlock(&pool->lock);
1444
1445 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1446 obj_free(class->size, obj);
1447
1448 fullness = fix_fullness_group(class, zspage);
1449 if (fullness == ZS_INUSE_RATIO_0)
1450 free_zspage(pool, class, zspage);
1451
1452 spin_unlock(&class->lock);
1453 cache_free_handle(pool, handle);
1454 }
1455 EXPORT_SYMBOL_GPL(zs_free);
1456
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1457 static void zs_object_copy(struct size_class *class, unsigned long dst,
1458 unsigned long src)
1459 {
1460 struct zpdesc *s_zpdesc, *d_zpdesc;
1461 unsigned int s_objidx, d_objidx;
1462 unsigned long s_off, d_off;
1463 void *s_addr, *d_addr;
1464 int s_size, d_size, size;
1465 int written = 0;
1466
1467 s_size = d_size = class->size;
1468
1469 obj_to_location(src, &s_zpdesc, &s_objidx);
1470 obj_to_location(dst, &d_zpdesc, &d_objidx);
1471
1472 s_off = offset_in_page(class->size * s_objidx);
1473 d_off = offset_in_page(class->size * d_objidx);
1474
1475 if (s_off + class->size > PAGE_SIZE)
1476 s_size = PAGE_SIZE - s_off;
1477
1478 if (d_off + class->size > PAGE_SIZE)
1479 d_size = PAGE_SIZE - d_off;
1480
1481 s_addr = kmap_local_zpdesc(s_zpdesc);
1482 d_addr = kmap_local_zpdesc(d_zpdesc);
1483
1484 while (1) {
1485 size = min(s_size, d_size);
1486 memcpy(d_addr + d_off, s_addr + s_off, size);
1487 written += size;
1488
1489 if (written == class->size)
1490 break;
1491
1492 s_off += size;
1493 s_size -= size;
1494 d_off += size;
1495 d_size -= size;
1496
1497 /*
1498 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1499 * calls must occurs in reverse order of calls to kmap_local_page().
1500 * So, to call kunmap_local(s_addr) we should first call
1501 * kunmap_local(d_addr). For more details see
1502 * Documentation/mm/highmem.rst.
1503 */
1504 if (s_off >= PAGE_SIZE) {
1505 kunmap_local(d_addr);
1506 kunmap_local(s_addr);
1507 s_zpdesc = get_next_zpdesc(s_zpdesc);
1508 s_addr = kmap_local_zpdesc(s_zpdesc);
1509 d_addr = kmap_local_zpdesc(d_zpdesc);
1510 s_size = class->size - written;
1511 s_off = 0;
1512 }
1513
1514 if (d_off >= PAGE_SIZE) {
1515 kunmap_local(d_addr);
1516 d_zpdesc = get_next_zpdesc(d_zpdesc);
1517 d_addr = kmap_local_zpdesc(d_zpdesc);
1518 d_size = class->size - written;
1519 d_off = 0;
1520 }
1521 }
1522
1523 kunmap_local(d_addr);
1524 kunmap_local(s_addr);
1525 }
1526
1527 /*
1528 * Find alloced object in zspage from index object and
1529 * return handle.
1530 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1531 static unsigned long find_alloced_obj(struct size_class *class,
1532 struct zpdesc *zpdesc, int *obj_idx)
1533 {
1534 unsigned int offset;
1535 int index = *obj_idx;
1536 unsigned long handle = 0;
1537 void *addr = kmap_local_zpdesc(zpdesc);
1538
1539 offset = get_first_obj_offset(zpdesc);
1540 offset += class->size * index;
1541
1542 while (offset < PAGE_SIZE) {
1543 if (obj_allocated(zpdesc, addr + offset, &handle))
1544 break;
1545
1546 offset += class->size;
1547 index++;
1548 }
1549
1550 kunmap_local(addr);
1551
1552 *obj_idx = index;
1553
1554 return handle;
1555 }
1556
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1557 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1558 struct zspage *dst_zspage)
1559 {
1560 unsigned long used_obj, free_obj;
1561 unsigned long handle;
1562 int obj_idx = 0;
1563 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1564 struct size_class *class = pool->size_class[src_zspage->class];
1565
1566 while (1) {
1567 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1568 if (!handle) {
1569 s_zpdesc = get_next_zpdesc(s_zpdesc);
1570 if (!s_zpdesc)
1571 break;
1572 obj_idx = 0;
1573 continue;
1574 }
1575
1576 used_obj = handle_to_obj(handle);
1577 free_obj = obj_malloc(pool, dst_zspage, handle);
1578 zs_object_copy(class, free_obj, used_obj);
1579 obj_idx++;
1580 obj_free(class->size, used_obj);
1581
1582 /* Stop if there is no more space */
1583 if (zspage_full(class, dst_zspage))
1584 break;
1585
1586 /* Stop if there are no more objects to migrate */
1587 if (zspage_empty(src_zspage))
1588 break;
1589 }
1590 }
1591
isolate_src_zspage(struct size_class * class)1592 static struct zspage *isolate_src_zspage(struct size_class *class)
1593 {
1594 struct zspage *zspage;
1595 int fg;
1596
1597 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1598 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1599 struct zspage, list);
1600 if (zspage) {
1601 remove_zspage(class, zspage);
1602 return zspage;
1603 }
1604 }
1605
1606 return zspage;
1607 }
1608
isolate_dst_zspage(struct size_class * class)1609 static struct zspage *isolate_dst_zspage(struct size_class *class)
1610 {
1611 struct zspage *zspage;
1612 int fg;
1613
1614 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1615 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1616 struct zspage, list);
1617 if (zspage) {
1618 remove_zspage(class, zspage);
1619 return zspage;
1620 }
1621 }
1622
1623 return zspage;
1624 }
1625
1626 /*
1627 * putback_zspage - add @zspage into right class's fullness list
1628 * @class: destination class
1629 * @zspage: target page
1630 *
1631 * Return @zspage's fullness status
1632 */
putback_zspage(struct size_class * class,struct zspage * zspage)1633 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1634 {
1635 int fullness;
1636
1637 fullness = get_fullness_group(class, zspage);
1638 insert_zspage(class, zspage, fullness);
1639
1640 return fullness;
1641 }
1642
1643 #ifdef CONFIG_COMPACTION
1644 /*
1645 * To prevent zspage destroy during migration, zspage freeing should
1646 * hold locks of all pages in the zspage.
1647 */
lock_zspage(struct zspage * zspage)1648 static void lock_zspage(struct zspage *zspage)
1649 {
1650 struct zpdesc *curr_zpdesc, *zpdesc;
1651
1652 /*
1653 * Pages we haven't locked yet can be migrated off the list while we're
1654 * trying to lock them, so we need to be careful and only attempt to
1655 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1656 * may no longer belong to the zspage. This means that we may wait for
1657 * the wrong page to unlock, so we must take a reference to the page
1658 * prior to waiting for it to unlock outside zspage_read_lock().
1659 */
1660 while (1) {
1661 zspage_read_lock(zspage);
1662 zpdesc = get_first_zpdesc(zspage);
1663 if (zpdesc_trylock(zpdesc))
1664 break;
1665 zpdesc_get(zpdesc);
1666 zspage_read_unlock(zspage);
1667 zpdesc_wait_locked(zpdesc);
1668 zpdesc_put(zpdesc);
1669 }
1670
1671 curr_zpdesc = zpdesc;
1672 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1673 if (zpdesc_trylock(zpdesc)) {
1674 curr_zpdesc = zpdesc;
1675 } else {
1676 zpdesc_get(zpdesc);
1677 zspage_read_unlock(zspage);
1678 zpdesc_wait_locked(zpdesc);
1679 zpdesc_put(zpdesc);
1680 zspage_read_lock(zspage);
1681 }
1682 }
1683 zspage_read_unlock(zspage);
1684 }
1685 #endif /* CONFIG_COMPACTION */
1686
1687 #ifdef CONFIG_COMPACTION
1688
1689 static const struct movable_operations zsmalloc_mops;
1690
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1691 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1692 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1693 {
1694 struct zpdesc *zpdesc;
1695 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1696 unsigned int first_obj_offset;
1697 int idx = 0;
1698
1699 zpdesc = get_first_zpdesc(zspage);
1700 do {
1701 if (zpdesc == oldzpdesc)
1702 zpdescs[idx] = newzpdesc;
1703 else
1704 zpdescs[idx] = zpdesc;
1705 idx++;
1706 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1707
1708 create_page_chain(class, zspage, zpdescs);
1709 first_obj_offset = get_first_obj_offset(oldzpdesc);
1710 set_first_obj_offset(newzpdesc, first_obj_offset);
1711 if (unlikely(ZsHugePage(zspage)))
1712 newzpdesc->handle = oldzpdesc->handle;
1713 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1714 }
1715
zs_page_isolate(struct page * page,isolate_mode_t mode)1716 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1717 {
1718 /*
1719 * Page is locked so zspage couldn't be destroyed. For detail, look at
1720 * lock_zspage in free_zspage.
1721 */
1722 VM_BUG_ON_PAGE(PageIsolated(page), page);
1723
1724 return true;
1725 }
1726
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1727 static int zs_page_migrate(struct page *newpage, struct page *page,
1728 enum migrate_mode mode)
1729 {
1730 struct zs_pool *pool;
1731 struct size_class *class;
1732 struct zspage *zspage;
1733 struct zpdesc *dummy;
1734 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1735 struct zpdesc *zpdesc = page_zpdesc(page);
1736 void *s_addr, *d_addr, *addr;
1737 unsigned int offset;
1738 unsigned long handle;
1739 unsigned long old_obj, new_obj;
1740 unsigned int obj_idx;
1741
1742 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1743
1744 /* The page is locked, so this pointer must remain valid */
1745 zspage = get_zspage(zpdesc);
1746 pool = zspage->pool;
1747
1748 /*
1749 * The pool migrate_lock protects the race between zpage migration
1750 * and zs_free.
1751 */
1752 write_lock(&pool->lock);
1753 class = zspage_class(pool, zspage);
1754
1755 /*
1756 * the class lock protects zpage alloc/free in the zspage.
1757 */
1758 spin_lock(&class->lock);
1759 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1760 if (!zspage_write_trylock(zspage)) {
1761 spin_unlock(&class->lock);
1762 write_unlock(&pool->lock);
1763 return -EINVAL;
1764 }
1765
1766 /* We're committed, tell the world that this is a Zsmalloc page. */
1767 __zpdesc_set_zsmalloc(newzpdesc);
1768
1769 offset = get_first_obj_offset(zpdesc);
1770 s_addr = kmap_local_zpdesc(zpdesc);
1771
1772 /*
1773 * Here, any user cannot access all objects in the zspage so let's move.
1774 */
1775 d_addr = kmap_local_zpdesc(newzpdesc);
1776 copy_page(d_addr, s_addr);
1777 kunmap_local(d_addr);
1778
1779 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1780 addr += class->size) {
1781 if (obj_allocated(zpdesc, addr, &handle)) {
1782
1783 old_obj = handle_to_obj(handle);
1784 obj_to_location(old_obj, &dummy, &obj_idx);
1785 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1786 record_obj(handle, new_obj);
1787 }
1788 }
1789 kunmap_local(s_addr);
1790
1791 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1792 /*
1793 * Since we complete the data copy and set up new zspage structure,
1794 * it's okay to release migration_lock.
1795 */
1796 write_unlock(&pool->lock);
1797 spin_unlock(&class->lock);
1798 zspage_write_unlock(zspage);
1799
1800 zpdesc_get(newzpdesc);
1801 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1802 zpdesc_dec_zone_page_state(zpdesc);
1803 zpdesc_inc_zone_page_state(newzpdesc);
1804 }
1805
1806 reset_zpdesc(zpdesc);
1807 zpdesc_put(zpdesc);
1808
1809 return MIGRATEPAGE_SUCCESS;
1810 }
1811
zs_page_putback(struct page * page)1812 static void zs_page_putback(struct page *page)
1813 {
1814 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1815 }
1816
1817 static const struct movable_operations zsmalloc_mops = {
1818 .isolate_page = zs_page_isolate,
1819 .migrate_page = zs_page_migrate,
1820 .putback_page = zs_page_putback,
1821 };
1822
1823 /*
1824 * Caller should hold page_lock of all pages in the zspage
1825 * In here, we cannot use zspage meta data.
1826 */
async_free_zspage(struct work_struct * work)1827 static void async_free_zspage(struct work_struct *work)
1828 {
1829 int i;
1830 struct size_class *class;
1831 struct zspage *zspage, *tmp;
1832 LIST_HEAD(free_pages);
1833 struct zs_pool *pool = container_of(work, struct zs_pool,
1834 free_work);
1835
1836 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1837 class = pool->size_class[i];
1838 if (class->index != i)
1839 continue;
1840
1841 spin_lock(&class->lock);
1842 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1843 &free_pages);
1844 spin_unlock(&class->lock);
1845 }
1846
1847 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1848 list_del(&zspage->list);
1849 lock_zspage(zspage);
1850
1851 class = zspage_class(pool, zspage);
1852 spin_lock(&class->lock);
1853 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1854 __free_zspage(pool, class, zspage);
1855 spin_unlock(&class->lock);
1856 }
1857 };
1858
kick_deferred_free(struct zs_pool * pool)1859 static void kick_deferred_free(struct zs_pool *pool)
1860 {
1861 schedule_work(&pool->free_work);
1862 }
1863
zs_flush_migration(struct zs_pool * pool)1864 static void zs_flush_migration(struct zs_pool *pool)
1865 {
1866 flush_work(&pool->free_work);
1867 }
1868
init_deferred_free(struct zs_pool * pool)1869 static void init_deferred_free(struct zs_pool *pool)
1870 {
1871 INIT_WORK(&pool->free_work, async_free_zspage);
1872 }
1873
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1874 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1875 {
1876 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1877
1878 do {
1879 WARN_ON(!zpdesc_trylock(zpdesc));
1880 __zpdesc_set_movable(zpdesc, &zsmalloc_mops);
1881 zpdesc_unlock(zpdesc);
1882 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1883 }
1884 #else
zs_flush_migration(struct zs_pool * pool)1885 static inline void zs_flush_migration(struct zs_pool *pool) { }
1886 #endif
1887
1888 /*
1889 *
1890 * Based on the number of unused allocated objects calculate
1891 * and return the number of pages that we can free.
1892 */
zs_can_compact(struct size_class * class)1893 static unsigned long zs_can_compact(struct size_class *class)
1894 {
1895 unsigned long obj_wasted;
1896 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1897 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1898
1899 if (obj_allocated <= obj_used)
1900 return 0;
1901
1902 obj_wasted = obj_allocated - obj_used;
1903 obj_wasted /= class->objs_per_zspage;
1904
1905 return obj_wasted * class->pages_per_zspage;
1906 }
1907
__zs_compact(struct zs_pool * pool,struct size_class * class)1908 static unsigned long __zs_compact(struct zs_pool *pool,
1909 struct size_class *class)
1910 {
1911 struct zspage *src_zspage = NULL;
1912 struct zspage *dst_zspage = NULL;
1913 unsigned long pages_freed = 0;
1914
1915 /*
1916 * protect the race between zpage migration and zs_free
1917 * as well as zpage allocation/free
1918 */
1919 write_lock(&pool->lock);
1920 spin_lock(&class->lock);
1921 while (zs_can_compact(class)) {
1922 int fg;
1923
1924 if (!dst_zspage) {
1925 dst_zspage = isolate_dst_zspage(class);
1926 if (!dst_zspage)
1927 break;
1928 }
1929
1930 src_zspage = isolate_src_zspage(class);
1931 if (!src_zspage)
1932 break;
1933
1934 if (!zspage_write_trylock(src_zspage))
1935 break;
1936
1937 migrate_zspage(pool, src_zspage, dst_zspage);
1938 zspage_write_unlock(src_zspage);
1939
1940 fg = putback_zspage(class, src_zspage);
1941 if (fg == ZS_INUSE_RATIO_0) {
1942 free_zspage(pool, class, src_zspage);
1943 pages_freed += class->pages_per_zspage;
1944 }
1945 src_zspage = NULL;
1946
1947 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1948 || rwlock_is_contended(&pool->lock)) {
1949 putback_zspage(class, dst_zspage);
1950 dst_zspage = NULL;
1951
1952 spin_unlock(&class->lock);
1953 write_unlock(&pool->lock);
1954 cond_resched();
1955 write_lock(&pool->lock);
1956 spin_lock(&class->lock);
1957 }
1958 }
1959
1960 if (src_zspage)
1961 putback_zspage(class, src_zspage);
1962
1963 if (dst_zspage)
1964 putback_zspage(class, dst_zspage);
1965
1966 spin_unlock(&class->lock);
1967 write_unlock(&pool->lock);
1968
1969 return pages_freed;
1970 }
1971
zs_compact(struct zs_pool * pool)1972 unsigned long zs_compact(struct zs_pool *pool)
1973 {
1974 int i;
1975 struct size_class *class;
1976 unsigned long pages_freed = 0;
1977
1978 /*
1979 * Pool compaction is performed under pool->lock so it is basically
1980 * single-threaded. Having more than one thread in __zs_compact()
1981 * will increase pool->lock contention, which will impact other
1982 * zsmalloc operations that need pool->lock.
1983 */
1984 if (atomic_xchg(&pool->compaction_in_progress, 1))
1985 return 0;
1986
1987 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1988 class = pool->size_class[i];
1989 if (class->index != i)
1990 continue;
1991 pages_freed += __zs_compact(pool, class);
1992 }
1993 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1994 atomic_set(&pool->compaction_in_progress, 0);
1995
1996 return pages_freed;
1997 }
1998 EXPORT_SYMBOL_GPL(zs_compact);
1999
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2000 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2001 {
2002 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2003 }
2004 EXPORT_SYMBOL_GPL(zs_pool_stats);
2005
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2006 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2007 struct shrink_control *sc)
2008 {
2009 unsigned long pages_freed;
2010 struct zs_pool *pool = shrinker->private_data;
2011
2012 /*
2013 * Compact classes and calculate compaction delta.
2014 * Can run concurrently with a manually triggered
2015 * (by user) compaction.
2016 */
2017 pages_freed = zs_compact(pool);
2018
2019 return pages_freed ? pages_freed : SHRINK_STOP;
2020 }
2021
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2022 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2023 struct shrink_control *sc)
2024 {
2025 int i;
2026 struct size_class *class;
2027 unsigned long pages_to_free = 0;
2028 struct zs_pool *pool = shrinker->private_data;
2029
2030 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2031 class = pool->size_class[i];
2032 if (class->index != i)
2033 continue;
2034
2035 pages_to_free += zs_can_compact(class);
2036 }
2037
2038 return pages_to_free;
2039 }
2040
zs_unregister_shrinker(struct zs_pool * pool)2041 static void zs_unregister_shrinker(struct zs_pool *pool)
2042 {
2043 shrinker_free(pool->shrinker);
2044 }
2045
zs_register_shrinker(struct zs_pool * pool)2046 static int zs_register_shrinker(struct zs_pool *pool)
2047 {
2048 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2049 if (!pool->shrinker)
2050 return -ENOMEM;
2051
2052 pool->shrinker->scan_objects = zs_shrinker_scan;
2053 pool->shrinker->count_objects = zs_shrinker_count;
2054 pool->shrinker->batch = 0;
2055 pool->shrinker->private_data = pool;
2056
2057 shrinker_register(pool->shrinker);
2058
2059 return 0;
2060 }
2061
calculate_zspage_chain_size(int class_size)2062 static int calculate_zspage_chain_size(int class_size)
2063 {
2064 int i, min_waste = INT_MAX;
2065 int chain_size = 1;
2066
2067 if (is_power_of_2(class_size))
2068 return chain_size;
2069
2070 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2071 int waste;
2072
2073 waste = (i * PAGE_SIZE) % class_size;
2074 if (waste < min_waste) {
2075 min_waste = waste;
2076 chain_size = i;
2077 }
2078 }
2079
2080 return chain_size;
2081 }
2082
2083 /**
2084 * zs_create_pool - Creates an allocation pool to work from.
2085 * @name: pool name to be created
2086 *
2087 * This function must be called before anything when using
2088 * the zsmalloc allocator.
2089 *
2090 * On success, a pointer to the newly created pool is returned,
2091 * otherwise NULL.
2092 */
zs_create_pool(const char * name)2093 struct zs_pool *zs_create_pool(const char *name)
2094 {
2095 int i;
2096 struct zs_pool *pool;
2097 struct size_class *prev_class = NULL;
2098
2099 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2100 if (!pool)
2101 return NULL;
2102
2103 init_deferred_free(pool);
2104 rwlock_init(&pool->lock);
2105 atomic_set(&pool->compaction_in_progress, 0);
2106
2107 pool->name = kstrdup(name, GFP_KERNEL);
2108 if (!pool->name)
2109 goto err;
2110
2111 if (create_cache(pool))
2112 goto err;
2113
2114 /*
2115 * Iterate reversely, because, size of size_class that we want to use
2116 * for merging should be larger or equal to current size.
2117 */
2118 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2119 int size;
2120 int pages_per_zspage;
2121 int objs_per_zspage;
2122 struct size_class *class;
2123 int fullness;
2124
2125 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2126 if (size > ZS_MAX_ALLOC_SIZE)
2127 size = ZS_MAX_ALLOC_SIZE;
2128 pages_per_zspage = calculate_zspage_chain_size(size);
2129 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2130
2131 /*
2132 * We iterate from biggest down to smallest classes,
2133 * so huge_class_size holds the size of the first huge
2134 * class. Any object bigger than or equal to that will
2135 * endup in the huge class.
2136 */
2137 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2138 !huge_class_size) {
2139 huge_class_size = size;
2140 /*
2141 * The object uses ZS_HANDLE_SIZE bytes to store the
2142 * handle. We need to subtract it, because zs_malloc()
2143 * unconditionally adds handle size before it performs
2144 * size class search - so object may be smaller than
2145 * huge class size, yet it still can end up in the huge
2146 * class because it grows by ZS_HANDLE_SIZE extra bytes
2147 * right before class lookup.
2148 */
2149 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2150 }
2151
2152 /*
2153 * size_class is used for normal zsmalloc operation such
2154 * as alloc/free for that size. Although it is natural that we
2155 * have one size_class for each size, there is a chance that we
2156 * can get more memory utilization if we use one size_class for
2157 * many different sizes whose size_class have same
2158 * characteristics. So, we makes size_class point to
2159 * previous size_class if possible.
2160 */
2161 if (prev_class) {
2162 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2163 pool->size_class[i] = prev_class;
2164 continue;
2165 }
2166 }
2167
2168 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2169 if (!class)
2170 goto err;
2171
2172 class->size = size;
2173 class->index = i;
2174 class->pages_per_zspage = pages_per_zspage;
2175 class->objs_per_zspage = objs_per_zspage;
2176 spin_lock_init(&class->lock);
2177 pool->size_class[i] = class;
2178
2179 fullness = ZS_INUSE_RATIO_0;
2180 while (fullness < NR_FULLNESS_GROUPS) {
2181 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2182 fullness++;
2183 }
2184
2185 prev_class = class;
2186 }
2187
2188 /* debug only, don't abort if it fails */
2189 zs_pool_stat_create(pool, name);
2190
2191 /*
2192 * Not critical since shrinker is only used to trigger internal
2193 * defragmentation of the pool which is pretty optional thing. If
2194 * registration fails we still can use the pool normally and user can
2195 * trigger compaction manually. Thus, ignore return code.
2196 */
2197 zs_register_shrinker(pool);
2198
2199 return pool;
2200
2201 err:
2202 zs_destroy_pool(pool);
2203 return NULL;
2204 }
2205 EXPORT_SYMBOL_GPL(zs_create_pool);
2206
zs_destroy_pool(struct zs_pool * pool)2207 void zs_destroy_pool(struct zs_pool *pool)
2208 {
2209 int i;
2210
2211 zs_unregister_shrinker(pool);
2212 zs_flush_migration(pool);
2213 zs_pool_stat_destroy(pool);
2214
2215 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2216 int fg;
2217 struct size_class *class = pool->size_class[i];
2218
2219 if (!class)
2220 continue;
2221
2222 if (class->index != i)
2223 continue;
2224
2225 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2226 if (list_empty(&class->fullness_list[fg]))
2227 continue;
2228
2229 pr_err("Class-%d fullness group %d is not empty\n",
2230 class->size, fg);
2231 }
2232 kfree(class);
2233 }
2234
2235 destroy_cache(pool);
2236 kfree(pool->name);
2237 kfree(pool);
2238 }
2239 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2240
zs_init(void)2241 static int __init zs_init(void)
2242 {
2243 #ifdef CONFIG_ZPOOL
2244 zpool_register_driver(&zs_zpool_driver);
2245 #endif
2246 zs_stat_init();
2247 return 0;
2248 }
2249
zs_exit(void)2250 static void __exit zs_exit(void)
2251 {
2252 #ifdef CONFIG_ZPOOL
2253 zpool_unregister_driver(&zs_zpool_driver);
2254 #endif
2255 zs_stat_exit();
2256 }
2257
2258 module_init(zs_init);
2259 module_exit(zs_exit);
2260
2261 MODULE_LICENSE("Dual BSD/GPL");
2262 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2263 MODULE_DESCRIPTION("zsmalloc memory allocator");
2264