1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <cl@gentwo.org>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_PROC_FS
35 #ifdef CONFIG_NUMA
36 #define ENABLE_NUMA_STAT 1
37 static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_event[item], 0);
46 for_each_online_cpu(cpu) {
47 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
48 = 0;
49 }
50 }
51 }
52
53 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)54 static void zero_zones_numa_counters(void)
55 {
56 struct zone *zone;
57
58 for_each_populated_zone(zone)
59 zero_zone_numa_counters(zone);
60 }
61
62 /* zero global numa counters */
zero_global_numa_counters(void)63 static void zero_global_numa_counters(void)
64 {
65 int item;
66
67 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
68 atomic_long_set(&vm_numa_event[item], 0);
69 }
70
invalid_numa_statistics(void)71 static void invalid_numa_statistics(void)
72 {
73 zero_zones_numa_counters();
74 zero_global_numa_counters();
75 }
76
77 static DEFINE_MUTEX(vm_numa_stat_lock);
78
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)79 static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
80 void *buffer, size_t *length, loff_t *ppos)
81 {
82 int ret, oldval;
83
84 mutex_lock(&vm_numa_stat_lock);
85 if (write)
86 oldval = sysctl_vm_numa_stat;
87 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
88 if (ret || !write)
89 goto out;
90
91 if (oldval == sysctl_vm_numa_stat)
92 goto out;
93 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
94 static_branch_enable(&vm_numa_stat_key);
95 pr_info("enable numa statistics\n");
96 } else {
97 static_branch_disable(&vm_numa_stat_key);
98 invalid_numa_statistics();
99 pr_info("disable numa statistics, and clear numa counters\n");
100 }
101
102 out:
103 mutex_unlock(&vm_numa_stat_lock);
104 return ret;
105 }
106 #endif
107 #endif /* CONFIG_PROC_FS */
108
109 #ifdef CONFIG_VM_EVENT_COUNTERS
110 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
111 EXPORT_PER_CPU_SYMBOL(vm_event_states);
112
sum_vm_events(unsigned long * ret)113 static void sum_vm_events(unsigned long *ret)
114 {
115 int cpu;
116 int i;
117
118 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
119
120 for_each_online_cpu(cpu) {
121 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
122
123 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
124 ret[i] += this->event[i];
125 }
126 }
127
128 /*
129 * Accumulate the vm event counters across all CPUs.
130 * The result is unavoidably approximate - it can change
131 * during and after execution of this function.
132 */
all_vm_events(unsigned long * ret)133 void all_vm_events(unsigned long *ret)
134 {
135 cpus_read_lock();
136 sum_vm_events(ret);
137 cpus_read_unlock();
138 }
139 EXPORT_SYMBOL_GPL(all_vm_events);
140
141 /*
142 * Fold the foreign cpu events into our own.
143 *
144 * This is adding to the events on one processor
145 * but keeps the global counts constant.
146 */
vm_events_fold_cpu(int cpu)147 void vm_events_fold_cpu(int cpu)
148 {
149 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 int i;
151
152 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
153 count_vm_events(i, fold_state->event[i]);
154 fold_state->event[i] = 0;
155 }
156 }
157
158 #endif /* CONFIG_VM_EVENT_COUNTERS */
159
160 /*
161 * Manage combined zone based / global counters
162 *
163 * vm_stat contains the global counters
164 */
165 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
167 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
168 EXPORT_SYMBOL(vm_zone_stat);
169 EXPORT_SYMBOL(vm_node_stat);
170
171 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)172 static void fold_vm_zone_numa_events(struct zone *zone)
173 {
174 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
175 int cpu;
176 enum numa_stat_item item;
177
178 for_each_online_cpu(cpu) {
179 struct per_cpu_zonestat *pzstats;
180
181 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
182 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
183 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 }
185
186 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
187 zone_numa_event_add(zone_numa_events[item], zone, item);
188 }
189
fold_vm_numa_events(void)190 void fold_vm_numa_events(void)
191 {
192 struct zone *zone;
193
194 for_each_populated_zone(zone)
195 fold_vm_zone_numa_events(zone);
196 }
197 #endif
198
199 #ifdef CONFIG_SMP
200
calculate_pressure_threshold(struct zone * zone)201 int calculate_pressure_threshold(struct zone *zone)
202 {
203 int threshold;
204 int watermark_distance;
205
206 /*
207 * As vmstats are not up to date, there is drift between the estimated
208 * and real values. For high thresholds and a high number of CPUs, it
209 * is possible for the min watermark to be breached while the estimated
210 * value looks fine. The pressure threshold is a reduced value such
211 * that even the maximum amount of drift will not accidentally breach
212 * the min watermark
213 */
214 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
215 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216
217 /*
218 * Maximum threshold is 125
219 */
220 threshold = min(125, threshold);
221
222 return threshold;
223 }
224
calculate_normal_threshold(struct zone * zone)225 int calculate_normal_threshold(struct zone *zone)
226 {
227 int threshold;
228 int mem; /* memory in 128 MB units */
229
230 /*
231 * The threshold scales with the number of processors and the amount
232 * of memory per zone. More memory means that we can defer updates for
233 * longer, more processors could lead to more contention.
234 * fls() is used to have a cheap way of logarithmic scaling.
235 *
236 * Some sample thresholds:
237 *
238 * Threshold Processors (fls) Zonesize fls(mem)+1
239 * ------------------------------------------------------------------
240 * 8 1 1 0.9-1 GB 4
241 * 16 2 2 0.9-1 GB 4
242 * 20 2 2 1-2 GB 5
243 * 24 2 2 2-4 GB 6
244 * 28 2 2 4-8 GB 7
245 * 32 2 2 8-16 GB 8
246 * 4 2 2 <128M 1
247 * 30 4 3 2-4 GB 5
248 * 48 4 3 8-16 GB 8
249 * 32 8 4 1-2 GB 4
250 * 32 8 4 0.9-1GB 4
251 * 10 16 5 <128M 1
252 * 40 16 5 900M 4
253 * 70 64 7 2-4 GB 5
254 * 84 64 7 4-8 GB 6
255 * 108 512 9 4-8 GB 6
256 * 125 1024 10 8-16 GB 8
257 * 125 1024 10 16-32 GB 9
258 */
259
260 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
261
262 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263
264 /*
265 * Maximum threshold is 125
266 */
267 threshold = min(125, threshold);
268
269 return threshold;
270 }
271
272 /*
273 * Refresh the thresholds for each zone.
274 */
refresh_zone_stat_thresholds(void)275 void refresh_zone_stat_thresholds(void)
276 {
277 struct pglist_data *pgdat;
278 struct zone *zone;
279 int cpu;
280 int threshold;
281
282 /* Zero current pgdat thresholds */
283 for_each_online_pgdat(pgdat) {
284 for_each_online_cpu(cpu) {
285 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 }
287 }
288
289 for_each_populated_zone(zone) {
290 struct pglist_data *pgdat = zone->zone_pgdat;
291 unsigned long max_drift, tolerate_drift;
292
293 threshold = calculate_normal_threshold(zone);
294
295 for_each_online_cpu(cpu) {
296 int pgdat_threshold;
297
298 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 = threshold;
300
301 /* Base nodestat threshold on the largest populated zone. */
302 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
303 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
304 = max(threshold, pgdat_threshold);
305 }
306
307 /*
308 * Only set percpu_drift_mark if there is a danger that
309 * NR_FREE_PAGES reports the low watermark is ok when in fact
310 * the min watermark could be breached by an allocation
311 */
312 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
313 max_drift = num_online_cpus() * threshold;
314 if (max_drift > tolerate_drift)
315 zone->percpu_drift_mark = high_wmark_pages(zone) +
316 max_drift;
317 }
318 }
319
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))320 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
321 int (*calculate_pressure)(struct zone *))
322 {
323 struct zone *zone;
324 int cpu;
325 int threshold;
326 int i;
327
328 for (i = 0; i < pgdat->nr_zones; i++) {
329 zone = &pgdat->node_zones[i];
330 if (!zone->percpu_drift_mark)
331 continue;
332
333 threshold = (*calculate_pressure)(zone);
334 for_each_online_cpu(cpu)
335 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
336 = threshold;
337 }
338 }
339
340 /*
341 * For use when we know that interrupts are disabled,
342 * or when we know that preemption is disabled and that
343 * particular counter cannot be updated from interrupt context.
344 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)345 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 long delta)
347 {
348 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
349 s8 __percpu *p = pcp->vm_stat_diff + item;
350 long x;
351 long t;
352
353 /*
354 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
355 * atomicity is provided by IRQs being disabled -- either explicitly
356 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
357 * CPU migrations and preemption potentially corrupts a counter so
358 * disable preemption.
359 */
360 preempt_disable_nested();
361
362 x = delta + __this_cpu_read(*p);
363
364 t = __this_cpu_read(pcp->stat_threshold);
365
366 if (unlikely(abs(x) > t)) {
367 zone_page_state_add(x, zone, item);
368 x = 0;
369 }
370 __this_cpu_write(*p, x);
371
372 preempt_enable_nested();
373 }
374 EXPORT_SYMBOL(__mod_zone_page_state);
375
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 long delta)
378 {
379 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 long x;
382 long t;
383
384 if (vmstat_item_in_bytes(item)) {
385 /*
386 * Only cgroups use subpage accounting right now; at
387 * the global level, these items still change in
388 * multiples of whole pages. Store them as pages
389 * internally to keep the per-cpu counters compact.
390 */
391 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 delta >>= PAGE_SHIFT;
393 }
394
395 /* See __mod_zone_page_state() */
396 preempt_disable_nested();
397
398 x = delta + __this_cpu_read(*p);
399
400 t = __this_cpu_read(pcp->stat_threshold);
401
402 if (unlikely(abs(x) > t)) {
403 node_page_state_add(x, pgdat, item);
404 x = 0;
405 }
406 __this_cpu_write(*p, x);
407
408 preempt_enable_nested();
409 }
410 EXPORT_SYMBOL(__mod_node_page_state);
411
412 /*
413 * Optimized increment and decrement functions.
414 *
415 * These are only for a single page and therefore can take a struct page *
416 * argument instead of struct zone *. This allows the inclusion of the code
417 * generated for page_zone(page) into the optimized functions.
418 *
419 * No overflow check is necessary and therefore the differential can be
420 * incremented or decremented in place which may allow the compilers to
421 * generate better code.
422 * The increment or decrement is known and therefore one boundary check can
423 * be omitted.
424 *
425 * NOTE: These functions are very performance sensitive. Change only
426 * with care.
427 *
428 * Some processors have inc/dec instructions that are atomic vs an interrupt.
429 * However, the code must first determine the differential location in a zone
430 * based on the processor number and then inc/dec the counter. There is no
431 * guarantee without disabling preemption that the processor will not change
432 * in between and therefore the atomicity vs. interrupt cannot be exploited
433 * in a useful way here.
434 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)435 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
436 {
437 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
438 s8 __percpu *p = pcp->vm_stat_diff + item;
439 s8 v, t;
440
441 /* See __mod_zone_page_state() */
442 preempt_disable_nested();
443
444 v = __this_cpu_inc_return(*p);
445 t = __this_cpu_read(pcp->stat_threshold);
446 if (unlikely(v > t)) {
447 s8 overstep = t >> 1;
448
449 zone_page_state_add(v + overstep, zone, item);
450 __this_cpu_write(*p, -overstep);
451 }
452
453 preempt_enable_nested();
454 }
455
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)456 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
457 {
458 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
459 s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 s8 v, t;
461
462 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
463
464 /* See __mod_zone_page_state() */
465 preempt_disable_nested();
466
467 v = __this_cpu_inc_return(*p);
468 t = __this_cpu_read(pcp->stat_threshold);
469 if (unlikely(v > t)) {
470 s8 overstep = t >> 1;
471
472 node_page_state_add(v + overstep, pgdat, item);
473 __this_cpu_write(*p, -overstep);
474 }
475
476 preempt_enable_nested();
477 }
478
__inc_zone_page_state(struct page * page,enum zone_stat_item item)479 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
480 {
481 __inc_zone_state(page_zone(page), item);
482 }
483 EXPORT_SYMBOL(__inc_zone_page_state);
484
__inc_node_page_state(struct page * page,enum node_stat_item item)485 void __inc_node_page_state(struct page *page, enum node_stat_item item)
486 {
487 __inc_node_state(page_pgdat(page), item);
488 }
489 EXPORT_SYMBOL(__inc_node_page_state);
490
__dec_zone_state(struct zone * zone,enum zone_stat_item item)491 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
492 {
493 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
494 s8 __percpu *p = pcp->vm_stat_diff + item;
495 s8 v, t;
496
497 /* See __mod_zone_page_state() */
498 preempt_disable_nested();
499
500 v = __this_cpu_dec_return(*p);
501 t = __this_cpu_read(pcp->stat_threshold);
502 if (unlikely(v < - t)) {
503 s8 overstep = t >> 1;
504
505 zone_page_state_add(v - overstep, zone, item);
506 __this_cpu_write(*p, overstep);
507 }
508
509 preempt_enable_nested();
510 }
511
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)512 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
513 {
514 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
515 s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 s8 v, t;
517
518 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
519
520 /* See __mod_zone_page_state() */
521 preempt_disable_nested();
522
523 v = __this_cpu_dec_return(*p);
524 t = __this_cpu_read(pcp->stat_threshold);
525 if (unlikely(v < - t)) {
526 s8 overstep = t >> 1;
527
528 node_page_state_add(v - overstep, pgdat, item);
529 __this_cpu_write(*p, overstep);
530 }
531
532 preempt_enable_nested();
533 }
534
__dec_zone_page_state(struct page * page,enum zone_stat_item item)535 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
536 {
537 __dec_zone_state(page_zone(page), item);
538 }
539 EXPORT_SYMBOL(__dec_zone_page_state);
540
__dec_node_page_state(struct page * page,enum node_stat_item item)541 void __dec_node_page_state(struct page *page, enum node_stat_item item)
542 {
543 __dec_node_state(page_pgdat(page), item);
544 }
545 EXPORT_SYMBOL(__dec_node_page_state);
546
547 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
548 /*
549 * If we have cmpxchg_local support then we do not need to incur the overhead
550 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
551 *
552 * mod_state() modifies the zone counter state through atomic per cpu
553 * operations.
554 *
555 * Overstep mode specifies how overstep should handled:
556 * 0 No overstepping
557 * 1 Overstepping half of threshold
558 * -1 Overstepping minus half of threshold
559 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)560 static inline void mod_zone_state(struct zone *zone,
561 enum zone_stat_item item, long delta, int overstep_mode)
562 {
563 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
564 s8 __percpu *p = pcp->vm_stat_diff + item;
565 long n, t, z;
566 s8 o;
567
568 o = this_cpu_read(*p);
569 do {
570 z = 0; /* overflow to zone counters */
571
572 /*
573 * The fetching of the stat_threshold is racy. We may apply
574 * a counter threshold to the wrong the cpu if we get
575 * rescheduled while executing here. However, the next
576 * counter update will apply the threshold again and
577 * therefore bring the counter under the threshold again.
578 *
579 * Most of the time the thresholds are the same anyways
580 * for all cpus in a zone.
581 */
582 t = this_cpu_read(pcp->stat_threshold);
583
584 n = delta + (long)o;
585
586 if (abs(n) > t) {
587 int os = overstep_mode * (t >> 1) ;
588
589 /* Overflow must be added to zone counters */
590 z = n + os;
591 n = -os;
592 }
593 } while (!this_cpu_try_cmpxchg(*p, &o, n));
594
595 if (z)
596 zone_page_state_add(z, zone, item);
597 }
598
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)599 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
600 long delta)
601 {
602 mod_zone_state(zone, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_zone_page_state);
605
inc_zone_page_state(struct page * page,enum zone_stat_item item)606 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
607 {
608 mod_zone_state(page_zone(page), item, 1, 1);
609 }
610 EXPORT_SYMBOL(inc_zone_page_state);
611
dec_zone_page_state(struct page * page,enum zone_stat_item item)612 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
613 {
614 mod_zone_state(page_zone(page), item, -1, -1);
615 }
616 EXPORT_SYMBOL(dec_zone_page_state);
617
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)618 static inline void mod_node_state(struct pglist_data *pgdat,
619 enum node_stat_item item, int delta, int overstep_mode)
620 {
621 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
622 s8 __percpu *p = pcp->vm_node_stat_diff + item;
623 long n, t, z;
624 s8 o;
625
626 if (vmstat_item_in_bytes(item)) {
627 /*
628 * Only cgroups use subpage accounting right now; at
629 * the global level, these items still change in
630 * multiples of whole pages. Store them as pages
631 * internally to keep the per-cpu counters compact.
632 */
633 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
634 delta >>= PAGE_SHIFT;
635 }
636
637 o = this_cpu_read(*p);
638 do {
639 z = 0; /* overflow to node counters */
640
641 /*
642 * The fetching of the stat_threshold is racy. We may apply
643 * a counter threshold to the wrong the cpu if we get
644 * rescheduled while executing here. However, the next
645 * counter update will apply the threshold again and
646 * therefore bring the counter under the threshold again.
647 *
648 * Most of the time the thresholds are the same anyways
649 * for all cpus in a node.
650 */
651 t = this_cpu_read(pcp->stat_threshold);
652
653 n = delta + (long)o;
654
655 if (abs(n) > t) {
656 int os = overstep_mode * (t >> 1) ;
657
658 /* Overflow must be added to node counters */
659 z = n + os;
660 n = -os;
661 }
662 } while (!this_cpu_try_cmpxchg(*p, &o, n));
663
664 if (z)
665 node_page_state_add(z, pgdat, item);
666 }
667
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)668 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
669 long delta)
670 {
671 mod_node_state(pgdat, item, delta, 0);
672 }
673 EXPORT_SYMBOL(mod_node_page_state);
674
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)675 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
676 {
677 mod_node_state(pgdat, item, 1, 1);
678 }
679
inc_node_page_state(struct page * page,enum node_stat_item item)680 void inc_node_page_state(struct page *page, enum node_stat_item item)
681 {
682 mod_node_state(page_pgdat(page), item, 1, 1);
683 }
684 EXPORT_SYMBOL(inc_node_page_state);
685
dec_node_page_state(struct page * page,enum node_stat_item item)686 void dec_node_page_state(struct page *page, enum node_stat_item item)
687 {
688 mod_node_state(page_pgdat(page), item, -1, -1);
689 }
690 EXPORT_SYMBOL(dec_node_page_state);
691 #else
692 /*
693 * Use interrupt disable to serialize counter updates
694 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)695 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
696 long delta)
697 {
698 unsigned long flags;
699
700 local_irq_save(flags);
701 __mod_zone_page_state(zone, item, delta);
702 local_irq_restore(flags);
703 }
704 EXPORT_SYMBOL(mod_zone_page_state);
705
inc_zone_page_state(struct page * page,enum zone_stat_item item)706 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
707 {
708 unsigned long flags;
709 struct zone *zone;
710
711 zone = page_zone(page);
712 local_irq_save(flags);
713 __inc_zone_state(zone, item);
714 local_irq_restore(flags);
715 }
716 EXPORT_SYMBOL(inc_zone_page_state);
717
dec_zone_page_state(struct page * page,enum zone_stat_item item)718 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
719 {
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __dec_zone_page_state(page, item);
724 local_irq_restore(flags);
725 }
726 EXPORT_SYMBOL(dec_zone_page_state);
727
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)728 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
729 {
730 unsigned long flags;
731
732 local_irq_save(flags);
733 __inc_node_state(pgdat, item);
734 local_irq_restore(flags);
735 }
736 EXPORT_SYMBOL(inc_node_state);
737
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)738 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
739 long delta)
740 {
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __mod_node_page_state(pgdat, item, delta);
745 local_irq_restore(flags);
746 }
747 EXPORT_SYMBOL(mod_node_page_state);
748
inc_node_page_state(struct page * page,enum node_stat_item item)749 void inc_node_page_state(struct page *page, enum node_stat_item item)
750 {
751 unsigned long flags;
752 struct pglist_data *pgdat;
753
754 pgdat = page_pgdat(page);
755 local_irq_save(flags);
756 __inc_node_state(pgdat, item);
757 local_irq_restore(flags);
758 }
759 EXPORT_SYMBOL(inc_node_page_state);
760
dec_node_page_state(struct page * page,enum node_stat_item item)761 void dec_node_page_state(struct page *page, enum node_stat_item item)
762 {
763 unsigned long flags;
764
765 local_irq_save(flags);
766 __dec_node_page_state(page, item);
767 local_irq_restore(flags);
768 }
769 EXPORT_SYMBOL(dec_node_page_state);
770 #endif
771
772 /*
773 * Fold a differential into the global counters.
774 * Returns whether counters were updated.
775 */
fold_diff(int * zone_diff,int * node_diff)776 static int fold_diff(int *zone_diff, int *node_diff)
777 {
778 int i;
779 bool changed = false;
780
781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
782 if (zone_diff[i]) {
783 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
784 changed = true;
785 }
786 }
787
788 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
789 if (node_diff[i]) {
790 atomic_long_add(node_diff[i], &vm_node_stat[i]);
791 changed = true;
792 }
793 }
794
795 return changed;
796 }
797
798 /*
799 * Update the zone counters for the current cpu.
800 *
801 * Note that refresh_cpu_vm_stats strives to only access
802 * node local memory. The per cpu pagesets on remote zones are placed
803 * in the memory local to the processor using that pageset. So the
804 * loop over all zones will access a series of cachelines local to
805 * the processor.
806 *
807 * The call to zone_page_state_add updates the cachelines with the
808 * statistics in the remote zone struct as well as the global cachelines
809 * with the global counters. These could cause remote node cache line
810 * bouncing and will have to be only done when necessary.
811 *
812 * The function returns whether global counters were updated.
813 */
refresh_cpu_vm_stats(bool do_pagesets)814 static bool refresh_cpu_vm_stats(bool do_pagesets)
815 {
816 struct pglist_data *pgdat;
817 struct zone *zone;
818 int i;
819 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
820 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
821 bool changed = false;
822
823 for_each_populated_zone(zone) {
824 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
825 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
826
827 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
828 int v;
829
830 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
831 if (v) {
832
833 atomic_long_add(v, &zone->vm_stat[i]);
834 global_zone_diff[i] += v;
835 #ifdef CONFIG_NUMA
836 /* 3 seconds idle till flush */
837 __this_cpu_write(pcp->expire, 3);
838 #endif
839 }
840 }
841
842 if (do_pagesets) {
843 cond_resched();
844
845 if (decay_pcp_high(zone, this_cpu_ptr(pcp)))
846 changed = true;
847 #ifdef CONFIG_NUMA
848 /*
849 * Deal with draining the remote pageset of this
850 * processor
851 *
852 * Check if there are pages remaining in this pageset
853 * if not then there is nothing to expire.
854 */
855 if (!__this_cpu_read(pcp->expire) ||
856 !__this_cpu_read(pcp->count))
857 continue;
858
859 /*
860 * We never drain zones local to this processor.
861 */
862 if (zone_to_nid(zone) == numa_node_id()) {
863 __this_cpu_write(pcp->expire, 0);
864 continue;
865 }
866
867 if (__this_cpu_dec_return(pcp->expire)) {
868 changed = true;
869 continue;
870 }
871
872 if (__this_cpu_read(pcp->count)) {
873 drain_zone_pages(zone, this_cpu_ptr(pcp));
874 changed = true;
875 }
876 #endif
877 }
878 }
879
880 for_each_online_pgdat(pgdat) {
881 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
882
883 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
884 int v;
885
886 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
887 if (v) {
888 atomic_long_add(v, &pgdat->vm_stat[i]);
889 global_node_diff[i] += v;
890 }
891 }
892 }
893
894 if (fold_diff(global_zone_diff, global_node_diff))
895 changed = true;
896 return changed;
897 }
898
899 /*
900 * Fold the data for an offline cpu into the global array.
901 * There cannot be any access by the offline cpu and therefore
902 * synchronization is simplified.
903 */
cpu_vm_stats_fold(int cpu)904 void cpu_vm_stats_fold(int cpu)
905 {
906 struct pglist_data *pgdat;
907 struct zone *zone;
908 int i;
909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911
912 for_each_populated_zone(zone) {
913 struct per_cpu_zonestat *pzstats;
914
915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 if (pzstats->vm_stat_diff[i]) {
919 int v;
920
921 v = pzstats->vm_stat_diff[i];
922 pzstats->vm_stat_diff[i] = 0;
923 atomic_long_add(v, &zone->vm_stat[i]);
924 global_zone_diff[i] += v;
925 }
926 }
927 #ifdef CONFIG_NUMA
928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 if (pzstats->vm_numa_event[i]) {
930 unsigned long v;
931
932 v = pzstats->vm_numa_event[i];
933 pzstats->vm_numa_event[i] = 0;
934 zone_numa_event_add(v, zone, i);
935 }
936 }
937 #endif
938 }
939
940 for_each_online_pgdat(pgdat) {
941 struct per_cpu_nodestat *p;
942
943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944
945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 if (p->vm_node_stat_diff[i]) {
947 int v;
948
949 v = p->vm_node_stat_diff[i];
950 p->vm_node_stat_diff[i] = 0;
951 atomic_long_add(v, &pgdat->vm_stat[i]);
952 global_node_diff[i] += v;
953 }
954 }
955
956 fold_diff(global_zone_diff, global_node_diff);
957 }
958
959 /*
960 * this is only called if !populated_zone(zone), which implies no other users of
961 * pset->vm_stat_diff[] exist.
962 */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965 unsigned long v;
966 int i;
967
968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 if (pzstats->vm_stat_diff[i]) {
970 v = pzstats->vm_stat_diff[i];
971 pzstats->vm_stat_diff[i] = 0;
972 zone_page_state_add(v, zone, i);
973 }
974 }
975
976 #ifdef CONFIG_NUMA
977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 if (pzstats->vm_numa_event[i]) {
979 v = pzstats->vm_numa_event[i];
980 pzstats->vm_numa_event[i] = 0;
981 zone_numa_event_add(v, zone, i);
982 }
983 }
984 #endif
985 }
986 #endif
987
988 #ifdef CONFIG_NUMA
989 /*
990 * Determine the per node value of a stat item. This function
991 * is called frequently in a NUMA machine, so try to be as
992 * frugal as possible.
993 */
sum_zone_node_page_state(int node,enum zone_stat_item item)994 unsigned long sum_zone_node_page_state(int node,
995 enum zone_stat_item item)
996 {
997 struct zone *zones = NODE_DATA(node)->node_zones;
998 int i;
999 unsigned long count = 0;
1000
1001 for (i = 0; i < MAX_NR_ZONES; i++)
1002 count += zone_page_state(zones + i, item);
1003
1004 return count;
1005 }
1006
1007 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1008 unsigned long sum_zone_numa_event_state(int node,
1009 enum numa_stat_item item)
1010 {
1011 struct zone *zones = NODE_DATA(node)->node_zones;
1012 unsigned long count = 0;
1013 int i;
1014
1015 for (i = 0; i < MAX_NR_ZONES; i++)
1016 count += zone_numa_event_state(zones + i, item);
1017
1018 return count;
1019 }
1020
1021 /*
1022 * Determine the per node value of a stat item.
1023 */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1026 {
1027 long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029 if (x < 0)
1030 x = 0;
1031 #endif
1032 return x;
1033 }
1034
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 enum node_stat_item item)
1037 {
1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039
1040 return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043
1044 /*
1045 * Count number of pages "struct page" and "struct page_ext" consume.
1046 * nr_memmap_boot_pages: # of pages allocated by boot allocator
1047 * nr_memmap_pages: # of pages that were allocated by buddy allocator
1048 */
1049 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1050 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1051
memmap_boot_pages_add(long delta)1052 void memmap_boot_pages_add(long delta)
1053 {
1054 atomic_long_add(delta, &nr_memmap_boot_pages);
1055 }
1056
memmap_pages_add(long delta)1057 void memmap_pages_add(long delta)
1058 {
1059 atomic_long_add(delta, &nr_memmap_pages);
1060 }
1061
1062 #ifdef CONFIG_COMPACTION
1063
1064 struct contig_page_info {
1065 unsigned long free_pages;
1066 unsigned long free_blocks_total;
1067 unsigned long free_blocks_suitable;
1068 };
1069
1070 /*
1071 * Calculate the number of free pages in a zone, how many contiguous
1072 * pages are free and how many are large enough to satisfy an allocation of
1073 * the target size. Note that this function makes no attempt to estimate
1074 * how many suitable free blocks there *might* be if MOVABLE pages were
1075 * migrated. Calculating that is possible, but expensive and can be
1076 * figured out from userspace
1077 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1078 static void fill_contig_page_info(struct zone *zone,
1079 unsigned int suitable_order,
1080 struct contig_page_info *info)
1081 {
1082 unsigned int order;
1083
1084 info->free_pages = 0;
1085 info->free_blocks_total = 0;
1086 info->free_blocks_suitable = 0;
1087
1088 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1089 unsigned long blocks;
1090
1091 /*
1092 * Count number of free blocks.
1093 *
1094 * Access to nr_free is lockless as nr_free is used only for
1095 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1096 */
1097 blocks = data_race(zone->free_area[order].nr_free);
1098 info->free_blocks_total += blocks;
1099
1100 /* Count free base pages */
1101 info->free_pages += blocks << order;
1102
1103 /* Count the suitable free blocks */
1104 if (order >= suitable_order)
1105 info->free_blocks_suitable += blocks <<
1106 (order - suitable_order);
1107 }
1108 }
1109
1110 /*
1111 * A fragmentation index only makes sense if an allocation of a requested
1112 * size would fail. If that is true, the fragmentation index indicates
1113 * whether external fragmentation or a lack of memory was the problem.
1114 * The value can be used to determine if page reclaim or compaction
1115 * should be used
1116 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1117 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1118 {
1119 unsigned long requested = 1UL << order;
1120
1121 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1122 return 0;
1123
1124 if (!info->free_blocks_total)
1125 return 0;
1126
1127 /* Fragmentation index only makes sense when a request would fail */
1128 if (info->free_blocks_suitable)
1129 return -1000;
1130
1131 /*
1132 * Index is between 0 and 1 so return within 3 decimal places
1133 *
1134 * 0 => allocation would fail due to lack of memory
1135 * 1 => allocation would fail due to fragmentation
1136 */
1137 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1138 }
1139
1140 /*
1141 * Calculates external fragmentation within a zone wrt the given order.
1142 * It is defined as the percentage of pages found in blocks of size
1143 * less than 1 << order. It returns values in range [0, 100].
1144 */
extfrag_for_order(struct zone * zone,unsigned int order)1145 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1146 {
1147 struct contig_page_info info;
1148
1149 fill_contig_page_info(zone, order, &info);
1150 if (info.free_pages == 0)
1151 return 0;
1152
1153 return div_u64((info.free_pages -
1154 (info.free_blocks_suitable << order)) * 100,
1155 info.free_pages);
1156 }
1157
1158 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1159 int fragmentation_index(struct zone *zone, unsigned int order)
1160 {
1161 struct contig_page_info info;
1162
1163 fill_contig_page_info(zone, order, &info);
1164 return __fragmentation_index(order, &info);
1165 }
1166 #endif
1167
1168 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1169 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1170 #ifdef CONFIG_ZONE_DMA
1171 #define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma",
1172 #else
1173 #define TEXT_FOR_DMA(xx, yy)
1174 #endif
1175
1176 #ifdef CONFIG_ZONE_DMA32
1177 #define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32",
1178 #else
1179 #define TEXT_FOR_DMA32(xx, yy)
1180 #endif
1181
1182 #ifdef CONFIG_HIGHMEM
1183 #define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high",
1184 #else
1185 #define TEXT_FOR_HIGHMEM(xx, yy)
1186 #endif
1187
1188 #ifdef CONFIG_ZONE_DEVICE
1189 #define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device",
1190 #else
1191 #define TEXT_FOR_DEVICE(xx, yy)
1192 #endif
1193
1194 #define TEXTS_FOR_ZONES(xx, yy) \
1195 TEXT_FOR_DMA(xx, yy) \
1196 TEXT_FOR_DMA32(xx, yy) \
1197 [xx##_NORMAL] = yy "_normal", \
1198 TEXT_FOR_HIGHMEM(xx, yy) \
1199 [xx##_MOVABLE] = yy "_movable", \
1200 TEXT_FOR_DEVICE(xx, yy)
1201
1202 const char * const vmstat_text[] = {
1203 /* enum zone_stat_item counters */
1204 #define I(x) (x)
1205 [I(NR_FREE_PAGES)] = "nr_free_pages",
1206 [I(NR_FREE_PAGES_BLOCKS)] = "nr_free_pages_blocks",
1207 [I(NR_ZONE_INACTIVE_ANON)] = "nr_zone_inactive_anon",
1208 [I(NR_ZONE_ACTIVE_ANON)] = "nr_zone_active_anon",
1209 [I(NR_ZONE_INACTIVE_FILE)] = "nr_zone_inactive_file",
1210 [I(NR_ZONE_ACTIVE_FILE)] = "nr_zone_active_file",
1211 [I(NR_ZONE_UNEVICTABLE)] = "nr_zone_unevictable",
1212 [I(NR_ZONE_WRITE_PENDING)] = "nr_zone_write_pending",
1213 [I(NR_MLOCK)] = "nr_mlock",
1214 #if IS_ENABLED(CONFIG_ZSMALLOC)
1215 [I(NR_ZSPAGES)] = "nr_zspages",
1216 #endif
1217 [I(NR_FREE_CMA_PAGES)] = "nr_free_cma",
1218 #ifdef CONFIG_UNACCEPTED_MEMORY
1219 [I(NR_UNACCEPTED)] = "nr_unaccepted",
1220 #endif
1221 #undef I
1222
1223 /* enum numa_stat_item counters */
1224 #define I(x) (NR_VM_ZONE_STAT_ITEMS + x)
1225 #ifdef CONFIG_NUMA
1226 [I(NUMA_HIT)] = "numa_hit",
1227 [I(NUMA_MISS)] = "numa_miss",
1228 [I(NUMA_FOREIGN)] = "numa_foreign",
1229 [I(NUMA_INTERLEAVE_HIT)] = "numa_interleave",
1230 [I(NUMA_LOCAL)] = "numa_local",
1231 [I(NUMA_OTHER)] = "numa_other",
1232 #endif
1233 #undef I
1234
1235 /* enum node_stat_item counters */
1236 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x)
1237 [I(NR_INACTIVE_ANON)] = "nr_inactive_anon",
1238 [I(NR_ACTIVE_ANON)] = "nr_active_anon",
1239 [I(NR_INACTIVE_FILE)] = "nr_inactive_file",
1240 [I(NR_ACTIVE_FILE)] = "nr_active_file",
1241 [I(NR_UNEVICTABLE)] = "nr_unevictable",
1242 [I(NR_SLAB_RECLAIMABLE_B)] = "nr_slab_reclaimable",
1243 [I(NR_SLAB_UNRECLAIMABLE_B)] = "nr_slab_unreclaimable",
1244 [I(NR_ISOLATED_ANON)] = "nr_isolated_anon",
1245 [I(NR_ISOLATED_FILE)] = "nr_isolated_file",
1246 [I(WORKINGSET_NODES)] = "workingset_nodes",
1247 [I(WORKINGSET_REFAULT_ANON)] = "workingset_refault_anon",
1248 [I(WORKINGSET_REFAULT_FILE)] = "workingset_refault_file",
1249 [I(WORKINGSET_ACTIVATE_ANON)] = "workingset_activate_anon",
1250 [I(WORKINGSET_ACTIVATE_FILE)] = "workingset_activate_file",
1251 [I(WORKINGSET_RESTORE_ANON)] = "workingset_restore_anon",
1252 [I(WORKINGSET_RESTORE_FILE)] = "workingset_restore_file",
1253 [I(WORKINGSET_NODERECLAIM)] = "workingset_nodereclaim",
1254 [I(NR_ANON_MAPPED)] = "nr_anon_pages",
1255 [I(NR_FILE_MAPPED)] = "nr_mapped",
1256 [I(NR_FILE_PAGES)] = "nr_file_pages",
1257 [I(NR_FILE_DIRTY)] = "nr_dirty",
1258 [I(NR_WRITEBACK)] = "nr_writeback",
1259 [I(NR_SHMEM)] = "nr_shmem",
1260 [I(NR_SHMEM_THPS)] = "nr_shmem_hugepages",
1261 [I(NR_SHMEM_PMDMAPPED)] = "nr_shmem_pmdmapped",
1262 [I(NR_FILE_THPS)] = "nr_file_hugepages",
1263 [I(NR_FILE_PMDMAPPED)] = "nr_file_pmdmapped",
1264 [I(NR_ANON_THPS)] = "nr_anon_transparent_hugepages",
1265 [I(NR_VMSCAN_WRITE)] = "nr_vmscan_write",
1266 [I(NR_VMSCAN_IMMEDIATE)] = "nr_vmscan_immediate_reclaim",
1267 [I(NR_DIRTIED)] = "nr_dirtied",
1268 [I(NR_WRITTEN)] = "nr_written",
1269 [I(NR_THROTTLED_WRITTEN)] = "nr_throttled_written",
1270 [I(NR_KERNEL_MISC_RECLAIMABLE)] = "nr_kernel_misc_reclaimable",
1271 [I(NR_FOLL_PIN_ACQUIRED)] = "nr_foll_pin_acquired",
1272 [I(NR_FOLL_PIN_RELEASED)] = "nr_foll_pin_released",
1273 [I(NR_KERNEL_STACK_KB)] = "nr_kernel_stack",
1274 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1275 [I(NR_KERNEL_SCS_KB)] = "nr_shadow_call_stack",
1276 #endif
1277 [I(NR_PAGETABLE)] = "nr_page_table_pages",
1278 [I(NR_SECONDARY_PAGETABLE)] = "nr_sec_page_table_pages",
1279 #ifdef CONFIG_IOMMU_SUPPORT
1280 [I(NR_IOMMU_PAGES)] = "nr_iommu_pages",
1281 #endif
1282 #ifdef CONFIG_SWAP
1283 [I(NR_SWAPCACHE)] = "nr_swapcached",
1284 #endif
1285 #ifdef CONFIG_NUMA_BALANCING
1286 [I(PGPROMOTE_SUCCESS)] = "pgpromote_success",
1287 [I(PGPROMOTE_CANDIDATE)] = "pgpromote_candidate",
1288 [I(PGPROMOTE_CANDIDATE_NRL)] = "pgpromote_candidate_nrl",
1289 #endif
1290 [I(PGDEMOTE_KSWAPD)] = "pgdemote_kswapd",
1291 [I(PGDEMOTE_DIRECT)] = "pgdemote_direct",
1292 [I(PGDEMOTE_KHUGEPAGED)] = "pgdemote_khugepaged",
1293 [I(PGDEMOTE_PROACTIVE)] = "pgdemote_proactive",
1294 #ifdef CONFIG_HUGETLB_PAGE
1295 [I(NR_HUGETLB)] = "nr_hugetlb",
1296 #endif
1297 [I(NR_BALLOON_PAGES)] = "nr_balloon_pages",
1298 [I(NR_KERNEL_FILE_PAGES)] = "nr_kernel_file_pages",
1299 #undef I
1300
1301 /* system-wide enum vm_stat_item counters */
1302 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1303 NR_VM_NODE_STAT_ITEMS + x)
1304 [I(NR_DIRTY_THRESHOLD)] = "nr_dirty_threshold",
1305 [I(NR_DIRTY_BG_THRESHOLD)] = "nr_dirty_background_threshold",
1306 [I(NR_MEMMAP_PAGES)] = "nr_memmap_pages",
1307 [I(NR_MEMMAP_BOOT_PAGES)] = "nr_memmap_boot_pages",
1308 #undef I
1309
1310 #if defined(CONFIG_VM_EVENT_COUNTERS)
1311 /* enum vm_event_item counters */
1312 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1313 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x)
1314
1315 [I(PGPGIN)] = "pgpgin",
1316 [I(PGPGOUT)] = "pgpgout",
1317 [I(PSWPIN)] = "pswpin",
1318 [I(PSWPOUT)] = "pswpout",
1319
1320 #define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1321 NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS)
1322 TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc")
1323 TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall")
1324 TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip")
1325 #undef OFF
1326
1327 [I(PGFREE)] = "pgfree",
1328 [I(PGACTIVATE)] = "pgactivate",
1329 [I(PGDEACTIVATE)] = "pgdeactivate",
1330 [I(PGLAZYFREE)] = "pglazyfree",
1331
1332 [I(PGFAULT)] = "pgfault",
1333 [I(PGMAJFAULT)] = "pgmajfault",
1334 [I(PGLAZYFREED)] = "pglazyfreed",
1335
1336 [I(PGREFILL)] = "pgrefill",
1337 [I(PGREUSE)] = "pgreuse",
1338 [I(PGSTEAL_KSWAPD)] = "pgsteal_kswapd",
1339 [I(PGSTEAL_DIRECT)] = "pgsteal_direct",
1340 [I(PGSTEAL_KHUGEPAGED)] = "pgsteal_khugepaged",
1341 [I(PGSTEAL_PROACTIVE)] = "pgsteal_proactive",
1342 [I(PGSCAN_KSWAPD)] = "pgscan_kswapd",
1343 [I(PGSCAN_DIRECT)] = "pgscan_direct",
1344 [I(PGSCAN_KHUGEPAGED)] = "pgscan_khugepaged",
1345 [I(PGSCAN_PROACTIVE)] = "pgscan_proactive",
1346 [I(PGSCAN_DIRECT_THROTTLE)] = "pgscan_direct_throttle",
1347 [I(PGSCAN_ANON)] = "pgscan_anon",
1348 [I(PGSCAN_FILE)] = "pgscan_file",
1349 [I(PGSTEAL_ANON)] = "pgsteal_anon",
1350 [I(PGSTEAL_FILE)] = "pgsteal_file",
1351
1352 #ifdef CONFIG_NUMA
1353 [I(PGSCAN_ZONE_RECLAIM_SUCCESS)] = "zone_reclaim_success",
1354 [I(PGSCAN_ZONE_RECLAIM_FAILED)] = "zone_reclaim_failed",
1355 #endif
1356 [I(PGINODESTEAL)] = "pginodesteal",
1357 [I(SLABS_SCANNED)] = "slabs_scanned",
1358 [I(KSWAPD_INODESTEAL)] = "kswapd_inodesteal",
1359 [I(KSWAPD_LOW_WMARK_HIT_QUICKLY)] = "kswapd_low_wmark_hit_quickly",
1360 [I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)] = "kswapd_high_wmark_hit_quickly",
1361 [I(PAGEOUTRUN)] = "pageoutrun",
1362
1363 [I(PGROTATED)] = "pgrotated",
1364
1365 [I(DROP_PAGECACHE)] = "drop_pagecache",
1366 [I(DROP_SLAB)] = "drop_slab",
1367 [I(OOM_KILL)] = "oom_kill",
1368
1369 #ifdef CONFIG_NUMA_BALANCING
1370 [I(NUMA_PTE_UPDATES)] = "numa_pte_updates",
1371 [I(NUMA_HUGE_PTE_UPDATES)] = "numa_huge_pte_updates",
1372 [I(NUMA_HINT_FAULTS)] = "numa_hint_faults",
1373 [I(NUMA_HINT_FAULTS_LOCAL)] = "numa_hint_faults_local",
1374 [I(NUMA_PAGE_MIGRATE)] = "numa_pages_migrated",
1375 #endif
1376 #ifdef CONFIG_MIGRATION
1377 [I(PGMIGRATE_SUCCESS)] = "pgmigrate_success",
1378 [I(PGMIGRATE_FAIL)] = "pgmigrate_fail",
1379 [I(THP_MIGRATION_SUCCESS)] = "thp_migration_success",
1380 [I(THP_MIGRATION_FAIL)] = "thp_migration_fail",
1381 [I(THP_MIGRATION_SPLIT)] = "thp_migration_split",
1382 #endif
1383 #ifdef CONFIG_COMPACTION
1384 [I(COMPACTMIGRATE_SCANNED)] = "compact_migrate_scanned",
1385 [I(COMPACTFREE_SCANNED)] = "compact_free_scanned",
1386 [I(COMPACTISOLATED)] = "compact_isolated",
1387 [I(COMPACTSTALL)] = "compact_stall",
1388 [I(COMPACTFAIL)] = "compact_fail",
1389 [I(COMPACTSUCCESS)] = "compact_success",
1390 [I(KCOMPACTD_WAKE)] = "compact_daemon_wake",
1391 [I(KCOMPACTD_MIGRATE_SCANNED)] = "compact_daemon_migrate_scanned",
1392 [I(KCOMPACTD_FREE_SCANNED)] = "compact_daemon_free_scanned",
1393 #endif
1394
1395 #ifdef CONFIG_HUGETLB_PAGE
1396 [I(HTLB_BUDDY_PGALLOC)] = "htlb_buddy_alloc_success",
1397 [I(HTLB_BUDDY_PGALLOC_FAIL)] = "htlb_buddy_alloc_fail",
1398 #endif
1399 #ifdef CONFIG_CMA
1400 [I(CMA_ALLOC_SUCCESS)] = "cma_alloc_success",
1401 [I(CMA_ALLOC_FAIL)] = "cma_alloc_fail",
1402 #endif
1403 [I(UNEVICTABLE_PGCULLED)] = "unevictable_pgs_culled",
1404 [I(UNEVICTABLE_PGSCANNED)] = "unevictable_pgs_scanned",
1405 [I(UNEVICTABLE_PGRESCUED)] = "unevictable_pgs_rescued",
1406 [I(UNEVICTABLE_PGMLOCKED)] = "unevictable_pgs_mlocked",
1407 [I(UNEVICTABLE_PGMUNLOCKED)] = "unevictable_pgs_munlocked",
1408 [I(UNEVICTABLE_PGCLEARED)] = "unevictable_pgs_cleared",
1409 [I(UNEVICTABLE_PGSTRANDED)] = "unevictable_pgs_stranded",
1410
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 [I(THP_FAULT_ALLOC)] = "thp_fault_alloc",
1413 [I(THP_FAULT_FALLBACK)] = "thp_fault_fallback",
1414 [I(THP_FAULT_FALLBACK_CHARGE)] = "thp_fault_fallback_charge",
1415 [I(THP_COLLAPSE_ALLOC)] = "thp_collapse_alloc",
1416 [I(THP_COLLAPSE_ALLOC_FAILED)] = "thp_collapse_alloc_failed",
1417 [I(THP_FILE_ALLOC)] = "thp_file_alloc",
1418 [I(THP_FILE_FALLBACK)] = "thp_file_fallback",
1419 [I(THP_FILE_FALLBACK_CHARGE)] = "thp_file_fallback_charge",
1420 [I(THP_FILE_MAPPED)] = "thp_file_mapped",
1421 [I(THP_SPLIT_PAGE)] = "thp_split_page",
1422 [I(THP_SPLIT_PAGE_FAILED)] = "thp_split_page_failed",
1423 [I(THP_DEFERRED_SPLIT_PAGE)] = "thp_deferred_split_page",
1424 [I(THP_UNDERUSED_SPLIT_PAGE)] = "thp_underused_split_page",
1425 [I(THP_SPLIT_PMD)] = "thp_split_pmd",
1426 [I(THP_SCAN_EXCEED_NONE_PTE)] = "thp_scan_exceed_none_pte",
1427 [I(THP_SCAN_EXCEED_SWAP_PTE)] = "thp_scan_exceed_swap_pte",
1428 [I(THP_SCAN_EXCEED_SHARED_PTE)] = "thp_scan_exceed_share_pte",
1429 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1430 [I(THP_SPLIT_PUD)] = "thp_split_pud",
1431 #endif
1432 [I(THP_ZERO_PAGE_ALLOC)] = "thp_zero_page_alloc",
1433 [I(THP_ZERO_PAGE_ALLOC_FAILED)] = "thp_zero_page_alloc_failed",
1434 [I(THP_SWPOUT)] = "thp_swpout",
1435 [I(THP_SWPOUT_FALLBACK)] = "thp_swpout_fallback",
1436 #endif
1437 #ifdef CONFIG_MEMORY_BALLOON
1438 [I(BALLOON_INFLATE)] = "balloon_inflate",
1439 [I(BALLOON_DEFLATE)] = "balloon_deflate",
1440 #ifdef CONFIG_BALLOON_COMPACTION
1441 [I(BALLOON_MIGRATE)] = "balloon_migrate",
1442 #endif
1443 #endif /* CONFIG_MEMORY_BALLOON */
1444 #ifdef CONFIG_DEBUG_TLBFLUSH
1445 [I(NR_TLB_REMOTE_FLUSH)] = "nr_tlb_remote_flush",
1446 [I(NR_TLB_REMOTE_FLUSH_RECEIVED)] = "nr_tlb_remote_flush_received",
1447 [I(NR_TLB_LOCAL_FLUSH_ALL)] = "nr_tlb_local_flush_all",
1448 [I(NR_TLB_LOCAL_FLUSH_ONE)] = "nr_tlb_local_flush_one",
1449 #endif /* CONFIG_DEBUG_TLBFLUSH */
1450
1451 #ifdef CONFIG_SWAP
1452 [I(SWAP_RA)] = "swap_ra",
1453 [I(SWAP_RA_HIT)] = "swap_ra_hit",
1454 [I(SWPIN_ZERO)] = "swpin_zero",
1455 [I(SWPOUT_ZERO)] = "swpout_zero",
1456 #ifdef CONFIG_KSM
1457 [I(KSM_SWPIN_COPY)] = "ksm_swpin_copy",
1458 #endif
1459 #endif
1460 #ifdef CONFIG_KSM
1461 [I(COW_KSM)] = "cow_ksm",
1462 #endif
1463 #ifdef CONFIG_ZSWAP
1464 [I(ZSWPIN)] = "zswpin",
1465 [I(ZSWPOUT)] = "zswpout",
1466 [I(ZSWPWB)] = "zswpwb",
1467 #endif
1468 #ifdef CONFIG_X86
1469 [I(DIRECT_MAP_LEVEL2_SPLIT)] = "direct_map_level2_splits",
1470 [I(DIRECT_MAP_LEVEL3_SPLIT)] = "direct_map_level3_splits",
1471 [I(DIRECT_MAP_LEVEL2_COLLAPSE)] = "direct_map_level2_collapses",
1472 [I(DIRECT_MAP_LEVEL3_COLLAPSE)] = "direct_map_level3_collapses",
1473 #endif
1474 #ifdef CONFIG_PER_VMA_LOCK_STATS
1475 [I(VMA_LOCK_SUCCESS)] = "vma_lock_success",
1476 [I(VMA_LOCK_ABORT)] = "vma_lock_abort",
1477 [I(VMA_LOCK_RETRY)] = "vma_lock_retry",
1478 [I(VMA_LOCK_MISS)] = "vma_lock_miss",
1479 #endif
1480 #ifdef CONFIG_DEBUG_STACK_USAGE
1481 [I(KSTACK_1K)] = "kstack_1k",
1482 #if THREAD_SIZE > 1024
1483 [I(KSTACK_2K)] = "kstack_2k",
1484 #endif
1485 #if THREAD_SIZE > 2048
1486 [I(KSTACK_4K)] = "kstack_4k",
1487 #endif
1488 #if THREAD_SIZE > 4096
1489 [I(KSTACK_8K)] = "kstack_8k",
1490 #endif
1491 #if THREAD_SIZE > 8192
1492 [I(KSTACK_16K)] = "kstack_16k",
1493 #endif
1494 #if THREAD_SIZE > 16384
1495 [I(KSTACK_32K)] = "kstack_32k",
1496 #endif
1497 #if THREAD_SIZE > 32768
1498 [I(KSTACK_64K)] = "kstack_64k",
1499 #endif
1500 #if THREAD_SIZE > 65536
1501 [I(KSTACK_REST)] = "kstack_rest",
1502 #endif
1503 #endif
1504 #undef I
1505 #endif /* CONFIG_VM_EVENT_COUNTERS */
1506 };
1507 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1508
1509 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1510 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1511 static void *frag_start(struct seq_file *m, loff_t *pos)
1512 {
1513 pg_data_t *pgdat;
1514 loff_t node = *pos;
1515
1516 for (pgdat = first_online_pgdat();
1517 pgdat && node;
1518 pgdat = next_online_pgdat(pgdat))
1519 --node;
1520
1521 return pgdat;
1522 }
1523
frag_next(struct seq_file * m,void * arg,loff_t * pos)1524 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1525 {
1526 pg_data_t *pgdat = (pg_data_t *)arg;
1527
1528 (*pos)++;
1529 return next_online_pgdat(pgdat);
1530 }
1531
frag_stop(struct seq_file * m,void * arg)1532 static void frag_stop(struct seq_file *m, void *arg)
1533 {
1534 }
1535
1536 /*
1537 * Walk zones in a node and print using a callback.
1538 * If @assert_populated is true, only use callback for zones that are populated.
1539 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1540 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1541 bool assert_populated, bool nolock,
1542 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1543 {
1544 struct zone *zone;
1545 struct zone *node_zones = pgdat->node_zones;
1546 unsigned long flags;
1547
1548 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1549 if (assert_populated && !populated_zone(zone))
1550 continue;
1551
1552 if (!nolock)
1553 spin_lock_irqsave(&zone->lock, flags);
1554 print(m, pgdat, zone);
1555 if (!nolock)
1556 spin_unlock_irqrestore(&zone->lock, flags);
1557 }
1558 }
1559 #endif
1560
1561 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1562 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1563 struct zone *zone)
1564 {
1565 int order;
1566
1567 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1569 /*
1570 * Access to nr_free is lockless as nr_free is used only for
1571 * printing purposes. Use data_race to avoid KCSAN warning.
1572 */
1573 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1574 seq_putc(m, '\n');
1575 }
1576
1577 /*
1578 * This walks the free areas for each zone.
1579 */
frag_show(struct seq_file * m,void * arg)1580 static int frag_show(struct seq_file *m, void *arg)
1581 {
1582 pg_data_t *pgdat = (pg_data_t *)arg;
1583 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1584 return 0;
1585 }
1586
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1587 static void pagetypeinfo_showfree_print(struct seq_file *m,
1588 pg_data_t *pgdat, struct zone *zone)
1589 {
1590 int order, mtype;
1591
1592 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1593 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1594 pgdat->node_id,
1595 zone->name,
1596 migratetype_names[mtype]);
1597 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1598 unsigned long freecount = 0;
1599 struct free_area *area;
1600 struct list_head *curr;
1601 bool overflow = false;
1602
1603 area = &(zone->free_area[order]);
1604
1605 list_for_each(curr, &area->free_list[mtype]) {
1606 /*
1607 * Cap the free_list iteration because it might
1608 * be really large and we are under a spinlock
1609 * so a long time spent here could trigger a
1610 * hard lockup detector. Anyway this is a
1611 * debugging tool so knowing there is a handful
1612 * of pages of this order should be more than
1613 * sufficient.
1614 */
1615 if (++freecount >= 100000) {
1616 overflow = true;
1617 break;
1618 }
1619 }
1620 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1621 spin_unlock_irq(&zone->lock);
1622 cond_resched();
1623 spin_lock_irq(&zone->lock);
1624 }
1625 seq_putc(m, '\n');
1626 }
1627 }
1628
1629 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1630 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1631 {
1632 int order;
1633 pg_data_t *pgdat = (pg_data_t *)arg;
1634
1635 /* Print header */
1636 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1637 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1638 seq_printf(m, "%6d ", order);
1639 seq_putc(m, '\n');
1640
1641 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1642 }
1643
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1644 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1645 pg_data_t *pgdat, struct zone *zone)
1646 {
1647 int mtype;
1648 unsigned long pfn;
1649 unsigned long start_pfn = zone->zone_start_pfn;
1650 unsigned long end_pfn = zone_end_pfn(zone);
1651 unsigned long count[MIGRATE_TYPES] = { 0, };
1652
1653 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1654 struct page *page;
1655
1656 page = pfn_to_online_page(pfn);
1657 if (!page)
1658 continue;
1659
1660 if (page_zone(page) != zone)
1661 continue;
1662
1663 mtype = get_pageblock_migratetype(page);
1664
1665 if (mtype < MIGRATE_TYPES)
1666 count[mtype]++;
1667 }
1668
1669 /* Print counts */
1670 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1671 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1672 seq_printf(m, "%12lu ", count[mtype]);
1673 seq_putc(m, '\n');
1674 }
1675
1676 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1677 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1678 {
1679 int mtype;
1680 pg_data_t *pgdat = (pg_data_t *)arg;
1681
1682 seq_printf(m, "\n%-23s", "Number of blocks type ");
1683 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1684 seq_printf(m, "%12s ", migratetype_names[mtype]);
1685 seq_putc(m, '\n');
1686 walk_zones_in_node(m, pgdat, true, false,
1687 pagetypeinfo_showblockcount_print);
1688 }
1689
1690 /*
1691 * Print out the number of pageblocks for each migratetype that contain pages
1692 * of other types. This gives an indication of how well fallbacks are being
1693 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1694 * to determine what is going on
1695 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1696 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1697 {
1698 #ifdef CONFIG_PAGE_OWNER
1699 int mtype;
1700
1701 if (!static_branch_unlikely(&page_owner_inited))
1702 return;
1703
1704 drain_all_pages(NULL);
1705
1706 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1707 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1708 seq_printf(m, "%12s ", migratetype_names[mtype]);
1709 seq_putc(m, '\n');
1710
1711 walk_zones_in_node(m, pgdat, true, true,
1712 pagetypeinfo_showmixedcount_print);
1713 #endif /* CONFIG_PAGE_OWNER */
1714 }
1715
1716 /*
1717 * This prints out statistics in relation to grouping pages by mobility.
1718 * It is expensive to collect so do not constantly read the file.
1719 */
pagetypeinfo_show(struct seq_file * m,void * arg)1720 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1721 {
1722 pg_data_t *pgdat = (pg_data_t *)arg;
1723
1724 /* check memoryless node */
1725 if (!node_state(pgdat->node_id, N_MEMORY))
1726 return 0;
1727
1728 seq_printf(m, "Page block order: %d\n", pageblock_order);
1729 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1730 seq_putc(m, '\n');
1731 pagetypeinfo_showfree(m, pgdat);
1732 pagetypeinfo_showblockcount(m, pgdat);
1733 pagetypeinfo_showmixedcount(m, pgdat);
1734
1735 return 0;
1736 }
1737
1738 static const struct seq_operations fragmentation_op = {
1739 .start = frag_start,
1740 .next = frag_next,
1741 .stop = frag_stop,
1742 .show = frag_show,
1743 };
1744
1745 static const struct seq_operations pagetypeinfo_op = {
1746 .start = frag_start,
1747 .next = frag_next,
1748 .stop = frag_stop,
1749 .show = pagetypeinfo_show,
1750 };
1751
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1752 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1753 {
1754 int zid;
1755
1756 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 struct zone *compare = &pgdat->node_zones[zid];
1758
1759 if (populated_zone(compare))
1760 return zone == compare;
1761 }
1762
1763 return false;
1764 }
1765
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1766 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1767 struct zone *zone)
1768 {
1769 int i;
1770 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1771 if (is_zone_first_populated(pgdat, zone)) {
1772 seq_printf(m, "\n per-node stats");
1773 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1774 unsigned long pages = node_page_state_pages(pgdat, i);
1775
1776 if (vmstat_item_print_in_thp(i))
1777 pages /= HPAGE_PMD_NR;
1778 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1779 pages);
1780 }
1781 }
1782 seq_printf(m,
1783 "\n pages free %lu"
1784 "\n boost %lu"
1785 "\n min %lu"
1786 "\n low %lu"
1787 "\n high %lu"
1788 "\n promo %lu"
1789 "\n spanned %lu"
1790 "\n present %lu"
1791 "\n managed %lu"
1792 "\n cma %lu",
1793 zone_page_state(zone, NR_FREE_PAGES),
1794 zone->watermark_boost,
1795 min_wmark_pages(zone),
1796 low_wmark_pages(zone),
1797 high_wmark_pages(zone),
1798 promo_wmark_pages(zone),
1799 zone->spanned_pages,
1800 zone->present_pages,
1801 zone_managed_pages(zone),
1802 zone_cma_pages(zone));
1803
1804 seq_printf(m,
1805 "\n protection: (%ld",
1806 zone->lowmem_reserve[0]);
1807 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1808 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1809 seq_putc(m, ')');
1810
1811 /* If unpopulated, no other information is useful */
1812 if (!populated_zone(zone)) {
1813 seq_putc(m, '\n');
1814 return;
1815 }
1816
1817 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1818 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1819 zone_page_state(zone, i));
1820
1821 #ifdef CONFIG_NUMA
1822 fold_vm_zone_numa_events(zone);
1823 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1824 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1825 zone_numa_event_state(zone, i));
1826 #endif
1827
1828 seq_printf(m, "\n pagesets");
1829 for_each_online_cpu(i) {
1830 struct per_cpu_pages *pcp;
1831 struct per_cpu_zonestat __maybe_unused *pzstats;
1832
1833 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1834 seq_printf(m,
1835 "\n cpu: %i"
1836 "\n count: %i"
1837 "\n high: %i"
1838 "\n batch: %i"
1839 "\n high_min: %i"
1840 "\n high_max: %i",
1841 i,
1842 pcp->count,
1843 pcp->high,
1844 pcp->batch,
1845 pcp->high_min,
1846 pcp->high_max);
1847 #ifdef CONFIG_SMP
1848 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1849 seq_printf(m, "\n vm stats threshold: %d",
1850 pzstats->stat_threshold);
1851 #endif
1852 }
1853 seq_printf(m,
1854 "\n node_unreclaimable: %u"
1855 "\n start_pfn: %lu"
1856 "\n reserved_highatomic: %lu"
1857 "\n free_highatomic: %lu",
1858 atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES,
1859 zone->zone_start_pfn,
1860 zone->nr_reserved_highatomic,
1861 zone->nr_free_highatomic);
1862 seq_putc(m, '\n');
1863 }
1864
1865 /*
1866 * Output information about zones in @pgdat. All zones are printed regardless
1867 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1868 * set of all zones and userspace would not be aware of such zones if they are
1869 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1870 */
zoneinfo_show(struct seq_file * m,void * arg)1871 static int zoneinfo_show(struct seq_file *m, void *arg)
1872 {
1873 pg_data_t *pgdat = (pg_data_t *)arg;
1874 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1875 return 0;
1876 }
1877
1878 static const struct seq_operations zoneinfo_op = {
1879 .start = frag_start, /* iterate over all zones. The same as in
1880 * fragmentation. */
1881 .next = frag_next,
1882 .stop = frag_stop,
1883 .show = zoneinfo_show,
1884 };
1885
1886 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1887 NR_VM_NUMA_EVENT_ITEMS + \
1888 NR_VM_NODE_STAT_ITEMS + \
1889 NR_VM_STAT_ITEMS + \
1890 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1891 NR_VM_EVENT_ITEMS : 0))
1892
vmstat_start(struct seq_file * m,loff_t * pos)1893 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1894 {
1895 unsigned long *v;
1896 int i;
1897
1898 if (*pos >= NR_VMSTAT_ITEMS)
1899 return NULL;
1900
1901 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS);
1902 fold_vm_numa_events();
1903 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1904 m->private = v;
1905 if (!v)
1906 return ERR_PTR(-ENOMEM);
1907 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1908 v[i] = global_zone_page_state(i);
1909 v += NR_VM_ZONE_STAT_ITEMS;
1910
1911 #ifdef CONFIG_NUMA
1912 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1913 v[i] = global_numa_event_state(i);
1914 v += NR_VM_NUMA_EVENT_ITEMS;
1915 #endif
1916
1917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1918 v[i] = global_node_page_state_pages(i);
1919 if (vmstat_item_print_in_thp(i))
1920 v[i] /= HPAGE_PMD_NR;
1921 }
1922 v += NR_VM_NODE_STAT_ITEMS;
1923
1924 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1925 v + NR_DIRTY_THRESHOLD);
1926 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1927 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1928 v += NR_VM_STAT_ITEMS;
1929
1930 #ifdef CONFIG_VM_EVENT_COUNTERS
1931 all_vm_events(v);
1932 v[PGPGIN] /= 2; /* sectors -> kbytes */
1933 v[PGPGOUT] /= 2;
1934 #endif
1935 return (unsigned long *)m->private + *pos;
1936 }
1937
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1938 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1939 {
1940 (*pos)++;
1941 if (*pos >= NR_VMSTAT_ITEMS)
1942 return NULL;
1943 return (unsigned long *)m->private + *pos;
1944 }
1945
vmstat_show(struct seq_file * m,void * arg)1946 static int vmstat_show(struct seq_file *m, void *arg)
1947 {
1948 unsigned long *l = arg;
1949 unsigned long off = l - (unsigned long *)m->private;
1950
1951 seq_puts(m, vmstat_text[off]);
1952 seq_put_decimal_ull(m, " ", *l);
1953 seq_putc(m, '\n');
1954
1955 if (off == NR_VMSTAT_ITEMS - 1) {
1956 /*
1957 * We've come to the end - add any deprecated counters to avoid
1958 * breaking userspace which might depend on them being present.
1959 */
1960 seq_puts(m, "nr_unstable 0\n");
1961 }
1962 return 0;
1963 }
1964
vmstat_stop(struct seq_file * m,void * arg)1965 static void vmstat_stop(struct seq_file *m, void *arg)
1966 {
1967 kfree(m->private);
1968 m->private = NULL;
1969 }
1970
1971 static const struct seq_operations vmstat_op = {
1972 .start = vmstat_start,
1973 .next = vmstat_next,
1974 .stop = vmstat_stop,
1975 .show = vmstat_show,
1976 };
1977 #endif /* CONFIG_PROC_FS */
1978
1979 #ifdef CONFIG_SMP
1980 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1981 static int sysctl_stat_interval __read_mostly = HZ;
1982 static int vmstat_late_init_done;
1983
1984 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1985 static void refresh_vm_stats(struct work_struct *work)
1986 {
1987 refresh_cpu_vm_stats(true);
1988 }
1989
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1990 static int vmstat_refresh(const struct ctl_table *table, int write,
1991 void *buffer, size_t *lenp, loff_t *ppos)
1992 {
1993 long val;
1994 int err;
1995 int i;
1996
1997 /*
1998 * The regular update, every sysctl_stat_interval, may come later
1999 * than expected: leaving a significant amount in per_cpu buckets.
2000 * This is particularly misleading when checking a quantity of HUGE
2001 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
2002 * which can equally be echo'ed to or cat'ted from (by root),
2003 * can be used to update the stats just before reading them.
2004 *
2005 * Oh, and since global_zone_page_state() etc. are so careful to hide
2006 * transiently negative values, report an error here if any of
2007 * the stats is negative, so we know to go looking for imbalance.
2008 */
2009 err = schedule_on_each_cpu(refresh_vm_stats);
2010 if (err)
2011 return err;
2012 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
2013 /*
2014 * Skip checking stats known to go negative occasionally.
2015 */
2016 switch (i) {
2017 case NR_ZONE_WRITE_PENDING:
2018 case NR_FREE_CMA_PAGES:
2019 continue;
2020 }
2021 val = atomic_long_read(&vm_zone_stat[i]);
2022 if (val < 0) {
2023 pr_warn("%s: %s %ld\n",
2024 __func__, zone_stat_name(i), val);
2025 }
2026 }
2027 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2028 /*
2029 * Skip checking stats known to go negative occasionally.
2030 */
2031 switch (i) {
2032 case NR_WRITEBACK:
2033 continue;
2034 }
2035 val = atomic_long_read(&vm_node_stat[i]);
2036 if (val < 0) {
2037 pr_warn("%s: %s %ld\n",
2038 __func__, node_stat_name(i), val);
2039 }
2040 }
2041 if (write)
2042 *ppos += *lenp;
2043 else
2044 *lenp = 0;
2045 return 0;
2046 }
2047 #endif /* CONFIG_PROC_FS */
2048
vmstat_update(struct work_struct * w)2049 static void vmstat_update(struct work_struct *w)
2050 {
2051 if (refresh_cpu_vm_stats(true)) {
2052 /*
2053 * Counters were updated so we expect more updates
2054 * to occur in the future. Keep on running the
2055 * update worker thread.
2056 */
2057 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2058 this_cpu_ptr(&vmstat_work),
2059 round_jiffies_relative(sysctl_stat_interval));
2060 }
2061 }
2062
2063 /*
2064 * Check if the diffs for a certain cpu indicate that
2065 * an update is needed.
2066 */
need_update(int cpu)2067 static bool need_update(int cpu)
2068 {
2069 pg_data_t *last_pgdat = NULL;
2070 struct zone *zone;
2071
2072 for_each_populated_zone(zone) {
2073 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2074 struct per_cpu_nodestat *n;
2075
2076 /*
2077 * The fast way of checking if there are any vmstat diffs.
2078 */
2079 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2080 return true;
2081
2082 if (last_pgdat == zone->zone_pgdat)
2083 continue;
2084 last_pgdat = zone->zone_pgdat;
2085 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2086 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2087 return true;
2088 }
2089 return false;
2090 }
2091
2092 /*
2093 * Switch off vmstat processing and then fold all the remaining differentials
2094 * until the diffs stay at zero. The function is used by NOHZ and can only be
2095 * invoked when tick processing is not active.
2096 */
quiet_vmstat(void)2097 void quiet_vmstat(void)
2098 {
2099 if (system_state != SYSTEM_RUNNING)
2100 return;
2101
2102 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2103 return;
2104
2105 if (!need_update(smp_processor_id()))
2106 return;
2107
2108 /*
2109 * Just refresh counters and do not care about the pending delayed
2110 * vmstat_update. It doesn't fire that often to matter and canceling
2111 * it would be too expensive from this path.
2112 * vmstat_shepherd will take care about that for us.
2113 */
2114 refresh_cpu_vm_stats(false);
2115 }
2116
2117 /*
2118 * Shepherd worker thread that checks the
2119 * differentials of processors that have their worker
2120 * threads for vm statistics updates disabled because of
2121 * inactivity.
2122 */
2123 static void vmstat_shepherd(struct work_struct *w);
2124
2125 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2126
vmstat_shepherd(struct work_struct * w)2127 static void vmstat_shepherd(struct work_struct *w)
2128 {
2129 int cpu;
2130
2131 cpus_read_lock();
2132 /* Check processors whose vmstat worker threads have been disabled */
2133 for_each_online_cpu(cpu) {
2134 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2135
2136 /*
2137 * In kernel users of vmstat counters either require the precise value and
2138 * they are using zone_page_state_snapshot interface or they can live with
2139 * an imprecision as the regular flushing can happen at arbitrary time and
2140 * cumulative error can grow (see calculate_normal_threshold).
2141 *
2142 * From that POV the regular flushing can be postponed for CPUs that have
2143 * been isolated from the kernel interference without critical
2144 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2145 * for all isolated CPUs to avoid interference with the isolated workload.
2146 */
2147 if (cpu_is_isolated(cpu))
2148 continue;
2149
2150 if (!delayed_work_pending(dw) && need_update(cpu))
2151 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2152
2153 cond_resched();
2154 }
2155 cpus_read_unlock();
2156
2157 schedule_delayed_work(&shepherd,
2158 round_jiffies_relative(sysctl_stat_interval));
2159 }
2160
start_shepherd_timer(void)2161 static void __init start_shepherd_timer(void)
2162 {
2163 int cpu;
2164
2165 for_each_possible_cpu(cpu) {
2166 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2167 vmstat_update);
2168
2169 /*
2170 * For secondary CPUs during CPU hotplug scenarios,
2171 * vmstat_cpu_online() will enable the work.
2172 * mm/vmstat:online enables and disables vmstat_work
2173 * symmetrically during CPU hotplug events.
2174 */
2175 if (!cpu_online(cpu))
2176 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2177 }
2178
2179 schedule_delayed_work(&shepherd,
2180 round_jiffies_relative(sysctl_stat_interval));
2181 }
2182
init_cpu_node_state(void)2183 static void __init init_cpu_node_state(void)
2184 {
2185 int node;
2186
2187 for_each_online_node(node) {
2188 if (!cpumask_empty(cpumask_of_node(node)))
2189 node_set_state(node, N_CPU);
2190 }
2191 }
2192
vmstat_cpu_online(unsigned int cpu)2193 static int vmstat_cpu_online(unsigned int cpu)
2194 {
2195 if (vmstat_late_init_done)
2196 refresh_zone_stat_thresholds();
2197
2198 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2199 node_set_state(cpu_to_node(cpu), N_CPU);
2200 }
2201 enable_delayed_work(&per_cpu(vmstat_work, cpu));
2202
2203 return 0;
2204 }
2205
vmstat_cpu_down_prep(unsigned int cpu)2206 static int vmstat_cpu_down_prep(unsigned int cpu)
2207 {
2208 disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2209 return 0;
2210 }
2211
vmstat_cpu_dead(unsigned int cpu)2212 static int vmstat_cpu_dead(unsigned int cpu)
2213 {
2214 const struct cpumask *node_cpus;
2215 int node;
2216
2217 node = cpu_to_node(cpu);
2218
2219 refresh_zone_stat_thresholds();
2220 node_cpus = cpumask_of_node(node);
2221 if (!cpumask_empty(node_cpus))
2222 return 0;
2223
2224 node_clear_state(node, N_CPU);
2225
2226 return 0;
2227 }
2228
vmstat_late_init(void)2229 static int __init vmstat_late_init(void)
2230 {
2231 refresh_zone_stat_thresholds();
2232 vmstat_late_init_done = 1;
2233
2234 return 0;
2235 }
2236 late_initcall(vmstat_late_init);
2237 #endif
2238
2239 #ifdef CONFIG_PROC_FS
2240 static const struct ctl_table vmstat_table[] = {
2241 #ifdef CONFIG_SMP
2242 {
2243 .procname = "stat_interval",
2244 .data = &sysctl_stat_interval,
2245 .maxlen = sizeof(sysctl_stat_interval),
2246 .mode = 0644,
2247 .proc_handler = proc_dointvec_jiffies,
2248 },
2249 {
2250 .procname = "stat_refresh",
2251 .data = NULL,
2252 .maxlen = 0,
2253 .mode = 0600,
2254 .proc_handler = vmstat_refresh,
2255 },
2256 #endif
2257 #ifdef CONFIG_NUMA
2258 {
2259 .procname = "numa_stat",
2260 .data = &sysctl_vm_numa_stat,
2261 .maxlen = sizeof(int),
2262 .mode = 0644,
2263 .proc_handler = sysctl_vm_numa_stat_handler,
2264 .extra1 = SYSCTL_ZERO,
2265 .extra2 = SYSCTL_ONE,
2266 },
2267 #endif
2268 };
2269 #endif
2270
2271 struct workqueue_struct *mm_percpu_wq;
2272
init_mm_internals(void)2273 void __init init_mm_internals(void)
2274 {
2275 int ret __maybe_unused;
2276
2277 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2278
2279 #ifdef CONFIG_SMP
2280 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2281 NULL, vmstat_cpu_dead);
2282 if (ret < 0)
2283 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2284
2285 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2286 vmstat_cpu_online,
2287 vmstat_cpu_down_prep);
2288 if (ret < 0)
2289 pr_err("vmstat: failed to register 'online' hotplug state\n");
2290
2291 cpus_read_lock();
2292 init_cpu_node_state();
2293 cpus_read_unlock();
2294
2295 start_shepherd_timer();
2296 #endif
2297 #ifdef CONFIG_PROC_FS
2298 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2299 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2300 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2301 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2302 register_sysctl_init("vm", vmstat_table);
2303 #endif
2304 }
2305
2306 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2307
2308 /*
2309 * Return an index indicating how much of the available free memory is
2310 * unusable for an allocation of the requested size.
2311 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2312 static int unusable_free_index(unsigned int order,
2313 struct contig_page_info *info)
2314 {
2315 /* No free memory is interpreted as all free memory is unusable */
2316 if (info->free_pages == 0)
2317 return 1000;
2318
2319 /*
2320 * Index should be a value between 0 and 1. Return a value to 3
2321 * decimal places.
2322 *
2323 * 0 => no fragmentation
2324 * 1 => high fragmentation
2325 */
2326 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2327
2328 }
2329
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2330 static void unusable_show_print(struct seq_file *m,
2331 pg_data_t *pgdat, struct zone *zone)
2332 {
2333 unsigned int order;
2334 int index;
2335 struct contig_page_info info;
2336
2337 seq_printf(m, "Node %d, zone %8s ",
2338 pgdat->node_id,
2339 zone->name);
2340 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2341 fill_contig_page_info(zone, order, &info);
2342 index = unusable_free_index(order, &info);
2343 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2344 }
2345
2346 seq_putc(m, '\n');
2347 }
2348
2349 /*
2350 * Display unusable free space index
2351 *
2352 * The unusable free space index measures how much of the available free
2353 * memory cannot be used to satisfy an allocation of a given size and is a
2354 * value between 0 and 1. The higher the value, the more of free memory is
2355 * unusable and by implication, the worse the external fragmentation is. This
2356 * can be expressed as a percentage by multiplying by 100.
2357 */
unusable_show(struct seq_file * m,void * arg)2358 static int unusable_show(struct seq_file *m, void *arg)
2359 {
2360 pg_data_t *pgdat = (pg_data_t *)arg;
2361
2362 /* check memoryless node */
2363 if (!node_state(pgdat->node_id, N_MEMORY))
2364 return 0;
2365
2366 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2367
2368 return 0;
2369 }
2370
2371 static const struct seq_operations unusable_sops = {
2372 .start = frag_start,
2373 .next = frag_next,
2374 .stop = frag_stop,
2375 .show = unusable_show,
2376 };
2377
2378 DEFINE_SEQ_ATTRIBUTE(unusable);
2379
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2380 static void extfrag_show_print(struct seq_file *m,
2381 pg_data_t *pgdat, struct zone *zone)
2382 {
2383 unsigned int order;
2384 int index;
2385
2386 /* Alloc on stack as interrupts are disabled for zone walk */
2387 struct contig_page_info info;
2388
2389 seq_printf(m, "Node %d, zone %8s ",
2390 pgdat->node_id,
2391 zone->name);
2392 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2393 fill_contig_page_info(zone, order, &info);
2394 index = __fragmentation_index(order, &info);
2395 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2396 }
2397
2398 seq_putc(m, '\n');
2399 }
2400
2401 /*
2402 * Display fragmentation index for orders that allocations would fail for
2403 */
extfrag_show(struct seq_file * m,void * arg)2404 static int extfrag_show(struct seq_file *m, void *arg)
2405 {
2406 pg_data_t *pgdat = (pg_data_t *)arg;
2407
2408 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2409
2410 return 0;
2411 }
2412
2413 static const struct seq_operations extfrag_sops = {
2414 .start = frag_start,
2415 .next = frag_next,
2416 .stop = frag_stop,
2417 .show = extfrag_show,
2418 };
2419
2420 DEFINE_SEQ_ATTRIBUTE(extfrag);
2421
extfrag_debug_init(void)2422 static int __init extfrag_debug_init(void)
2423 {
2424 struct dentry *extfrag_debug_root;
2425
2426 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2427
2428 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2429 &unusable_fops);
2430
2431 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2432 &extfrag_fops);
2433
2434 return 0;
2435 }
2436
2437 module_init(extfrag_debug_init);
2438
2439 #endif
2440