xref: /linux/mm/vmstat.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <cl@gentwo.org>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_PROC_FS
35 #ifdef CONFIG_NUMA
36 #define ENABLE_NUMA_STAT 1
37 static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 
39 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 	int item, cpu;
43 
44 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
45 		atomic_long_set(&zone->vm_numa_event[item], 0);
46 		for_each_online_cpu(cpu) {
47 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
48 						= 0;
49 		}
50 	}
51 }
52 
53 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)54 static void zero_zones_numa_counters(void)
55 {
56 	struct zone *zone;
57 
58 	for_each_populated_zone(zone)
59 		zero_zone_numa_counters(zone);
60 }
61 
62 /* zero global numa counters */
zero_global_numa_counters(void)63 static void zero_global_numa_counters(void)
64 {
65 	int item;
66 
67 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
68 		atomic_long_set(&vm_numa_event[item], 0);
69 }
70 
invalid_numa_statistics(void)71 static void invalid_numa_statistics(void)
72 {
73 	zero_zones_numa_counters();
74 	zero_global_numa_counters();
75 }
76 
77 static DEFINE_MUTEX(vm_numa_stat_lock);
78 
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)79 static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
80 		void *buffer, size_t *length, loff_t *ppos)
81 {
82 	int ret, oldval;
83 
84 	mutex_lock(&vm_numa_stat_lock);
85 	if (write)
86 		oldval = sysctl_vm_numa_stat;
87 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
88 	if (ret || !write)
89 		goto out;
90 
91 	if (oldval == sysctl_vm_numa_stat)
92 		goto out;
93 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
94 		static_branch_enable(&vm_numa_stat_key);
95 		pr_info("enable numa statistics\n");
96 	} else {
97 		static_branch_disable(&vm_numa_stat_key);
98 		invalid_numa_statistics();
99 		pr_info("disable numa statistics, and clear numa counters\n");
100 	}
101 
102 out:
103 	mutex_unlock(&vm_numa_stat_lock);
104 	return ret;
105 }
106 #endif
107 #endif /* CONFIG_PROC_FS */
108 
109 #ifdef CONFIG_VM_EVENT_COUNTERS
110 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
111 EXPORT_PER_CPU_SYMBOL(vm_event_states);
112 
sum_vm_events(unsigned long * ret)113 static void sum_vm_events(unsigned long *ret)
114 {
115 	int cpu;
116 	int i;
117 
118 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
119 
120 	for_each_online_cpu(cpu) {
121 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
122 
123 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
124 			ret[i] += this->event[i];
125 	}
126 }
127 
128 /*
129  * Accumulate the vm event counters across all CPUs.
130  * The result is unavoidably approximate - it can change
131  * during and after execution of this function.
132 */
all_vm_events(unsigned long * ret)133 void all_vm_events(unsigned long *ret)
134 {
135 	cpus_read_lock();
136 	sum_vm_events(ret);
137 	cpus_read_unlock();
138 }
139 EXPORT_SYMBOL_GPL(all_vm_events);
140 
141 /*
142  * Fold the foreign cpu events into our own.
143  *
144  * This is adding to the events on one processor
145  * but keeps the global counts constant.
146  */
vm_events_fold_cpu(int cpu)147 void vm_events_fold_cpu(int cpu)
148 {
149 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
150 	int i;
151 
152 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
153 		count_vm_events(i, fold_state->event[i]);
154 		fold_state->event[i] = 0;
155 	}
156 }
157 
158 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 
160 /*
161  * Manage combined zone based / global counters
162  *
163  * vm_stat contains the global counters
164  */
165 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
167 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
168 EXPORT_SYMBOL(vm_zone_stat);
169 EXPORT_SYMBOL(vm_node_stat);
170 
171 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)172 static void fold_vm_zone_numa_events(struct zone *zone)
173 {
174 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
175 	int cpu;
176 	enum numa_stat_item item;
177 
178 	for_each_online_cpu(cpu) {
179 		struct per_cpu_zonestat *pzstats;
180 
181 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
182 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
183 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
184 	}
185 
186 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
187 		zone_numa_event_add(zone_numa_events[item], zone, item);
188 }
189 
fold_vm_numa_events(void)190 void fold_vm_numa_events(void)
191 {
192 	struct zone *zone;
193 
194 	for_each_populated_zone(zone)
195 		fold_vm_zone_numa_events(zone);
196 }
197 #endif
198 
199 #ifdef CONFIG_SMP
200 
calculate_pressure_threshold(struct zone * zone)201 int calculate_pressure_threshold(struct zone *zone)
202 {
203 	int threshold;
204 	int watermark_distance;
205 
206 	/*
207 	 * As vmstats are not up to date, there is drift between the estimated
208 	 * and real values. For high thresholds and a high number of CPUs, it
209 	 * is possible for the min watermark to be breached while the estimated
210 	 * value looks fine. The pressure threshold is a reduced value such
211 	 * that even the maximum amount of drift will not accidentally breach
212 	 * the min watermark
213 	 */
214 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
215 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
216 
217 	/*
218 	 * Maximum threshold is 125
219 	 */
220 	threshold = min(125, threshold);
221 
222 	return threshold;
223 }
224 
calculate_normal_threshold(struct zone * zone)225 int calculate_normal_threshold(struct zone *zone)
226 {
227 	int threshold;
228 	int mem;	/* memory in 128 MB units */
229 
230 	/*
231 	 * The threshold scales with the number of processors and the amount
232 	 * of memory per zone. More memory means that we can defer updates for
233 	 * longer, more processors could lead to more contention.
234  	 * fls() is used to have a cheap way of logarithmic scaling.
235 	 *
236 	 * Some sample thresholds:
237 	 *
238 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
239 	 * ------------------------------------------------------------------
240 	 * 8		1		1	0.9-1 GB	4
241 	 * 16		2		2	0.9-1 GB	4
242 	 * 20 		2		2	1-2 GB		5
243 	 * 24		2		2	2-4 GB		6
244 	 * 28		2		2	4-8 GB		7
245 	 * 32		2		2	8-16 GB		8
246 	 * 4		2		2	<128M		1
247 	 * 30		4		3	2-4 GB		5
248 	 * 48		4		3	8-16 GB		8
249 	 * 32		8		4	1-2 GB		4
250 	 * 32		8		4	0.9-1GB		4
251 	 * 10		16		5	<128M		1
252 	 * 40		16		5	900M		4
253 	 * 70		64		7	2-4 GB		5
254 	 * 84		64		7	4-8 GB		6
255 	 * 108		512		9	4-8 GB		6
256 	 * 125		1024		10	8-16 GB		8
257 	 * 125		1024		10	16-32 GB	9
258 	 */
259 
260 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
261 
262 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
263 
264 	/*
265 	 * Maximum threshold is 125
266 	 */
267 	threshold = min(125, threshold);
268 
269 	return threshold;
270 }
271 
272 /*
273  * Refresh the thresholds for each zone.
274  */
refresh_zone_stat_thresholds(void)275 void refresh_zone_stat_thresholds(void)
276 {
277 	struct pglist_data *pgdat;
278 	struct zone *zone;
279 	int cpu;
280 	int threshold;
281 
282 	/* Zero current pgdat thresholds */
283 	for_each_online_pgdat(pgdat) {
284 		for_each_online_cpu(cpu) {
285 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 		}
287 	}
288 
289 	for_each_populated_zone(zone) {
290 		struct pglist_data *pgdat = zone->zone_pgdat;
291 		unsigned long max_drift, tolerate_drift;
292 
293 		threshold = calculate_normal_threshold(zone);
294 
295 		for_each_online_cpu(cpu) {
296 			int pgdat_threshold;
297 
298 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
299 							= threshold;
300 
301 			/* Base nodestat threshold on the largest populated zone. */
302 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
303 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
304 				= max(threshold, pgdat_threshold);
305 		}
306 
307 		/*
308 		 * Only set percpu_drift_mark if there is a danger that
309 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
310 		 * the min watermark could be breached by an allocation
311 		 */
312 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
313 		max_drift = num_online_cpus() * threshold;
314 		if (max_drift > tolerate_drift)
315 			zone->percpu_drift_mark = high_wmark_pages(zone) +
316 					max_drift;
317 	}
318 }
319 
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))320 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
321 				int (*calculate_pressure)(struct zone *))
322 {
323 	struct zone *zone;
324 	int cpu;
325 	int threshold;
326 	int i;
327 
328 	for (i = 0; i < pgdat->nr_zones; i++) {
329 		zone = &pgdat->node_zones[i];
330 		if (!zone->percpu_drift_mark)
331 			continue;
332 
333 		threshold = (*calculate_pressure)(zone);
334 		for_each_online_cpu(cpu)
335 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
336 							= threshold;
337 	}
338 }
339 
340 /*
341  * For use when we know that interrupts are disabled,
342  * or when we know that preemption is disabled and that
343  * particular counter cannot be updated from interrupt context.
344  */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)345 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
346 			   long delta)
347 {
348 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
349 	s8 __percpu *p = pcp->vm_stat_diff + item;
350 	long x;
351 	long t;
352 
353 	/*
354 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
355 	 * atomicity is provided by IRQs being disabled -- either explicitly
356 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
357 	 * CPU migrations and preemption potentially corrupts a counter so
358 	 * disable preemption.
359 	 */
360 	preempt_disable_nested();
361 
362 	x = delta + __this_cpu_read(*p);
363 
364 	t = __this_cpu_read(pcp->stat_threshold);
365 
366 	if (unlikely(abs(x) > t)) {
367 		zone_page_state_add(x, zone, item);
368 		x = 0;
369 	}
370 	__this_cpu_write(*p, x);
371 
372 	preempt_enable_nested();
373 }
374 EXPORT_SYMBOL(__mod_zone_page_state);
375 
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
377 				long delta)
378 {
379 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
380 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
381 	long x;
382 	long t;
383 
384 	if (vmstat_item_in_bytes(item)) {
385 		/*
386 		 * Only cgroups use subpage accounting right now; at
387 		 * the global level, these items still change in
388 		 * multiples of whole pages. Store them as pages
389 		 * internally to keep the per-cpu counters compact.
390 		 */
391 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
392 		delta >>= PAGE_SHIFT;
393 	}
394 
395 	/* See __mod_zone_page_state() */
396 	preempt_disable_nested();
397 
398 	x = delta + __this_cpu_read(*p);
399 
400 	t = __this_cpu_read(pcp->stat_threshold);
401 
402 	if (unlikely(abs(x) > t)) {
403 		node_page_state_add(x, pgdat, item);
404 		x = 0;
405 	}
406 	__this_cpu_write(*p, x);
407 
408 	preempt_enable_nested();
409 }
410 EXPORT_SYMBOL(__mod_node_page_state);
411 
412 /*
413  * Optimized increment and decrement functions.
414  *
415  * These are only for a single page and therefore can take a struct page *
416  * argument instead of struct zone *. This allows the inclusion of the code
417  * generated for page_zone(page) into the optimized functions.
418  *
419  * No overflow check is necessary and therefore the differential can be
420  * incremented or decremented in place which may allow the compilers to
421  * generate better code.
422  * The increment or decrement is known and therefore one boundary check can
423  * be omitted.
424  *
425  * NOTE: These functions are very performance sensitive. Change only
426  * with care.
427  *
428  * Some processors have inc/dec instructions that are atomic vs an interrupt.
429  * However, the code must first determine the differential location in a zone
430  * based on the processor number and then inc/dec the counter. There is no
431  * guarantee without disabling preemption that the processor will not change
432  * in between and therefore the atomicity vs. interrupt cannot be exploited
433  * in a useful way here.
434  */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)435 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
436 {
437 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
438 	s8 __percpu *p = pcp->vm_stat_diff + item;
439 	s8 v, t;
440 
441 	/* See __mod_zone_page_state() */
442 	preempt_disable_nested();
443 
444 	v = __this_cpu_inc_return(*p);
445 	t = __this_cpu_read(pcp->stat_threshold);
446 	if (unlikely(v > t)) {
447 		s8 overstep = t >> 1;
448 
449 		zone_page_state_add(v + overstep, zone, item);
450 		__this_cpu_write(*p, -overstep);
451 	}
452 
453 	preempt_enable_nested();
454 }
455 
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)456 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
457 {
458 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
459 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
460 	s8 v, t;
461 
462 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
463 
464 	/* See __mod_zone_page_state() */
465 	preempt_disable_nested();
466 
467 	v = __this_cpu_inc_return(*p);
468 	t = __this_cpu_read(pcp->stat_threshold);
469 	if (unlikely(v > t)) {
470 		s8 overstep = t >> 1;
471 
472 		node_page_state_add(v + overstep, pgdat, item);
473 		__this_cpu_write(*p, -overstep);
474 	}
475 
476 	preempt_enable_nested();
477 }
478 
__inc_zone_page_state(struct page * page,enum zone_stat_item item)479 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
480 {
481 	__inc_zone_state(page_zone(page), item);
482 }
483 EXPORT_SYMBOL(__inc_zone_page_state);
484 
__inc_node_page_state(struct page * page,enum node_stat_item item)485 void __inc_node_page_state(struct page *page, enum node_stat_item item)
486 {
487 	__inc_node_state(page_pgdat(page), item);
488 }
489 EXPORT_SYMBOL(__inc_node_page_state);
490 
__dec_zone_state(struct zone * zone,enum zone_stat_item item)491 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
492 {
493 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
494 	s8 __percpu *p = pcp->vm_stat_diff + item;
495 	s8 v, t;
496 
497 	/* See __mod_zone_page_state() */
498 	preempt_disable_nested();
499 
500 	v = __this_cpu_dec_return(*p);
501 	t = __this_cpu_read(pcp->stat_threshold);
502 	if (unlikely(v < - t)) {
503 		s8 overstep = t >> 1;
504 
505 		zone_page_state_add(v - overstep, zone, item);
506 		__this_cpu_write(*p, overstep);
507 	}
508 
509 	preempt_enable_nested();
510 }
511 
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)512 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
513 {
514 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
515 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
516 	s8 v, t;
517 
518 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
519 
520 	/* See __mod_zone_page_state() */
521 	preempt_disable_nested();
522 
523 	v = __this_cpu_dec_return(*p);
524 	t = __this_cpu_read(pcp->stat_threshold);
525 	if (unlikely(v < - t)) {
526 		s8 overstep = t >> 1;
527 
528 		node_page_state_add(v - overstep, pgdat, item);
529 		__this_cpu_write(*p, overstep);
530 	}
531 
532 	preempt_enable_nested();
533 }
534 
__dec_zone_page_state(struct page * page,enum zone_stat_item item)535 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
536 {
537 	__dec_zone_state(page_zone(page), item);
538 }
539 EXPORT_SYMBOL(__dec_zone_page_state);
540 
__dec_node_page_state(struct page * page,enum node_stat_item item)541 void __dec_node_page_state(struct page *page, enum node_stat_item item)
542 {
543 	__dec_node_state(page_pgdat(page), item);
544 }
545 EXPORT_SYMBOL(__dec_node_page_state);
546 
547 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
548 /*
549  * If we have cmpxchg_local support then we do not need to incur the overhead
550  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
551  *
552  * mod_state() modifies the zone counter state through atomic per cpu
553  * operations.
554  *
555  * Overstep mode specifies how overstep should handled:
556  *     0       No overstepping
557  *     1       Overstepping half of threshold
558  *     -1      Overstepping minus half of threshold
559 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)560 static inline void mod_zone_state(struct zone *zone,
561        enum zone_stat_item item, long delta, int overstep_mode)
562 {
563 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
564 	s8 __percpu *p = pcp->vm_stat_diff + item;
565 	long n, t, z;
566 	s8 o;
567 
568 	o = this_cpu_read(*p);
569 	do {
570 		z = 0;  /* overflow to zone counters */
571 
572 		/*
573 		 * The fetching of the stat_threshold is racy. We may apply
574 		 * a counter threshold to the wrong the cpu if we get
575 		 * rescheduled while executing here. However, the next
576 		 * counter update will apply the threshold again and
577 		 * therefore bring the counter under the threshold again.
578 		 *
579 		 * Most of the time the thresholds are the same anyways
580 		 * for all cpus in a zone.
581 		 */
582 		t = this_cpu_read(pcp->stat_threshold);
583 
584 		n = delta + (long)o;
585 
586 		if (abs(n) > t) {
587 			int os = overstep_mode * (t >> 1) ;
588 
589 			/* Overflow must be added to zone counters */
590 			z = n + os;
591 			n = -os;
592 		}
593 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
594 
595 	if (z)
596 		zone_page_state_add(z, zone, item);
597 }
598 
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)599 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
600 			 long delta)
601 {
602 	mod_zone_state(zone, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_zone_page_state);
605 
inc_zone_page_state(struct page * page,enum zone_stat_item item)606 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
607 {
608 	mod_zone_state(page_zone(page), item, 1, 1);
609 }
610 EXPORT_SYMBOL(inc_zone_page_state);
611 
dec_zone_page_state(struct page * page,enum zone_stat_item item)612 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
613 {
614 	mod_zone_state(page_zone(page), item, -1, -1);
615 }
616 EXPORT_SYMBOL(dec_zone_page_state);
617 
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)618 static inline void mod_node_state(struct pglist_data *pgdat,
619        enum node_stat_item item, int delta, int overstep_mode)
620 {
621 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
622 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
623 	long n, t, z;
624 	s8 o;
625 
626 	if (vmstat_item_in_bytes(item)) {
627 		/*
628 		 * Only cgroups use subpage accounting right now; at
629 		 * the global level, these items still change in
630 		 * multiples of whole pages. Store them as pages
631 		 * internally to keep the per-cpu counters compact.
632 		 */
633 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
634 		delta >>= PAGE_SHIFT;
635 	}
636 
637 	o = this_cpu_read(*p);
638 	do {
639 		z = 0;  /* overflow to node counters */
640 
641 		/*
642 		 * The fetching of the stat_threshold is racy. We may apply
643 		 * a counter threshold to the wrong the cpu if we get
644 		 * rescheduled while executing here. However, the next
645 		 * counter update will apply the threshold again and
646 		 * therefore bring the counter under the threshold again.
647 		 *
648 		 * Most of the time the thresholds are the same anyways
649 		 * for all cpus in a node.
650 		 */
651 		t = this_cpu_read(pcp->stat_threshold);
652 
653 		n = delta + (long)o;
654 
655 		if (abs(n) > t) {
656 			int os = overstep_mode * (t >> 1) ;
657 
658 			/* Overflow must be added to node counters */
659 			z = n + os;
660 			n = -os;
661 		}
662 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
663 
664 	if (z)
665 		node_page_state_add(z, pgdat, item);
666 }
667 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)668 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
669 					long delta)
670 {
671 	mod_node_state(pgdat, item, delta, 0);
672 }
673 EXPORT_SYMBOL(mod_node_page_state);
674 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)675 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
676 {
677 	mod_node_state(pgdat, item, 1, 1);
678 }
679 
inc_node_page_state(struct page * page,enum node_stat_item item)680 void inc_node_page_state(struct page *page, enum node_stat_item item)
681 {
682 	mod_node_state(page_pgdat(page), item, 1, 1);
683 }
684 EXPORT_SYMBOL(inc_node_page_state);
685 
dec_node_page_state(struct page * page,enum node_stat_item item)686 void dec_node_page_state(struct page *page, enum node_stat_item item)
687 {
688 	mod_node_state(page_pgdat(page), item, -1, -1);
689 }
690 EXPORT_SYMBOL(dec_node_page_state);
691 #else
692 /*
693  * Use interrupt disable to serialize counter updates
694  */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)695 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
696 			 long delta)
697 {
698 	unsigned long flags;
699 
700 	local_irq_save(flags);
701 	__mod_zone_page_state(zone, item, delta);
702 	local_irq_restore(flags);
703 }
704 EXPORT_SYMBOL(mod_zone_page_state);
705 
inc_zone_page_state(struct page * page,enum zone_stat_item item)706 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
707 {
708 	unsigned long flags;
709 	struct zone *zone;
710 
711 	zone = page_zone(page);
712 	local_irq_save(flags);
713 	__inc_zone_state(zone, item);
714 	local_irq_restore(flags);
715 }
716 EXPORT_SYMBOL(inc_zone_page_state);
717 
dec_zone_page_state(struct page * page,enum zone_stat_item item)718 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
719 {
720 	unsigned long flags;
721 
722 	local_irq_save(flags);
723 	__dec_zone_page_state(page, item);
724 	local_irq_restore(flags);
725 }
726 EXPORT_SYMBOL(dec_zone_page_state);
727 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)728 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
729 {
730 	unsigned long flags;
731 
732 	local_irq_save(flags);
733 	__inc_node_state(pgdat, item);
734 	local_irq_restore(flags);
735 }
736 EXPORT_SYMBOL(inc_node_state);
737 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)738 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
739 					long delta)
740 {
741 	unsigned long flags;
742 
743 	local_irq_save(flags);
744 	__mod_node_page_state(pgdat, item, delta);
745 	local_irq_restore(flags);
746 }
747 EXPORT_SYMBOL(mod_node_page_state);
748 
inc_node_page_state(struct page * page,enum node_stat_item item)749 void inc_node_page_state(struct page *page, enum node_stat_item item)
750 {
751 	unsigned long flags;
752 	struct pglist_data *pgdat;
753 
754 	pgdat = page_pgdat(page);
755 	local_irq_save(flags);
756 	__inc_node_state(pgdat, item);
757 	local_irq_restore(flags);
758 }
759 EXPORT_SYMBOL(inc_node_page_state);
760 
dec_node_page_state(struct page * page,enum node_stat_item item)761 void dec_node_page_state(struct page *page, enum node_stat_item item)
762 {
763 	unsigned long flags;
764 
765 	local_irq_save(flags);
766 	__dec_node_page_state(page, item);
767 	local_irq_restore(flags);
768 }
769 EXPORT_SYMBOL(dec_node_page_state);
770 #endif
771 
772 /*
773  * Fold a differential into the global counters.
774  * Returns whether counters were updated.
775  */
fold_diff(int * zone_diff,int * node_diff)776 static int fold_diff(int *zone_diff, int *node_diff)
777 {
778 	int i;
779 	bool changed = false;
780 
781 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
782 		if (zone_diff[i]) {
783 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
784 			changed = true;
785 		}
786 	}
787 
788 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
789 		if (node_diff[i]) {
790 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
791 			changed = true;
792 		}
793 	}
794 
795 	return changed;
796 }
797 
798 /*
799  * Update the zone counters for the current cpu.
800  *
801  * Note that refresh_cpu_vm_stats strives to only access
802  * node local memory. The per cpu pagesets on remote zones are placed
803  * in the memory local to the processor using that pageset. So the
804  * loop over all zones will access a series of cachelines local to
805  * the processor.
806  *
807  * The call to zone_page_state_add updates the cachelines with the
808  * statistics in the remote zone struct as well as the global cachelines
809  * with the global counters. These could cause remote node cache line
810  * bouncing and will have to be only done when necessary.
811  *
812  * The function returns whether global counters were updated.
813  */
refresh_cpu_vm_stats(bool do_pagesets)814 static bool refresh_cpu_vm_stats(bool do_pagesets)
815 {
816 	struct pglist_data *pgdat;
817 	struct zone *zone;
818 	int i;
819 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
820 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
821 	bool changed = false;
822 
823 	for_each_populated_zone(zone) {
824 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
825 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
826 
827 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
828 			int v;
829 
830 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
831 			if (v) {
832 
833 				atomic_long_add(v, &zone->vm_stat[i]);
834 				global_zone_diff[i] += v;
835 #ifdef CONFIG_NUMA
836 				/* 3 seconds idle till flush */
837 				__this_cpu_write(pcp->expire, 3);
838 #endif
839 			}
840 		}
841 
842 		if (do_pagesets) {
843 			cond_resched();
844 
845 			if (decay_pcp_high(zone, this_cpu_ptr(pcp)))
846 				changed = true;
847 #ifdef CONFIG_NUMA
848 			/*
849 			 * Deal with draining the remote pageset of this
850 			 * processor
851 			 *
852 			 * Check if there are pages remaining in this pageset
853 			 * if not then there is nothing to expire.
854 			 */
855 			if (!__this_cpu_read(pcp->expire) ||
856 			       !__this_cpu_read(pcp->count))
857 				continue;
858 
859 			/*
860 			 * We never drain zones local to this processor.
861 			 */
862 			if (zone_to_nid(zone) == numa_node_id()) {
863 				__this_cpu_write(pcp->expire, 0);
864 				continue;
865 			}
866 
867 			if (__this_cpu_dec_return(pcp->expire)) {
868 				changed = true;
869 				continue;
870 			}
871 
872 			if (__this_cpu_read(pcp->count)) {
873 				drain_zone_pages(zone, this_cpu_ptr(pcp));
874 				changed = true;
875 			}
876 #endif
877 		}
878 	}
879 
880 	for_each_online_pgdat(pgdat) {
881 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
882 
883 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
884 			int v;
885 
886 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
887 			if (v) {
888 				atomic_long_add(v, &pgdat->vm_stat[i]);
889 				global_node_diff[i] += v;
890 			}
891 		}
892 	}
893 
894 	if (fold_diff(global_zone_diff, global_node_diff))
895 		changed = true;
896 	return changed;
897 }
898 
899 /*
900  * Fold the data for an offline cpu into the global array.
901  * There cannot be any access by the offline cpu and therefore
902  * synchronization is simplified.
903  */
cpu_vm_stats_fold(int cpu)904 void cpu_vm_stats_fold(int cpu)
905 {
906 	struct pglist_data *pgdat;
907 	struct zone *zone;
908 	int i;
909 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911 
912 	for_each_populated_zone(zone) {
913 		struct per_cpu_zonestat *pzstats;
914 
915 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916 
917 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 			if (pzstats->vm_stat_diff[i]) {
919 				int v;
920 
921 				v = pzstats->vm_stat_diff[i];
922 				pzstats->vm_stat_diff[i] = 0;
923 				atomic_long_add(v, &zone->vm_stat[i]);
924 				global_zone_diff[i] += v;
925 			}
926 		}
927 #ifdef CONFIG_NUMA
928 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 			if (pzstats->vm_numa_event[i]) {
930 				unsigned long v;
931 
932 				v = pzstats->vm_numa_event[i];
933 				pzstats->vm_numa_event[i] = 0;
934 				zone_numa_event_add(v, zone, i);
935 			}
936 		}
937 #endif
938 	}
939 
940 	for_each_online_pgdat(pgdat) {
941 		struct per_cpu_nodestat *p;
942 
943 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944 
945 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 			if (p->vm_node_stat_diff[i]) {
947 				int v;
948 
949 				v = p->vm_node_stat_diff[i];
950 				p->vm_node_stat_diff[i] = 0;
951 				atomic_long_add(v, &pgdat->vm_stat[i]);
952 				global_node_diff[i] += v;
953 			}
954 	}
955 
956 	fold_diff(global_zone_diff, global_node_diff);
957 }
958 
959 /*
960  * this is only called if !populated_zone(zone), which implies no other users of
961  * pset->vm_stat_diff[] exist.
962  */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965 	unsigned long v;
966 	int i;
967 
968 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 		if (pzstats->vm_stat_diff[i]) {
970 			v = pzstats->vm_stat_diff[i];
971 			pzstats->vm_stat_diff[i] = 0;
972 			zone_page_state_add(v, zone, i);
973 		}
974 	}
975 
976 #ifdef CONFIG_NUMA
977 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 		if (pzstats->vm_numa_event[i]) {
979 			v = pzstats->vm_numa_event[i];
980 			pzstats->vm_numa_event[i] = 0;
981 			zone_numa_event_add(v, zone, i);
982 		}
983 	}
984 #endif
985 }
986 #endif
987 
988 #ifdef CONFIG_NUMA
989 /*
990  * Determine the per node value of a stat item. This function
991  * is called frequently in a NUMA machine, so try to be as
992  * frugal as possible.
993  */
sum_zone_node_page_state(int node,enum zone_stat_item item)994 unsigned long sum_zone_node_page_state(int node,
995 				 enum zone_stat_item item)
996 {
997 	struct zone *zones = NODE_DATA(node)->node_zones;
998 	int i;
999 	unsigned long count = 0;
1000 
1001 	for (i = 0; i < MAX_NR_ZONES; i++)
1002 		count += zone_page_state(zones + i, item);
1003 
1004 	return count;
1005 }
1006 
1007 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1008 unsigned long sum_zone_numa_event_state(int node,
1009 				 enum numa_stat_item item)
1010 {
1011 	struct zone *zones = NODE_DATA(node)->node_zones;
1012 	unsigned long count = 0;
1013 	int i;
1014 
1015 	for (i = 0; i < MAX_NR_ZONES; i++)
1016 		count += zone_numa_event_state(zones + i, item);
1017 
1018 	return count;
1019 }
1020 
1021 /*
1022  * Determine the per node value of a stat item.
1023  */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 				    enum node_stat_item item)
1026 {
1027 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029 	if (x < 0)
1030 		x = 0;
1031 #endif
1032 	return x;
1033 }
1034 
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 			      enum node_stat_item item)
1037 {
1038 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039 
1040 	return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043 
1044 /*
1045  * Count number of pages "struct page" and "struct page_ext" consume.
1046  * nr_memmap_boot_pages: # of pages allocated by boot allocator
1047  * nr_memmap_pages: # of pages that were allocated by buddy allocator
1048  */
1049 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1050 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1051 
memmap_boot_pages_add(long delta)1052 void memmap_boot_pages_add(long delta)
1053 {
1054 	atomic_long_add(delta, &nr_memmap_boot_pages);
1055 }
1056 
memmap_pages_add(long delta)1057 void memmap_pages_add(long delta)
1058 {
1059 	atomic_long_add(delta, &nr_memmap_pages);
1060 }
1061 
1062 #ifdef CONFIG_COMPACTION
1063 
1064 struct contig_page_info {
1065 	unsigned long free_pages;
1066 	unsigned long free_blocks_total;
1067 	unsigned long free_blocks_suitable;
1068 };
1069 
1070 /*
1071  * Calculate the number of free pages in a zone, how many contiguous
1072  * pages are free and how many are large enough to satisfy an allocation of
1073  * the target size. Note that this function makes no attempt to estimate
1074  * how many suitable free blocks there *might* be if MOVABLE pages were
1075  * migrated. Calculating that is possible, but expensive and can be
1076  * figured out from userspace
1077  */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1078 static void fill_contig_page_info(struct zone *zone,
1079 				unsigned int suitable_order,
1080 				struct contig_page_info *info)
1081 {
1082 	unsigned int order;
1083 
1084 	info->free_pages = 0;
1085 	info->free_blocks_total = 0;
1086 	info->free_blocks_suitable = 0;
1087 
1088 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1089 		unsigned long blocks;
1090 
1091 		/*
1092 		 * Count number of free blocks.
1093 		 *
1094 		 * Access to nr_free is lockless as nr_free is used only for
1095 		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1096 		 */
1097 		blocks = data_race(zone->free_area[order].nr_free);
1098 		info->free_blocks_total += blocks;
1099 
1100 		/* Count free base pages */
1101 		info->free_pages += blocks << order;
1102 
1103 		/* Count the suitable free blocks */
1104 		if (order >= suitable_order)
1105 			info->free_blocks_suitable += blocks <<
1106 						(order - suitable_order);
1107 	}
1108 }
1109 
1110 /*
1111  * A fragmentation index only makes sense if an allocation of a requested
1112  * size would fail. If that is true, the fragmentation index indicates
1113  * whether external fragmentation or a lack of memory was the problem.
1114  * The value can be used to determine if page reclaim or compaction
1115  * should be used
1116  */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1117 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1118 {
1119 	unsigned long requested = 1UL << order;
1120 
1121 	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1122 		return 0;
1123 
1124 	if (!info->free_blocks_total)
1125 		return 0;
1126 
1127 	/* Fragmentation index only makes sense when a request would fail */
1128 	if (info->free_blocks_suitable)
1129 		return -1000;
1130 
1131 	/*
1132 	 * Index is between 0 and 1 so return within 3 decimal places
1133 	 *
1134 	 * 0 => allocation would fail due to lack of memory
1135 	 * 1 => allocation would fail due to fragmentation
1136 	 */
1137 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1138 }
1139 
1140 /*
1141  * Calculates external fragmentation within a zone wrt the given order.
1142  * It is defined as the percentage of pages found in blocks of size
1143  * less than 1 << order. It returns values in range [0, 100].
1144  */
extfrag_for_order(struct zone * zone,unsigned int order)1145 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1146 {
1147 	struct contig_page_info info;
1148 
1149 	fill_contig_page_info(zone, order, &info);
1150 	if (info.free_pages == 0)
1151 		return 0;
1152 
1153 	return div_u64((info.free_pages -
1154 			(info.free_blocks_suitable << order)) * 100,
1155 			info.free_pages);
1156 }
1157 
1158 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1159 int fragmentation_index(struct zone *zone, unsigned int order)
1160 {
1161 	struct contig_page_info info;
1162 
1163 	fill_contig_page_info(zone, order, &info);
1164 	return __fragmentation_index(order, &info);
1165 }
1166 #endif
1167 
1168 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1169     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1170 #ifdef CONFIG_ZONE_DMA
1171 #define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma",
1172 #else
1173 #define TEXT_FOR_DMA(xx, yy)
1174 #endif
1175 
1176 #ifdef CONFIG_ZONE_DMA32
1177 #define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32",
1178 #else
1179 #define TEXT_FOR_DMA32(xx, yy)
1180 #endif
1181 
1182 #ifdef CONFIG_HIGHMEM
1183 #define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high",
1184 #else
1185 #define TEXT_FOR_HIGHMEM(xx, yy)
1186 #endif
1187 
1188 #ifdef CONFIG_ZONE_DEVICE
1189 #define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device",
1190 #else
1191 #define TEXT_FOR_DEVICE(xx, yy)
1192 #endif
1193 
1194 #define TEXTS_FOR_ZONES(xx, yy)			\
1195 	TEXT_FOR_DMA(xx, yy)			\
1196 	TEXT_FOR_DMA32(xx, yy)			\
1197 	[xx##_NORMAL] = yy "_normal",		\
1198 	TEXT_FOR_HIGHMEM(xx, yy)		\
1199 	[xx##_MOVABLE] = yy "_movable",		\
1200 	TEXT_FOR_DEVICE(xx, yy)
1201 
1202 const char * const vmstat_text[] = {
1203 	/* enum zone_stat_item counters */
1204 #define I(x) (x)
1205 	[I(NR_FREE_PAGES)]			= "nr_free_pages",
1206 	[I(NR_FREE_PAGES_BLOCKS)]		= "nr_free_pages_blocks",
1207 	[I(NR_ZONE_INACTIVE_ANON)]		= "nr_zone_inactive_anon",
1208 	[I(NR_ZONE_ACTIVE_ANON)]		= "nr_zone_active_anon",
1209 	[I(NR_ZONE_INACTIVE_FILE)]		= "nr_zone_inactive_file",
1210 	[I(NR_ZONE_ACTIVE_FILE)]		= "nr_zone_active_file",
1211 	[I(NR_ZONE_UNEVICTABLE)]		= "nr_zone_unevictable",
1212 	[I(NR_ZONE_WRITE_PENDING)]		= "nr_zone_write_pending",
1213 	[I(NR_MLOCK)]				= "nr_mlock",
1214 #if IS_ENABLED(CONFIG_ZSMALLOC)
1215 	[I(NR_ZSPAGES)]				= "nr_zspages",
1216 #endif
1217 	[I(NR_FREE_CMA_PAGES)]			= "nr_free_cma",
1218 #ifdef CONFIG_UNACCEPTED_MEMORY
1219 	[I(NR_UNACCEPTED)]			= "nr_unaccepted",
1220 #endif
1221 #undef I
1222 
1223 	/* enum numa_stat_item counters */
1224 #define I(x) (NR_VM_ZONE_STAT_ITEMS + x)
1225 #ifdef CONFIG_NUMA
1226 	[I(NUMA_HIT)]				= "numa_hit",
1227 	[I(NUMA_MISS)]				= "numa_miss",
1228 	[I(NUMA_FOREIGN)]			= "numa_foreign",
1229 	[I(NUMA_INTERLEAVE_HIT)]		= "numa_interleave",
1230 	[I(NUMA_LOCAL)]				= "numa_local",
1231 	[I(NUMA_OTHER)]				= "numa_other",
1232 #endif
1233 #undef I
1234 
1235 	/* enum node_stat_item counters */
1236 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x)
1237 	[I(NR_INACTIVE_ANON)]			= "nr_inactive_anon",
1238 	[I(NR_ACTIVE_ANON)]			= "nr_active_anon",
1239 	[I(NR_INACTIVE_FILE)]			= "nr_inactive_file",
1240 	[I(NR_ACTIVE_FILE)]			= "nr_active_file",
1241 	[I(NR_UNEVICTABLE)]			= "nr_unevictable",
1242 	[I(NR_SLAB_RECLAIMABLE_B)]		= "nr_slab_reclaimable",
1243 	[I(NR_SLAB_UNRECLAIMABLE_B)]		= "nr_slab_unreclaimable",
1244 	[I(NR_ISOLATED_ANON)]			= "nr_isolated_anon",
1245 	[I(NR_ISOLATED_FILE)]			= "nr_isolated_file",
1246 	[I(WORKINGSET_NODES)]			= "workingset_nodes",
1247 	[I(WORKINGSET_REFAULT_ANON)]		= "workingset_refault_anon",
1248 	[I(WORKINGSET_REFAULT_FILE)]		= "workingset_refault_file",
1249 	[I(WORKINGSET_ACTIVATE_ANON)]		= "workingset_activate_anon",
1250 	[I(WORKINGSET_ACTIVATE_FILE)]		= "workingset_activate_file",
1251 	[I(WORKINGSET_RESTORE_ANON)]		= "workingset_restore_anon",
1252 	[I(WORKINGSET_RESTORE_FILE)]		= "workingset_restore_file",
1253 	[I(WORKINGSET_NODERECLAIM)]		= "workingset_nodereclaim",
1254 	[I(NR_ANON_MAPPED)]			= "nr_anon_pages",
1255 	[I(NR_FILE_MAPPED)]			= "nr_mapped",
1256 	[I(NR_FILE_PAGES)]			= "nr_file_pages",
1257 	[I(NR_FILE_DIRTY)]			= "nr_dirty",
1258 	[I(NR_WRITEBACK)]			= "nr_writeback",
1259 	[I(NR_SHMEM)]				= "nr_shmem",
1260 	[I(NR_SHMEM_THPS)]			= "nr_shmem_hugepages",
1261 	[I(NR_SHMEM_PMDMAPPED)]			= "nr_shmem_pmdmapped",
1262 	[I(NR_FILE_THPS)]			= "nr_file_hugepages",
1263 	[I(NR_FILE_PMDMAPPED)]			= "nr_file_pmdmapped",
1264 	[I(NR_ANON_THPS)]			= "nr_anon_transparent_hugepages",
1265 	[I(NR_VMSCAN_WRITE)]			= "nr_vmscan_write",
1266 	[I(NR_VMSCAN_IMMEDIATE)]		= "nr_vmscan_immediate_reclaim",
1267 	[I(NR_DIRTIED)]				= "nr_dirtied",
1268 	[I(NR_WRITTEN)]				= "nr_written",
1269 	[I(NR_THROTTLED_WRITTEN)]		= "nr_throttled_written",
1270 	[I(NR_KERNEL_MISC_RECLAIMABLE)]		= "nr_kernel_misc_reclaimable",
1271 	[I(NR_FOLL_PIN_ACQUIRED)]		= "nr_foll_pin_acquired",
1272 	[I(NR_FOLL_PIN_RELEASED)]		= "nr_foll_pin_released",
1273 	[I(NR_KERNEL_STACK_KB)]			= "nr_kernel_stack",
1274 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1275 	[I(NR_KERNEL_SCS_KB)]			= "nr_shadow_call_stack",
1276 #endif
1277 	[I(NR_PAGETABLE)]			= "nr_page_table_pages",
1278 	[I(NR_SECONDARY_PAGETABLE)]		= "nr_sec_page_table_pages",
1279 #ifdef CONFIG_IOMMU_SUPPORT
1280 	[I(NR_IOMMU_PAGES)]			= "nr_iommu_pages",
1281 #endif
1282 #ifdef CONFIG_SWAP
1283 	[I(NR_SWAPCACHE)]			= "nr_swapcached",
1284 #endif
1285 #ifdef CONFIG_NUMA_BALANCING
1286 	[I(PGPROMOTE_SUCCESS)]			= "pgpromote_success",
1287 	[I(PGPROMOTE_CANDIDATE)]		= "pgpromote_candidate",
1288 	[I(PGPROMOTE_CANDIDATE_NRL)]		= "pgpromote_candidate_nrl",
1289 #endif
1290 	[I(PGDEMOTE_KSWAPD)]			= "pgdemote_kswapd",
1291 	[I(PGDEMOTE_DIRECT)]			= "pgdemote_direct",
1292 	[I(PGDEMOTE_KHUGEPAGED)]		= "pgdemote_khugepaged",
1293 	[I(PGDEMOTE_PROACTIVE)]			= "pgdemote_proactive",
1294 #ifdef CONFIG_HUGETLB_PAGE
1295 	[I(NR_HUGETLB)]				= "nr_hugetlb",
1296 #endif
1297 	[I(NR_BALLOON_PAGES)]			= "nr_balloon_pages",
1298 	[I(NR_KERNEL_FILE_PAGES)]		= "nr_kernel_file_pages",
1299 #undef I
1300 
1301 	/* system-wide enum vm_stat_item counters */
1302 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1303 	     NR_VM_NODE_STAT_ITEMS + x)
1304 	[I(NR_DIRTY_THRESHOLD)]			= "nr_dirty_threshold",
1305 	[I(NR_DIRTY_BG_THRESHOLD)]		= "nr_dirty_background_threshold",
1306 	[I(NR_MEMMAP_PAGES)]			= "nr_memmap_pages",
1307 	[I(NR_MEMMAP_BOOT_PAGES)]		= "nr_memmap_boot_pages",
1308 #undef I
1309 
1310 #if defined(CONFIG_VM_EVENT_COUNTERS)
1311 	/* enum vm_event_item counters */
1312 #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1313 	     NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x)
1314 
1315 	[I(PGPGIN)]				= "pgpgin",
1316 	[I(PGPGOUT)]				= "pgpgout",
1317 	[I(PSWPIN)]				= "pswpin",
1318 	[I(PSWPOUT)]				= "pswpout",
1319 
1320 #define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \
1321 	     NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS)
1322 	TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc")
1323 	TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall")
1324 	TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip")
1325 #undef OFF
1326 
1327 	[I(PGFREE)]				= "pgfree",
1328 	[I(PGACTIVATE)]				= "pgactivate",
1329 	[I(PGDEACTIVATE)]			= "pgdeactivate",
1330 	[I(PGLAZYFREE)]				= "pglazyfree",
1331 
1332 	[I(PGFAULT)]				= "pgfault",
1333 	[I(PGMAJFAULT)]				= "pgmajfault",
1334 	[I(PGLAZYFREED)]			= "pglazyfreed",
1335 
1336 	[I(PGREFILL)]				= "pgrefill",
1337 	[I(PGREUSE)]				= "pgreuse",
1338 	[I(PGSTEAL_KSWAPD)]			= "pgsteal_kswapd",
1339 	[I(PGSTEAL_DIRECT)]			= "pgsteal_direct",
1340 	[I(PGSTEAL_KHUGEPAGED)]			= "pgsteal_khugepaged",
1341 	[I(PGSTEAL_PROACTIVE)]			= "pgsteal_proactive",
1342 	[I(PGSCAN_KSWAPD)]			= "pgscan_kswapd",
1343 	[I(PGSCAN_DIRECT)]			= "pgscan_direct",
1344 	[I(PGSCAN_KHUGEPAGED)]			= "pgscan_khugepaged",
1345 	[I(PGSCAN_PROACTIVE)]			= "pgscan_proactive",
1346 	[I(PGSCAN_DIRECT_THROTTLE)]		= "pgscan_direct_throttle",
1347 	[I(PGSCAN_ANON)]			= "pgscan_anon",
1348 	[I(PGSCAN_FILE)]			= "pgscan_file",
1349 	[I(PGSTEAL_ANON)]			= "pgsteal_anon",
1350 	[I(PGSTEAL_FILE)]			= "pgsteal_file",
1351 
1352 #ifdef CONFIG_NUMA
1353 	[I(PGSCAN_ZONE_RECLAIM_SUCCESS)]	= "zone_reclaim_success",
1354 	[I(PGSCAN_ZONE_RECLAIM_FAILED)]		= "zone_reclaim_failed",
1355 #endif
1356 	[I(PGINODESTEAL)]			= "pginodesteal",
1357 	[I(SLABS_SCANNED)]			= "slabs_scanned",
1358 	[I(KSWAPD_INODESTEAL)]			= "kswapd_inodesteal",
1359 	[I(KSWAPD_LOW_WMARK_HIT_QUICKLY)]	= "kswapd_low_wmark_hit_quickly",
1360 	[I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)]	= "kswapd_high_wmark_hit_quickly",
1361 	[I(PAGEOUTRUN)]				= "pageoutrun",
1362 
1363 	[I(PGROTATED)]				= "pgrotated",
1364 
1365 	[I(DROP_PAGECACHE)]			= "drop_pagecache",
1366 	[I(DROP_SLAB)]				= "drop_slab",
1367 	[I(OOM_KILL)]				= "oom_kill",
1368 
1369 #ifdef CONFIG_NUMA_BALANCING
1370 	[I(NUMA_PTE_UPDATES)]			= "numa_pte_updates",
1371 	[I(NUMA_HUGE_PTE_UPDATES)]		= "numa_huge_pte_updates",
1372 	[I(NUMA_HINT_FAULTS)]			= "numa_hint_faults",
1373 	[I(NUMA_HINT_FAULTS_LOCAL)]		= "numa_hint_faults_local",
1374 	[I(NUMA_PAGE_MIGRATE)]			= "numa_pages_migrated",
1375 #endif
1376 #ifdef CONFIG_MIGRATION
1377 	[I(PGMIGRATE_SUCCESS)]			= "pgmigrate_success",
1378 	[I(PGMIGRATE_FAIL)]			= "pgmigrate_fail",
1379 	[I(THP_MIGRATION_SUCCESS)]		= "thp_migration_success",
1380 	[I(THP_MIGRATION_FAIL)]			= "thp_migration_fail",
1381 	[I(THP_MIGRATION_SPLIT)]		= "thp_migration_split",
1382 #endif
1383 #ifdef CONFIG_COMPACTION
1384 	[I(COMPACTMIGRATE_SCANNED)]		= "compact_migrate_scanned",
1385 	[I(COMPACTFREE_SCANNED)]		= "compact_free_scanned",
1386 	[I(COMPACTISOLATED)]			= "compact_isolated",
1387 	[I(COMPACTSTALL)]			= "compact_stall",
1388 	[I(COMPACTFAIL)]			= "compact_fail",
1389 	[I(COMPACTSUCCESS)]			= "compact_success",
1390 	[I(KCOMPACTD_WAKE)]			= "compact_daemon_wake",
1391 	[I(KCOMPACTD_MIGRATE_SCANNED)]		= "compact_daemon_migrate_scanned",
1392 	[I(KCOMPACTD_FREE_SCANNED)]		= "compact_daemon_free_scanned",
1393 #endif
1394 
1395 #ifdef CONFIG_HUGETLB_PAGE
1396 	[I(HTLB_BUDDY_PGALLOC)]			= "htlb_buddy_alloc_success",
1397 	[I(HTLB_BUDDY_PGALLOC_FAIL)]		= "htlb_buddy_alloc_fail",
1398 #endif
1399 #ifdef CONFIG_CMA
1400 	[I(CMA_ALLOC_SUCCESS)]			= "cma_alloc_success",
1401 	[I(CMA_ALLOC_FAIL)]			= "cma_alloc_fail",
1402 #endif
1403 	[I(UNEVICTABLE_PGCULLED)]		= "unevictable_pgs_culled",
1404 	[I(UNEVICTABLE_PGSCANNED)]		= "unevictable_pgs_scanned",
1405 	[I(UNEVICTABLE_PGRESCUED)]		= "unevictable_pgs_rescued",
1406 	[I(UNEVICTABLE_PGMLOCKED)]		= "unevictable_pgs_mlocked",
1407 	[I(UNEVICTABLE_PGMUNLOCKED)]		= "unevictable_pgs_munlocked",
1408 	[I(UNEVICTABLE_PGCLEARED)]		= "unevictable_pgs_cleared",
1409 	[I(UNEVICTABLE_PGSTRANDED)]		= "unevictable_pgs_stranded",
1410 
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	[I(THP_FAULT_ALLOC)]			= "thp_fault_alloc",
1413 	[I(THP_FAULT_FALLBACK)]			= "thp_fault_fallback",
1414 	[I(THP_FAULT_FALLBACK_CHARGE)]		= "thp_fault_fallback_charge",
1415 	[I(THP_COLLAPSE_ALLOC)]			= "thp_collapse_alloc",
1416 	[I(THP_COLLAPSE_ALLOC_FAILED)]		= "thp_collapse_alloc_failed",
1417 	[I(THP_FILE_ALLOC)]			= "thp_file_alloc",
1418 	[I(THP_FILE_FALLBACK)]			= "thp_file_fallback",
1419 	[I(THP_FILE_FALLBACK_CHARGE)]		= "thp_file_fallback_charge",
1420 	[I(THP_FILE_MAPPED)]			= "thp_file_mapped",
1421 	[I(THP_SPLIT_PAGE)]			= "thp_split_page",
1422 	[I(THP_SPLIT_PAGE_FAILED)]		= "thp_split_page_failed",
1423 	[I(THP_DEFERRED_SPLIT_PAGE)]		= "thp_deferred_split_page",
1424 	[I(THP_UNDERUSED_SPLIT_PAGE)]		= "thp_underused_split_page",
1425 	[I(THP_SPLIT_PMD)]			= "thp_split_pmd",
1426 	[I(THP_SCAN_EXCEED_NONE_PTE)]		= "thp_scan_exceed_none_pte",
1427 	[I(THP_SCAN_EXCEED_SWAP_PTE)]		= "thp_scan_exceed_swap_pte",
1428 	[I(THP_SCAN_EXCEED_SHARED_PTE)]		= "thp_scan_exceed_share_pte",
1429 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1430 	[I(THP_SPLIT_PUD)]			= "thp_split_pud",
1431 #endif
1432 	[I(THP_ZERO_PAGE_ALLOC)]		= "thp_zero_page_alloc",
1433 	[I(THP_ZERO_PAGE_ALLOC_FAILED)]		= "thp_zero_page_alloc_failed",
1434 	[I(THP_SWPOUT)]				= "thp_swpout",
1435 	[I(THP_SWPOUT_FALLBACK)]		= "thp_swpout_fallback",
1436 #endif
1437 #ifdef CONFIG_MEMORY_BALLOON
1438 	[I(BALLOON_INFLATE)]			= "balloon_inflate",
1439 	[I(BALLOON_DEFLATE)]			= "balloon_deflate",
1440 #ifdef CONFIG_BALLOON_COMPACTION
1441 	[I(BALLOON_MIGRATE)]			= "balloon_migrate",
1442 #endif
1443 #endif /* CONFIG_MEMORY_BALLOON */
1444 #ifdef CONFIG_DEBUG_TLBFLUSH
1445 	[I(NR_TLB_REMOTE_FLUSH)]		= "nr_tlb_remote_flush",
1446 	[I(NR_TLB_REMOTE_FLUSH_RECEIVED)]	= "nr_tlb_remote_flush_received",
1447 	[I(NR_TLB_LOCAL_FLUSH_ALL)]		= "nr_tlb_local_flush_all",
1448 	[I(NR_TLB_LOCAL_FLUSH_ONE)]		= "nr_tlb_local_flush_one",
1449 #endif /* CONFIG_DEBUG_TLBFLUSH */
1450 
1451 #ifdef CONFIG_SWAP
1452 	[I(SWAP_RA)]				= "swap_ra",
1453 	[I(SWAP_RA_HIT)]			= "swap_ra_hit",
1454 	[I(SWPIN_ZERO)]				= "swpin_zero",
1455 	[I(SWPOUT_ZERO)]			= "swpout_zero",
1456 #ifdef CONFIG_KSM
1457 	[I(KSM_SWPIN_COPY)]			= "ksm_swpin_copy",
1458 #endif
1459 #endif
1460 #ifdef CONFIG_KSM
1461 	[I(COW_KSM)]				= "cow_ksm",
1462 #endif
1463 #ifdef CONFIG_ZSWAP
1464 	[I(ZSWPIN)]				= "zswpin",
1465 	[I(ZSWPOUT)]				= "zswpout",
1466 	[I(ZSWPWB)]				= "zswpwb",
1467 #endif
1468 #ifdef CONFIG_X86
1469 	[I(DIRECT_MAP_LEVEL2_SPLIT)]		= "direct_map_level2_splits",
1470 	[I(DIRECT_MAP_LEVEL3_SPLIT)]		= "direct_map_level3_splits",
1471 	[I(DIRECT_MAP_LEVEL2_COLLAPSE)]		= "direct_map_level2_collapses",
1472 	[I(DIRECT_MAP_LEVEL3_COLLAPSE)]		= "direct_map_level3_collapses",
1473 #endif
1474 #ifdef CONFIG_PER_VMA_LOCK_STATS
1475 	[I(VMA_LOCK_SUCCESS)]			= "vma_lock_success",
1476 	[I(VMA_LOCK_ABORT)]			= "vma_lock_abort",
1477 	[I(VMA_LOCK_RETRY)]			= "vma_lock_retry",
1478 	[I(VMA_LOCK_MISS)]			= "vma_lock_miss",
1479 #endif
1480 #ifdef CONFIG_DEBUG_STACK_USAGE
1481 	[I(KSTACK_1K)]				= "kstack_1k",
1482 #if THREAD_SIZE > 1024
1483 	[I(KSTACK_2K)]				= "kstack_2k",
1484 #endif
1485 #if THREAD_SIZE > 2048
1486 	[I(KSTACK_4K)]				= "kstack_4k",
1487 #endif
1488 #if THREAD_SIZE > 4096
1489 	[I(KSTACK_8K)]				= "kstack_8k",
1490 #endif
1491 #if THREAD_SIZE > 8192
1492 	[I(KSTACK_16K)]				= "kstack_16k",
1493 #endif
1494 #if THREAD_SIZE > 16384
1495 	[I(KSTACK_32K)]				= "kstack_32k",
1496 #endif
1497 #if THREAD_SIZE > 32768
1498 	[I(KSTACK_64K)]				= "kstack_64k",
1499 #endif
1500 #if THREAD_SIZE > 65536
1501 	[I(KSTACK_REST)]			= "kstack_rest",
1502 #endif
1503 #endif
1504 #undef I
1505 #endif /* CONFIG_VM_EVENT_COUNTERS */
1506 };
1507 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1508 
1509 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1510      defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1511 static void *frag_start(struct seq_file *m, loff_t *pos)
1512 {
1513 	pg_data_t *pgdat;
1514 	loff_t node = *pos;
1515 
1516 	for (pgdat = first_online_pgdat();
1517 	     pgdat && node;
1518 	     pgdat = next_online_pgdat(pgdat))
1519 		--node;
1520 
1521 	return pgdat;
1522 }
1523 
frag_next(struct seq_file * m,void * arg,loff_t * pos)1524 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1525 {
1526 	pg_data_t *pgdat = (pg_data_t *)arg;
1527 
1528 	(*pos)++;
1529 	return next_online_pgdat(pgdat);
1530 }
1531 
frag_stop(struct seq_file * m,void * arg)1532 static void frag_stop(struct seq_file *m, void *arg)
1533 {
1534 }
1535 
1536 /*
1537  * Walk zones in a node and print using a callback.
1538  * If @assert_populated is true, only use callback for zones that are populated.
1539  */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1540 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1541 		bool assert_populated, bool nolock,
1542 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1543 {
1544 	struct zone *zone;
1545 	struct zone *node_zones = pgdat->node_zones;
1546 	unsigned long flags;
1547 
1548 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1549 		if (assert_populated && !populated_zone(zone))
1550 			continue;
1551 
1552 		if (!nolock)
1553 			spin_lock_irqsave(&zone->lock, flags);
1554 		print(m, pgdat, zone);
1555 		if (!nolock)
1556 			spin_unlock_irqrestore(&zone->lock, flags);
1557 	}
1558 }
1559 #endif
1560 
1561 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1562 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1563 						struct zone *zone)
1564 {
1565 	int order;
1566 
1567 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1568 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1569 		/*
1570 		 * Access to nr_free is lockless as nr_free is used only for
1571 		 * printing purposes. Use data_race to avoid KCSAN warning.
1572 		 */
1573 		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1574 	seq_putc(m, '\n');
1575 }
1576 
1577 /*
1578  * This walks the free areas for each zone.
1579  */
frag_show(struct seq_file * m,void * arg)1580 static int frag_show(struct seq_file *m, void *arg)
1581 {
1582 	pg_data_t *pgdat = (pg_data_t *)arg;
1583 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1584 	return 0;
1585 }
1586 
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1587 static void pagetypeinfo_showfree_print(struct seq_file *m,
1588 					pg_data_t *pgdat, struct zone *zone)
1589 {
1590 	int order, mtype;
1591 
1592 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1593 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1594 					pgdat->node_id,
1595 					zone->name,
1596 					migratetype_names[mtype]);
1597 		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1598 			unsigned long freecount = 0;
1599 			struct free_area *area;
1600 			struct list_head *curr;
1601 			bool overflow = false;
1602 
1603 			area = &(zone->free_area[order]);
1604 
1605 			list_for_each(curr, &area->free_list[mtype]) {
1606 				/*
1607 				 * Cap the free_list iteration because it might
1608 				 * be really large and we are under a spinlock
1609 				 * so a long time spent here could trigger a
1610 				 * hard lockup detector. Anyway this is a
1611 				 * debugging tool so knowing there is a handful
1612 				 * of pages of this order should be more than
1613 				 * sufficient.
1614 				 */
1615 				if (++freecount >= 100000) {
1616 					overflow = true;
1617 					break;
1618 				}
1619 			}
1620 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1621 			spin_unlock_irq(&zone->lock);
1622 			cond_resched();
1623 			spin_lock_irq(&zone->lock);
1624 		}
1625 		seq_putc(m, '\n');
1626 	}
1627 }
1628 
1629 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1630 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1631 {
1632 	int order;
1633 	pg_data_t *pgdat = (pg_data_t *)arg;
1634 
1635 	/* Print header */
1636 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1637 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1638 		seq_printf(m, "%6d ", order);
1639 	seq_putc(m, '\n');
1640 
1641 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1642 }
1643 
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1644 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1645 					pg_data_t *pgdat, struct zone *zone)
1646 {
1647 	int mtype;
1648 	unsigned long pfn;
1649 	unsigned long start_pfn = zone->zone_start_pfn;
1650 	unsigned long end_pfn = zone_end_pfn(zone);
1651 	unsigned long count[MIGRATE_TYPES] = { 0, };
1652 
1653 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1654 		struct page *page;
1655 
1656 		page = pfn_to_online_page(pfn);
1657 		if (!page)
1658 			continue;
1659 
1660 		if (page_zone(page) != zone)
1661 			continue;
1662 
1663 		mtype = get_pageblock_migratetype(page);
1664 
1665 		if (mtype < MIGRATE_TYPES)
1666 			count[mtype]++;
1667 	}
1668 
1669 	/* Print counts */
1670 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1671 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1672 		seq_printf(m, "%12lu ", count[mtype]);
1673 	seq_putc(m, '\n');
1674 }
1675 
1676 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1677 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1678 {
1679 	int mtype;
1680 	pg_data_t *pgdat = (pg_data_t *)arg;
1681 
1682 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1683 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1684 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1685 	seq_putc(m, '\n');
1686 	walk_zones_in_node(m, pgdat, true, false,
1687 		pagetypeinfo_showblockcount_print);
1688 }
1689 
1690 /*
1691  * Print out the number of pageblocks for each migratetype that contain pages
1692  * of other types. This gives an indication of how well fallbacks are being
1693  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1694  * to determine what is going on
1695  */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1696 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1697 {
1698 #ifdef CONFIG_PAGE_OWNER
1699 	int mtype;
1700 
1701 	if (!static_branch_unlikely(&page_owner_inited))
1702 		return;
1703 
1704 	drain_all_pages(NULL);
1705 
1706 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1707 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1708 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1709 	seq_putc(m, '\n');
1710 
1711 	walk_zones_in_node(m, pgdat, true, true,
1712 		pagetypeinfo_showmixedcount_print);
1713 #endif /* CONFIG_PAGE_OWNER */
1714 }
1715 
1716 /*
1717  * This prints out statistics in relation to grouping pages by mobility.
1718  * It is expensive to collect so do not constantly read the file.
1719  */
pagetypeinfo_show(struct seq_file * m,void * arg)1720 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1721 {
1722 	pg_data_t *pgdat = (pg_data_t *)arg;
1723 
1724 	/* check memoryless node */
1725 	if (!node_state(pgdat->node_id, N_MEMORY))
1726 		return 0;
1727 
1728 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1729 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1730 	seq_putc(m, '\n');
1731 	pagetypeinfo_showfree(m, pgdat);
1732 	pagetypeinfo_showblockcount(m, pgdat);
1733 	pagetypeinfo_showmixedcount(m, pgdat);
1734 
1735 	return 0;
1736 }
1737 
1738 static const struct seq_operations fragmentation_op = {
1739 	.start	= frag_start,
1740 	.next	= frag_next,
1741 	.stop	= frag_stop,
1742 	.show	= frag_show,
1743 };
1744 
1745 static const struct seq_operations pagetypeinfo_op = {
1746 	.start	= frag_start,
1747 	.next	= frag_next,
1748 	.stop	= frag_stop,
1749 	.show	= pagetypeinfo_show,
1750 };
1751 
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1752 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1753 {
1754 	int zid;
1755 
1756 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 		struct zone *compare = &pgdat->node_zones[zid];
1758 
1759 		if (populated_zone(compare))
1760 			return zone == compare;
1761 	}
1762 
1763 	return false;
1764 }
1765 
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1766 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1767 							struct zone *zone)
1768 {
1769 	int i;
1770 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1771 	if (is_zone_first_populated(pgdat, zone)) {
1772 		seq_printf(m, "\n  per-node stats");
1773 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1774 			unsigned long pages = node_page_state_pages(pgdat, i);
1775 
1776 			if (vmstat_item_print_in_thp(i))
1777 				pages /= HPAGE_PMD_NR;
1778 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1779 				   pages);
1780 		}
1781 	}
1782 	seq_printf(m,
1783 		   "\n  pages free     %lu"
1784 		   "\n        boost    %lu"
1785 		   "\n        min      %lu"
1786 		   "\n        low      %lu"
1787 		   "\n        high     %lu"
1788 		   "\n        promo    %lu"
1789 		   "\n        spanned  %lu"
1790 		   "\n        present  %lu"
1791 		   "\n        managed  %lu"
1792 		   "\n        cma      %lu",
1793 		   zone_page_state(zone, NR_FREE_PAGES),
1794 		   zone->watermark_boost,
1795 		   min_wmark_pages(zone),
1796 		   low_wmark_pages(zone),
1797 		   high_wmark_pages(zone),
1798 		   promo_wmark_pages(zone),
1799 		   zone->spanned_pages,
1800 		   zone->present_pages,
1801 		   zone_managed_pages(zone),
1802 		   zone_cma_pages(zone));
1803 
1804 	seq_printf(m,
1805 		   "\n        protection: (%ld",
1806 		   zone->lowmem_reserve[0]);
1807 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1808 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1809 	seq_putc(m, ')');
1810 
1811 	/* If unpopulated, no other information is useful */
1812 	if (!populated_zone(zone)) {
1813 		seq_putc(m, '\n');
1814 		return;
1815 	}
1816 
1817 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1818 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1819 			   zone_page_state(zone, i));
1820 
1821 #ifdef CONFIG_NUMA
1822 	fold_vm_zone_numa_events(zone);
1823 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1824 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1825 			   zone_numa_event_state(zone, i));
1826 #endif
1827 
1828 	seq_printf(m, "\n  pagesets");
1829 	for_each_online_cpu(i) {
1830 		struct per_cpu_pages *pcp;
1831 		struct per_cpu_zonestat __maybe_unused *pzstats;
1832 
1833 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1834 		seq_printf(m,
1835 			   "\n    cpu: %i"
1836 			   "\n              count:    %i"
1837 			   "\n              high:     %i"
1838 			   "\n              batch:    %i"
1839 			   "\n              high_min: %i"
1840 			   "\n              high_max: %i",
1841 			   i,
1842 			   pcp->count,
1843 			   pcp->high,
1844 			   pcp->batch,
1845 			   pcp->high_min,
1846 			   pcp->high_max);
1847 #ifdef CONFIG_SMP
1848 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1849 		seq_printf(m, "\n  vm stats threshold: %d",
1850 				pzstats->stat_threshold);
1851 #endif
1852 	}
1853 	seq_printf(m,
1854 		   "\n  node_unreclaimable:  %u"
1855 		   "\n  start_pfn:           %lu"
1856 		   "\n  reserved_highatomic: %lu"
1857 		   "\n  free_highatomic:     %lu",
1858 		   atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES,
1859 		   zone->zone_start_pfn,
1860 		   zone->nr_reserved_highatomic,
1861 		   zone->nr_free_highatomic);
1862 	seq_putc(m, '\n');
1863 }
1864 
1865 /*
1866  * Output information about zones in @pgdat.  All zones are printed regardless
1867  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1868  * set of all zones and userspace would not be aware of such zones if they are
1869  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1870  */
zoneinfo_show(struct seq_file * m,void * arg)1871 static int zoneinfo_show(struct seq_file *m, void *arg)
1872 {
1873 	pg_data_t *pgdat = (pg_data_t *)arg;
1874 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1875 	return 0;
1876 }
1877 
1878 static const struct seq_operations zoneinfo_op = {
1879 	.start	= frag_start, /* iterate over all zones. The same as in
1880 			       * fragmentation. */
1881 	.next	= frag_next,
1882 	.stop	= frag_stop,
1883 	.show	= zoneinfo_show,
1884 };
1885 
1886 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1887 			 NR_VM_NUMA_EVENT_ITEMS + \
1888 			 NR_VM_NODE_STAT_ITEMS + \
1889 			 NR_VM_STAT_ITEMS + \
1890 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1891 			  NR_VM_EVENT_ITEMS : 0))
1892 
vmstat_start(struct seq_file * m,loff_t * pos)1893 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1894 {
1895 	unsigned long *v;
1896 	int i;
1897 
1898 	if (*pos >= NR_VMSTAT_ITEMS)
1899 		return NULL;
1900 
1901 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS);
1902 	fold_vm_numa_events();
1903 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1904 	m->private = v;
1905 	if (!v)
1906 		return ERR_PTR(-ENOMEM);
1907 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1908 		v[i] = global_zone_page_state(i);
1909 	v += NR_VM_ZONE_STAT_ITEMS;
1910 
1911 #ifdef CONFIG_NUMA
1912 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1913 		v[i] = global_numa_event_state(i);
1914 	v += NR_VM_NUMA_EVENT_ITEMS;
1915 #endif
1916 
1917 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1918 		v[i] = global_node_page_state_pages(i);
1919 		if (vmstat_item_print_in_thp(i))
1920 			v[i] /= HPAGE_PMD_NR;
1921 	}
1922 	v += NR_VM_NODE_STAT_ITEMS;
1923 
1924 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1925 			    v + NR_DIRTY_THRESHOLD);
1926 	v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1927 	v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1928 	v += NR_VM_STAT_ITEMS;
1929 
1930 #ifdef CONFIG_VM_EVENT_COUNTERS
1931 	all_vm_events(v);
1932 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1933 	v[PGPGOUT] /= 2;
1934 #endif
1935 	return (unsigned long *)m->private + *pos;
1936 }
1937 
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1938 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1939 {
1940 	(*pos)++;
1941 	if (*pos >= NR_VMSTAT_ITEMS)
1942 		return NULL;
1943 	return (unsigned long *)m->private + *pos;
1944 }
1945 
vmstat_show(struct seq_file * m,void * arg)1946 static int vmstat_show(struct seq_file *m, void *arg)
1947 {
1948 	unsigned long *l = arg;
1949 	unsigned long off = l - (unsigned long *)m->private;
1950 
1951 	seq_puts(m, vmstat_text[off]);
1952 	seq_put_decimal_ull(m, " ", *l);
1953 	seq_putc(m, '\n');
1954 
1955 	if (off == NR_VMSTAT_ITEMS - 1) {
1956 		/*
1957 		 * We've come to the end - add any deprecated counters to avoid
1958 		 * breaking userspace which might depend on them being present.
1959 		 */
1960 		seq_puts(m, "nr_unstable 0\n");
1961 	}
1962 	return 0;
1963 }
1964 
vmstat_stop(struct seq_file * m,void * arg)1965 static void vmstat_stop(struct seq_file *m, void *arg)
1966 {
1967 	kfree(m->private);
1968 	m->private = NULL;
1969 }
1970 
1971 static const struct seq_operations vmstat_op = {
1972 	.start	= vmstat_start,
1973 	.next	= vmstat_next,
1974 	.stop	= vmstat_stop,
1975 	.show	= vmstat_show,
1976 };
1977 #endif /* CONFIG_PROC_FS */
1978 
1979 #ifdef CONFIG_SMP
1980 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1981 static int sysctl_stat_interval __read_mostly = HZ;
1982 static int vmstat_late_init_done;
1983 
1984 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1985 static void refresh_vm_stats(struct work_struct *work)
1986 {
1987 	refresh_cpu_vm_stats(true);
1988 }
1989 
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1990 static int vmstat_refresh(const struct ctl_table *table, int write,
1991 		   void *buffer, size_t *lenp, loff_t *ppos)
1992 {
1993 	long val;
1994 	int err;
1995 	int i;
1996 
1997 	/*
1998 	 * The regular update, every sysctl_stat_interval, may come later
1999 	 * than expected: leaving a significant amount in per_cpu buckets.
2000 	 * This is particularly misleading when checking a quantity of HUGE
2001 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
2002 	 * which can equally be echo'ed to or cat'ted from (by root),
2003 	 * can be used to update the stats just before reading them.
2004 	 *
2005 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
2006 	 * transiently negative values, report an error here if any of
2007 	 * the stats is negative, so we know to go looking for imbalance.
2008 	 */
2009 	err = schedule_on_each_cpu(refresh_vm_stats);
2010 	if (err)
2011 		return err;
2012 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
2013 		/*
2014 		 * Skip checking stats known to go negative occasionally.
2015 		 */
2016 		switch (i) {
2017 		case NR_ZONE_WRITE_PENDING:
2018 		case NR_FREE_CMA_PAGES:
2019 			continue;
2020 		}
2021 		val = atomic_long_read(&vm_zone_stat[i]);
2022 		if (val < 0) {
2023 			pr_warn("%s: %s %ld\n",
2024 				__func__, zone_stat_name(i), val);
2025 		}
2026 	}
2027 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2028 		/*
2029 		 * Skip checking stats known to go negative occasionally.
2030 		 */
2031 		switch (i) {
2032 		case NR_WRITEBACK:
2033 			continue;
2034 		}
2035 		val = atomic_long_read(&vm_node_stat[i]);
2036 		if (val < 0) {
2037 			pr_warn("%s: %s %ld\n",
2038 				__func__, node_stat_name(i), val);
2039 		}
2040 	}
2041 	if (write)
2042 		*ppos += *lenp;
2043 	else
2044 		*lenp = 0;
2045 	return 0;
2046 }
2047 #endif /* CONFIG_PROC_FS */
2048 
vmstat_update(struct work_struct * w)2049 static void vmstat_update(struct work_struct *w)
2050 {
2051 	if (refresh_cpu_vm_stats(true)) {
2052 		/*
2053 		 * Counters were updated so we expect more updates
2054 		 * to occur in the future. Keep on running the
2055 		 * update worker thread.
2056 		 */
2057 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2058 				this_cpu_ptr(&vmstat_work),
2059 				round_jiffies_relative(sysctl_stat_interval));
2060 	}
2061 }
2062 
2063 /*
2064  * Check if the diffs for a certain cpu indicate that
2065  * an update is needed.
2066  */
need_update(int cpu)2067 static bool need_update(int cpu)
2068 {
2069 	pg_data_t *last_pgdat = NULL;
2070 	struct zone *zone;
2071 
2072 	for_each_populated_zone(zone) {
2073 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2074 		struct per_cpu_nodestat *n;
2075 
2076 		/*
2077 		 * The fast way of checking if there are any vmstat diffs.
2078 		 */
2079 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2080 			return true;
2081 
2082 		if (last_pgdat == zone->zone_pgdat)
2083 			continue;
2084 		last_pgdat = zone->zone_pgdat;
2085 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2086 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2087 			return true;
2088 	}
2089 	return false;
2090 }
2091 
2092 /*
2093  * Switch off vmstat processing and then fold all the remaining differentials
2094  * until the diffs stay at zero. The function is used by NOHZ and can only be
2095  * invoked when tick processing is not active.
2096  */
quiet_vmstat(void)2097 void quiet_vmstat(void)
2098 {
2099 	if (system_state != SYSTEM_RUNNING)
2100 		return;
2101 
2102 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2103 		return;
2104 
2105 	if (!need_update(smp_processor_id()))
2106 		return;
2107 
2108 	/*
2109 	 * Just refresh counters and do not care about the pending delayed
2110 	 * vmstat_update. It doesn't fire that often to matter and canceling
2111 	 * it would be too expensive from this path.
2112 	 * vmstat_shepherd will take care about that for us.
2113 	 */
2114 	refresh_cpu_vm_stats(false);
2115 }
2116 
2117 /*
2118  * Shepherd worker thread that checks the
2119  * differentials of processors that have their worker
2120  * threads for vm statistics updates disabled because of
2121  * inactivity.
2122  */
2123 static void vmstat_shepherd(struct work_struct *w);
2124 
2125 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2126 
vmstat_shepherd(struct work_struct * w)2127 static void vmstat_shepherd(struct work_struct *w)
2128 {
2129 	int cpu;
2130 
2131 	cpus_read_lock();
2132 	/* Check processors whose vmstat worker threads have been disabled */
2133 	for_each_online_cpu(cpu) {
2134 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2135 
2136 		/*
2137 		 * In kernel users of vmstat counters either require the precise value and
2138 		 * they are using zone_page_state_snapshot interface or they can live with
2139 		 * an imprecision as the regular flushing can happen at arbitrary time and
2140 		 * cumulative error can grow (see calculate_normal_threshold).
2141 		 *
2142 		 * From that POV the regular flushing can be postponed for CPUs that have
2143 		 * been isolated from the kernel interference without critical
2144 		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2145 		 * for all isolated CPUs to avoid interference with the isolated workload.
2146 		 */
2147 		if (cpu_is_isolated(cpu))
2148 			continue;
2149 
2150 		if (!delayed_work_pending(dw) && need_update(cpu))
2151 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2152 
2153 		cond_resched();
2154 	}
2155 	cpus_read_unlock();
2156 
2157 	schedule_delayed_work(&shepherd,
2158 		round_jiffies_relative(sysctl_stat_interval));
2159 }
2160 
start_shepherd_timer(void)2161 static void __init start_shepherd_timer(void)
2162 {
2163 	int cpu;
2164 
2165 	for_each_possible_cpu(cpu) {
2166 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2167 			vmstat_update);
2168 
2169 		/*
2170 		 * For secondary CPUs during CPU hotplug scenarios,
2171 		 * vmstat_cpu_online() will enable the work.
2172 		 * mm/vmstat:online enables and disables vmstat_work
2173 		 * symmetrically during CPU hotplug events.
2174 		 */
2175 		if (!cpu_online(cpu))
2176 			disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2177 	}
2178 
2179 	schedule_delayed_work(&shepherd,
2180 		round_jiffies_relative(sysctl_stat_interval));
2181 }
2182 
init_cpu_node_state(void)2183 static void __init init_cpu_node_state(void)
2184 {
2185 	int node;
2186 
2187 	for_each_online_node(node) {
2188 		if (!cpumask_empty(cpumask_of_node(node)))
2189 			node_set_state(node, N_CPU);
2190 	}
2191 }
2192 
vmstat_cpu_online(unsigned int cpu)2193 static int vmstat_cpu_online(unsigned int cpu)
2194 {
2195 	if (vmstat_late_init_done)
2196 		refresh_zone_stat_thresholds();
2197 
2198 	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2199 		node_set_state(cpu_to_node(cpu), N_CPU);
2200 	}
2201 	enable_delayed_work(&per_cpu(vmstat_work, cpu));
2202 
2203 	return 0;
2204 }
2205 
vmstat_cpu_down_prep(unsigned int cpu)2206 static int vmstat_cpu_down_prep(unsigned int cpu)
2207 {
2208 	disable_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2209 	return 0;
2210 }
2211 
vmstat_cpu_dead(unsigned int cpu)2212 static int vmstat_cpu_dead(unsigned int cpu)
2213 {
2214 	const struct cpumask *node_cpus;
2215 	int node;
2216 
2217 	node = cpu_to_node(cpu);
2218 
2219 	refresh_zone_stat_thresholds();
2220 	node_cpus = cpumask_of_node(node);
2221 	if (!cpumask_empty(node_cpus))
2222 		return 0;
2223 
2224 	node_clear_state(node, N_CPU);
2225 
2226 	return 0;
2227 }
2228 
vmstat_late_init(void)2229 static int __init vmstat_late_init(void)
2230 {
2231 	refresh_zone_stat_thresholds();
2232 	vmstat_late_init_done = 1;
2233 
2234 	return 0;
2235 }
2236 late_initcall(vmstat_late_init);
2237 #endif
2238 
2239 #ifdef CONFIG_PROC_FS
2240 static const struct ctl_table vmstat_table[] = {
2241 #ifdef CONFIG_SMP
2242 	{
2243 		.procname	= "stat_interval",
2244 		.data		= &sysctl_stat_interval,
2245 		.maxlen		= sizeof(sysctl_stat_interval),
2246 		.mode		= 0644,
2247 		.proc_handler	= proc_dointvec_jiffies,
2248 	},
2249 	{
2250 		.procname	= "stat_refresh",
2251 		.data		= NULL,
2252 		.maxlen		= 0,
2253 		.mode		= 0600,
2254 		.proc_handler	= vmstat_refresh,
2255 	},
2256 #endif
2257 #ifdef CONFIG_NUMA
2258 	{
2259 		.procname	= "numa_stat",
2260 		.data		= &sysctl_vm_numa_stat,
2261 		.maxlen		= sizeof(int),
2262 		.mode		= 0644,
2263 		.proc_handler	= sysctl_vm_numa_stat_handler,
2264 		.extra1		= SYSCTL_ZERO,
2265 		.extra2		= SYSCTL_ONE,
2266 	},
2267 #endif
2268 };
2269 #endif
2270 
2271 struct workqueue_struct *mm_percpu_wq;
2272 
init_mm_internals(void)2273 void __init init_mm_internals(void)
2274 {
2275 	int ret __maybe_unused;
2276 
2277 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2278 
2279 #ifdef CONFIG_SMP
2280 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2281 					NULL, vmstat_cpu_dead);
2282 	if (ret < 0)
2283 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2284 
2285 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2286 					vmstat_cpu_online,
2287 					vmstat_cpu_down_prep);
2288 	if (ret < 0)
2289 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2290 
2291 	cpus_read_lock();
2292 	init_cpu_node_state();
2293 	cpus_read_unlock();
2294 
2295 	start_shepherd_timer();
2296 #endif
2297 #ifdef CONFIG_PROC_FS
2298 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2299 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2300 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2301 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2302 	register_sysctl_init("vm", vmstat_table);
2303 #endif
2304 }
2305 
2306 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2307 
2308 /*
2309  * Return an index indicating how much of the available free memory is
2310  * unusable for an allocation of the requested size.
2311  */
unusable_free_index(unsigned int order,struct contig_page_info * info)2312 static int unusable_free_index(unsigned int order,
2313 				struct contig_page_info *info)
2314 {
2315 	/* No free memory is interpreted as all free memory is unusable */
2316 	if (info->free_pages == 0)
2317 		return 1000;
2318 
2319 	/*
2320 	 * Index should be a value between 0 and 1. Return a value to 3
2321 	 * decimal places.
2322 	 *
2323 	 * 0 => no fragmentation
2324 	 * 1 => high fragmentation
2325 	 */
2326 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2327 
2328 }
2329 
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2330 static void unusable_show_print(struct seq_file *m,
2331 					pg_data_t *pgdat, struct zone *zone)
2332 {
2333 	unsigned int order;
2334 	int index;
2335 	struct contig_page_info info;
2336 
2337 	seq_printf(m, "Node %d, zone %8s ",
2338 				pgdat->node_id,
2339 				zone->name);
2340 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2341 		fill_contig_page_info(zone, order, &info);
2342 		index = unusable_free_index(order, &info);
2343 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2344 	}
2345 
2346 	seq_putc(m, '\n');
2347 }
2348 
2349 /*
2350  * Display unusable free space index
2351  *
2352  * The unusable free space index measures how much of the available free
2353  * memory cannot be used to satisfy an allocation of a given size and is a
2354  * value between 0 and 1. The higher the value, the more of free memory is
2355  * unusable and by implication, the worse the external fragmentation is. This
2356  * can be expressed as a percentage by multiplying by 100.
2357  */
unusable_show(struct seq_file * m,void * arg)2358 static int unusable_show(struct seq_file *m, void *arg)
2359 {
2360 	pg_data_t *pgdat = (pg_data_t *)arg;
2361 
2362 	/* check memoryless node */
2363 	if (!node_state(pgdat->node_id, N_MEMORY))
2364 		return 0;
2365 
2366 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2367 
2368 	return 0;
2369 }
2370 
2371 static const struct seq_operations unusable_sops = {
2372 	.start	= frag_start,
2373 	.next	= frag_next,
2374 	.stop	= frag_stop,
2375 	.show	= unusable_show,
2376 };
2377 
2378 DEFINE_SEQ_ATTRIBUTE(unusable);
2379 
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2380 static void extfrag_show_print(struct seq_file *m,
2381 					pg_data_t *pgdat, struct zone *zone)
2382 {
2383 	unsigned int order;
2384 	int index;
2385 
2386 	/* Alloc on stack as interrupts are disabled for zone walk */
2387 	struct contig_page_info info;
2388 
2389 	seq_printf(m, "Node %d, zone %8s ",
2390 				pgdat->node_id,
2391 				zone->name);
2392 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2393 		fill_contig_page_info(zone, order, &info);
2394 		index = __fragmentation_index(order, &info);
2395 		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2396 	}
2397 
2398 	seq_putc(m, '\n');
2399 }
2400 
2401 /*
2402  * Display fragmentation index for orders that allocations would fail for
2403  */
extfrag_show(struct seq_file * m,void * arg)2404 static int extfrag_show(struct seq_file *m, void *arg)
2405 {
2406 	pg_data_t *pgdat = (pg_data_t *)arg;
2407 
2408 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2409 
2410 	return 0;
2411 }
2412 
2413 static const struct seq_operations extfrag_sops = {
2414 	.start	= frag_start,
2415 	.next	= frag_next,
2416 	.stop	= frag_stop,
2417 	.show	= extfrag_show,
2418 };
2419 
2420 DEFINE_SEQ_ATTRIBUTE(extfrag);
2421 
extfrag_debug_init(void)2422 static int __init extfrag_debug_init(void)
2423 {
2424 	struct dentry *extfrag_debug_root;
2425 
2426 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2427 
2428 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2429 			    &unusable_fops);
2430 
2431 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2432 			    &extfrag_fops);
2433 
2434 	return 0;
2435 }
2436 
2437 module_init(extfrag_debug_init);
2438 
2439 #endif
2440