xref: /linux/mm/userfaultfd.c (revision c06944560a562828d507166b4f87c01c367cc9c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  mm/userfaultfd.c
4  *
5  *  Copyright (C) 2015  Red Hat, Inc.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/hugetlb.h>
17 #include <linux/shmem_fs.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include "internal.h"
21 #include "swap.h"
22 
23 static __always_inline
validate_dst_vma(struct vm_area_struct * dst_vma,unsigned long dst_end)24 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end)
25 {
26 	/* Make sure that the dst range is fully within dst_vma. */
27 	if (dst_end > dst_vma->vm_end)
28 		return false;
29 
30 	/*
31 	 * Check the vma is registered in uffd, this is required to
32 	 * enforce the VM_MAYWRITE check done at uffd registration
33 	 * time.
34 	 */
35 	if (!dst_vma->vm_userfaultfd_ctx.ctx)
36 		return false;
37 
38 	return true;
39 }
40 
41 static __always_inline
find_vma_and_prepare_anon(struct mm_struct * mm,unsigned long addr)42 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm,
43 						 unsigned long addr)
44 {
45 	struct vm_area_struct *vma;
46 
47 	mmap_assert_locked(mm);
48 	vma = vma_lookup(mm, addr);
49 	if (!vma)
50 		vma = ERR_PTR(-ENOENT);
51 	else if (!(vma->vm_flags & VM_SHARED) &&
52 		 unlikely(anon_vma_prepare(vma)))
53 		vma = ERR_PTR(-ENOMEM);
54 
55 	return vma;
56 }
57 
58 #ifdef CONFIG_PER_VMA_LOCK
59 /*
60  * uffd_lock_vma() - Lookup and lock vma corresponding to @address.
61  * @mm: mm to search vma in.
62  * @address: address that the vma should contain.
63  *
64  * Should be called without holding mmap_lock.
65  *
66  * Return: A locked vma containing @address, -ENOENT if no vma is found, or
67  * -ENOMEM if anon_vma couldn't be allocated.
68  */
uffd_lock_vma(struct mm_struct * mm,unsigned long address)69 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm,
70 				       unsigned long address)
71 {
72 	struct vm_area_struct *vma;
73 
74 	vma = lock_vma_under_rcu(mm, address);
75 	if (vma) {
76 		/*
77 		 * We know we're going to need to use anon_vma, so check
78 		 * that early.
79 		 */
80 		if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma))
81 			vma_end_read(vma);
82 		else
83 			return vma;
84 	}
85 
86 	mmap_read_lock(mm);
87 	vma = find_vma_and_prepare_anon(mm, address);
88 	if (!IS_ERR(vma)) {
89 		bool locked = vma_start_read_locked(vma);
90 
91 		if (!locked)
92 			vma = ERR_PTR(-EAGAIN);
93 	}
94 
95 	mmap_read_unlock(mm);
96 	return vma;
97 }
98 
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)99 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
100 					      unsigned long dst_start,
101 					      unsigned long len)
102 {
103 	struct vm_area_struct *dst_vma;
104 
105 	dst_vma = uffd_lock_vma(dst_mm, dst_start);
106 	if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len))
107 		return dst_vma;
108 
109 	vma_end_read(dst_vma);
110 	return ERR_PTR(-ENOENT);
111 }
112 
uffd_mfill_unlock(struct vm_area_struct * vma)113 static void uffd_mfill_unlock(struct vm_area_struct *vma)
114 {
115 	vma_end_read(vma);
116 }
117 
118 #else
119 
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)120 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
121 					      unsigned long dst_start,
122 					      unsigned long len)
123 {
124 	struct vm_area_struct *dst_vma;
125 
126 	mmap_read_lock(dst_mm);
127 	dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start);
128 	if (IS_ERR(dst_vma))
129 		goto out_unlock;
130 
131 	if (validate_dst_vma(dst_vma, dst_start + len))
132 		return dst_vma;
133 
134 	dst_vma = ERR_PTR(-ENOENT);
135 out_unlock:
136 	mmap_read_unlock(dst_mm);
137 	return dst_vma;
138 }
139 
uffd_mfill_unlock(struct vm_area_struct * vma)140 static void uffd_mfill_unlock(struct vm_area_struct *vma)
141 {
142 	mmap_read_unlock(vma->vm_mm);
143 }
144 #endif
145 
146 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */
mfill_file_over_size(struct vm_area_struct * dst_vma,unsigned long dst_addr)147 static bool mfill_file_over_size(struct vm_area_struct *dst_vma,
148 				 unsigned long dst_addr)
149 {
150 	struct inode *inode;
151 	pgoff_t offset, max_off;
152 
153 	if (!dst_vma->vm_file)
154 		return false;
155 
156 	inode = dst_vma->vm_file->f_inode;
157 	offset = linear_page_index(dst_vma, dst_addr);
158 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
159 	return offset >= max_off;
160 }
161 
162 /*
163  * Install PTEs, to map dst_addr (within dst_vma) to page.
164  *
165  * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
166  * and anon, and for both shared and private VMAs.
167  */
mfill_atomic_install_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,struct page * page,bool newly_allocated,uffd_flags_t flags)168 int mfill_atomic_install_pte(pmd_t *dst_pmd,
169 			     struct vm_area_struct *dst_vma,
170 			     unsigned long dst_addr, struct page *page,
171 			     bool newly_allocated, uffd_flags_t flags)
172 {
173 	int ret;
174 	struct mm_struct *dst_mm = dst_vma->vm_mm;
175 	pte_t _dst_pte, *dst_pte;
176 	bool writable = dst_vma->vm_flags & VM_WRITE;
177 	bool vm_shared = dst_vma->vm_flags & VM_SHARED;
178 	spinlock_t *ptl;
179 	struct folio *folio = page_folio(page);
180 	bool page_in_cache = folio_mapping(folio);
181 
182 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
183 	_dst_pte = pte_mkdirty(_dst_pte);
184 	if (page_in_cache && !vm_shared)
185 		writable = false;
186 	if (writable)
187 		_dst_pte = pte_mkwrite(_dst_pte, dst_vma);
188 	if (flags & MFILL_ATOMIC_WP)
189 		_dst_pte = pte_mkuffd_wp(_dst_pte);
190 
191 	ret = -EAGAIN;
192 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
193 	if (!dst_pte)
194 		goto out;
195 
196 	if (mfill_file_over_size(dst_vma, dst_addr)) {
197 		ret = -EFAULT;
198 		goto out_unlock;
199 	}
200 
201 	ret = -EEXIST;
202 	/*
203 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
204 	 * registered, we firstly wr-protect a none pte which has no page cache
205 	 * page backing it, then access the page.
206 	 */
207 	if (!pte_none_mostly(ptep_get(dst_pte)))
208 		goto out_unlock;
209 
210 	if (page_in_cache) {
211 		/* Usually, cache pages are already added to LRU */
212 		if (newly_allocated)
213 			folio_add_lru(folio);
214 		folio_add_file_rmap_pte(folio, page, dst_vma);
215 	} else {
216 		folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE);
217 		folio_add_lru_vma(folio, dst_vma);
218 	}
219 
220 	/*
221 	 * Must happen after rmap, as mm_counter() checks mapping (via
222 	 * PageAnon()), which is set by __page_set_anon_rmap().
223 	 */
224 	inc_mm_counter(dst_mm, mm_counter(folio));
225 
226 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
227 
228 	/* No need to invalidate - it was non-present before */
229 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
230 	ret = 0;
231 out_unlock:
232 	pte_unmap_unlock(dst_pte, ptl);
233 out:
234 	return ret;
235 }
236 
mfill_atomic_pte_copy(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)237 static int mfill_atomic_pte_copy(pmd_t *dst_pmd,
238 				 struct vm_area_struct *dst_vma,
239 				 unsigned long dst_addr,
240 				 unsigned long src_addr,
241 				 uffd_flags_t flags,
242 				 struct folio **foliop)
243 {
244 	void *kaddr;
245 	int ret;
246 	struct folio *folio;
247 
248 	if (!*foliop) {
249 		ret = -ENOMEM;
250 		folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma,
251 					dst_addr);
252 		if (!folio)
253 			goto out;
254 
255 		kaddr = kmap_local_folio(folio, 0);
256 		/*
257 		 * The read mmap_lock is held here.  Despite the
258 		 * mmap_lock being read recursive a deadlock is still
259 		 * possible if a writer has taken a lock.  For example:
260 		 *
261 		 * process A thread 1 takes read lock on own mmap_lock
262 		 * process A thread 2 calls mmap, blocks taking write lock
263 		 * process B thread 1 takes page fault, read lock on own mmap lock
264 		 * process B thread 2 calls mmap, blocks taking write lock
265 		 * process A thread 1 blocks taking read lock on process B
266 		 * process B thread 1 blocks taking read lock on process A
267 		 *
268 		 * Disable page faults to prevent potential deadlock
269 		 * and retry the copy outside the mmap_lock.
270 		 */
271 		pagefault_disable();
272 		ret = copy_from_user(kaddr, (const void __user *) src_addr,
273 				     PAGE_SIZE);
274 		pagefault_enable();
275 		kunmap_local(kaddr);
276 
277 		/* fallback to copy_from_user outside mmap_lock */
278 		if (unlikely(ret)) {
279 			ret = -ENOENT;
280 			*foliop = folio;
281 			/* don't free the page */
282 			goto out;
283 		}
284 
285 		flush_dcache_folio(folio);
286 	} else {
287 		folio = *foliop;
288 		*foliop = NULL;
289 	}
290 
291 	/*
292 	 * The memory barrier inside __folio_mark_uptodate makes sure that
293 	 * preceding stores to the page contents become visible before
294 	 * the set_pte_at() write.
295 	 */
296 	__folio_mark_uptodate(folio);
297 
298 	ret = -ENOMEM;
299 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
300 		goto out_release;
301 
302 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
303 				       &folio->page, true, flags);
304 	if (ret)
305 		goto out_release;
306 out:
307 	return ret;
308 out_release:
309 	folio_put(folio);
310 	goto out;
311 }
312 
mfill_atomic_pte_zeroed_folio(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)313 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd,
314 					 struct vm_area_struct *dst_vma,
315 					 unsigned long dst_addr)
316 {
317 	struct folio *folio;
318 	int ret = -ENOMEM;
319 
320 	folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr);
321 	if (!folio)
322 		return ret;
323 
324 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
325 		goto out_put;
326 
327 	/*
328 	 * The memory barrier inside __folio_mark_uptodate makes sure that
329 	 * zeroing out the folio become visible before mapping the page
330 	 * using set_pte_at(). See do_anonymous_page().
331 	 */
332 	__folio_mark_uptodate(folio);
333 
334 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
335 				       &folio->page, true, 0);
336 	if (ret)
337 		goto out_put;
338 
339 	return 0;
340 out_put:
341 	folio_put(folio);
342 	return ret;
343 }
344 
mfill_atomic_pte_zeropage(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)345 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd,
346 				     struct vm_area_struct *dst_vma,
347 				     unsigned long dst_addr)
348 {
349 	pte_t _dst_pte, *dst_pte;
350 	spinlock_t *ptl;
351 	int ret;
352 
353 	if (mm_forbids_zeropage(dst_vma->vm_mm))
354 		return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr);
355 
356 	_dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
357 					 dst_vma->vm_page_prot));
358 	ret = -EAGAIN;
359 	dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl);
360 	if (!dst_pte)
361 		goto out;
362 	if (mfill_file_over_size(dst_vma, dst_addr)) {
363 		ret = -EFAULT;
364 		goto out_unlock;
365 	}
366 	ret = -EEXIST;
367 	if (!pte_none(ptep_get(dst_pte)))
368 		goto out_unlock;
369 	set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte);
370 	/* No need to invalidate - it was non-present before */
371 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
372 	ret = 0;
373 out_unlock:
374 	pte_unmap_unlock(dst_pte, ptl);
375 out:
376 	return ret;
377 }
378 
379 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
mfill_atomic_pte_continue(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)380 static int mfill_atomic_pte_continue(pmd_t *dst_pmd,
381 				     struct vm_area_struct *dst_vma,
382 				     unsigned long dst_addr,
383 				     uffd_flags_t flags)
384 {
385 	struct inode *inode = file_inode(dst_vma->vm_file);
386 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
387 	struct folio *folio;
388 	struct page *page;
389 	int ret;
390 
391 	ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC);
392 	/* Our caller expects us to return -EFAULT if we failed to find folio */
393 	if (ret == -ENOENT)
394 		ret = -EFAULT;
395 	if (ret)
396 		goto out;
397 	if (!folio) {
398 		ret = -EFAULT;
399 		goto out;
400 	}
401 
402 	page = folio_file_page(folio, pgoff);
403 	if (PageHWPoison(page)) {
404 		ret = -EIO;
405 		goto out_release;
406 	}
407 
408 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
409 				       page, false, flags);
410 	if (ret)
411 		goto out_release;
412 
413 	folio_unlock(folio);
414 	ret = 0;
415 out:
416 	return ret;
417 out_release:
418 	folio_unlock(folio);
419 	folio_put(folio);
420 	goto out;
421 }
422 
423 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */
mfill_atomic_pte_poison(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)424 static int mfill_atomic_pte_poison(pmd_t *dst_pmd,
425 				   struct vm_area_struct *dst_vma,
426 				   unsigned long dst_addr,
427 				   uffd_flags_t flags)
428 {
429 	int ret;
430 	struct mm_struct *dst_mm = dst_vma->vm_mm;
431 	pte_t _dst_pte, *dst_pte;
432 	spinlock_t *ptl;
433 
434 	_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
435 	ret = -EAGAIN;
436 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
437 	if (!dst_pte)
438 		goto out;
439 
440 	if (mfill_file_over_size(dst_vma, dst_addr)) {
441 		ret = -EFAULT;
442 		goto out_unlock;
443 	}
444 
445 	ret = -EEXIST;
446 	/* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */
447 	if (!pte_none(ptep_get(dst_pte)))
448 		goto out_unlock;
449 
450 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
451 
452 	/* No need to invalidate - it was non-present before */
453 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
454 	ret = 0;
455 out_unlock:
456 	pte_unmap_unlock(dst_pte, ptl);
457 out:
458 	return ret;
459 }
460 
mm_alloc_pmd(struct mm_struct * mm,unsigned long address)461 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
462 {
463 	pgd_t *pgd;
464 	p4d_t *p4d;
465 	pud_t *pud;
466 
467 	pgd = pgd_offset(mm, address);
468 	p4d = p4d_alloc(mm, pgd, address);
469 	if (!p4d)
470 		return NULL;
471 	pud = pud_alloc(mm, p4d, address);
472 	if (!pud)
473 		return NULL;
474 	/*
475 	 * Note that we didn't run this because the pmd was
476 	 * missing, the *pmd may be already established and in
477 	 * turn it may also be a trans_huge_pmd.
478 	 */
479 	return pmd_alloc(mm, pud, address);
480 }
481 
482 #ifdef CONFIG_HUGETLB_PAGE
483 /*
484  * mfill_atomic processing for HUGETLB vmas.  Note that this routine is
485  * called with either vma-lock or mmap_lock held, it will release the lock
486  * before returning.
487  */
mfill_atomic_hugetlb(struct userfaultfd_ctx * ctx,struct vm_area_struct * dst_vma,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)488 static __always_inline ssize_t mfill_atomic_hugetlb(
489 					      struct userfaultfd_ctx *ctx,
490 					      struct vm_area_struct *dst_vma,
491 					      unsigned long dst_start,
492 					      unsigned long src_start,
493 					      unsigned long len,
494 					      uffd_flags_t flags)
495 {
496 	struct mm_struct *dst_mm = dst_vma->vm_mm;
497 	ssize_t err;
498 	pte_t *dst_pte;
499 	unsigned long src_addr, dst_addr;
500 	long copied;
501 	struct folio *folio;
502 	unsigned long vma_hpagesize;
503 	pgoff_t idx;
504 	u32 hash;
505 	struct address_space *mapping;
506 
507 	/*
508 	 * There is no default zero huge page for all huge page sizes as
509 	 * supported by hugetlb.  A PMD_SIZE huge pages may exist as used
510 	 * by THP.  Since we can not reliably insert a zero page, this
511 	 * feature is not supported.
512 	 */
513 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) {
514 		up_read(&ctx->map_changing_lock);
515 		uffd_mfill_unlock(dst_vma);
516 		return -EINVAL;
517 	}
518 
519 	src_addr = src_start;
520 	dst_addr = dst_start;
521 	copied = 0;
522 	folio = NULL;
523 	vma_hpagesize = vma_kernel_pagesize(dst_vma);
524 
525 	/*
526 	 * Validate alignment based on huge page size
527 	 */
528 	err = -EINVAL;
529 	if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
530 		goto out_unlock;
531 
532 retry:
533 	/*
534 	 * On routine entry dst_vma is set.  If we had to drop mmap_lock and
535 	 * retry, dst_vma will be set to NULL and we must lookup again.
536 	 */
537 	if (!dst_vma) {
538 		dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
539 		if (IS_ERR(dst_vma)) {
540 			err = PTR_ERR(dst_vma);
541 			goto out;
542 		}
543 
544 		err = -ENOENT;
545 		if (!is_vm_hugetlb_page(dst_vma))
546 			goto out_unlock_vma;
547 
548 		err = -EINVAL;
549 		if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
550 			goto out_unlock_vma;
551 
552 		/*
553 		 * If memory mappings are changing because of non-cooperative
554 		 * operation (e.g. mremap) running in parallel, bail out and
555 		 * request the user to retry later
556 		 */
557 		down_read(&ctx->map_changing_lock);
558 		err = -EAGAIN;
559 		if (atomic_read(&ctx->mmap_changing))
560 			goto out_unlock;
561 	}
562 
563 	while (src_addr < src_start + len) {
564 		BUG_ON(dst_addr >= dst_start + len);
565 
566 		/*
567 		 * Serialize via vma_lock and hugetlb_fault_mutex.
568 		 * vma_lock ensures the dst_pte remains valid even
569 		 * in the case of shared pmds.  fault mutex prevents
570 		 * races with other faulting threads.
571 		 */
572 		idx = linear_page_index(dst_vma, dst_addr);
573 		mapping = dst_vma->vm_file->f_mapping;
574 		hash = hugetlb_fault_mutex_hash(mapping, idx);
575 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
576 		hugetlb_vma_lock_read(dst_vma);
577 
578 		err = -ENOMEM;
579 		dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
580 		if (!dst_pte) {
581 			hugetlb_vma_unlock_read(dst_vma);
582 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
583 			goto out_unlock;
584 		}
585 
586 		if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) &&
587 		    !huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
588 			err = -EEXIST;
589 			hugetlb_vma_unlock_read(dst_vma);
590 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
591 			goto out_unlock;
592 		}
593 
594 		err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr,
595 					       src_addr, flags, &folio);
596 
597 		hugetlb_vma_unlock_read(dst_vma);
598 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
599 
600 		cond_resched();
601 
602 		if (unlikely(err == -ENOENT)) {
603 			up_read(&ctx->map_changing_lock);
604 			uffd_mfill_unlock(dst_vma);
605 			BUG_ON(!folio);
606 
607 			err = copy_folio_from_user(folio,
608 						   (const void __user *)src_addr, true);
609 			if (unlikely(err)) {
610 				err = -EFAULT;
611 				goto out;
612 			}
613 
614 			dst_vma = NULL;
615 			goto retry;
616 		} else
617 			BUG_ON(folio);
618 
619 		if (!err) {
620 			dst_addr += vma_hpagesize;
621 			src_addr += vma_hpagesize;
622 			copied += vma_hpagesize;
623 
624 			if (fatal_signal_pending(current))
625 				err = -EINTR;
626 		}
627 		if (err)
628 			break;
629 	}
630 
631 out_unlock:
632 	up_read(&ctx->map_changing_lock);
633 out_unlock_vma:
634 	uffd_mfill_unlock(dst_vma);
635 out:
636 	if (folio)
637 		folio_put(folio);
638 	BUG_ON(copied < 0);
639 	BUG_ON(err > 0);
640 	BUG_ON(!copied && !err);
641 	return copied ? copied : err;
642 }
643 #else /* !CONFIG_HUGETLB_PAGE */
644 /* fail at build time if gcc attempts to use this */
645 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx,
646 				    struct vm_area_struct *dst_vma,
647 				    unsigned long dst_start,
648 				    unsigned long src_start,
649 				    unsigned long len,
650 				    uffd_flags_t flags);
651 #endif /* CONFIG_HUGETLB_PAGE */
652 
mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)653 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd,
654 						struct vm_area_struct *dst_vma,
655 						unsigned long dst_addr,
656 						unsigned long src_addr,
657 						uffd_flags_t flags,
658 						struct folio **foliop)
659 {
660 	ssize_t err;
661 
662 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
663 		return mfill_atomic_pte_continue(dst_pmd, dst_vma,
664 						 dst_addr, flags);
665 	} else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
666 		return mfill_atomic_pte_poison(dst_pmd, dst_vma,
667 					       dst_addr, flags);
668 	}
669 
670 	/*
671 	 * The normal page fault path for a shmem will invoke the
672 	 * fault, fill the hole in the file and COW it right away. The
673 	 * result generates plain anonymous memory. So when we are
674 	 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
675 	 * generate anonymous memory directly without actually filling
676 	 * the hole. For the MAP_PRIVATE case the robustness check
677 	 * only happens in the pagetable (to verify it's still none)
678 	 * and not in the radix tree.
679 	 */
680 	if (!(dst_vma->vm_flags & VM_SHARED)) {
681 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY))
682 			err = mfill_atomic_pte_copy(dst_pmd, dst_vma,
683 						    dst_addr, src_addr,
684 						    flags, foliop);
685 		else
686 			err = mfill_atomic_pte_zeropage(dst_pmd,
687 						 dst_vma, dst_addr);
688 	} else {
689 		err = shmem_mfill_atomic_pte(dst_pmd, dst_vma,
690 					     dst_addr, src_addr,
691 					     flags, foliop);
692 	}
693 
694 	return err;
695 }
696 
mfill_atomic(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)697 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx,
698 					    unsigned long dst_start,
699 					    unsigned long src_start,
700 					    unsigned long len,
701 					    uffd_flags_t flags)
702 {
703 	struct mm_struct *dst_mm = ctx->mm;
704 	struct vm_area_struct *dst_vma;
705 	ssize_t err;
706 	pmd_t *dst_pmd;
707 	unsigned long src_addr, dst_addr;
708 	long copied;
709 	struct folio *folio;
710 
711 	/*
712 	 * Sanitize the command parameters:
713 	 */
714 	BUG_ON(dst_start & ~PAGE_MASK);
715 	BUG_ON(len & ~PAGE_MASK);
716 
717 	/* Does the address range wrap, or is the span zero-sized? */
718 	BUG_ON(src_start + len <= src_start);
719 	BUG_ON(dst_start + len <= dst_start);
720 
721 	src_addr = src_start;
722 	dst_addr = dst_start;
723 	copied = 0;
724 	folio = NULL;
725 retry:
726 	/*
727 	 * Make sure the vma is not shared, that the dst range is
728 	 * both valid and fully within a single existing vma.
729 	 */
730 	dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
731 	if (IS_ERR(dst_vma)) {
732 		err = PTR_ERR(dst_vma);
733 		goto out;
734 	}
735 
736 	/*
737 	 * If memory mappings are changing because of non-cooperative
738 	 * operation (e.g. mremap) running in parallel, bail out and
739 	 * request the user to retry later
740 	 */
741 	down_read(&ctx->map_changing_lock);
742 	err = -EAGAIN;
743 	if (atomic_read(&ctx->mmap_changing))
744 		goto out_unlock;
745 
746 	err = -EINVAL;
747 	/*
748 	 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
749 	 * it will overwrite vm_ops, so vma_is_anonymous must return false.
750 	 */
751 	if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
752 	    dst_vma->vm_flags & VM_SHARED))
753 		goto out_unlock;
754 
755 	/*
756 	 * validate 'mode' now that we know the dst_vma: don't allow
757 	 * a wrprotect copy if the userfaultfd didn't register as WP.
758 	 */
759 	if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP))
760 		goto out_unlock;
761 
762 	/*
763 	 * If this is a HUGETLB vma, pass off to appropriate routine
764 	 */
765 	if (is_vm_hugetlb_page(dst_vma))
766 		return  mfill_atomic_hugetlb(ctx, dst_vma, dst_start,
767 					     src_start, len, flags);
768 
769 	if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
770 		goto out_unlock;
771 	if (!vma_is_shmem(dst_vma) &&
772 	    uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE))
773 		goto out_unlock;
774 
775 	while (src_addr < src_start + len) {
776 		pmd_t dst_pmdval;
777 
778 		BUG_ON(dst_addr >= dst_start + len);
779 
780 		dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
781 		if (unlikely(!dst_pmd)) {
782 			err = -ENOMEM;
783 			break;
784 		}
785 
786 		dst_pmdval = pmdp_get_lockless(dst_pmd);
787 		if (unlikely(pmd_none(dst_pmdval)) &&
788 		    unlikely(__pte_alloc(dst_mm, dst_pmd))) {
789 			err = -ENOMEM;
790 			break;
791 		}
792 		dst_pmdval = pmdp_get_lockless(dst_pmd);
793 		/*
794 		 * If the dst_pmd is THP don't override it and just be strict.
795 		 * (This includes the case where the PMD used to be THP and
796 		 * changed back to none after __pte_alloc().)
797 		 */
798 		if (unlikely(!pmd_present(dst_pmdval) || pmd_trans_huge(dst_pmdval) ||
799 			     pmd_devmap(dst_pmdval))) {
800 			err = -EEXIST;
801 			break;
802 		}
803 		if (unlikely(pmd_bad(dst_pmdval))) {
804 			err = -EFAULT;
805 			break;
806 		}
807 		/*
808 		 * For shmem mappings, khugepaged is allowed to remove page
809 		 * tables under us; pte_offset_map_lock() will deal with that.
810 		 */
811 
812 		err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr,
813 				       src_addr, flags, &folio);
814 		cond_resched();
815 
816 		if (unlikely(err == -ENOENT)) {
817 			void *kaddr;
818 
819 			up_read(&ctx->map_changing_lock);
820 			uffd_mfill_unlock(dst_vma);
821 			BUG_ON(!folio);
822 
823 			kaddr = kmap_local_folio(folio, 0);
824 			err = copy_from_user(kaddr,
825 					     (const void __user *) src_addr,
826 					     PAGE_SIZE);
827 			kunmap_local(kaddr);
828 			if (unlikely(err)) {
829 				err = -EFAULT;
830 				goto out;
831 			}
832 			flush_dcache_folio(folio);
833 			goto retry;
834 		} else
835 			BUG_ON(folio);
836 
837 		if (!err) {
838 			dst_addr += PAGE_SIZE;
839 			src_addr += PAGE_SIZE;
840 			copied += PAGE_SIZE;
841 
842 			if (fatal_signal_pending(current))
843 				err = -EINTR;
844 		}
845 		if (err)
846 			break;
847 	}
848 
849 out_unlock:
850 	up_read(&ctx->map_changing_lock);
851 	uffd_mfill_unlock(dst_vma);
852 out:
853 	if (folio)
854 		folio_put(folio);
855 	BUG_ON(copied < 0);
856 	BUG_ON(err > 0);
857 	BUG_ON(!copied && !err);
858 	return copied ? copied : err;
859 }
860 
mfill_atomic_copy(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)861 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start,
862 			  unsigned long src_start, unsigned long len,
863 			  uffd_flags_t flags)
864 {
865 	return mfill_atomic(ctx, dst_start, src_start, len,
866 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY));
867 }
868 
mfill_atomic_zeropage(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len)869 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx,
870 			      unsigned long start,
871 			      unsigned long len)
872 {
873 	return mfill_atomic(ctx, start, 0, len,
874 			    uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE));
875 }
876 
mfill_atomic_continue(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)877 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start,
878 			      unsigned long len, uffd_flags_t flags)
879 {
880 
881 	/*
882 	 * A caller might reasonably assume that UFFDIO_CONTINUE contains an
883 	 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by
884 	 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to
885 	 * subsequent loads from the page through the newly mapped address range.
886 	 */
887 	smp_wmb();
888 
889 	return mfill_atomic(ctx, start, 0, len,
890 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE));
891 }
892 
mfill_atomic_poison(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)893 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start,
894 			    unsigned long len, uffd_flags_t flags)
895 {
896 	return mfill_atomic(ctx, start, 0, len,
897 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON));
898 }
899 
uffd_wp_range(struct vm_area_struct * dst_vma,unsigned long start,unsigned long len,bool enable_wp)900 long uffd_wp_range(struct vm_area_struct *dst_vma,
901 		   unsigned long start, unsigned long len, bool enable_wp)
902 {
903 	unsigned int mm_cp_flags;
904 	struct mmu_gather tlb;
905 	long ret;
906 
907 	VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end,
908 			"The address range exceeds VMA boundary.\n");
909 	if (enable_wp)
910 		mm_cp_flags = MM_CP_UFFD_WP;
911 	else
912 		mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
913 
914 	/*
915 	 * vma->vm_page_prot already reflects that uffd-wp is enabled for this
916 	 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
917 	 * to be write-protected as default whenever protection changes.
918 	 * Try upgrading write permissions manually.
919 	 */
920 	if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
921 		mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
922 	tlb_gather_mmu(&tlb, dst_vma->vm_mm);
923 	ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
924 	tlb_finish_mmu(&tlb);
925 
926 	return ret;
927 }
928 
mwriteprotect_range(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,bool enable_wp)929 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start,
930 			unsigned long len, bool enable_wp)
931 {
932 	struct mm_struct *dst_mm = ctx->mm;
933 	unsigned long end = start + len;
934 	unsigned long _start, _end;
935 	struct vm_area_struct *dst_vma;
936 	unsigned long page_mask;
937 	long err;
938 	VMA_ITERATOR(vmi, dst_mm, start);
939 
940 	/*
941 	 * Sanitize the command parameters:
942 	 */
943 	BUG_ON(start & ~PAGE_MASK);
944 	BUG_ON(len & ~PAGE_MASK);
945 
946 	/* Does the address range wrap, or is the span zero-sized? */
947 	BUG_ON(start + len <= start);
948 
949 	mmap_read_lock(dst_mm);
950 
951 	/*
952 	 * If memory mappings are changing because of non-cooperative
953 	 * operation (e.g. mremap) running in parallel, bail out and
954 	 * request the user to retry later
955 	 */
956 	down_read(&ctx->map_changing_lock);
957 	err = -EAGAIN;
958 	if (atomic_read(&ctx->mmap_changing))
959 		goto out_unlock;
960 
961 	err = -ENOENT;
962 	for_each_vma_range(vmi, dst_vma, end) {
963 
964 		if (!userfaultfd_wp(dst_vma)) {
965 			err = -ENOENT;
966 			break;
967 		}
968 
969 		if (is_vm_hugetlb_page(dst_vma)) {
970 			err = -EINVAL;
971 			page_mask = vma_kernel_pagesize(dst_vma) - 1;
972 			if ((start & page_mask) || (len & page_mask))
973 				break;
974 		}
975 
976 		_start = max(dst_vma->vm_start, start);
977 		_end = min(dst_vma->vm_end, end);
978 
979 		err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp);
980 
981 		/* Return 0 on success, <0 on failures */
982 		if (err < 0)
983 			break;
984 		err = 0;
985 	}
986 out_unlock:
987 	up_read(&ctx->map_changing_lock);
988 	mmap_read_unlock(dst_mm);
989 	return err;
990 }
991 
992 
double_pt_lock(spinlock_t * ptl1,spinlock_t * ptl2)993 void double_pt_lock(spinlock_t *ptl1,
994 		    spinlock_t *ptl2)
995 	__acquires(ptl1)
996 	__acquires(ptl2)
997 {
998 	if (ptl1 > ptl2)
999 		swap(ptl1, ptl2);
1000 	/* lock in virtual address order to avoid lock inversion */
1001 	spin_lock(ptl1);
1002 	if (ptl1 != ptl2)
1003 		spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
1004 	else
1005 		__acquire(ptl2);
1006 }
1007 
double_pt_unlock(spinlock_t * ptl1,spinlock_t * ptl2)1008 void double_pt_unlock(spinlock_t *ptl1,
1009 		      spinlock_t *ptl2)
1010 	__releases(ptl1)
1011 	__releases(ptl2)
1012 {
1013 	spin_unlock(ptl1);
1014 	if (ptl1 != ptl2)
1015 		spin_unlock(ptl2);
1016 	else
1017 		__release(ptl2);
1018 }
1019 
is_pte_pages_stable(pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval)1020 static inline bool is_pte_pages_stable(pte_t *dst_pte, pte_t *src_pte,
1021 				       pte_t orig_dst_pte, pte_t orig_src_pte,
1022 				       pmd_t *dst_pmd, pmd_t dst_pmdval)
1023 {
1024 	return pte_same(ptep_get(src_pte), orig_src_pte) &&
1025 	       pte_same(ptep_get(dst_pte), orig_dst_pte) &&
1026 	       pmd_same(dst_pmdval, pmdp_get_lockless(dst_pmd));
1027 }
1028 
move_present_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio)1029 static int move_present_pte(struct mm_struct *mm,
1030 			    struct vm_area_struct *dst_vma,
1031 			    struct vm_area_struct *src_vma,
1032 			    unsigned long dst_addr, unsigned long src_addr,
1033 			    pte_t *dst_pte, pte_t *src_pte,
1034 			    pte_t orig_dst_pte, pte_t orig_src_pte,
1035 			    pmd_t *dst_pmd, pmd_t dst_pmdval,
1036 			    spinlock_t *dst_ptl, spinlock_t *src_ptl,
1037 			    struct folio *src_folio)
1038 {
1039 	int err = 0;
1040 
1041 	double_pt_lock(dst_ptl, src_ptl);
1042 
1043 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1044 				 dst_pmd, dst_pmdval)) {
1045 		err = -EAGAIN;
1046 		goto out;
1047 	}
1048 	if (folio_test_large(src_folio) ||
1049 	    folio_maybe_dma_pinned(src_folio) ||
1050 	    !PageAnonExclusive(&src_folio->page)) {
1051 		err = -EBUSY;
1052 		goto out;
1053 	}
1054 
1055 	orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte);
1056 	/* Folio got pinned from under us. Put it back and fail the move. */
1057 	if (folio_maybe_dma_pinned(src_folio)) {
1058 		set_pte_at(mm, src_addr, src_pte, orig_src_pte);
1059 		err = -EBUSY;
1060 		goto out;
1061 	}
1062 
1063 	folio_move_anon_rmap(src_folio, dst_vma);
1064 	src_folio->index = linear_page_index(dst_vma, dst_addr);
1065 
1066 	orig_dst_pte = folio_mk_pte(src_folio, dst_vma->vm_page_prot);
1067 	/* Set soft dirty bit so userspace can notice the pte was moved */
1068 #ifdef CONFIG_MEM_SOFT_DIRTY
1069 	orig_dst_pte = pte_mksoft_dirty(orig_dst_pte);
1070 #endif
1071 	if (pte_dirty(orig_src_pte))
1072 		orig_dst_pte = pte_mkdirty(orig_dst_pte);
1073 	orig_dst_pte = pte_mkwrite(orig_dst_pte, dst_vma);
1074 
1075 	set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte);
1076 out:
1077 	double_pt_unlock(dst_ptl, src_ptl);
1078 	return err;
1079 }
1080 
move_swap_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio,struct swap_info_struct * si,swp_entry_t entry)1081 static int move_swap_pte(struct mm_struct *mm, struct vm_area_struct *dst_vma,
1082 			 unsigned long dst_addr, unsigned long src_addr,
1083 			 pte_t *dst_pte, pte_t *src_pte,
1084 			 pte_t orig_dst_pte, pte_t orig_src_pte,
1085 			 pmd_t *dst_pmd, pmd_t dst_pmdval,
1086 			 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1087 			 struct folio *src_folio,
1088 			 struct swap_info_struct *si, swp_entry_t entry)
1089 {
1090 	/*
1091 	 * Check if the folio still belongs to the target swap entry after
1092 	 * acquiring the lock. Folio can be freed in the swap cache while
1093 	 * not locked.
1094 	 */
1095 	if (src_folio && unlikely(!folio_test_swapcache(src_folio) ||
1096 				  entry.val != src_folio->swap.val))
1097 		return -EAGAIN;
1098 
1099 	double_pt_lock(dst_ptl, src_ptl);
1100 
1101 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1102 				 dst_pmd, dst_pmdval)) {
1103 		double_pt_unlock(dst_ptl, src_ptl);
1104 		return -EAGAIN;
1105 	}
1106 
1107 	/*
1108 	 * The src_folio resides in the swapcache, requiring an update to its
1109 	 * index and mapping to align with the dst_vma, where a swap-in may
1110 	 * occur and hit the swapcache after moving the PTE.
1111 	 */
1112 	if (src_folio) {
1113 		folio_move_anon_rmap(src_folio, dst_vma);
1114 		src_folio->index = linear_page_index(dst_vma, dst_addr);
1115 	} else {
1116 		/*
1117 		 * Check if the swap entry is cached after acquiring the src_pte
1118 		 * lock. Otherwise, we might miss a newly loaded swap cache folio.
1119 		 *
1120 		 * Check swap_map directly to minimize overhead, READ_ONCE is sufficient.
1121 		 * We are trying to catch newly added swap cache, the only possible case is
1122 		 * when a folio is swapped in and out again staying in swap cache, using the
1123 		 * same entry before the PTE check above. The PTL is acquired and released
1124 		 * twice, each time after updating the swap_map's flag. So holding
1125 		 * the PTL here ensures we see the updated value. False positive is possible,
1126 		 * e.g. SWP_SYNCHRONOUS_IO swapin may set the flag without touching the
1127 		 * cache, or during the tiny synchronization window between swap cache and
1128 		 * swap_map, but it will be gone very quickly, worst result is retry jitters.
1129 		 */
1130 		if (READ_ONCE(si->swap_map[swp_offset(entry)]) & SWAP_HAS_CACHE) {
1131 			double_pt_unlock(dst_ptl, src_ptl);
1132 			return -EAGAIN;
1133 		}
1134 	}
1135 
1136 	orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
1137 #ifdef CONFIG_MEM_SOFT_DIRTY
1138 	orig_src_pte = pte_swp_mksoft_dirty(orig_src_pte);
1139 #endif
1140 	set_pte_at(mm, dst_addr, dst_pte, orig_src_pte);
1141 	double_pt_unlock(dst_ptl, src_ptl);
1142 
1143 	return 0;
1144 }
1145 
move_zeropage_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl)1146 static int move_zeropage_pte(struct mm_struct *mm,
1147 			     struct vm_area_struct *dst_vma,
1148 			     struct vm_area_struct *src_vma,
1149 			     unsigned long dst_addr, unsigned long src_addr,
1150 			     pte_t *dst_pte, pte_t *src_pte,
1151 			     pte_t orig_dst_pte, pte_t orig_src_pte,
1152 			     pmd_t *dst_pmd, pmd_t dst_pmdval,
1153 			     spinlock_t *dst_ptl, spinlock_t *src_ptl)
1154 {
1155 	pte_t zero_pte;
1156 
1157 	double_pt_lock(dst_ptl, src_ptl);
1158 	if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1159 				 dst_pmd, dst_pmdval)) {
1160 		double_pt_unlock(dst_ptl, src_ptl);
1161 		return -EAGAIN;
1162 	}
1163 
1164 	zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
1165 					 dst_vma->vm_page_prot));
1166 	ptep_clear_flush(src_vma, src_addr, src_pte);
1167 	set_pte_at(mm, dst_addr, dst_pte, zero_pte);
1168 	double_pt_unlock(dst_ptl, src_ptl);
1169 
1170 	return 0;
1171 }
1172 
1173 
1174 /*
1175  * The mmap_lock for reading is held by the caller. Just move the page
1176  * from src_pmd to dst_pmd if possible, and return true if succeeded
1177  * in moving the page.
1178  */
move_pages_pte(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,__u64 mode)1179 static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd,
1180 			  struct vm_area_struct *dst_vma,
1181 			  struct vm_area_struct *src_vma,
1182 			  unsigned long dst_addr, unsigned long src_addr,
1183 			  __u64 mode)
1184 {
1185 	swp_entry_t entry;
1186 	struct swap_info_struct *si = NULL;
1187 	pte_t orig_src_pte, orig_dst_pte;
1188 	pte_t src_folio_pte;
1189 	spinlock_t *src_ptl, *dst_ptl;
1190 	pte_t *src_pte = NULL;
1191 	pte_t *dst_pte = NULL;
1192 	pmd_t dummy_pmdval;
1193 	pmd_t dst_pmdval;
1194 	struct folio *src_folio = NULL;
1195 	struct anon_vma *src_anon_vma = NULL;
1196 	struct mmu_notifier_range range;
1197 	int err = 0;
1198 
1199 	flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE);
1200 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1201 				src_addr, src_addr + PAGE_SIZE);
1202 	mmu_notifier_invalidate_range_start(&range);
1203 retry:
1204 	/*
1205 	 * Use the maywrite version to indicate that dst_pte will be modified,
1206 	 * since dst_pte needs to be none, the subsequent pte_same() check
1207 	 * cannot prevent the dst_pte page from being freed concurrently, so we
1208 	 * also need to abtain dst_pmdval and recheck pmd_same() later.
1209 	 */
1210 	dst_pte = pte_offset_map_rw_nolock(mm, dst_pmd, dst_addr, &dst_pmdval,
1211 					   &dst_ptl);
1212 
1213 	/* Retry if a huge pmd materialized from under us */
1214 	if (unlikely(!dst_pte)) {
1215 		err = -EAGAIN;
1216 		goto out;
1217 	}
1218 
1219 	/*
1220 	 * Unlike dst_pte, the subsequent pte_same() check can ensure the
1221 	 * stability of the src_pte page, so there is no need to get pmdval,
1222 	 * just pass a dummy variable to it.
1223 	 */
1224 	src_pte = pte_offset_map_rw_nolock(mm, src_pmd, src_addr, &dummy_pmdval,
1225 					   &src_ptl);
1226 
1227 	/*
1228 	 * We held the mmap_lock for reading so MADV_DONTNEED
1229 	 * can zap transparent huge pages under us, or the
1230 	 * transparent huge page fault can establish new
1231 	 * transparent huge pages under us.
1232 	 */
1233 	if (unlikely(!src_pte)) {
1234 		err = -EAGAIN;
1235 		goto out;
1236 	}
1237 
1238 	/* Sanity checks before the operation */
1239 	if (pmd_none(*dst_pmd) || pmd_none(*src_pmd) ||
1240 	    pmd_trans_huge(*dst_pmd) || pmd_trans_huge(*src_pmd)) {
1241 		err = -EINVAL;
1242 		goto out;
1243 	}
1244 
1245 	spin_lock(dst_ptl);
1246 	orig_dst_pte = ptep_get(dst_pte);
1247 	spin_unlock(dst_ptl);
1248 	if (!pte_none(orig_dst_pte)) {
1249 		err = -EEXIST;
1250 		goto out;
1251 	}
1252 
1253 	spin_lock(src_ptl);
1254 	orig_src_pte = ptep_get(src_pte);
1255 	spin_unlock(src_ptl);
1256 	if (pte_none(orig_src_pte)) {
1257 		if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES))
1258 			err = -ENOENT;
1259 		else /* nothing to do to move a hole */
1260 			err = 0;
1261 		goto out;
1262 	}
1263 
1264 	/* If PTE changed after we locked the folio them start over */
1265 	if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) {
1266 		err = -EAGAIN;
1267 		goto out;
1268 	}
1269 
1270 	if (pte_present(orig_src_pte)) {
1271 		if (is_zero_pfn(pte_pfn(orig_src_pte))) {
1272 			err = move_zeropage_pte(mm, dst_vma, src_vma,
1273 					       dst_addr, src_addr, dst_pte, src_pte,
1274 					       orig_dst_pte, orig_src_pte,
1275 					       dst_pmd, dst_pmdval, dst_ptl, src_ptl);
1276 			goto out;
1277 		}
1278 
1279 		/*
1280 		 * Pin and lock both source folio and anon_vma. Since we are in
1281 		 * RCU read section, we can't block, so on contention have to
1282 		 * unmap the ptes, obtain the lock and retry.
1283 		 */
1284 		if (!src_folio) {
1285 			struct folio *folio;
1286 			bool locked;
1287 
1288 			/*
1289 			 * Pin the page while holding the lock to be sure the
1290 			 * page isn't freed under us
1291 			 */
1292 			spin_lock(src_ptl);
1293 			if (!pte_same(orig_src_pte, ptep_get(src_pte))) {
1294 				spin_unlock(src_ptl);
1295 				err = -EAGAIN;
1296 				goto out;
1297 			}
1298 
1299 			folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
1300 			if (!folio || !PageAnonExclusive(&folio->page)) {
1301 				spin_unlock(src_ptl);
1302 				err = -EBUSY;
1303 				goto out;
1304 			}
1305 
1306 			locked = folio_trylock(folio);
1307 			/*
1308 			 * We avoid waiting for folio lock with a raised
1309 			 * refcount for large folios because extra refcounts
1310 			 * will result in split_folio() failing later and
1311 			 * retrying.  If multiple tasks are trying to move a
1312 			 * large folio we can end up livelocking.
1313 			 */
1314 			if (!locked && folio_test_large(folio)) {
1315 				spin_unlock(src_ptl);
1316 				err = -EAGAIN;
1317 				goto out;
1318 			}
1319 
1320 			folio_get(folio);
1321 			src_folio = folio;
1322 			src_folio_pte = orig_src_pte;
1323 			spin_unlock(src_ptl);
1324 
1325 			if (!locked) {
1326 				pte_unmap(src_pte);
1327 				pte_unmap(dst_pte);
1328 				src_pte = dst_pte = NULL;
1329 				/* now we can block and wait */
1330 				folio_lock(src_folio);
1331 				goto retry;
1332 			}
1333 
1334 			if (WARN_ON_ONCE(!folio_test_anon(src_folio))) {
1335 				err = -EBUSY;
1336 				goto out;
1337 			}
1338 		}
1339 
1340 		/* at this point we have src_folio locked */
1341 		if (folio_test_large(src_folio)) {
1342 			/* split_folio() can block */
1343 			pte_unmap(src_pte);
1344 			pte_unmap(dst_pte);
1345 			src_pte = dst_pte = NULL;
1346 			err = split_folio(src_folio);
1347 			if (err)
1348 				goto out;
1349 			/* have to reacquire the folio after it got split */
1350 			folio_unlock(src_folio);
1351 			folio_put(src_folio);
1352 			src_folio = NULL;
1353 			goto retry;
1354 		}
1355 
1356 		if (!src_anon_vma) {
1357 			/*
1358 			 * folio_referenced walks the anon_vma chain
1359 			 * without the folio lock. Serialize against it with
1360 			 * the anon_vma lock, the folio lock is not enough.
1361 			 */
1362 			src_anon_vma = folio_get_anon_vma(src_folio);
1363 			if (!src_anon_vma) {
1364 				/* page was unmapped from under us */
1365 				err = -EAGAIN;
1366 				goto out;
1367 			}
1368 			if (!anon_vma_trylock_write(src_anon_vma)) {
1369 				pte_unmap(src_pte);
1370 				pte_unmap(dst_pte);
1371 				src_pte = dst_pte = NULL;
1372 				/* now we can block and wait */
1373 				anon_vma_lock_write(src_anon_vma);
1374 				goto retry;
1375 			}
1376 		}
1377 
1378 		err = move_present_pte(mm,  dst_vma, src_vma,
1379 				       dst_addr, src_addr, dst_pte, src_pte,
1380 				       orig_dst_pte, orig_src_pte, dst_pmd,
1381 				       dst_pmdval, dst_ptl, src_ptl, src_folio);
1382 	} else {
1383 		struct folio *folio = NULL;
1384 
1385 		entry = pte_to_swp_entry(orig_src_pte);
1386 		if (non_swap_entry(entry)) {
1387 			if (is_migration_entry(entry)) {
1388 				pte_unmap(src_pte);
1389 				pte_unmap(dst_pte);
1390 				src_pte = dst_pte = NULL;
1391 				migration_entry_wait(mm, src_pmd, src_addr);
1392 				err = -EAGAIN;
1393 			} else
1394 				err = -EFAULT;
1395 			goto out;
1396 		}
1397 
1398 		if (!pte_swp_exclusive(orig_src_pte)) {
1399 			err = -EBUSY;
1400 			goto out;
1401 		}
1402 
1403 		si = get_swap_device(entry);
1404 		if (unlikely(!si)) {
1405 			err = -EAGAIN;
1406 			goto out;
1407 		}
1408 		/*
1409 		 * Verify the existence of the swapcache. If present, the folio's
1410 		 * index and mapping must be updated even when the PTE is a swap
1411 		 * entry. The anon_vma lock is not taken during this process since
1412 		 * the folio has already been unmapped, and the swap entry is
1413 		 * exclusive, preventing rmap walks.
1414 		 *
1415 		 * For large folios, return -EBUSY immediately, as split_folio()
1416 		 * also returns -EBUSY when attempting to split unmapped large
1417 		 * folios in the swapcache. This issue needs to be resolved
1418 		 * separately to allow proper handling.
1419 		 */
1420 		if (!src_folio)
1421 			folio = filemap_get_folio(swap_address_space(entry),
1422 					swap_cache_index(entry));
1423 		if (!IS_ERR_OR_NULL(folio)) {
1424 			if (folio_test_large(folio)) {
1425 				err = -EBUSY;
1426 				folio_put(folio);
1427 				goto out;
1428 			}
1429 			src_folio = folio;
1430 			src_folio_pte = orig_src_pte;
1431 			if (!folio_trylock(src_folio)) {
1432 				pte_unmap(src_pte);
1433 				pte_unmap(dst_pte);
1434 				src_pte = dst_pte = NULL;
1435 				put_swap_device(si);
1436 				si = NULL;
1437 				/* now we can block and wait */
1438 				folio_lock(src_folio);
1439 				goto retry;
1440 			}
1441 		}
1442 		err = move_swap_pte(mm, dst_vma, dst_addr, src_addr, dst_pte, src_pte,
1443 				orig_dst_pte, orig_src_pte, dst_pmd, dst_pmdval,
1444 				dst_ptl, src_ptl, src_folio, si, entry);
1445 	}
1446 
1447 out:
1448 	if (src_anon_vma) {
1449 		anon_vma_unlock_write(src_anon_vma);
1450 		put_anon_vma(src_anon_vma);
1451 	}
1452 	if (src_folio) {
1453 		folio_unlock(src_folio);
1454 		folio_put(src_folio);
1455 	}
1456 	if (dst_pte)
1457 		pte_unmap(dst_pte);
1458 	if (src_pte)
1459 		pte_unmap(src_pte);
1460 	mmu_notifier_invalidate_range_end(&range);
1461 	if (si)
1462 		put_swap_device(si);
1463 
1464 	return err;
1465 }
1466 
1467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1468 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1469 					unsigned long src_addr,
1470 					unsigned long src_end)
1471 {
1472 	return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) ||
1473 		src_end - src_addr < HPAGE_PMD_SIZE;
1474 }
1475 #else
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1476 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1477 					unsigned long src_addr,
1478 					unsigned long src_end)
1479 {
1480 	/* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */
1481 	return false;
1482 }
1483 #endif
1484 
vma_move_compatible(struct vm_area_struct * vma)1485 static inline bool vma_move_compatible(struct vm_area_struct *vma)
1486 {
1487 	return !(vma->vm_flags & (VM_PFNMAP | VM_IO |  VM_HUGETLB |
1488 				  VM_MIXEDMAP | VM_SHADOW_STACK));
1489 }
1490 
validate_move_areas(struct userfaultfd_ctx * ctx,struct vm_area_struct * src_vma,struct vm_area_struct * dst_vma)1491 static int validate_move_areas(struct userfaultfd_ctx *ctx,
1492 			       struct vm_area_struct *src_vma,
1493 			       struct vm_area_struct *dst_vma)
1494 {
1495 	/* Only allow moving if both have the same access and protection */
1496 	if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) ||
1497 	    pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot))
1498 		return -EINVAL;
1499 
1500 	/* Only allow moving if both are mlocked or both aren't */
1501 	if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED))
1502 		return -EINVAL;
1503 
1504 	/*
1505 	 * For now, we keep it simple and only move between writable VMAs.
1506 	 * Access flags are equal, therefore cheching only the source is enough.
1507 	 */
1508 	if (!(src_vma->vm_flags & VM_WRITE))
1509 		return -EINVAL;
1510 
1511 	/* Check if vma flags indicate content which can be moved */
1512 	if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma))
1513 		return -EINVAL;
1514 
1515 	/* Ensure dst_vma is registered in uffd we are operating on */
1516 	if (!dst_vma->vm_userfaultfd_ctx.ctx ||
1517 	    dst_vma->vm_userfaultfd_ctx.ctx != ctx)
1518 		return -EINVAL;
1519 
1520 	/* Only allow moving across anonymous vmas */
1521 	if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma))
1522 		return -EINVAL;
1523 
1524 	return 0;
1525 }
1526 
1527 static __always_inline
find_vmas_mm_locked(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1528 int find_vmas_mm_locked(struct mm_struct *mm,
1529 			unsigned long dst_start,
1530 			unsigned long src_start,
1531 			struct vm_area_struct **dst_vmap,
1532 			struct vm_area_struct **src_vmap)
1533 {
1534 	struct vm_area_struct *vma;
1535 
1536 	mmap_assert_locked(mm);
1537 	vma = find_vma_and_prepare_anon(mm, dst_start);
1538 	if (IS_ERR(vma))
1539 		return PTR_ERR(vma);
1540 
1541 	*dst_vmap = vma;
1542 	/* Skip finding src_vma if src_start is in dst_vma */
1543 	if (src_start >= vma->vm_start && src_start < vma->vm_end)
1544 		goto out_success;
1545 
1546 	vma = vma_lookup(mm, src_start);
1547 	if (!vma)
1548 		return -ENOENT;
1549 out_success:
1550 	*src_vmap = vma;
1551 	return 0;
1552 }
1553 
1554 #ifdef CONFIG_PER_VMA_LOCK
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1555 static int uffd_move_lock(struct mm_struct *mm,
1556 			  unsigned long dst_start,
1557 			  unsigned long src_start,
1558 			  struct vm_area_struct **dst_vmap,
1559 			  struct vm_area_struct **src_vmap)
1560 {
1561 	struct vm_area_struct *vma;
1562 	int err;
1563 
1564 	vma = uffd_lock_vma(mm, dst_start);
1565 	if (IS_ERR(vma))
1566 		return PTR_ERR(vma);
1567 
1568 	*dst_vmap = vma;
1569 	/*
1570 	 * Skip finding src_vma if src_start is in dst_vma. This also ensures
1571 	 * that we don't lock the same vma twice.
1572 	 */
1573 	if (src_start >= vma->vm_start && src_start < vma->vm_end) {
1574 		*src_vmap = vma;
1575 		return 0;
1576 	}
1577 
1578 	/*
1579 	 * Using uffd_lock_vma() to get src_vma can lead to following deadlock:
1580 	 *
1581 	 * Thread1				Thread2
1582 	 * -------				-------
1583 	 * vma_start_read(dst_vma)
1584 	 *					mmap_write_lock(mm)
1585 	 *					vma_start_write(src_vma)
1586 	 * vma_start_read(src_vma)
1587 	 * mmap_read_lock(mm)
1588 	 *					vma_start_write(dst_vma)
1589 	 */
1590 	*src_vmap = lock_vma_under_rcu(mm, src_start);
1591 	if (likely(*src_vmap))
1592 		return 0;
1593 
1594 	/* Undo any locking and retry in mmap_lock critical section */
1595 	vma_end_read(*dst_vmap);
1596 
1597 	mmap_read_lock(mm);
1598 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1599 	if (err)
1600 		goto out;
1601 
1602 	if (!vma_start_read_locked(*dst_vmap)) {
1603 		err = -EAGAIN;
1604 		goto out;
1605 	}
1606 
1607 	/* Nothing further to do if both vmas are locked. */
1608 	if (*dst_vmap == *src_vmap)
1609 		goto out;
1610 
1611 	if (!vma_start_read_locked_nested(*src_vmap, SINGLE_DEPTH_NESTING)) {
1612 		/* Undo dst_vmap locking if src_vmap failed to lock */
1613 		vma_end_read(*dst_vmap);
1614 		err = -EAGAIN;
1615 	}
1616 out:
1617 	mmap_read_unlock(mm);
1618 	return err;
1619 }
1620 
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1621 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1622 			     struct vm_area_struct *src_vma)
1623 {
1624 	vma_end_read(src_vma);
1625 	if (src_vma != dst_vma)
1626 		vma_end_read(dst_vma);
1627 }
1628 
1629 #else
1630 
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1631 static int uffd_move_lock(struct mm_struct *mm,
1632 			  unsigned long dst_start,
1633 			  unsigned long src_start,
1634 			  struct vm_area_struct **dst_vmap,
1635 			  struct vm_area_struct **src_vmap)
1636 {
1637 	int err;
1638 
1639 	mmap_read_lock(mm);
1640 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1641 	if (err)
1642 		mmap_read_unlock(mm);
1643 	return err;
1644 }
1645 
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1646 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1647 			     struct vm_area_struct *src_vma)
1648 {
1649 	mmap_assert_locked(src_vma->vm_mm);
1650 	mmap_read_unlock(dst_vma->vm_mm);
1651 }
1652 #endif
1653 
1654 /**
1655  * move_pages - move arbitrary anonymous pages of an existing vma
1656  * @ctx: pointer to the userfaultfd context
1657  * @dst_start: start of the destination virtual memory range
1658  * @src_start: start of the source virtual memory range
1659  * @len: length of the virtual memory range
1660  * @mode: flags from uffdio_move.mode
1661  *
1662  * It will either use the mmap_lock in read mode or per-vma locks
1663  *
1664  * move_pages() remaps arbitrary anonymous pages atomically in zero
1665  * copy. It only works on non shared anonymous pages because those can
1666  * be relocated without generating non linear anon_vmas in the rmap
1667  * code.
1668  *
1669  * It provides a zero copy mechanism to handle userspace page faults.
1670  * The source vma pages should have mapcount == 1, which can be
1671  * enforced by using madvise(MADV_DONTFORK) on src vma.
1672  *
1673  * The thread receiving the page during the userland page fault
1674  * will receive the faulting page in the source vma through the network,
1675  * storage or any other I/O device (MADV_DONTFORK in the source vma
1676  * avoids move_pages() to fail with -EBUSY if the process forks before
1677  * move_pages() is called), then it will call move_pages() to map the
1678  * page in the faulting address in the destination vma.
1679  *
1680  * This userfaultfd command works purely via pagetables, so it's the
1681  * most efficient way to move physical non shared anonymous pages
1682  * across different virtual addresses. Unlike mremap()/mmap()/munmap()
1683  * it does not create any new vmas. The mapping in the destination
1684  * address is atomic.
1685  *
1686  * It only works if the vma protection bits are identical from the
1687  * source and destination vma.
1688  *
1689  * It can remap non shared anonymous pages within the same vma too.
1690  *
1691  * If the source virtual memory range has any unmapped holes, or if
1692  * the destination virtual memory range is not a whole unmapped hole,
1693  * move_pages() will fail respectively with -ENOENT or -EEXIST. This
1694  * provides a very strict behavior to avoid any chance of memory
1695  * corruption going unnoticed if there are userland race conditions.
1696  * Only one thread should resolve the userland page fault at any given
1697  * time for any given faulting address. This means that if two threads
1698  * try to both call move_pages() on the same destination address at the
1699  * same time, the second thread will get an explicit error from this
1700  * command.
1701  *
1702  * The command retval will return "len" is successful. The command
1703  * however can be interrupted by fatal signals or errors. If
1704  * interrupted it will return the number of bytes successfully
1705  * remapped before the interruption if any, or the negative error if
1706  * none. It will never return zero. Either it will return an error or
1707  * an amount of bytes successfully moved. If the retval reports a
1708  * "short" remap, the move_pages() command should be repeated by
1709  * userland with src+retval, dst+reval, len-retval if it wants to know
1710  * about the error that interrupted it.
1711  *
1712  * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to
1713  * prevent -ENOENT errors to materialize if there are holes in the
1714  * source virtual range that is being remapped. The holes will be
1715  * accounted as successfully remapped in the retval of the
1716  * command. This is mostly useful to remap hugepage naturally aligned
1717  * virtual regions without knowing if there are transparent hugepage
1718  * in the regions or not, but preventing the risk of having to split
1719  * the hugepmd during the remap.
1720  *
1721  * If there's any rmap walk that is taking the anon_vma locks without
1722  * first obtaining the folio lock (the only current instance is
1723  * folio_referenced), they will have to verify if the folio->mapping
1724  * has changed after taking the anon_vma lock. If it changed they
1725  * should release the lock and retry obtaining a new anon_vma, because
1726  * it means the anon_vma was changed by move_pages() before the lock
1727  * could be obtained. This is the only additional complexity added to
1728  * the rmap code to provide this anonymous page remapping functionality.
1729  */
move_pages(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,__u64 mode)1730 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start,
1731 		   unsigned long src_start, unsigned long len, __u64 mode)
1732 {
1733 	struct mm_struct *mm = ctx->mm;
1734 	struct vm_area_struct *src_vma, *dst_vma;
1735 	unsigned long src_addr, dst_addr;
1736 	pmd_t *src_pmd, *dst_pmd;
1737 	long err = -EINVAL;
1738 	ssize_t moved = 0;
1739 
1740 	/* Sanitize the command parameters. */
1741 	if (WARN_ON_ONCE(src_start & ~PAGE_MASK) ||
1742 	    WARN_ON_ONCE(dst_start & ~PAGE_MASK) ||
1743 	    WARN_ON_ONCE(len & ~PAGE_MASK))
1744 		goto out;
1745 
1746 	/* Does the address range wrap, or is the span zero-sized? */
1747 	if (WARN_ON_ONCE(src_start + len <= src_start) ||
1748 	    WARN_ON_ONCE(dst_start + len <= dst_start))
1749 		goto out;
1750 
1751 	err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma);
1752 	if (err)
1753 		goto out;
1754 
1755 	/* Re-check after taking map_changing_lock */
1756 	err = -EAGAIN;
1757 	down_read(&ctx->map_changing_lock);
1758 	if (likely(atomic_read(&ctx->mmap_changing)))
1759 		goto out_unlock;
1760 	/*
1761 	 * Make sure the vma is not shared, that the src and dst remap
1762 	 * ranges are both valid and fully within a single existing
1763 	 * vma.
1764 	 */
1765 	err = -EINVAL;
1766 	if (src_vma->vm_flags & VM_SHARED)
1767 		goto out_unlock;
1768 	if (src_start + len > src_vma->vm_end)
1769 		goto out_unlock;
1770 
1771 	if (dst_vma->vm_flags & VM_SHARED)
1772 		goto out_unlock;
1773 	if (dst_start + len > dst_vma->vm_end)
1774 		goto out_unlock;
1775 
1776 	err = validate_move_areas(ctx, src_vma, dst_vma);
1777 	if (err)
1778 		goto out_unlock;
1779 
1780 	for (src_addr = src_start, dst_addr = dst_start;
1781 	     src_addr < src_start + len;) {
1782 		spinlock_t *ptl;
1783 		pmd_t dst_pmdval;
1784 		unsigned long step_size;
1785 
1786 		/*
1787 		 * Below works because anonymous area would not have a
1788 		 * transparent huge PUD. If file-backed support is added,
1789 		 * that case would need to be handled here.
1790 		 */
1791 		src_pmd = mm_find_pmd(mm, src_addr);
1792 		if (unlikely(!src_pmd)) {
1793 			if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1794 				err = -ENOENT;
1795 				break;
1796 			}
1797 			src_pmd = mm_alloc_pmd(mm, src_addr);
1798 			if (unlikely(!src_pmd)) {
1799 				err = -ENOMEM;
1800 				break;
1801 			}
1802 		}
1803 		dst_pmd = mm_alloc_pmd(mm, dst_addr);
1804 		if (unlikely(!dst_pmd)) {
1805 			err = -ENOMEM;
1806 			break;
1807 		}
1808 
1809 		dst_pmdval = pmdp_get_lockless(dst_pmd);
1810 		/*
1811 		 * If the dst_pmd is mapped as THP don't override it and just
1812 		 * be strict. If dst_pmd changes into TPH after this check, the
1813 		 * move_pages_huge_pmd() will detect the change and retry
1814 		 * while move_pages_pte() will detect the change and fail.
1815 		 */
1816 		if (unlikely(pmd_trans_huge(dst_pmdval))) {
1817 			err = -EEXIST;
1818 			break;
1819 		}
1820 
1821 		ptl = pmd_trans_huge_lock(src_pmd, src_vma);
1822 		if (ptl) {
1823 			if (pmd_devmap(*src_pmd)) {
1824 				spin_unlock(ptl);
1825 				err = -ENOENT;
1826 				break;
1827 			}
1828 
1829 			/* Check if we can move the pmd without splitting it. */
1830 			if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) ||
1831 			    !pmd_none(dst_pmdval)) {
1832 				struct folio *folio = pmd_folio(*src_pmd);
1833 
1834 				if (!folio || (!is_huge_zero_folio(folio) &&
1835 					       !PageAnonExclusive(&folio->page))) {
1836 					spin_unlock(ptl);
1837 					err = -EBUSY;
1838 					break;
1839 				}
1840 
1841 				spin_unlock(ptl);
1842 				split_huge_pmd(src_vma, src_pmd, src_addr);
1843 				/* The folio will be split by move_pages_pte() */
1844 				continue;
1845 			}
1846 
1847 			err = move_pages_huge_pmd(mm, dst_pmd, src_pmd,
1848 						  dst_pmdval, dst_vma, src_vma,
1849 						  dst_addr, src_addr);
1850 			step_size = HPAGE_PMD_SIZE;
1851 		} else {
1852 			if (pmd_none(*src_pmd)) {
1853 				if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1854 					err = -ENOENT;
1855 					break;
1856 				}
1857 				if (unlikely(__pte_alloc(mm, src_pmd))) {
1858 					err = -ENOMEM;
1859 					break;
1860 				}
1861 			}
1862 
1863 			if (unlikely(pte_alloc(mm, dst_pmd))) {
1864 				err = -ENOMEM;
1865 				break;
1866 			}
1867 
1868 			err = move_pages_pte(mm, dst_pmd, src_pmd,
1869 					     dst_vma, src_vma,
1870 					     dst_addr, src_addr, mode);
1871 			step_size = PAGE_SIZE;
1872 		}
1873 
1874 		cond_resched();
1875 
1876 		if (fatal_signal_pending(current)) {
1877 			/* Do not override an error */
1878 			if (!err || err == -EAGAIN)
1879 				err = -EINTR;
1880 			break;
1881 		}
1882 
1883 		if (err) {
1884 			if (err == -EAGAIN)
1885 				continue;
1886 			break;
1887 		}
1888 
1889 		/* Proceed to the next page */
1890 		dst_addr += step_size;
1891 		src_addr += step_size;
1892 		moved += step_size;
1893 	}
1894 
1895 out_unlock:
1896 	up_read(&ctx->map_changing_lock);
1897 	uffd_move_unlock(dst_vma, src_vma);
1898 out:
1899 	VM_WARN_ON(moved < 0);
1900 	VM_WARN_ON(err > 0);
1901 	VM_WARN_ON(!moved && !err);
1902 	return moved ? moved : err;
1903 }
1904 
userfaultfd_set_vm_flags(struct vm_area_struct * vma,vm_flags_t flags)1905 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
1906 				     vm_flags_t flags)
1907 {
1908 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
1909 
1910 	vm_flags_reset(vma, flags);
1911 	/*
1912 	 * For shared mappings, we want to enable writenotify while
1913 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
1914 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
1915 	 */
1916 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
1917 		vma_set_page_prot(vma);
1918 }
1919 
userfaultfd_set_ctx(struct vm_area_struct * vma,struct userfaultfd_ctx * ctx,unsigned long flags)1920 static void userfaultfd_set_ctx(struct vm_area_struct *vma,
1921 				struct userfaultfd_ctx *ctx,
1922 				unsigned long flags)
1923 {
1924 	vma_start_write(vma);
1925 	vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx};
1926 	userfaultfd_set_vm_flags(vma,
1927 				 (vma->vm_flags & ~__VM_UFFD_FLAGS) | flags);
1928 }
1929 
userfaultfd_reset_ctx(struct vm_area_struct * vma)1930 void userfaultfd_reset_ctx(struct vm_area_struct *vma)
1931 {
1932 	userfaultfd_set_ctx(vma, NULL, 0);
1933 }
1934 
userfaultfd_clear_vma(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end)1935 struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi,
1936 					     struct vm_area_struct *prev,
1937 					     struct vm_area_struct *vma,
1938 					     unsigned long start,
1939 					     unsigned long end)
1940 {
1941 	struct vm_area_struct *ret;
1942 	bool give_up_on_oom = false;
1943 
1944 	/*
1945 	 * If we are modifying only and not splitting, just give up on the merge
1946 	 * if OOM prevents us from merging successfully.
1947 	 */
1948 	if (start == vma->vm_start && end == vma->vm_end)
1949 		give_up_on_oom = true;
1950 
1951 	/* Reset ptes for the whole vma range if wr-protected */
1952 	if (userfaultfd_wp(vma))
1953 		uffd_wp_range(vma, start, end - start, false);
1954 
1955 	ret = vma_modify_flags_uffd(vmi, prev, vma, start, end,
1956 				    vma->vm_flags & ~__VM_UFFD_FLAGS,
1957 				    NULL_VM_UFFD_CTX, give_up_on_oom);
1958 
1959 	/*
1960 	 * In the vma_merge() successful mprotect-like case 8:
1961 	 * the next vma was merged into the current one and
1962 	 * the current one has not been updated yet.
1963 	 */
1964 	if (!IS_ERR(ret))
1965 		userfaultfd_reset_ctx(ret);
1966 
1967 	return ret;
1968 }
1969 
1970 /* Assumes mmap write lock taken, and mm_struct pinned. */
userfaultfd_register_range(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long vm_flags,unsigned long start,unsigned long end,bool wp_async)1971 int userfaultfd_register_range(struct userfaultfd_ctx *ctx,
1972 			       struct vm_area_struct *vma,
1973 			       unsigned long vm_flags,
1974 			       unsigned long start, unsigned long end,
1975 			       bool wp_async)
1976 {
1977 	VMA_ITERATOR(vmi, ctx->mm, start);
1978 	struct vm_area_struct *prev = vma_prev(&vmi);
1979 	unsigned long vma_end;
1980 	unsigned long new_flags;
1981 
1982 	if (vma->vm_start < start)
1983 		prev = vma;
1984 
1985 	for_each_vma_range(vmi, vma, end) {
1986 		cond_resched();
1987 
1988 		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1989 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1990 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1991 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1992 
1993 		/*
1994 		 * Nothing to do: this vma is already registered into this
1995 		 * userfaultfd and with the right tracking mode too.
1996 		 */
1997 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1998 		    (vma->vm_flags & vm_flags) == vm_flags)
1999 			goto skip;
2000 
2001 		if (vma->vm_start > start)
2002 			start = vma->vm_start;
2003 		vma_end = min(end, vma->vm_end);
2004 
2005 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
2006 		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
2007 					    new_flags,
2008 					    (struct vm_userfaultfd_ctx){ctx},
2009 					    /* give_up_on_oom = */false);
2010 		if (IS_ERR(vma))
2011 			return PTR_ERR(vma);
2012 
2013 		/*
2014 		 * In the vma_merge() successful mprotect-like case 8:
2015 		 * the next vma was merged into the current one and
2016 		 * the current one has not been updated yet.
2017 		 */
2018 		userfaultfd_set_ctx(vma, ctx, vm_flags);
2019 
2020 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
2021 			hugetlb_unshare_all_pmds(vma);
2022 
2023 skip:
2024 		prev = vma;
2025 		start = vma->vm_end;
2026 	}
2027 
2028 	return 0;
2029 }
2030 
userfaultfd_release_new(struct userfaultfd_ctx * ctx)2031 void userfaultfd_release_new(struct userfaultfd_ctx *ctx)
2032 {
2033 	struct mm_struct *mm = ctx->mm;
2034 	struct vm_area_struct *vma;
2035 	VMA_ITERATOR(vmi, mm, 0);
2036 
2037 	/* the various vma->vm_userfaultfd_ctx still points to it */
2038 	mmap_write_lock(mm);
2039 	for_each_vma(vmi, vma) {
2040 		if (vma->vm_userfaultfd_ctx.ctx == ctx)
2041 			userfaultfd_reset_ctx(vma);
2042 	}
2043 	mmap_write_unlock(mm);
2044 }
2045 
userfaultfd_release_all(struct mm_struct * mm,struct userfaultfd_ctx * ctx)2046 void userfaultfd_release_all(struct mm_struct *mm,
2047 			     struct userfaultfd_ctx *ctx)
2048 {
2049 	struct vm_area_struct *vma, *prev;
2050 	VMA_ITERATOR(vmi, mm, 0);
2051 
2052 	if (!mmget_not_zero(mm))
2053 		return;
2054 
2055 	/*
2056 	 * Flush page faults out of all CPUs. NOTE: all page faults
2057 	 * must be retried without returning VM_FAULT_SIGBUS if
2058 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
2059 	 * changes while handle_userfault released the mmap_lock. So
2060 	 * it's critical that released is set to true (above), before
2061 	 * taking the mmap_lock for writing.
2062 	 */
2063 	mmap_write_lock(mm);
2064 	prev = NULL;
2065 	for_each_vma(vmi, vma) {
2066 		cond_resched();
2067 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
2068 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
2069 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
2070 			prev = vma;
2071 			continue;
2072 		}
2073 
2074 		vma = userfaultfd_clear_vma(&vmi, prev, vma,
2075 					    vma->vm_start, vma->vm_end);
2076 		prev = vma;
2077 	}
2078 	mmap_write_unlock(mm);
2079 	mmput(mm);
2080 }
2081