xref: /linux/mm/memfd.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 /*
2  * memfd_create system call and file sealing support
3  *
4  * Code was originally included in shmem.c, and broken out to facilitate
5  * use by hugetlbfs as well as tmpfs.
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/vfs.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/khugepaged.h>
17 #include <linux/syscalls.h>
18 #include <linux/hugetlb.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/memfd.h>
21 #include <linux/pid_namespace.h>
22 #include <uapi/linux/memfd.h>
23 #include "swap.h"
24 
25 /*
26  * We need a tag: a new tag would expand every xa_node by 8 bytes,
27  * so reuse a tag which we firmly believe is never set or cleared on tmpfs
28  * or hugetlbfs because they are memory only filesystems.
29  */
30 #define MEMFD_TAG_PINNED        PAGECACHE_TAG_TOWRITE
31 #define LAST_SCAN               4       /* about 150ms max */
32 
memfd_folio_has_extra_refs(struct folio * folio)33 static bool memfd_folio_has_extra_refs(struct folio *folio)
34 {
35 	return folio_ref_count(folio) - folio_mapcount(folio) !=
36 	       folio_nr_pages(folio);
37 }
38 
memfd_tag_pins(struct xa_state * xas)39 static void memfd_tag_pins(struct xa_state *xas)
40 {
41 	struct folio *folio;
42 	int latency = 0;
43 
44 	lru_add_drain();
45 
46 	xas_lock_irq(xas);
47 	xas_for_each(xas, folio, ULONG_MAX) {
48 		if (!xa_is_value(folio) && memfd_folio_has_extra_refs(folio))
49 			xas_set_mark(xas, MEMFD_TAG_PINNED);
50 
51 		if (++latency < XA_CHECK_SCHED)
52 			continue;
53 		latency = 0;
54 
55 		xas_pause(xas);
56 		xas_unlock_irq(xas);
57 		cond_resched();
58 		xas_lock_irq(xas);
59 	}
60 	xas_unlock_irq(xas);
61 }
62 
63 /*
64  * This is a helper function used by memfd_pin_user_pages() in GUP (gup.c).
65  * It is mainly called to allocate a folio in a memfd when the caller
66  * (memfd_pin_folios()) cannot find a folio in the page cache at a given
67  * index in the mapping.
68  */
memfd_alloc_folio(struct file * memfd,pgoff_t idx)69 struct folio *memfd_alloc_folio(struct file *memfd, pgoff_t idx)
70 {
71 #ifdef CONFIG_HUGETLB_PAGE
72 	struct folio *folio;
73 	gfp_t gfp_mask;
74 	int err;
75 
76 	if (is_file_hugepages(memfd)) {
77 		/*
78 		 * The folio would most likely be accessed by a DMA driver,
79 		 * therefore, we have zone memory constraints where we can
80 		 * alloc from. Also, the folio will be pinned for an indefinite
81 		 * amount of time, so it is not expected to be migrated away.
82 		 */
83 		struct hstate *h = hstate_file(memfd);
84 
85 		gfp_mask = htlb_alloc_mask(h);
86 		gfp_mask &= ~(__GFP_HIGHMEM | __GFP_MOVABLE);
87 		idx >>= huge_page_order(h);
88 
89 		folio = alloc_hugetlb_folio_reserve(h,
90 						    numa_node_id(),
91 						    NULL,
92 						    gfp_mask);
93 		if (folio) {
94 			err = hugetlb_add_to_page_cache(folio,
95 							memfd->f_mapping,
96 							idx);
97 			if (err) {
98 				folio_put(folio);
99 				return ERR_PTR(err);
100 			}
101 			folio_unlock(folio);
102 			return folio;
103 		}
104 		return ERR_PTR(-ENOMEM);
105 	}
106 #endif
107 	return shmem_read_folio(memfd->f_mapping, idx);
108 }
109 
110 /*
111  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
112  * via get_user_pages(), drivers might have some pending I/O without any active
113  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all folios
114  * and see whether it has an elevated ref-count. If so, we tag them and wait for
115  * them to be dropped.
116  * The caller must guarantee that no new user will acquire writable references
117  * to those folios to avoid races.
118  */
memfd_wait_for_pins(struct address_space * mapping)119 static int memfd_wait_for_pins(struct address_space *mapping)
120 {
121 	XA_STATE(xas, &mapping->i_pages, 0);
122 	struct folio *folio;
123 	int error, scan;
124 
125 	memfd_tag_pins(&xas);
126 
127 	error = 0;
128 	for (scan = 0; scan <= LAST_SCAN; scan++) {
129 		int latency = 0;
130 
131 		if (!xas_marked(&xas, MEMFD_TAG_PINNED))
132 			break;
133 
134 		if (!scan)
135 			lru_add_drain_all();
136 		else if (schedule_timeout_killable((HZ << scan) / 200))
137 			scan = LAST_SCAN;
138 
139 		xas_set(&xas, 0);
140 		xas_lock_irq(&xas);
141 		xas_for_each_marked(&xas, folio, ULONG_MAX, MEMFD_TAG_PINNED) {
142 			bool clear = true;
143 
144 			if (!xa_is_value(folio) &&
145 			    memfd_folio_has_extra_refs(folio)) {
146 				/*
147 				 * On the last scan, we clean up all those tags
148 				 * we inserted; but make a note that we still
149 				 * found folios pinned.
150 				 */
151 				if (scan == LAST_SCAN)
152 					error = -EBUSY;
153 				else
154 					clear = false;
155 			}
156 			if (clear)
157 				xas_clear_mark(&xas, MEMFD_TAG_PINNED);
158 
159 			if (++latency < XA_CHECK_SCHED)
160 				continue;
161 			latency = 0;
162 
163 			xas_pause(&xas);
164 			xas_unlock_irq(&xas);
165 			cond_resched();
166 			xas_lock_irq(&xas);
167 		}
168 		xas_unlock_irq(&xas);
169 	}
170 
171 	return error;
172 }
173 
memfd_file_seals_ptr(struct file * file)174 static unsigned int *memfd_file_seals_ptr(struct file *file)
175 {
176 	if (shmem_file(file))
177 		return &SHMEM_I(file_inode(file))->seals;
178 
179 #ifdef CONFIG_HUGETLBFS
180 	if (is_file_hugepages(file))
181 		return &HUGETLBFS_I(file_inode(file))->seals;
182 #endif
183 
184 	return NULL;
185 }
186 
187 #define F_ALL_SEALS (F_SEAL_SEAL | \
188 		     F_SEAL_EXEC | \
189 		     F_SEAL_SHRINK | \
190 		     F_SEAL_GROW | \
191 		     F_SEAL_WRITE | \
192 		     F_SEAL_FUTURE_WRITE)
193 
memfd_add_seals(struct file * file,unsigned int seals)194 static int memfd_add_seals(struct file *file, unsigned int seals)
195 {
196 	struct inode *inode = file_inode(file);
197 	unsigned int *file_seals;
198 	int error;
199 
200 	/*
201 	 * SEALING
202 	 * Sealing allows multiple parties to share a tmpfs or hugetlbfs file
203 	 * but restrict access to a specific subset of file operations. Seals
204 	 * can only be added, but never removed. This way, mutually untrusted
205 	 * parties can share common memory regions with a well-defined policy.
206 	 * A malicious peer can thus never perform unwanted operations on a
207 	 * shared object.
208 	 *
209 	 * Seals are only supported on special tmpfs or hugetlbfs files and
210 	 * always affect the whole underlying inode. Once a seal is set, it
211 	 * may prevent some kinds of access to the file. Currently, the
212 	 * following seals are defined:
213 	 *   SEAL_SEAL: Prevent further seals from being set on this file
214 	 *   SEAL_SHRINK: Prevent the file from shrinking
215 	 *   SEAL_GROW: Prevent the file from growing
216 	 *   SEAL_WRITE: Prevent write access to the file
217 	 *   SEAL_EXEC: Prevent modification of the exec bits in the file mode
218 	 *
219 	 * As we don't require any trust relationship between two parties, we
220 	 * must prevent seals from being removed. Therefore, sealing a file
221 	 * only adds a given set of seals to the file, it never touches
222 	 * existing seals. Furthermore, the "setting seals"-operation can be
223 	 * sealed itself, which basically prevents any further seal from being
224 	 * added.
225 	 *
226 	 * Semantics of sealing are only defined on volatile files. Only
227 	 * anonymous tmpfs and hugetlbfs files support sealing. More
228 	 * importantly, seals are never written to disk. Therefore, there's
229 	 * no plan to support it on other file types.
230 	 */
231 
232 	if (!(file->f_mode & FMODE_WRITE))
233 		return -EPERM;
234 	if (seals & ~(unsigned int)F_ALL_SEALS)
235 		return -EINVAL;
236 
237 	inode_lock(inode);
238 
239 	file_seals = memfd_file_seals_ptr(file);
240 	if (!file_seals) {
241 		error = -EINVAL;
242 		goto unlock;
243 	}
244 
245 	if (*file_seals & F_SEAL_SEAL) {
246 		error = -EPERM;
247 		goto unlock;
248 	}
249 
250 	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
251 		error = mapping_deny_writable(file->f_mapping);
252 		if (error)
253 			goto unlock;
254 
255 		error = memfd_wait_for_pins(file->f_mapping);
256 		if (error) {
257 			mapping_allow_writable(file->f_mapping);
258 			goto unlock;
259 		}
260 	}
261 
262 	/*
263 	 * SEAL_EXEC implies SEAL_WRITE, making W^X from the start.
264 	 */
265 	if (seals & F_SEAL_EXEC && inode->i_mode & 0111)
266 		seals |= F_SEAL_SHRINK|F_SEAL_GROW|F_SEAL_WRITE|F_SEAL_FUTURE_WRITE;
267 
268 	*file_seals |= seals;
269 	error = 0;
270 
271 unlock:
272 	inode_unlock(inode);
273 	return error;
274 }
275 
memfd_get_seals(struct file * file)276 static int memfd_get_seals(struct file *file)
277 {
278 	unsigned int *seals = memfd_file_seals_ptr(file);
279 
280 	return seals ? *seals : -EINVAL;
281 }
282 
memfd_fcntl(struct file * file,unsigned int cmd,unsigned int arg)283 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
284 {
285 	long error;
286 
287 	switch (cmd) {
288 	case F_ADD_SEALS:
289 		error = memfd_add_seals(file, arg);
290 		break;
291 	case F_GET_SEALS:
292 		error = memfd_get_seals(file);
293 		break;
294 	default:
295 		error = -EINVAL;
296 		break;
297 	}
298 
299 	return error;
300 }
301 
302 #define MFD_NAME_PREFIX "memfd:"
303 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
304 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
305 
306 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB | MFD_NOEXEC_SEAL | MFD_EXEC)
307 
check_sysctl_memfd_noexec(unsigned int * flags)308 static int check_sysctl_memfd_noexec(unsigned int *flags)
309 {
310 #ifdef CONFIG_SYSCTL
311 	struct pid_namespace *ns = task_active_pid_ns(current);
312 	int sysctl = pidns_memfd_noexec_scope(ns);
313 
314 	if (!(*flags & (MFD_EXEC | MFD_NOEXEC_SEAL))) {
315 		if (sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_SEAL)
316 			*flags |= MFD_NOEXEC_SEAL;
317 		else
318 			*flags |= MFD_EXEC;
319 	}
320 
321 	if (!(*flags & MFD_NOEXEC_SEAL) && sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED) {
322 		pr_err_ratelimited(
323 			"%s[%d]: memfd_create() requires MFD_NOEXEC_SEAL with vm.memfd_noexec=%d\n",
324 			current->comm, task_pid_nr(current), sysctl);
325 		return -EACCES;
326 	}
327 #endif
328 	return 0;
329 }
330 
is_write_sealed(unsigned int seals)331 static inline bool is_write_sealed(unsigned int seals)
332 {
333 	return seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE);
334 }
335 
check_write_seal(unsigned long * vm_flags_ptr)336 static int check_write_seal(unsigned long *vm_flags_ptr)
337 {
338 	unsigned long vm_flags = *vm_flags_ptr;
339 	unsigned long mask = vm_flags & (VM_SHARED | VM_WRITE);
340 
341 	/* If a private mapping then writability is irrelevant. */
342 	if (!(mask & VM_SHARED))
343 		return 0;
344 
345 	/*
346 	 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
347 	 * write seals are active.
348 	 */
349 	if (mask & VM_WRITE)
350 		return -EPERM;
351 
352 	/*
353 	 * This is a read-only mapping, disallow mprotect() from making a
354 	 * write-sealed mapping writable in future.
355 	 */
356 	*vm_flags_ptr &= ~VM_MAYWRITE;
357 
358 	return 0;
359 }
360 
memfd_check_seals_mmap(struct file * file,unsigned long * vm_flags_ptr)361 int memfd_check_seals_mmap(struct file *file, unsigned long *vm_flags_ptr)
362 {
363 	int err = 0;
364 	unsigned int *seals_ptr = memfd_file_seals_ptr(file);
365 	unsigned int seals = seals_ptr ? *seals_ptr : 0;
366 
367 	if (is_write_sealed(seals))
368 		err = check_write_seal(vm_flags_ptr);
369 
370 	return err;
371 }
372 
sanitize_flags(unsigned int * flags_ptr)373 static int sanitize_flags(unsigned int *flags_ptr)
374 {
375 	unsigned int flags = *flags_ptr;
376 
377 	if (!(flags & MFD_HUGETLB)) {
378 		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
379 			return -EINVAL;
380 	} else {
381 		/* Allow huge page size encoding in flags. */
382 		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
383 				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
384 			return -EINVAL;
385 	}
386 
387 	/* Invalid if both EXEC and NOEXEC_SEAL are set.*/
388 	if ((flags & MFD_EXEC) && (flags & MFD_NOEXEC_SEAL))
389 		return -EINVAL;
390 
391 	return check_sysctl_memfd_noexec(flags_ptr);
392 }
393 
alloc_name(const char __user * uname)394 static char *alloc_name(const char __user *uname)
395 {
396 	int error;
397 	char *name;
398 	long len;
399 
400 	name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
401 	if (!name)
402 		return ERR_PTR(-ENOMEM);
403 
404 	strcpy(name, MFD_NAME_PREFIX);
405 	/* returned length does not include terminating zero */
406 	len = strncpy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, MFD_NAME_MAX_LEN + 1);
407 	if (len < 0) {
408 		error = -EFAULT;
409 		goto err_name;
410 	} else if (len > MFD_NAME_MAX_LEN) {
411 		error = -EINVAL;
412 		goto err_name;
413 	}
414 
415 	return name;
416 
417 err_name:
418 	kfree(name);
419 	return ERR_PTR(error);
420 }
421 
alloc_file(const char * name,unsigned int flags)422 static struct file *alloc_file(const char *name, unsigned int flags)
423 {
424 	unsigned int *file_seals;
425 	struct file *file;
426 
427 	if (flags & MFD_HUGETLB) {
428 		file = hugetlb_file_setup(name, 0, VM_NORESERVE,
429 					HUGETLB_ANONHUGE_INODE,
430 					(flags >> MFD_HUGE_SHIFT) &
431 					MFD_HUGE_MASK);
432 	} else {
433 		file = shmem_file_setup(name, 0, VM_NORESERVE);
434 	}
435 	if (IS_ERR(file))
436 		return file;
437 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
438 	file->f_flags |= O_LARGEFILE;
439 
440 	if (flags & MFD_NOEXEC_SEAL) {
441 		struct inode *inode = file_inode(file);
442 
443 		inode->i_mode &= ~0111;
444 		file_seals = memfd_file_seals_ptr(file);
445 		if (file_seals) {
446 			*file_seals &= ~F_SEAL_SEAL;
447 			*file_seals |= F_SEAL_EXEC;
448 		}
449 	} else if (flags & MFD_ALLOW_SEALING) {
450 		/* MFD_EXEC and MFD_ALLOW_SEALING are set */
451 		file_seals = memfd_file_seals_ptr(file);
452 		if (file_seals)
453 			*file_seals &= ~F_SEAL_SEAL;
454 	}
455 
456 	return file;
457 }
458 
SYSCALL_DEFINE2(memfd_create,const char __user *,uname,unsigned int,flags)459 SYSCALL_DEFINE2(memfd_create,
460 		const char __user *, uname,
461 		unsigned int, flags)
462 {
463 	struct file *file;
464 	int fd, error;
465 	char *name;
466 
467 	error = sanitize_flags(&flags);
468 	if (error < 0)
469 		return error;
470 
471 	name = alloc_name(uname);
472 	if (IS_ERR(name))
473 		return PTR_ERR(name);
474 
475 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
476 	if (fd < 0) {
477 		error = fd;
478 		goto err_name;
479 	}
480 
481 	file = alloc_file(name, flags);
482 	if (IS_ERR(file)) {
483 		error = PTR_ERR(file);
484 		goto err_fd;
485 	}
486 
487 	fd_install(fd, file);
488 	kfree(name);
489 	return fd;
490 
491 err_fd:
492 	put_unused_fd(fd);
493 err_name:
494 	kfree(name);
495 	return error;
496 }
497