1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/mmu_context.h>
23 #include <linux/string.h>
24 #include <linux/uio.h>
25 #include <linux/ksm.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagewalk.h>
31 #include <linux/swap.h>
32 #include <linux/leafops.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mmu_notifier.h>
35
36 #include <asm/tlb.h>
37
38 #include "internal.h"
39 #include "swap.h"
40
41 #define __MADV_SET_ANON_VMA_NAME (-1)
42
43 /*
44 * Maximum number of attempts we make to install guard pages before we give up
45 * and return -ERESTARTNOINTR to have userspace try again.
46 */
47 #define MAX_MADVISE_GUARD_RETRIES 3
48
49 struct madvise_walk_private {
50 struct mmu_gather *tlb;
51 bool pageout;
52 };
53
54 enum madvise_lock_mode {
55 MADVISE_NO_LOCK,
56 MADVISE_MMAP_READ_LOCK,
57 MADVISE_MMAP_WRITE_LOCK,
58 MADVISE_VMA_READ_LOCK,
59 };
60
61 struct madvise_behavior_range {
62 unsigned long start;
63 unsigned long end;
64 };
65
66 struct madvise_behavior {
67 struct mm_struct *mm;
68 int behavior;
69 struct mmu_gather *tlb;
70 enum madvise_lock_mode lock_mode;
71 struct anon_vma_name *anon_name;
72
73 /*
74 * The range over which the behaviour is currently being applied. If
75 * traversing multiple VMAs, this is updated for each.
76 */
77 struct madvise_behavior_range range;
78 /* The VMA and VMA preceding it (if applicable) currently targeted. */
79 struct vm_area_struct *prev;
80 struct vm_area_struct *vma;
81 bool lock_dropped;
82 };
83
84 #ifdef CONFIG_ANON_VMA_NAME
85 static int madvise_walk_vmas(struct madvise_behavior *madv_behavior);
86
anon_vma_name_alloc(const char * name)87 struct anon_vma_name *anon_vma_name_alloc(const char *name)
88 {
89 struct anon_vma_name *anon_name;
90 size_t count;
91
92 /* Add 1 for NUL terminator at the end of the anon_name->name */
93 count = strlen(name) + 1;
94 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
95 if (anon_name) {
96 kref_init(&anon_name->kref);
97 memcpy(anon_name->name, name, count);
98 }
99
100 return anon_name;
101 }
102
anon_vma_name_free(struct kref * kref)103 void anon_vma_name_free(struct kref *kref)
104 {
105 struct anon_vma_name *anon_name =
106 container_of(kref, struct anon_vma_name, kref);
107 kfree(anon_name);
108 }
109
anon_vma_name(struct vm_area_struct * vma)110 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
111 {
112 if (!rwsem_is_locked(&vma->vm_mm->mmap_lock))
113 vma_assert_locked(vma);
114
115 return vma->anon_name;
116 }
117
118 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)119 static int replace_anon_vma_name(struct vm_area_struct *vma,
120 struct anon_vma_name *anon_name)
121 {
122 struct anon_vma_name *orig_name = anon_vma_name(vma);
123
124 if (!anon_name) {
125 vma->anon_name = NULL;
126 anon_vma_name_put(orig_name);
127 return 0;
128 }
129
130 if (anon_vma_name_eq(orig_name, anon_name))
131 return 0;
132
133 vma->anon_name = anon_vma_name_reuse(anon_name);
134 anon_vma_name_put(orig_name);
135
136 return 0;
137 }
138 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)139 static int replace_anon_vma_name(struct vm_area_struct *vma,
140 struct anon_vma_name *anon_name)
141 {
142 if (anon_name)
143 return -EINVAL;
144
145 return 0;
146 }
147 #endif /* CONFIG_ANON_VMA_NAME */
148 /*
149 * Update the vm_flags or anon_name on region of a vma, splitting it or merging
150 * it as necessary. Must be called with mmap_lock held for writing.
151 */
madvise_update_vma(vm_flags_t new_flags,struct madvise_behavior * madv_behavior)152 static int madvise_update_vma(vm_flags_t new_flags,
153 struct madvise_behavior *madv_behavior)
154 {
155 struct vm_area_struct *vma = madv_behavior->vma;
156 struct madvise_behavior_range *range = &madv_behavior->range;
157 struct anon_vma_name *anon_name = madv_behavior->anon_name;
158 bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME;
159 VMA_ITERATOR(vmi, madv_behavior->mm, range->start);
160
161 if (new_flags == vma->vm_flags && (!set_new_anon_name ||
162 anon_vma_name_eq(anon_vma_name(vma), anon_name)))
163 return 0;
164
165 if (set_new_anon_name)
166 vma = vma_modify_name(&vmi, madv_behavior->prev, vma,
167 range->start, range->end, anon_name);
168 else
169 vma = vma_modify_flags(&vmi, madv_behavior->prev, vma,
170 range->start, range->end, &new_flags);
171
172 if (IS_ERR(vma))
173 return PTR_ERR(vma);
174
175 madv_behavior->vma = vma;
176
177 /* vm_flags is protected by the mmap_lock held in write mode. */
178 vma_start_write(vma);
179 vm_flags_reset(vma, new_flags);
180 if (set_new_anon_name)
181 return replace_anon_vma_name(vma, anon_name);
182
183 return 0;
184 }
185
186 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)187 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
188 unsigned long end, struct mm_walk *walk)
189 {
190 struct vm_area_struct *vma = walk->private;
191 struct swap_iocb *splug = NULL;
192 pte_t *ptep = NULL;
193 spinlock_t *ptl;
194 unsigned long addr;
195
196 for (addr = start; addr < end; addr += PAGE_SIZE) {
197 pte_t pte;
198 softleaf_t entry;
199 struct folio *folio;
200
201 if (!ptep++) {
202 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
203 if (!ptep)
204 break;
205 }
206
207 pte = ptep_get(ptep);
208 entry = softleaf_from_pte(pte);
209 if (unlikely(!softleaf_is_swap(entry)))
210 continue;
211
212 pte_unmap_unlock(ptep, ptl);
213 ptep = NULL;
214
215 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
216 vma, addr, &splug);
217 if (folio)
218 folio_put(folio);
219 }
220
221 if (ptep)
222 pte_unmap_unlock(ptep, ptl);
223 swap_read_unplug(splug);
224 cond_resched();
225
226 return 0;
227 }
228
229 static const struct mm_walk_ops swapin_walk_ops = {
230 .pmd_entry = swapin_walk_pmd_entry,
231 .walk_lock = PGWALK_RDLOCK,
232 };
233
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)234 static void shmem_swapin_range(struct vm_area_struct *vma,
235 unsigned long start, unsigned long end,
236 struct address_space *mapping)
237 {
238 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
239 pgoff_t end_index = linear_page_index(vma, end) - 1;
240 struct folio *folio;
241 struct swap_iocb *splug = NULL;
242
243 rcu_read_lock();
244 xas_for_each(&xas, folio, end_index) {
245 unsigned long addr;
246 swp_entry_t entry;
247
248 if (!xa_is_value(folio))
249 continue;
250 entry = radix_to_swp_entry(folio);
251 /* There might be swapin error entries in shmem mapping. */
252 if (!softleaf_is_swap(entry))
253 continue;
254
255 addr = vma->vm_start +
256 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
257 xas_pause(&xas);
258 rcu_read_unlock();
259
260 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
261 vma, addr, &splug);
262 if (folio)
263 folio_put(folio);
264
265 rcu_read_lock();
266 }
267 rcu_read_unlock();
268 swap_read_unplug(splug);
269 }
270 #endif /* CONFIG_SWAP */
271
mark_mmap_lock_dropped(struct madvise_behavior * madv_behavior)272 static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior)
273 {
274 VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK);
275 madv_behavior->lock_dropped = true;
276 }
277
278 /*
279 * Schedule all required I/O operations. Do not wait for completion.
280 */
madvise_willneed(struct madvise_behavior * madv_behavior)281 static long madvise_willneed(struct madvise_behavior *madv_behavior)
282 {
283 struct vm_area_struct *vma = madv_behavior->vma;
284 struct mm_struct *mm = madv_behavior->mm;
285 struct file *file = vma->vm_file;
286 unsigned long start = madv_behavior->range.start;
287 unsigned long end = madv_behavior->range.end;
288 loff_t offset;
289
290 #ifdef CONFIG_SWAP
291 if (!file) {
292 walk_page_range_vma(vma, start, end, &swapin_walk_ops, vma);
293 lru_add_drain(); /* Push any new pages onto the LRU now */
294 return 0;
295 }
296
297 if (shmem_mapping(file->f_mapping)) {
298 shmem_swapin_range(vma, start, end, file->f_mapping);
299 lru_add_drain(); /* Push any new pages onto the LRU now */
300 return 0;
301 }
302 #else
303 if (!file)
304 return -EBADF;
305 #endif
306
307 if (IS_DAX(file_inode(file))) {
308 /* no bad return value, but ignore advice */
309 return 0;
310 }
311
312 /*
313 * Filesystem's fadvise may need to take various locks. We need to
314 * explicitly grab a reference because the vma (and hence the
315 * vma's reference to the file) can go away as soon as we drop
316 * mmap_lock.
317 */
318 mark_mmap_lock_dropped(madv_behavior);
319 get_file(file);
320 offset = (loff_t)(start - vma->vm_start)
321 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
322 mmap_read_unlock(mm);
323 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
324 fput(file);
325 mmap_read_lock(mm);
326 return 0;
327 }
328
can_do_file_pageout(struct vm_area_struct * vma)329 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
330 {
331 if (!vma->vm_file)
332 return false;
333 /*
334 * paging out pagecache only for non-anonymous mappings that correspond
335 * to the files the calling process could (if tried) open for writing;
336 * otherwise we'd be including shared non-exclusive mappings, which
337 * opens a side channel.
338 */
339 return inode_owner_or_capable(&nop_mnt_idmap,
340 file_inode(vma->vm_file)) ||
341 file_permission(vma->vm_file, MAY_WRITE) == 0;
342 }
343
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t * ptentp)344 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
345 struct folio *folio, pte_t *ptep,
346 pte_t *ptentp)
347 {
348 int max_nr = (end - addr) / PAGE_SIZE;
349
350 return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr,
351 FPB_MERGE_YOUNG_DIRTY);
352 }
353
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)354 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
355 unsigned long addr, unsigned long end,
356 struct mm_walk *walk)
357 {
358 struct madvise_walk_private *private = walk->private;
359 struct mmu_gather *tlb = private->tlb;
360 bool pageout = private->pageout;
361 struct mm_struct *mm = tlb->mm;
362 struct vm_area_struct *vma = walk->vma;
363 pte_t *start_pte, *pte, ptent;
364 spinlock_t *ptl;
365 struct folio *folio = NULL;
366 LIST_HEAD(folio_list);
367 bool pageout_anon_only_filter;
368 unsigned int batch_count = 0;
369 int nr;
370
371 if (fatal_signal_pending(current))
372 return -EINTR;
373
374 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
375 !can_do_file_pageout(vma);
376
377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
378 if (pmd_trans_huge(*pmd)) {
379 pmd_t orig_pmd;
380 unsigned long next = pmd_addr_end(addr, end);
381
382 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
383 ptl = pmd_trans_huge_lock(pmd, vma);
384 if (!ptl)
385 return 0;
386
387 orig_pmd = *pmd;
388 if (is_huge_zero_pmd(orig_pmd))
389 goto huge_unlock;
390
391 if (unlikely(!pmd_present(orig_pmd))) {
392 VM_BUG_ON(thp_migration_supported() &&
393 !pmd_is_migration_entry(orig_pmd));
394 goto huge_unlock;
395 }
396
397 folio = pmd_folio(orig_pmd);
398
399 /* Do not interfere with other mappings of this folio */
400 if (folio_maybe_mapped_shared(folio))
401 goto huge_unlock;
402
403 if (pageout_anon_only_filter && !folio_test_anon(folio))
404 goto huge_unlock;
405
406 if (next - addr != HPAGE_PMD_SIZE) {
407 int err;
408
409 folio_get(folio);
410 spin_unlock(ptl);
411 folio_lock(folio);
412 err = split_folio(folio);
413 folio_unlock(folio);
414 folio_put(folio);
415 if (!err)
416 goto regular_folio;
417 return 0;
418 }
419
420 if (!pageout && pmd_young(orig_pmd)) {
421 pmdp_invalidate(vma, addr, pmd);
422 orig_pmd = pmd_mkold(orig_pmd);
423
424 set_pmd_at(mm, addr, pmd, orig_pmd);
425 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
426 }
427
428 folio_clear_referenced(folio);
429 folio_test_clear_young(folio);
430 if (folio_test_active(folio))
431 folio_set_workingset(folio);
432 if (pageout) {
433 if (folio_isolate_lru(folio)) {
434 if (folio_test_unevictable(folio))
435 folio_putback_lru(folio);
436 else
437 list_add(&folio->lru, &folio_list);
438 }
439 } else
440 folio_deactivate(folio);
441 huge_unlock:
442 spin_unlock(ptl);
443 if (pageout)
444 reclaim_pages(&folio_list);
445 return 0;
446 }
447
448 regular_folio:
449 #endif
450 tlb_change_page_size(tlb, PAGE_SIZE);
451 restart:
452 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
453 if (!start_pte)
454 return 0;
455 flush_tlb_batched_pending(mm);
456 arch_enter_lazy_mmu_mode();
457 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
458 nr = 1;
459 ptent = ptep_get(pte);
460
461 if (++batch_count == SWAP_CLUSTER_MAX) {
462 batch_count = 0;
463 if (need_resched()) {
464 arch_leave_lazy_mmu_mode();
465 pte_unmap_unlock(start_pte, ptl);
466 cond_resched();
467 goto restart;
468 }
469 }
470
471 if (pte_none(ptent))
472 continue;
473
474 if (!pte_present(ptent))
475 continue;
476
477 folio = vm_normal_folio(vma, addr, ptent);
478 if (!folio || folio_is_zone_device(folio))
479 continue;
480
481 /*
482 * If we encounter a large folio, only split it if it is not
483 * fully mapped within the range we are operating on. Otherwise
484 * leave it as is so that it can be swapped out whole. If we
485 * fail to split a folio, leave it in place and advance to the
486 * next pte in the range.
487 */
488 if (folio_test_large(folio)) {
489 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent);
490 if (nr < folio_nr_pages(folio)) {
491 int err;
492
493 if (folio_maybe_mapped_shared(folio))
494 continue;
495 if (pageout_anon_only_filter && !folio_test_anon(folio))
496 continue;
497 if (!folio_trylock(folio))
498 continue;
499 folio_get(folio);
500 arch_leave_lazy_mmu_mode();
501 pte_unmap_unlock(start_pte, ptl);
502 start_pte = NULL;
503 err = split_folio(folio);
504 folio_unlock(folio);
505 folio_put(folio);
506 start_pte = pte =
507 pte_offset_map_lock(mm, pmd, addr, &ptl);
508 if (!start_pte)
509 break;
510 flush_tlb_batched_pending(mm);
511 arch_enter_lazy_mmu_mode();
512 if (!err)
513 nr = 0;
514 continue;
515 }
516 }
517
518 /*
519 * Do not interfere with other mappings of this folio and
520 * non-LRU folio. If we have a large folio at this point, we
521 * know it is fully mapped so if its mapcount is the same as its
522 * number of pages, it must be exclusive.
523 */
524 if (!folio_test_lru(folio) ||
525 folio_mapcount(folio) != folio_nr_pages(folio))
526 continue;
527
528 if (pageout_anon_only_filter && !folio_test_anon(folio))
529 continue;
530
531 if (!pageout && pte_young(ptent)) {
532 clear_young_dirty_ptes(vma, addr, pte, nr,
533 CYDP_CLEAR_YOUNG);
534 tlb_remove_tlb_entries(tlb, pte, nr, addr);
535 }
536
537 /*
538 * We are deactivating a folio for accelerating reclaiming.
539 * VM couldn't reclaim the folio unless we clear PG_young.
540 * As a side effect, it makes confuse idle-page tracking
541 * because they will miss recent referenced history.
542 */
543 folio_clear_referenced(folio);
544 folio_test_clear_young(folio);
545 if (folio_test_active(folio))
546 folio_set_workingset(folio);
547 if (pageout) {
548 if (folio_isolate_lru(folio)) {
549 if (folio_test_unevictable(folio))
550 folio_putback_lru(folio);
551 else
552 list_add(&folio->lru, &folio_list);
553 }
554 } else
555 folio_deactivate(folio);
556 }
557
558 if (start_pte) {
559 arch_leave_lazy_mmu_mode();
560 pte_unmap_unlock(start_pte, ptl);
561 }
562 if (pageout)
563 reclaim_pages(&folio_list);
564 cond_resched();
565
566 return 0;
567 }
568
569 static const struct mm_walk_ops cold_walk_ops = {
570 .pmd_entry = madvise_cold_or_pageout_pte_range,
571 .walk_lock = PGWALK_RDLOCK,
572 };
573
madvise_cold_page_range(struct mmu_gather * tlb,struct madvise_behavior * madv_behavior)574 static void madvise_cold_page_range(struct mmu_gather *tlb,
575 struct madvise_behavior *madv_behavior)
576
577 {
578 struct vm_area_struct *vma = madv_behavior->vma;
579 struct madvise_behavior_range *range = &madv_behavior->range;
580 struct madvise_walk_private walk_private = {
581 .pageout = false,
582 .tlb = tlb,
583 };
584
585 tlb_start_vma(tlb, vma);
586 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops,
587 &walk_private);
588 tlb_end_vma(tlb, vma);
589 }
590
can_madv_lru_vma(struct vm_area_struct * vma)591 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
592 {
593 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
594 }
595
madvise_cold(struct madvise_behavior * madv_behavior)596 static long madvise_cold(struct madvise_behavior *madv_behavior)
597 {
598 struct vm_area_struct *vma = madv_behavior->vma;
599 struct mmu_gather tlb;
600
601 if (!can_madv_lru_vma(vma))
602 return -EINVAL;
603
604 lru_add_drain();
605 tlb_gather_mmu(&tlb, madv_behavior->mm);
606 madvise_cold_page_range(&tlb, madv_behavior);
607 tlb_finish_mmu(&tlb);
608
609 return 0;
610 }
611
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,struct madvise_behavior_range * range)612 static void madvise_pageout_page_range(struct mmu_gather *tlb,
613 struct vm_area_struct *vma,
614 struct madvise_behavior_range *range)
615 {
616 struct madvise_walk_private walk_private = {
617 .pageout = true,
618 .tlb = tlb,
619 };
620
621 tlb_start_vma(tlb, vma);
622 walk_page_range_vma(vma, range->start, range->end, &cold_walk_ops,
623 &walk_private);
624 tlb_end_vma(tlb, vma);
625 }
626
madvise_pageout(struct madvise_behavior * madv_behavior)627 static long madvise_pageout(struct madvise_behavior *madv_behavior)
628 {
629 struct mmu_gather tlb;
630 struct vm_area_struct *vma = madv_behavior->vma;
631
632 if (!can_madv_lru_vma(vma))
633 return -EINVAL;
634
635 /*
636 * If the VMA belongs to a private file mapping, there can be private
637 * dirty pages which can be paged out if even this process is neither
638 * owner nor write capable of the file. We allow private file mappings
639 * further to pageout dirty anon pages.
640 */
641 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
642 (vma->vm_flags & VM_MAYSHARE)))
643 return 0;
644
645 lru_add_drain();
646 tlb_gather_mmu(&tlb, madv_behavior->mm);
647 madvise_pageout_page_range(&tlb, vma, &madv_behavior->range);
648 tlb_finish_mmu(&tlb);
649
650 return 0;
651 }
652
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)653 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
654 unsigned long end, struct mm_walk *walk)
655
656 {
657 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
658 struct mmu_gather *tlb = walk->private;
659 struct mm_struct *mm = tlb->mm;
660 struct vm_area_struct *vma = walk->vma;
661 spinlock_t *ptl;
662 pte_t *start_pte, *pte, ptent;
663 struct folio *folio;
664 int nr_swap = 0;
665 unsigned long next;
666 int nr, max_nr;
667
668 next = pmd_addr_end(addr, end);
669 if (pmd_trans_huge(*pmd))
670 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
671 return 0;
672
673 tlb_change_page_size(tlb, PAGE_SIZE);
674 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 if (!start_pte)
676 return 0;
677 flush_tlb_batched_pending(mm);
678 arch_enter_lazy_mmu_mode();
679 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
680 nr = 1;
681 ptent = ptep_get(pte);
682
683 if (pte_none(ptent))
684 continue;
685 /*
686 * If the pte has swp_entry, just clear page table to
687 * prevent swap-in which is more expensive rather than
688 * (page allocation + zeroing).
689 */
690 if (!pte_present(ptent)) {
691 softleaf_t entry = softleaf_from_pte(ptent);
692
693 if (softleaf_is_swap(entry)) {
694 max_nr = (end - addr) / PAGE_SIZE;
695 nr = swap_pte_batch(pte, max_nr, ptent);
696 nr_swap -= nr;
697 free_swap_and_cache_nr(entry, nr);
698 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
699 } else if (softleaf_is_hwpoison(entry) ||
700 softleaf_is_poison_marker(entry)) {
701 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
702 }
703 continue;
704 }
705
706 folio = vm_normal_folio(vma, addr, ptent);
707 if (!folio || folio_is_zone_device(folio))
708 continue;
709
710 /*
711 * If we encounter a large folio, only split it if it is not
712 * fully mapped within the range we are operating on. Otherwise
713 * leave it as is so that it can be marked as lazyfree. If we
714 * fail to split a folio, leave it in place and advance to the
715 * next pte in the range.
716 */
717 if (folio_test_large(folio)) {
718 nr = madvise_folio_pte_batch(addr, end, folio, pte, &ptent);
719 if (nr < folio_nr_pages(folio)) {
720 int err;
721
722 if (folio_maybe_mapped_shared(folio))
723 continue;
724 if (!folio_trylock(folio))
725 continue;
726 folio_get(folio);
727 arch_leave_lazy_mmu_mode();
728 pte_unmap_unlock(start_pte, ptl);
729 start_pte = NULL;
730 err = split_folio(folio);
731 folio_unlock(folio);
732 folio_put(folio);
733 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
734 start_pte = pte;
735 if (!start_pte)
736 break;
737 flush_tlb_batched_pending(mm);
738 arch_enter_lazy_mmu_mode();
739 if (!err)
740 nr = 0;
741 continue;
742 }
743 }
744
745 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
746 if (!folio_trylock(folio))
747 continue;
748 /*
749 * If we have a large folio at this point, we know it is
750 * fully mapped so if its mapcount is the same as its
751 * number of pages, it must be exclusive.
752 */
753 if (folio_mapcount(folio) != folio_nr_pages(folio)) {
754 folio_unlock(folio);
755 continue;
756 }
757
758 if (folio_test_swapcache(folio) &&
759 !folio_free_swap(folio)) {
760 folio_unlock(folio);
761 continue;
762 }
763
764 folio_clear_dirty(folio);
765 folio_unlock(folio);
766 }
767
768 if (pte_young(ptent) || pte_dirty(ptent)) {
769 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
770 tlb_remove_tlb_entries(tlb, pte, nr, addr);
771 }
772 folio_mark_lazyfree(folio);
773 }
774
775 if (nr_swap)
776 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
777 if (start_pte) {
778 arch_leave_lazy_mmu_mode();
779 pte_unmap_unlock(start_pte, ptl);
780 }
781 cond_resched();
782
783 return 0;
784 }
785
get_walk_lock(enum madvise_lock_mode mode)786 static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode)
787 {
788 switch (mode) {
789 case MADVISE_VMA_READ_LOCK:
790 return PGWALK_VMA_RDLOCK_VERIFY;
791 case MADVISE_MMAP_READ_LOCK:
792 return PGWALK_RDLOCK;
793 default:
794 /* Other modes don't require fixing up the walk_lock */
795 WARN_ON_ONCE(1);
796 return PGWALK_RDLOCK;
797 }
798 }
799
madvise_free_single_vma(struct madvise_behavior * madv_behavior)800 static int madvise_free_single_vma(struct madvise_behavior *madv_behavior)
801 {
802 struct mm_struct *mm = madv_behavior->mm;
803 struct vm_area_struct *vma = madv_behavior->vma;
804 unsigned long start_addr = madv_behavior->range.start;
805 unsigned long end_addr = madv_behavior->range.end;
806 struct mmu_notifier_range range;
807 struct mmu_gather *tlb = madv_behavior->tlb;
808 struct mm_walk_ops walk_ops = {
809 .pmd_entry = madvise_free_pte_range,
810 };
811
812 /* MADV_FREE works for only anon vma at the moment */
813 if (!vma_is_anonymous(vma))
814 return -EINVAL;
815
816 range.start = max(vma->vm_start, start_addr);
817 if (range.start >= vma->vm_end)
818 return -EINVAL;
819 range.end = min(vma->vm_end, end_addr);
820 if (range.end <= vma->vm_start)
821 return -EINVAL;
822 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
823 range.start, range.end);
824
825 lru_add_drain();
826 update_hiwater_rss(mm);
827
828 mmu_notifier_invalidate_range_start(&range);
829 tlb_start_vma(tlb, vma);
830 walk_ops.walk_lock = get_walk_lock(madv_behavior->lock_mode);
831 walk_page_range_vma(vma, range.start, range.end,
832 &walk_ops, tlb);
833 tlb_end_vma(tlb, vma);
834 mmu_notifier_invalidate_range_end(&range);
835 return 0;
836 }
837
838 /*
839 * Application no longer needs these pages. If the pages are dirty,
840 * it's OK to just throw them away. The app will be more careful about
841 * data it wants to keep. Be sure to free swap resources too. The
842 * zap_page_range_single call sets things up for shrink_active_list to actually
843 * free these pages later if no one else has touched them in the meantime,
844 * although we could add these pages to a global reuse list for
845 * shrink_active_list to pick up before reclaiming other pages.
846 *
847 * NB: This interface discards data rather than pushes it out to swap,
848 * as some implementations do. This has performance implications for
849 * applications like large transactional databases which want to discard
850 * pages in anonymous maps after committing to backing store the data
851 * that was kept in them. There is no reason to write this data out to
852 * the swap area if the application is discarding it.
853 *
854 * An interface that causes the system to free clean pages and flush
855 * dirty pages is already available as msync(MS_INVALIDATE).
856 */
madvise_dontneed_single_vma(struct madvise_behavior * madv_behavior)857 static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior)
858
859 {
860 struct madvise_behavior_range *range = &madv_behavior->range;
861 struct zap_details details = {
862 .reclaim_pt = true,
863 .even_cows = true,
864 };
865
866 zap_page_range_single_batched(
867 madv_behavior->tlb, madv_behavior->vma, range->start,
868 range->end - range->start, &details);
869 return 0;
870 }
871
872 static
madvise_dontneed_free_valid_vma(struct madvise_behavior * madv_behavior)873 bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior)
874 {
875 struct vm_area_struct *vma = madv_behavior->vma;
876 int behavior = madv_behavior->behavior;
877 struct madvise_behavior_range *range = &madv_behavior->range;
878
879 if (!is_vm_hugetlb_page(vma)) {
880 unsigned int forbidden = VM_PFNMAP;
881
882 if (behavior != MADV_DONTNEED_LOCKED)
883 forbidden |= VM_LOCKED;
884
885 return !(vma->vm_flags & forbidden);
886 }
887
888 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
889 return false;
890 if (range->start & ~huge_page_mask(hstate_vma(vma)))
891 return false;
892
893 /*
894 * Madvise callers expect the length to be rounded up to PAGE_SIZE
895 * boundaries, and may be unaware that this VMA uses huge pages.
896 * Avoid unexpected data loss by rounding down the number of
897 * huge pages freed.
898 */
899 range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma)));
900
901 return true;
902 }
903
madvise_dontneed_free(struct madvise_behavior * madv_behavior)904 static long madvise_dontneed_free(struct madvise_behavior *madv_behavior)
905 {
906 struct mm_struct *mm = madv_behavior->mm;
907 struct madvise_behavior_range *range = &madv_behavior->range;
908 int behavior = madv_behavior->behavior;
909
910 if (!madvise_dontneed_free_valid_vma(madv_behavior))
911 return -EINVAL;
912
913 if (range->start == range->end)
914 return 0;
915
916 if (!userfaultfd_remove(madv_behavior->vma, range->start, range->end)) {
917 struct vm_area_struct *vma;
918
919 mark_mmap_lock_dropped(madv_behavior);
920 mmap_read_lock(mm);
921 madv_behavior->vma = vma = vma_lookup(mm, range->start);
922 if (!vma)
923 return -ENOMEM;
924 /*
925 * Potential end adjustment for hugetlb vma is OK as
926 * the check below keeps end within vma.
927 */
928 if (!madvise_dontneed_free_valid_vma(madv_behavior))
929 return -EINVAL;
930 if (range->end > vma->vm_end) {
931 /*
932 * Don't fail if end > vma->vm_end. If the old
933 * vma was split while the mmap_lock was
934 * released the effect of the concurrent
935 * operation may not cause madvise() to
936 * have an undefined result. There may be an
937 * adjacent next vma that we'll walk
938 * next. userfaultfd_remove() will generate an
939 * UFFD_EVENT_REMOVE repetition on the
940 * end-vma->vm_end range, but the manager can
941 * handle a repetition fine.
942 */
943 range->end = vma->vm_end;
944 }
945 /*
946 * If the memory region between start and end was
947 * originally backed by 4kB pages and then remapped to
948 * be backed by hugepages while mmap_lock was dropped,
949 * the adjustment for hugetlb vma above may have rounded
950 * end down to the start address.
951 */
952 if (range->start == range->end)
953 return 0;
954 VM_WARN_ON(range->start > range->end);
955 }
956
957 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
958 return madvise_dontneed_single_vma(madv_behavior);
959 else if (behavior == MADV_FREE)
960 return madvise_free_single_vma(madv_behavior);
961 else
962 return -EINVAL;
963 }
964
madvise_populate(struct madvise_behavior * madv_behavior)965 static long madvise_populate(struct madvise_behavior *madv_behavior)
966 {
967 struct mm_struct *mm = madv_behavior->mm;
968 const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE;
969 int locked = 1;
970 unsigned long start = madv_behavior->range.start;
971 unsigned long end = madv_behavior->range.end;
972 long pages;
973
974 while (start < end) {
975 /* Populate (prefault) page tables readable/writable. */
976 pages = faultin_page_range(mm, start, end, write, &locked);
977 if (!locked) {
978 mmap_read_lock(mm);
979 locked = 1;
980 }
981 if (pages < 0) {
982 switch (pages) {
983 case -EINTR:
984 return -EINTR;
985 case -EINVAL: /* Incompatible mappings / permissions. */
986 return -EINVAL;
987 case -EHWPOISON:
988 return -EHWPOISON;
989 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
990 return -EFAULT;
991 default:
992 pr_warn_once("%s: unhandled return value: %ld\n",
993 __func__, pages);
994 fallthrough;
995 case -ENOMEM: /* No VMA or out of memory. */
996 return -ENOMEM;
997 }
998 }
999 start += pages * PAGE_SIZE;
1000 }
1001 return 0;
1002 }
1003
1004 /*
1005 * Application wants to free up the pages and associated backing store.
1006 * This is effectively punching a hole into the middle of a file.
1007 */
madvise_remove(struct madvise_behavior * madv_behavior)1008 static long madvise_remove(struct madvise_behavior *madv_behavior)
1009 {
1010 loff_t offset;
1011 int error;
1012 struct file *f;
1013 struct mm_struct *mm = madv_behavior->mm;
1014 struct vm_area_struct *vma = madv_behavior->vma;
1015 unsigned long start = madv_behavior->range.start;
1016 unsigned long end = madv_behavior->range.end;
1017
1018 mark_mmap_lock_dropped(madv_behavior);
1019
1020 if (vma->vm_flags & VM_LOCKED)
1021 return -EINVAL;
1022
1023 f = vma->vm_file;
1024
1025 if (!f || !f->f_mapping || !f->f_mapping->host) {
1026 return -EINVAL;
1027 }
1028
1029 if (!vma_is_shared_maywrite(vma))
1030 return -EACCES;
1031
1032 offset = (loff_t)(start - vma->vm_start)
1033 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1034
1035 /*
1036 * Filesystem's fallocate may need to take i_rwsem. We need to
1037 * explicitly grab a reference because the vma (and hence the
1038 * vma's reference to the file) can go away as soon as we drop
1039 * mmap_lock.
1040 */
1041 get_file(f);
1042 if (userfaultfd_remove(vma, start, end)) {
1043 /* mmap_lock was not released by userfaultfd_remove() */
1044 mmap_read_unlock(mm);
1045 }
1046 error = vfs_fallocate(f,
1047 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1048 offset, end - start);
1049 fput(f);
1050 mmap_read_lock(mm);
1051 return error;
1052 }
1053
is_valid_guard_vma(struct vm_area_struct * vma,bool allow_locked)1054 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1055 {
1056 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1057
1058 /*
1059 * A user could lock after setting a guard range but that's fine, as
1060 * they'd not be able to fault in. The issue arises when we try to zap
1061 * existing locked VMAs. We don't want to do that.
1062 */
1063 if (!allow_locked)
1064 disallowed |= VM_LOCKED;
1065
1066 return !(vma->vm_flags & disallowed);
1067 }
1068
is_guard_pte_marker(pte_t ptent)1069 static bool is_guard_pte_marker(pte_t ptent)
1070 {
1071 const softleaf_t entry = softleaf_from_pte(ptent);
1072
1073 return softleaf_is_guard_marker(entry);
1074 }
1075
guard_install_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1076 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1077 unsigned long next, struct mm_walk *walk)
1078 {
1079 pud_t pudval = pudp_get(pud);
1080
1081 /* If huge return >0 so we abort the operation + zap. */
1082 return pud_trans_huge(pudval);
1083 }
1084
guard_install_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1085 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1086 unsigned long next, struct mm_walk *walk)
1087 {
1088 pmd_t pmdval = pmdp_get(pmd);
1089
1090 /* If huge return >0 so we abort the operation + zap. */
1091 return pmd_trans_huge(pmdval);
1092 }
1093
guard_install_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1094 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1095 unsigned long next, struct mm_walk *walk)
1096 {
1097 pte_t pteval = ptep_get(pte);
1098 unsigned long *nr_pages = (unsigned long *)walk->private;
1099
1100 /* If there is already a guard page marker, we have nothing to do. */
1101 if (is_guard_pte_marker(pteval)) {
1102 (*nr_pages)++;
1103
1104 return 0;
1105 }
1106
1107 /* If populated return >0 so we abort the operation + zap. */
1108 return 1;
1109 }
1110
guard_install_set_pte(unsigned long addr,unsigned long next,pte_t * ptep,struct mm_walk * walk)1111 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1112 pte_t *ptep, struct mm_walk *walk)
1113 {
1114 unsigned long *nr_pages = (unsigned long *)walk->private;
1115
1116 /* Simply install a PTE marker, this causes segfault on access. */
1117 *ptep = make_pte_marker(PTE_MARKER_GUARD);
1118 (*nr_pages)++;
1119
1120 return 0;
1121 }
1122
madvise_guard_install(struct madvise_behavior * madv_behavior)1123 static long madvise_guard_install(struct madvise_behavior *madv_behavior)
1124 {
1125 struct vm_area_struct *vma = madv_behavior->vma;
1126 struct madvise_behavior_range *range = &madv_behavior->range;
1127 struct mm_walk_ops walk_ops = {
1128 .pud_entry = guard_install_pud_entry,
1129 .pmd_entry = guard_install_pmd_entry,
1130 .pte_entry = guard_install_pte_entry,
1131 .install_pte = guard_install_set_pte,
1132 .walk_lock = get_walk_lock(madv_behavior->lock_mode),
1133 };
1134 long err;
1135 int i;
1136
1137 if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1138 return -EINVAL;
1139
1140 /*
1141 * Set atomically under read lock. All pertinent readers will need to
1142 * acquire an mmap/VMA write lock to read it. All remaining readers may
1143 * or may not see the flag set, but we don't care.
1144 */
1145 vma_flag_set_atomic(vma, VMA_MAYBE_GUARD_BIT);
1146
1147 /*
1148 * If anonymous and we are establishing page tables the VMA ought to
1149 * have an anon_vma associated with it.
1150 *
1151 * We will hold an mmap read lock if this is necessary, this is checked
1152 * as part of the VMA lock logic.
1153 */
1154 if (vma_is_anonymous(vma)) {
1155 VM_WARN_ON_ONCE(!vma->anon_vma &&
1156 madv_behavior->lock_mode != MADVISE_MMAP_READ_LOCK);
1157
1158 err = anon_vma_prepare(vma);
1159 if (err)
1160 return err;
1161 }
1162
1163 /*
1164 * Optimistically try to install the guard marker pages first. If any
1165 * non-guard pages or THP huge pages are encountered, give up and zap
1166 * the range before trying again.
1167 *
1168 * We try a few times before giving up and releasing back to userland to
1169 * loop around, releasing locks in the process to avoid contention.
1170 *
1171 * This would only happen due to races with e.g. page faults or
1172 * khugepaged.
1173 *
1174 * In most cases we should simply install the guard markers immediately
1175 * with no zap or looping.
1176 */
1177 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1178 unsigned long nr_pages = 0;
1179
1180 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1181 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK)
1182 err = walk_page_range_vma_unsafe(madv_behavior->vma,
1183 range->start, range->end, &walk_ops,
1184 &nr_pages);
1185 else
1186 err = walk_page_range_mm_unsafe(vma->vm_mm, range->start,
1187 range->end, &walk_ops, &nr_pages);
1188 if (err < 0)
1189 return err;
1190
1191 if (err == 0) {
1192 unsigned long nr_expected_pages =
1193 PHYS_PFN(range->end - range->start);
1194
1195 VM_WARN_ON(nr_pages != nr_expected_pages);
1196 return 0;
1197 }
1198
1199 /*
1200 * OK some of the range have non-guard pages mapped, zap
1201 * them. This leaves existing guard pages in place.
1202 */
1203 zap_page_range_single(vma, range->start,
1204 range->end - range->start, NULL);
1205 }
1206
1207 /*
1208 * We were unable to install the guard pages, return to userspace and
1209 * immediately retry, relieving lock contention.
1210 */
1211 return restart_syscall();
1212 }
1213
guard_remove_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1214 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1215 unsigned long next, struct mm_walk *walk)
1216 {
1217 pud_t pudval = pudp_get(pud);
1218
1219 /* If huge, cannot have guard pages present, so no-op - skip. */
1220 if (pud_trans_huge(pudval))
1221 walk->action = ACTION_CONTINUE;
1222
1223 return 0;
1224 }
1225
guard_remove_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1226 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1227 unsigned long next, struct mm_walk *walk)
1228 {
1229 pmd_t pmdval = pmdp_get(pmd);
1230
1231 /* If huge, cannot have guard pages present, so no-op - skip. */
1232 if (pmd_trans_huge(pmdval))
1233 walk->action = ACTION_CONTINUE;
1234
1235 return 0;
1236 }
1237
guard_remove_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1238 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1239 unsigned long next, struct mm_walk *walk)
1240 {
1241 pte_t ptent = ptep_get(pte);
1242
1243 if (is_guard_pte_marker(ptent)) {
1244 /* Simply clear the PTE marker. */
1245 pte_clear_not_present_full(walk->mm, addr, pte, false);
1246 update_mmu_cache(walk->vma, addr, pte);
1247 }
1248
1249 return 0;
1250 }
1251
madvise_guard_remove(struct madvise_behavior * madv_behavior)1252 static long madvise_guard_remove(struct madvise_behavior *madv_behavior)
1253 {
1254 struct vm_area_struct *vma = madv_behavior->vma;
1255 struct madvise_behavior_range *range = &madv_behavior->range;
1256 struct mm_walk_ops wallk_ops = {
1257 .pud_entry = guard_remove_pud_entry,
1258 .pmd_entry = guard_remove_pmd_entry,
1259 .pte_entry = guard_remove_pte_entry,
1260 .walk_lock = get_walk_lock(madv_behavior->lock_mode),
1261 };
1262
1263 /*
1264 * We're ok with removing guards in mlock()'d ranges, as this is a
1265 * non-destructive action.
1266 */
1267 if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1268 return -EINVAL;
1269
1270 return walk_page_range_vma(vma, range->start, range->end,
1271 &wallk_ops, NULL);
1272 }
1273
1274 #ifdef CONFIG_64BIT
1275 /* Does the madvise operation result in discarding of mapped data? */
is_discard(int behavior)1276 static bool is_discard(int behavior)
1277 {
1278 switch (behavior) {
1279 case MADV_FREE:
1280 case MADV_DONTNEED:
1281 case MADV_DONTNEED_LOCKED:
1282 case MADV_REMOVE:
1283 case MADV_DONTFORK:
1284 case MADV_WIPEONFORK:
1285 case MADV_GUARD_INSTALL:
1286 return true;
1287 }
1288
1289 return false;
1290 }
1291
1292 /*
1293 * We are restricted from madvise()'ing mseal()'d VMAs only in very particular
1294 * circumstances - discarding of data from read-only anonymous SEALED mappings.
1295 *
1296 * This is because users cannot trivally discard data from these VMAs, and may
1297 * only do so via an appropriate madvise() call.
1298 */
can_madvise_modify(struct madvise_behavior * madv_behavior)1299 static bool can_madvise_modify(struct madvise_behavior *madv_behavior)
1300 {
1301 struct vm_area_struct *vma = madv_behavior->vma;
1302
1303 /* If the VMA isn't sealed we're good. */
1304 if (!vma_is_sealed(vma))
1305 return true;
1306
1307 /* For a sealed VMA, we only care about discard operations. */
1308 if (!is_discard(madv_behavior->behavior))
1309 return true;
1310
1311 /*
1312 * We explicitly permit all file-backed mappings, whether MAP_SHARED or
1313 * MAP_PRIVATE.
1314 *
1315 * The latter causes some complications. Because now, one can mmap()
1316 * read/write a MAP_PRIVATE mapping, write to it, then mprotect()
1317 * read-only, mseal() and a discard will be permitted.
1318 *
1319 * However, in order to avoid issues with potential use of madvise(...,
1320 * MADV_DONTNEED) of mseal()'d .text mappings we, for the time being,
1321 * permit this.
1322 */
1323 if (!vma_is_anonymous(vma))
1324 return true;
1325
1326 /* If the user could write to the mapping anyway, then this is fine. */
1327 if ((vma->vm_flags & VM_WRITE) &&
1328 arch_vma_access_permitted(vma, /* write= */ true,
1329 /* execute= */ false, /* foreign= */ false))
1330 return true;
1331
1332 /* Otherwise, we are not permitted to perform this operation. */
1333 return false;
1334 }
1335 #else
can_madvise_modify(struct madvise_behavior * madv_behavior)1336 static bool can_madvise_modify(struct madvise_behavior *madv_behavior)
1337 {
1338 return true;
1339 }
1340 #endif
1341
1342 /*
1343 * Apply an madvise behavior to a region of a vma. madvise_update_vma
1344 * will handle splitting a vm area into separate areas, each area with its own
1345 * behavior.
1346 */
madvise_vma_behavior(struct madvise_behavior * madv_behavior)1347 static int madvise_vma_behavior(struct madvise_behavior *madv_behavior)
1348 {
1349 int behavior = madv_behavior->behavior;
1350 struct vm_area_struct *vma = madv_behavior->vma;
1351 vm_flags_t new_flags = vma->vm_flags;
1352 struct madvise_behavior_range *range = &madv_behavior->range;
1353 int error;
1354
1355 if (unlikely(!can_madvise_modify(madv_behavior)))
1356 return -EPERM;
1357
1358 switch (behavior) {
1359 case MADV_REMOVE:
1360 return madvise_remove(madv_behavior);
1361 case MADV_WILLNEED:
1362 return madvise_willneed(madv_behavior);
1363 case MADV_COLD:
1364 return madvise_cold(madv_behavior);
1365 case MADV_PAGEOUT:
1366 return madvise_pageout(madv_behavior);
1367 case MADV_FREE:
1368 case MADV_DONTNEED:
1369 case MADV_DONTNEED_LOCKED:
1370 return madvise_dontneed_free(madv_behavior);
1371 case MADV_COLLAPSE:
1372 return madvise_collapse(vma, range->start, range->end,
1373 &madv_behavior->lock_dropped);
1374 case MADV_GUARD_INSTALL:
1375 return madvise_guard_install(madv_behavior);
1376 case MADV_GUARD_REMOVE:
1377 return madvise_guard_remove(madv_behavior);
1378
1379 /* The below behaviours update VMAs via madvise_update_vma(). */
1380
1381 case MADV_NORMAL:
1382 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1383 break;
1384 case MADV_SEQUENTIAL:
1385 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1386 break;
1387 case MADV_RANDOM:
1388 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1389 break;
1390 case MADV_DONTFORK:
1391 new_flags |= VM_DONTCOPY;
1392 break;
1393 case MADV_DOFORK:
1394 if (new_flags & VM_IO)
1395 return -EINVAL;
1396 new_flags &= ~VM_DONTCOPY;
1397 break;
1398 case MADV_WIPEONFORK:
1399 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1400 if (vma->vm_file || new_flags & VM_SHARED)
1401 return -EINVAL;
1402 new_flags |= VM_WIPEONFORK;
1403 break;
1404 case MADV_KEEPONFORK:
1405 if (new_flags & VM_DROPPABLE)
1406 return -EINVAL;
1407 new_flags &= ~VM_WIPEONFORK;
1408 break;
1409 case MADV_DONTDUMP:
1410 new_flags |= VM_DONTDUMP;
1411 break;
1412 case MADV_DODUMP:
1413 if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) ||
1414 (new_flags & VM_DROPPABLE))
1415 return -EINVAL;
1416 new_flags &= ~VM_DONTDUMP;
1417 break;
1418 case MADV_MERGEABLE:
1419 case MADV_UNMERGEABLE:
1420 error = ksm_madvise(vma, range->start, range->end,
1421 behavior, &new_flags);
1422 if (error)
1423 goto out;
1424 break;
1425 case MADV_HUGEPAGE:
1426 case MADV_NOHUGEPAGE:
1427 error = hugepage_madvise(vma, &new_flags, behavior);
1428 if (error)
1429 goto out;
1430 break;
1431 case __MADV_SET_ANON_VMA_NAME:
1432 /* Only anonymous mappings can be named */
1433 if (vma->vm_file && !vma_is_anon_shmem(vma))
1434 return -EBADF;
1435 break;
1436 }
1437
1438 /* This is a write operation.*/
1439 VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK);
1440
1441 error = madvise_update_vma(new_flags, madv_behavior);
1442 out:
1443 /*
1444 * madvise() returns EAGAIN if kernel resources, such as
1445 * slab, are temporarily unavailable.
1446 */
1447 if (error == -ENOMEM)
1448 error = -EAGAIN;
1449 return error;
1450 }
1451
1452 #ifdef CONFIG_MEMORY_FAILURE
1453 /*
1454 * Error injection support for memory error handling.
1455 */
madvise_inject_error(struct madvise_behavior * madv_behavior)1456 static int madvise_inject_error(struct madvise_behavior *madv_behavior)
1457 {
1458 unsigned long size;
1459 unsigned long start = madv_behavior->range.start;
1460 unsigned long end = madv_behavior->range.end;
1461
1462 if (!capable(CAP_SYS_ADMIN))
1463 return -EPERM;
1464
1465 for (; start < end; start += size) {
1466 unsigned long pfn;
1467 struct page *page;
1468 int ret;
1469
1470 ret = get_user_pages_fast(start, 1, 0, &page);
1471 if (ret != 1)
1472 return ret;
1473 pfn = page_to_pfn(page);
1474
1475 /*
1476 * When soft offlining hugepages, after migrating the page
1477 * we dissolve it, therefore in the second loop "page" will
1478 * no longer be a compound page.
1479 */
1480 size = page_size(compound_head(page));
1481
1482 if (madv_behavior->behavior == MADV_SOFT_OFFLINE) {
1483 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1484 pfn, start);
1485 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1486 } else {
1487 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1488 pfn, start);
1489 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1490 if (ret == -EOPNOTSUPP)
1491 ret = 0;
1492 }
1493
1494 if (ret)
1495 return ret;
1496 }
1497
1498 return 0;
1499 }
1500
is_memory_failure(struct madvise_behavior * madv_behavior)1501 static bool is_memory_failure(struct madvise_behavior *madv_behavior)
1502 {
1503 switch (madv_behavior->behavior) {
1504 case MADV_HWPOISON:
1505 case MADV_SOFT_OFFLINE:
1506 return true;
1507 default:
1508 return false;
1509 }
1510 }
1511
1512 #else
1513
madvise_inject_error(struct madvise_behavior * madv_behavior)1514 static int madvise_inject_error(struct madvise_behavior *madv_behavior)
1515 {
1516 return 0;
1517 }
1518
is_memory_failure(struct madvise_behavior * madv_behavior)1519 static bool is_memory_failure(struct madvise_behavior *madv_behavior)
1520 {
1521 return false;
1522 }
1523
1524 #endif /* CONFIG_MEMORY_FAILURE */
1525
1526 static bool
madvise_behavior_valid(int behavior)1527 madvise_behavior_valid(int behavior)
1528 {
1529 switch (behavior) {
1530 case MADV_DOFORK:
1531 case MADV_DONTFORK:
1532 case MADV_NORMAL:
1533 case MADV_SEQUENTIAL:
1534 case MADV_RANDOM:
1535 case MADV_REMOVE:
1536 case MADV_WILLNEED:
1537 case MADV_DONTNEED:
1538 case MADV_DONTNEED_LOCKED:
1539 case MADV_FREE:
1540 case MADV_COLD:
1541 case MADV_PAGEOUT:
1542 case MADV_POPULATE_READ:
1543 case MADV_POPULATE_WRITE:
1544 #ifdef CONFIG_KSM
1545 case MADV_MERGEABLE:
1546 case MADV_UNMERGEABLE:
1547 #endif
1548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1549 case MADV_HUGEPAGE:
1550 case MADV_NOHUGEPAGE:
1551 case MADV_COLLAPSE:
1552 #endif
1553 case MADV_DONTDUMP:
1554 case MADV_DODUMP:
1555 case MADV_WIPEONFORK:
1556 case MADV_KEEPONFORK:
1557 case MADV_GUARD_INSTALL:
1558 case MADV_GUARD_REMOVE:
1559 #ifdef CONFIG_MEMORY_FAILURE
1560 case MADV_SOFT_OFFLINE:
1561 case MADV_HWPOISON:
1562 #endif
1563 return true;
1564
1565 default:
1566 return false;
1567 }
1568 }
1569
1570 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
process_madvise_remote_valid(int behavior)1571 static bool process_madvise_remote_valid(int behavior)
1572 {
1573 switch (behavior) {
1574 case MADV_COLD:
1575 case MADV_PAGEOUT:
1576 case MADV_WILLNEED:
1577 case MADV_COLLAPSE:
1578 return true;
1579 default:
1580 return false;
1581 }
1582 }
1583
1584 /* Does this operation invoke anon_vma_prepare()? */
prepares_anon_vma(int behavior)1585 static bool prepares_anon_vma(int behavior)
1586 {
1587 switch (behavior) {
1588 case MADV_GUARD_INSTALL:
1589 return true;
1590 default:
1591 return false;
1592 }
1593 }
1594
1595 /*
1596 * We have acquired a VMA read lock, is the VMA valid to be madvise'd under VMA
1597 * read lock only now we have a VMA to examine?
1598 */
is_vma_lock_sufficient(struct vm_area_struct * vma,struct madvise_behavior * madv_behavior)1599 static bool is_vma_lock_sufficient(struct vm_area_struct *vma,
1600 struct madvise_behavior *madv_behavior)
1601 {
1602 /* Must span only a single VMA.*/
1603 if (madv_behavior->range.end > vma->vm_end)
1604 return false;
1605 /* Remote processes unsupported. */
1606 if (current->mm != vma->vm_mm)
1607 return false;
1608 /* Userfaultfd unsupported. */
1609 if (userfaultfd_armed(vma))
1610 return false;
1611 /*
1612 * anon_vma_prepare() explicitly requires an mmap lock for
1613 * serialisation, so we cannot use a VMA lock in this case.
1614 *
1615 * Note we might race with anon_vma being set, however this makes this
1616 * check overly paranoid which is safe.
1617 */
1618 if (vma_is_anonymous(vma) &&
1619 prepares_anon_vma(madv_behavior->behavior) && !vma->anon_vma)
1620 return false;
1621
1622 return true;
1623 }
1624
1625 /*
1626 * Try to acquire a VMA read lock if possible.
1627 *
1628 * We only support this lock over a single VMA, which the input range must
1629 * span either partially or fully.
1630 *
1631 * This function always returns with an appropriate lock held. If a VMA read
1632 * lock could be acquired, we return true and set madv_behavior state
1633 * accordingly.
1634 *
1635 * If a VMA read lock could not be acquired, we return false and expect caller to
1636 * fallback to mmap lock behaviour.
1637 */
try_vma_read_lock(struct madvise_behavior * madv_behavior)1638 static bool try_vma_read_lock(struct madvise_behavior *madv_behavior)
1639 {
1640 struct mm_struct *mm = madv_behavior->mm;
1641 struct vm_area_struct *vma;
1642
1643 vma = lock_vma_under_rcu(mm, madv_behavior->range.start);
1644 if (!vma)
1645 goto take_mmap_read_lock;
1646
1647 if (!is_vma_lock_sufficient(vma, madv_behavior)) {
1648 vma_end_read(vma);
1649 goto take_mmap_read_lock;
1650 }
1651
1652 madv_behavior->vma = vma;
1653 return true;
1654
1655 take_mmap_read_lock:
1656 mmap_read_lock(mm);
1657 madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK;
1658 return false;
1659 }
1660
1661 /*
1662 * Walk the vmas in range [start,end), and call the madvise_vma_behavior
1663 * function on each one. The function will get start and end parameters that
1664 * cover the overlap between the current vma and the original range. Any
1665 * unmapped regions in the original range will result in this function returning
1666 * -ENOMEM while still calling the madvise_vma_behavior function on all of the
1667 * existing vmas in the range. Must be called with the mmap_lock held for
1668 * reading or writing.
1669 */
1670 static
madvise_walk_vmas(struct madvise_behavior * madv_behavior)1671 int madvise_walk_vmas(struct madvise_behavior *madv_behavior)
1672 {
1673 struct mm_struct *mm = madv_behavior->mm;
1674 struct madvise_behavior_range *range = &madv_behavior->range;
1675 /* range is updated to span each VMA, so store end of entire range. */
1676 unsigned long last_end = range->end;
1677 int unmapped_error = 0;
1678 int error;
1679 struct vm_area_struct *prev, *vma;
1680
1681 /*
1682 * If VMA read lock is supported, apply madvise to a single VMA
1683 * tentatively, avoiding walking VMAs.
1684 */
1685 if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK &&
1686 try_vma_read_lock(madv_behavior)) {
1687 error = madvise_vma_behavior(madv_behavior);
1688 vma_end_read(madv_behavior->vma);
1689 return error;
1690 }
1691
1692 vma = find_vma_prev(mm, range->start, &prev);
1693 if (vma && range->start > vma->vm_start)
1694 prev = vma;
1695
1696 for (;;) {
1697 /* Still start < end. */
1698 if (!vma)
1699 return -ENOMEM;
1700
1701 /* Here start < (last_end|vma->vm_end). */
1702 if (range->start < vma->vm_start) {
1703 /*
1704 * This indicates a gap between VMAs in the input
1705 * range. This does not cause the operation to abort,
1706 * rather we simply return -ENOMEM to indicate that this
1707 * has happened, but carry on.
1708 */
1709 unmapped_error = -ENOMEM;
1710 range->start = vma->vm_start;
1711 if (range->start >= last_end)
1712 break;
1713 }
1714
1715 /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */
1716 range->end = min(vma->vm_end, last_end);
1717
1718 /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */
1719 madv_behavior->prev = prev;
1720 madv_behavior->vma = vma;
1721 error = madvise_vma_behavior(madv_behavior);
1722 if (error)
1723 return error;
1724 if (madv_behavior->lock_dropped) {
1725 /* We dropped the mmap lock, we can't ref the VMA. */
1726 prev = NULL;
1727 vma = NULL;
1728 madv_behavior->lock_dropped = false;
1729 } else {
1730 vma = madv_behavior->vma;
1731 prev = vma;
1732 }
1733
1734 if (vma && range->end < vma->vm_end)
1735 range->end = vma->vm_end;
1736 if (range->end >= last_end)
1737 break;
1738
1739 vma = find_vma(mm, vma ? vma->vm_end : range->end);
1740 range->start = range->end;
1741 }
1742
1743 return unmapped_error;
1744 }
1745
1746 /*
1747 * Any behaviour which results in changes to the vma->vm_flags needs to
1748 * take mmap_lock for writing. Others, which simply traverse vmas, need
1749 * to only take it for reading.
1750 */
get_lock_mode(struct madvise_behavior * madv_behavior)1751 static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior)
1752 {
1753 if (is_memory_failure(madv_behavior))
1754 return MADVISE_NO_LOCK;
1755
1756 switch (madv_behavior->behavior) {
1757 case MADV_REMOVE:
1758 case MADV_WILLNEED:
1759 case MADV_COLD:
1760 case MADV_PAGEOUT:
1761 case MADV_POPULATE_READ:
1762 case MADV_POPULATE_WRITE:
1763 case MADV_COLLAPSE:
1764 return MADVISE_MMAP_READ_LOCK;
1765 case MADV_GUARD_INSTALL:
1766 case MADV_GUARD_REMOVE:
1767 case MADV_DONTNEED:
1768 case MADV_DONTNEED_LOCKED:
1769 case MADV_FREE:
1770 return MADVISE_VMA_READ_LOCK;
1771 default:
1772 return MADVISE_MMAP_WRITE_LOCK;
1773 }
1774 }
1775
madvise_lock(struct madvise_behavior * madv_behavior)1776 static int madvise_lock(struct madvise_behavior *madv_behavior)
1777 {
1778 struct mm_struct *mm = madv_behavior->mm;
1779 enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior);
1780
1781 switch (lock_mode) {
1782 case MADVISE_NO_LOCK:
1783 break;
1784 case MADVISE_MMAP_WRITE_LOCK:
1785 if (mmap_write_lock_killable(mm))
1786 return -EINTR;
1787 break;
1788 case MADVISE_MMAP_READ_LOCK:
1789 mmap_read_lock(mm);
1790 break;
1791 case MADVISE_VMA_READ_LOCK:
1792 /* We will acquire the lock per-VMA in madvise_walk_vmas(). */
1793 break;
1794 }
1795
1796 madv_behavior->lock_mode = lock_mode;
1797 return 0;
1798 }
1799
madvise_unlock(struct madvise_behavior * madv_behavior)1800 static void madvise_unlock(struct madvise_behavior *madv_behavior)
1801 {
1802 struct mm_struct *mm = madv_behavior->mm;
1803
1804 switch (madv_behavior->lock_mode) {
1805 case MADVISE_NO_LOCK:
1806 return;
1807 case MADVISE_MMAP_WRITE_LOCK:
1808 mmap_write_unlock(mm);
1809 break;
1810 case MADVISE_MMAP_READ_LOCK:
1811 mmap_read_unlock(mm);
1812 break;
1813 case MADVISE_VMA_READ_LOCK:
1814 /* We will drop the lock per-VMA in madvise_walk_vmas(). */
1815 break;
1816 }
1817
1818 madv_behavior->lock_mode = MADVISE_NO_LOCK;
1819 }
1820
madvise_batch_tlb_flush(int behavior)1821 static bool madvise_batch_tlb_flush(int behavior)
1822 {
1823 switch (behavior) {
1824 case MADV_DONTNEED:
1825 case MADV_DONTNEED_LOCKED:
1826 case MADV_FREE:
1827 return true;
1828 default:
1829 return false;
1830 }
1831 }
1832
madvise_init_tlb(struct madvise_behavior * madv_behavior)1833 static void madvise_init_tlb(struct madvise_behavior *madv_behavior)
1834 {
1835 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1836 tlb_gather_mmu(madv_behavior->tlb, madv_behavior->mm);
1837 }
1838
madvise_finish_tlb(struct madvise_behavior * madv_behavior)1839 static void madvise_finish_tlb(struct madvise_behavior *madv_behavior)
1840 {
1841 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1842 tlb_finish_mmu(madv_behavior->tlb);
1843 }
1844
is_valid_madvise(unsigned long start,size_t len_in,int behavior)1845 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior)
1846 {
1847 size_t len;
1848
1849 if (!madvise_behavior_valid(behavior))
1850 return false;
1851
1852 if (!PAGE_ALIGNED(start))
1853 return false;
1854 len = PAGE_ALIGN(len_in);
1855
1856 /* Check to see whether len was rounded up from small -ve to zero */
1857 if (len_in && !len)
1858 return false;
1859
1860 if (start + len < start)
1861 return false;
1862
1863 return true;
1864 }
1865
1866 /*
1867 * madvise_should_skip() - Return if the request is invalid or nothing.
1868 * @start: Start address of madvise-requested address range.
1869 * @len_in: Length of madvise-requested address range.
1870 * @behavior: Requested madvise behavor.
1871 * @err: Pointer to store an error code from the check.
1872 *
1873 * If the specified behaviour is invalid or nothing would occur, we skip the
1874 * operation. This function returns true in the cases, otherwise false. In
1875 * the former case we store an error on @err.
1876 */
madvise_should_skip(unsigned long start,size_t len_in,int behavior,int * err)1877 static bool madvise_should_skip(unsigned long start, size_t len_in,
1878 int behavior, int *err)
1879 {
1880 if (!is_valid_madvise(start, len_in, behavior)) {
1881 *err = -EINVAL;
1882 return true;
1883 }
1884 if (start + PAGE_ALIGN(len_in) == start) {
1885 *err = 0;
1886 return true;
1887 }
1888 return false;
1889 }
1890
is_madvise_populate(struct madvise_behavior * madv_behavior)1891 static bool is_madvise_populate(struct madvise_behavior *madv_behavior)
1892 {
1893 switch (madv_behavior->behavior) {
1894 case MADV_POPULATE_READ:
1895 case MADV_POPULATE_WRITE:
1896 return true;
1897 default:
1898 return false;
1899 }
1900 }
1901
1902 /*
1903 * untagged_addr_remote() assumes mmap_lock is already held. On
1904 * architectures like x86 and RISC-V, tagging is tricky because each
1905 * mm may have a different tagging mask. However, we might only hold
1906 * the per-VMA lock (currently only local processes are supported),
1907 * so untagged_addr is used to avoid the mmap_lock assertion for
1908 * local processes.
1909 */
get_untagged_addr(struct mm_struct * mm,unsigned long start)1910 static inline unsigned long get_untagged_addr(struct mm_struct *mm,
1911 unsigned long start)
1912 {
1913 return current->mm == mm ? untagged_addr(start) :
1914 untagged_addr_remote(mm, start);
1915 }
1916
madvise_do_behavior(unsigned long start,size_t len_in,struct madvise_behavior * madv_behavior)1917 static int madvise_do_behavior(unsigned long start, size_t len_in,
1918 struct madvise_behavior *madv_behavior)
1919 {
1920 struct blk_plug plug;
1921 int error;
1922 struct madvise_behavior_range *range = &madv_behavior->range;
1923
1924 if (is_memory_failure(madv_behavior)) {
1925 range->start = start;
1926 range->end = start + len_in;
1927 return madvise_inject_error(madv_behavior);
1928 }
1929
1930 range->start = get_untagged_addr(madv_behavior->mm, start);
1931 range->end = range->start + PAGE_ALIGN(len_in);
1932
1933 blk_start_plug(&plug);
1934 if (is_madvise_populate(madv_behavior))
1935 error = madvise_populate(madv_behavior);
1936 else
1937 error = madvise_walk_vmas(madv_behavior);
1938 blk_finish_plug(&plug);
1939 return error;
1940 }
1941
1942 /*
1943 * The madvise(2) system call.
1944 *
1945 * Applications can use madvise() to advise the kernel how it should
1946 * handle paging I/O in this VM area. The idea is to help the kernel
1947 * use appropriate read-ahead and caching techniques. The information
1948 * provided is advisory only, and can be safely disregarded by the
1949 * kernel without affecting the correct operation of the application.
1950 *
1951 * behavior values:
1952 * MADV_NORMAL - the default behavior is to read clusters. This
1953 * results in some read-ahead and read-behind.
1954 * MADV_RANDOM - the system should read the minimum amount of data
1955 * on any access, since it is unlikely that the appli-
1956 * cation will need more than what it asks for.
1957 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1958 * once, so they can be aggressively read ahead, and
1959 * can be freed soon after they are accessed.
1960 * MADV_WILLNEED - the application is notifying the system to read
1961 * some pages ahead.
1962 * MADV_DONTNEED - the application is finished with the given range,
1963 * so the kernel can free resources associated with it.
1964 * MADV_FREE - the application marks pages in the given range as lazy free,
1965 * where actual purges are postponed until memory pressure happens.
1966 * MADV_REMOVE - the application wants to free up the given range of
1967 * pages and associated backing store.
1968 * MADV_DONTFORK - omit this area from child's address space when forking:
1969 * typically, to avoid COWing pages pinned by get_user_pages().
1970 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1971 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1972 * range after a fork.
1973 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1974 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1975 * were corrupted by unrecoverable hardware memory failure.
1976 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1977 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1978 * this area with pages of identical content from other such areas.
1979 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1980 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1981 * huge pages in the future. Existing pages might be coalesced and
1982 * new pages might be allocated as THP.
1983 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1984 * transparent huge pages so the existing pages will not be
1985 * coalesced into THP and new pages will not be allocated as THP.
1986 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1987 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1988 * from being included in its core dump.
1989 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1990 * MADV_COLD - the application is not expected to use this memory soon,
1991 * deactivate pages in this range so that they can be reclaimed
1992 * easily if memory pressure happens.
1993 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1994 * page out the pages in this range immediately.
1995 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1996 * triggering read faults if required
1997 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1998 * triggering write faults if required
1999 *
2000 * return values:
2001 * zero - success
2002 * -EINVAL - start + len < 0, start is not page-aligned,
2003 * "behavior" is not a valid value, or application
2004 * is attempting to release locked or shared pages,
2005 * or the specified address range includes file, Huge TLB,
2006 * MAP_SHARED or VMPFNMAP range.
2007 * -ENOMEM - addresses in the specified range are not currently
2008 * mapped, or are outside the AS of the process.
2009 * -EIO - an I/O error occurred while paging in data.
2010 * -EBADF - map exists, but area maps something that isn't a file.
2011 * -EAGAIN - a kernel resource was temporarily unavailable.
2012 * -EPERM - memory is sealed.
2013 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)2014 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
2015 {
2016 int error;
2017 struct mmu_gather tlb;
2018 struct madvise_behavior madv_behavior = {
2019 .mm = mm,
2020 .behavior = behavior,
2021 .tlb = &tlb,
2022 };
2023
2024 if (madvise_should_skip(start, len_in, behavior, &error))
2025 return error;
2026 error = madvise_lock(&madv_behavior);
2027 if (error)
2028 return error;
2029 madvise_init_tlb(&madv_behavior);
2030 error = madvise_do_behavior(start, len_in, &madv_behavior);
2031 madvise_finish_tlb(&madv_behavior);
2032 madvise_unlock(&madv_behavior);
2033
2034 return error;
2035 }
2036
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)2037 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
2038 {
2039 return do_madvise(current->mm, start, len_in, behavior);
2040 }
2041
2042 /* Perform an madvise operation over a vector of addresses and lengths. */
vector_madvise(struct mm_struct * mm,struct iov_iter * iter,int behavior)2043 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
2044 int behavior)
2045 {
2046 ssize_t ret = 0;
2047 size_t total_len;
2048 struct mmu_gather tlb;
2049 struct madvise_behavior madv_behavior = {
2050 .mm = mm,
2051 .behavior = behavior,
2052 .tlb = &tlb,
2053 };
2054
2055 total_len = iov_iter_count(iter);
2056
2057 ret = madvise_lock(&madv_behavior);
2058 if (ret)
2059 return ret;
2060 madvise_init_tlb(&madv_behavior);
2061
2062 while (iov_iter_count(iter)) {
2063 unsigned long start = (unsigned long)iter_iov_addr(iter);
2064 size_t len_in = iter_iov_len(iter);
2065 int error;
2066
2067 if (madvise_should_skip(start, len_in, behavior, &error))
2068 ret = error;
2069 else
2070 ret = madvise_do_behavior(start, len_in, &madv_behavior);
2071 /*
2072 * An madvise operation is attempting to restart the syscall,
2073 * but we cannot proceed as it would not be correct to repeat
2074 * the operation in aggregate, and would be surprising to the
2075 * user.
2076 *
2077 * We drop and reacquire locks so it is safe to just loop and
2078 * try again. We check for fatal signals in case we need exit
2079 * early anyway.
2080 */
2081 if (ret == -ERESTARTNOINTR) {
2082 if (fatal_signal_pending(current)) {
2083 ret = -EINTR;
2084 break;
2085 }
2086
2087 /* Drop and reacquire lock to unwind race. */
2088 madvise_finish_tlb(&madv_behavior);
2089 madvise_unlock(&madv_behavior);
2090 ret = madvise_lock(&madv_behavior);
2091 if (ret)
2092 goto out;
2093 madvise_init_tlb(&madv_behavior);
2094 continue;
2095 }
2096 if (ret < 0)
2097 break;
2098 iov_iter_advance(iter, iter_iov_len(iter));
2099 }
2100 madvise_finish_tlb(&madv_behavior);
2101 madvise_unlock(&madv_behavior);
2102
2103 out:
2104 ret = (total_len - iov_iter_count(iter)) ? : ret;
2105
2106 return ret;
2107 }
2108
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)2109 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
2110 size_t, vlen, int, behavior, unsigned int, flags)
2111 {
2112 ssize_t ret;
2113 struct iovec iovstack[UIO_FASTIOV];
2114 struct iovec *iov = iovstack;
2115 struct iov_iter iter;
2116 struct task_struct *task;
2117 struct mm_struct *mm;
2118 unsigned int f_flags;
2119
2120 if (flags != 0) {
2121 ret = -EINVAL;
2122 goto out;
2123 }
2124
2125 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
2126 if (ret < 0)
2127 goto out;
2128
2129 task = pidfd_get_task(pidfd, &f_flags);
2130 if (IS_ERR(task)) {
2131 ret = PTR_ERR(task);
2132 goto free_iov;
2133 }
2134
2135 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
2136 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2137 if (IS_ERR(mm)) {
2138 ret = PTR_ERR(mm);
2139 goto release_task;
2140 }
2141
2142 /*
2143 * We need only perform this check if we are attempting to manipulate a
2144 * remote process's address space.
2145 */
2146 if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
2147 ret = -EINVAL;
2148 goto release_mm;
2149 }
2150
2151 /*
2152 * Require CAP_SYS_NICE for influencing process performance. Note that
2153 * only non-destructive hints are currently supported for remote
2154 * processes.
2155 */
2156 if (mm != current->mm && !capable(CAP_SYS_NICE)) {
2157 ret = -EPERM;
2158 goto release_mm;
2159 }
2160
2161 ret = vector_madvise(mm, &iter, behavior);
2162
2163 release_mm:
2164 mmput(mm);
2165 release_task:
2166 put_task_struct(task);
2167 free_iov:
2168 kfree(iov);
2169 out:
2170 return ret;
2171 }
2172
2173 #ifdef CONFIG_ANON_VMA_NAME
2174
2175 #define ANON_VMA_NAME_MAX_LEN 80
2176 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2177
is_valid_name_char(char ch)2178 static inline bool is_valid_name_char(char ch)
2179 {
2180 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2181 return ch > 0x1f && ch < 0x7f &&
2182 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2183 }
2184
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)2185 static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
2186 unsigned long len_in, struct anon_vma_name *anon_name)
2187 {
2188 unsigned long end;
2189 unsigned long len;
2190 int error;
2191 struct madvise_behavior madv_behavior = {
2192 .mm = mm,
2193 .behavior = __MADV_SET_ANON_VMA_NAME,
2194 .anon_name = anon_name,
2195 };
2196
2197 if (start & ~PAGE_MASK)
2198 return -EINVAL;
2199 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2200
2201 /* Check to see whether len was rounded up from small -ve to zero */
2202 if (len_in && !len)
2203 return -EINVAL;
2204
2205 end = start + len;
2206 if (end < start)
2207 return -EINVAL;
2208
2209 if (end == start)
2210 return 0;
2211
2212 madv_behavior.range.start = start;
2213 madv_behavior.range.end = end;
2214
2215 error = madvise_lock(&madv_behavior);
2216 if (error)
2217 return error;
2218 error = madvise_walk_vmas(&madv_behavior);
2219 madvise_unlock(&madv_behavior);
2220
2221 return error;
2222 }
2223
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)2224 int set_anon_vma_name(unsigned long addr, unsigned long size,
2225 const char __user *uname)
2226 {
2227 struct anon_vma_name *anon_name = NULL;
2228 struct mm_struct *mm = current->mm;
2229 int error;
2230
2231 if (uname) {
2232 char *name, *pch;
2233
2234 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2235 if (IS_ERR(name))
2236 return PTR_ERR(name);
2237
2238 for (pch = name; *pch != '\0'; pch++) {
2239 if (!is_valid_name_char(*pch)) {
2240 kfree(name);
2241 return -EINVAL;
2242 }
2243 }
2244 /* anon_vma has its own copy */
2245 anon_name = anon_vma_name_alloc(name);
2246 kfree(name);
2247 if (!anon_name)
2248 return -ENOMEM;
2249 }
2250
2251 error = madvise_set_anon_name(mm, addr, size, anon_name);
2252 anon_vma_name_put(anon_name);
2253
2254 return error;
2255 }
2256 #endif
2257