1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/hmm-dma.h>
14 #include <linux/init.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/mmzone.h>
20 #include <linux/pagemap.h>
21 #include <linux/swapops.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memremap.h>
24 #include <linux/sched/mm.h>
25 #include <linux/jump_label.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/pci-p2pdma.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memory_hotplug.h>
30
31 #include "internal.h"
32
33 struct hmm_vma_walk {
34 struct hmm_range *range;
35 unsigned long last;
36 };
37
38 enum {
39 HMM_NEED_FAULT = 1 << 0,
40 HMM_NEED_WRITE_FAULT = 1 << 1,
41 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
42 };
43
44 enum {
45 /* These flags are carried from input-to-output */
46 HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA |
47 HMM_PFN_P2PDMA_BUS,
48 };
49
hmm_pfns_fill(unsigned long addr,unsigned long end,struct hmm_range * range,unsigned long cpu_flags)50 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
51 struct hmm_range *range, unsigned long cpu_flags)
52 {
53 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
54
55 for (; addr < end; addr += PAGE_SIZE, i++) {
56 range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
57 range->hmm_pfns[i] |= cpu_flags;
58 }
59 return 0;
60 }
61
62 /*
63 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
64 * @addr: range virtual start address (inclusive)
65 * @end: range virtual end address (exclusive)
66 * @required_fault: HMM_NEED_* flags
67 * @walk: mm_walk structure
68 * Return: -EBUSY after page fault, or page fault error
69 *
70 * This function will be called whenever pmd_none() or pte_none() returns true,
71 * or whenever there is no page directory covering the virtual address range.
72 */
hmm_vma_fault(unsigned long addr,unsigned long end,unsigned int required_fault,struct mm_walk * walk)73 static int hmm_vma_fault(unsigned long addr, unsigned long end,
74 unsigned int required_fault, struct mm_walk *walk)
75 {
76 struct hmm_vma_walk *hmm_vma_walk = walk->private;
77 struct vm_area_struct *vma = walk->vma;
78 unsigned int fault_flags = FAULT_FLAG_REMOTE;
79
80 WARN_ON_ONCE(!required_fault);
81 hmm_vma_walk->last = addr;
82
83 if (required_fault & HMM_NEED_WRITE_FAULT) {
84 if (!(vma->vm_flags & VM_WRITE))
85 return -EPERM;
86 fault_flags |= FAULT_FLAG_WRITE;
87 }
88
89 for (; addr < end; addr += PAGE_SIZE)
90 if (handle_mm_fault(vma, addr, fault_flags, NULL) &
91 VM_FAULT_ERROR)
92 return -EFAULT;
93 return -EBUSY;
94 }
95
hmm_pte_need_fault(const struct hmm_vma_walk * hmm_vma_walk,unsigned long pfn_req_flags,unsigned long cpu_flags)96 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
97 unsigned long pfn_req_flags,
98 unsigned long cpu_flags)
99 {
100 struct hmm_range *range = hmm_vma_walk->range;
101
102 /*
103 * So we not only consider the individual per page request we also
104 * consider the default flags requested for the range. The API can
105 * be used 2 ways. The first one where the HMM user coalesces
106 * multiple page faults into one request and sets flags per pfn for
107 * those faults. The second one where the HMM user wants to pre-
108 * fault a range with specific flags. For the latter one it is a
109 * waste to have the user pre-fill the pfn arrays with a default
110 * flags value.
111 */
112 pfn_req_flags &= range->pfn_flags_mask;
113 pfn_req_flags |= range->default_flags;
114
115 /* We aren't ask to do anything ... */
116 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
117 return 0;
118
119 /* Need to write fault ? */
120 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
121 !(cpu_flags & HMM_PFN_WRITE))
122 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
123
124 /* If CPU page table is not valid then we need to fault */
125 if (!(cpu_flags & HMM_PFN_VALID))
126 return HMM_NEED_FAULT;
127 return 0;
128 }
129
130 static unsigned int
hmm_range_need_fault(const struct hmm_vma_walk * hmm_vma_walk,const unsigned long hmm_pfns[],unsigned long npages,unsigned long cpu_flags)131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
132 const unsigned long hmm_pfns[], unsigned long npages,
133 unsigned long cpu_flags)
134 {
135 struct hmm_range *range = hmm_vma_walk->range;
136 unsigned int required_fault = 0;
137 unsigned long i;
138
139 /*
140 * If the default flags do not request to fault pages, and the mask does
141 * not allow for individual pages to be faulted, then
142 * hmm_pte_need_fault() will always return 0.
143 */
144 if (!((range->default_flags | range->pfn_flags_mask) &
145 HMM_PFN_REQ_FAULT))
146 return 0;
147
148 for (i = 0; i < npages; ++i) {
149 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
150 cpu_flags);
151 if (required_fault == HMM_NEED_ALL_BITS)
152 return required_fault;
153 }
154 return required_fault;
155 }
156
hmm_vma_walk_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
158 __always_unused int depth, struct mm_walk *walk)
159 {
160 struct hmm_vma_walk *hmm_vma_walk = walk->private;
161 struct hmm_range *range = hmm_vma_walk->range;
162 unsigned int required_fault;
163 unsigned long i, npages;
164 unsigned long *hmm_pfns;
165
166 i = (addr - range->start) >> PAGE_SHIFT;
167 npages = (end - addr) >> PAGE_SHIFT;
168 hmm_pfns = &range->hmm_pfns[i];
169 required_fault =
170 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
171 if (!walk->vma) {
172 if (required_fault)
173 return -EFAULT;
174 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
175 }
176 if (required_fault)
177 return hmm_vma_fault(addr, end, required_fault, walk);
178 return hmm_pfns_fill(addr, end, range, 0);
179 }
180
hmm_pfn_flags_order(unsigned long order)181 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
182 {
183 return order << HMM_PFN_ORDER_SHIFT;
184 }
185
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_to_hmm_pfn_flags(struct hmm_range * range,pmd_t pmd)187 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
188 pmd_t pmd)
189 {
190 if (pmd_protnone(pmd))
191 return 0;
192 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
193 HMM_PFN_VALID) |
194 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
195 }
196
hmm_vma_handle_pmd(struct mm_walk * walk,unsigned long addr,unsigned long end,unsigned long hmm_pfns[],pmd_t pmd)197 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
198 unsigned long end, unsigned long hmm_pfns[],
199 pmd_t pmd)
200 {
201 struct hmm_vma_walk *hmm_vma_walk = walk->private;
202 struct hmm_range *range = hmm_vma_walk->range;
203 unsigned long pfn, npages, i;
204 unsigned int required_fault;
205 unsigned long cpu_flags;
206
207 npages = (end - addr) >> PAGE_SHIFT;
208 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
209 required_fault =
210 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
211 if (required_fault)
212 return hmm_vma_fault(addr, end, required_fault, walk);
213
214 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
215 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
216 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
217 hmm_pfns[i] |= pfn | cpu_flags;
218 }
219 return 0;
220 }
221 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
222 /* stub to allow the code below to compile */
223 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
224 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
225 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226
pte_to_hmm_pfn_flags(struct hmm_range * range,pte_t pte)227 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
228 pte_t pte)
229 {
230 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
231 return 0;
232 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
233 }
234
hmm_vma_handle_pte(struct mm_walk * walk,unsigned long addr,unsigned long end,pmd_t * pmdp,pte_t * ptep,unsigned long * hmm_pfn)235 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
236 unsigned long end, pmd_t *pmdp, pte_t *ptep,
237 unsigned long *hmm_pfn)
238 {
239 struct hmm_vma_walk *hmm_vma_walk = walk->private;
240 struct hmm_range *range = hmm_vma_walk->range;
241 unsigned int required_fault;
242 unsigned long cpu_flags;
243 pte_t pte = ptep_get(ptep);
244 uint64_t pfn_req_flags = *hmm_pfn;
245 uint64_t new_pfn_flags = 0;
246
247 if (pte_none_mostly(pte)) {
248 required_fault =
249 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
250 if (required_fault)
251 goto fault;
252 goto out;
253 }
254
255 if (!pte_present(pte)) {
256 swp_entry_t entry = pte_to_swp_entry(pte);
257
258 /*
259 * Don't fault in device private pages owned by the caller,
260 * just report the PFN.
261 */
262 if (is_device_private_entry(entry) &&
263 page_pgmap(pfn_swap_entry_to_page(entry))->owner ==
264 range->dev_private_owner) {
265 cpu_flags = HMM_PFN_VALID;
266 if (is_writable_device_private_entry(entry))
267 cpu_flags |= HMM_PFN_WRITE;
268 new_pfn_flags = swp_offset_pfn(entry) | cpu_flags;
269 goto out;
270 }
271
272 required_fault =
273 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
274 if (!required_fault)
275 goto out;
276
277 if (!non_swap_entry(entry))
278 goto fault;
279
280 if (is_device_private_entry(entry))
281 goto fault;
282
283 if (is_device_exclusive_entry(entry))
284 goto fault;
285
286 if (is_migration_entry(entry)) {
287 pte_unmap(ptep);
288 hmm_vma_walk->last = addr;
289 migration_entry_wait(walk->mm, pmdp, addr);
290 return -EBUSY;
291 }
292
293 /* Report error for everything else */
294 pte_unmap(ptep);
295 return -EFAULT;
296 }
297
298 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
299 required_fault =
300 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
301 if (required_fault)
302 goto fault;
303
304 /*
305 * Since each architecture defines a struct page for the zero page, just
306 * fall through and treat it like a normal page.
307 */
308 if (!vm_normal_page(walk->vma, addr, pte) &&
309 !is_zero_pfn(pte_pfn(pte))) {
310 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
311 pte_unmap(ptep);
312 return -EFAULT;
313 }
314 new_pfn_flags = HMM_PFN_ERROR;
315 goto out;
316 }
317
318 new_pfn_flags = pte_pfn(pte) | cpu_flags;
319 out:
320 *hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags;
321 return 0;
322
323 fault:
324 pte_unmap(ptep);
325 /* Fault any virtual address we were asked to fault */
326 return hmm_vma_fault(addr, end, required_fault, walk);
327 }
328
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
hmm_vma_handle_absent_pmd(struct mm_walk * walk,unsigned long start,unsigned long end,unsigned long * hmm_pfns,pmd_t pmd)330 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start,
331 unsigned long end, unsigned long *hmm_pfns,
332 pmd_t pmd)
333 {
334 struct hmm_vma_walk *hmm_vma_walk = walk->private;
335 struct hmm_range *range = hmm_vma_walk->range;
336 unsigned long npages = (end - start) >> PAGE_SHIFT;
337 unsigned long addr = start;
338 swp_entry_t entry = pmd_to_swp_entry(pmd);
339 unsigned int required_fault;
340
341 if (is_device_private_entry(entry) &&
342 pfn_swap_entry_folio(entry)->pgmap->owner ==
343 range->dev_private_owner) {
344 unsigned long cpu_flags = HMM_PFN_VALID |
345 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
346 unsigned long pfn = swp_offset_pfn(entry);
347 unsigned long i;
348
349 if (is_writable_device_private_entry(entry))
350 cpu_flags |= HMM_PFN_WRITE;
351
352 /*
353 * Fully populate the PFN list though subsequent PFNs could be
354 * inferred, because drivers which are not yet aware of large
355 * folios probably do not support sparsely populated PFN lists.
356 */
357 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
358 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
359 hmm_pfns[i] |= pfn | cpu_flags;
360 }
361
362 return 0;
363 }
364
365 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
366 npages, 0);
367 if (required_fault) {
368 if (is_device_private_entry(entry))
369 return hmm_vma_fault(addr, end, required_fault, walk);
370 else
371 return -EFAULT;
372 }
373
374 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
375 }
376 #else
hmm_vma_handle_absent_pmd(struct mm_walk * walk,unsigned long start,unsigned long end,unsigned long * hmm_pfns,pmd_t pmd)377 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start,
378 unsigned long end, unsigned long *hmm_pfns,
379 pmd_t pmd)
380 {
381 struct hmm_vma_walk *hmm_vma_walk = walk->private;
382 struct hmm_range *range = hmm_vma_walk->range;
383 unsigned long npages = (end - start) >> PAGE_SHIFT;
384
385 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
386 return -EFAULT;
387 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
388 }
389 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
390
hmm_vma_walk_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)391 static int hmm_vma_walk_pmd(pmd_t *pmdp,
392 unsigned long start,
393 unsigned long end,
394 struct mm_walk *walk)
395 {
396 struct hmm_vma_walk *hmm_vma_walk = walk->private;
397 struct hmm_range *range = hmm_vma_walk->range;
398 unsigned long *hmm_pfns =
399 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
400 unsigned long npages = (end - start) >> PAGE_SHIFT;
401 unsigned long addr = start;
402 pte_t *ptep;
403 pmd_t pmd;
404
405 again:
406 pmd = pmdp_get_lockless(pmdp);
407 if (pmd_none(pmd))
408 return hmm_vma_walk_hole(start, end, -1, walk);
409
410 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
411 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
412 hmm_vma_walk->last = addr;
413 pmd_migration_entry_wait(walk->mm, pmdp);
414 return -EBUSY;
415 }
416 return hmm_pfns_fill(start, end, range, 0);
417 }
418
419 if (!pmd_present(pmd))
420 return hmm_vma_handle_absent_pmd(walk, start, end, hmm_pfns,
421 pmd);
422
423 if (pmd_trans_huge(pmd)) {
424 /*
425 * No need to take pmd_lock here, even if some other thread
426 * is splitting the huge pmd we will get that event through
427 * mmu_notifier callback.
428 *
429 * So just read pmd value and check again it's a transparent
430 * huge or device mapping one and compute corresponding pfn
431 * values.
432 */
433 pmd = pmdp_get_lockless(pmdp);
434 if (!pmd_trans_huge(pmd))
435 goto again;
436
437 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
438 }
439
440 /*
441 * We have handled all the valid cases above ie either none, migration,
442 * huge or transparent huge. At this point either it is a valid pmd
443 * entry pointing to pte directory or it is a bad pmd that will not
444 * recover.
445 */
446 if (pmd_bad(pmd)) {
447 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
448 return -EFAULT;
449 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
450 }
451
452 ptep = pte_offset_map(pmdp, addr);
453 if (!ptep)
454 goto again;
455 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
456 int r;
457
458 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
459 if (r) {
460 /* hmm_vma_handle_pte() did pte_unmap() */
461 return r;
462 }
463 }
464 pte_unmap(ptep - 1);
465 return 0;
466 }
467
468 #if defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_to_hmm_pfn_flags(struct hmm_range * range,pud_t pud)469 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
470 pud_t pud)
471 {
472 if (!pud_present(pud))
473 return 0;
474 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
475 HMM_PFN_VALID) |
476 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
477 }
478
hmm_vma_walk_pud(pud_t * pudp,unsigned long start,unsigned long end,struct mm_walk * walk)479 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
480 struct mm_walk *walk)
481 {
482 struct hmm_vma_walk *hmm_vma_walk = walk->private;
483 struct hmm_range *range = hmm_vma_walk->range;
484 unsigned long addr = start;
485 pud_t pud;
486 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
487
488 if (!ptl)
489 return 0;
490
491 /* Normally we don't want to split the huge page */
492 walk->action = ACTION_CONTINUE;
493
494 pud = READ_ONCE(*pudp);
495 if (!pud_present(pud)) {
496 spin_unlock(ptl);
497 return hmm_vma_walk_hole(start, end, -1, walk);
498 }
499
500 if (pud_leaf(pud)) {
501 unsigned long i, npages, pfn;
502 unsigned int required_fault;
503 unsigned long *hmm_pfns;
504 unsigned long cpu_flags;
505
506 i = (addr - range->start) >> PAGE_SHIFT;
507 npages = (end - addr) >> PAGE_SHIFT;
508 hmm_pfns = &range->hmm_pfns[i];
509
510 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
511 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
512 npages, cpu_flags);
513 if (required_fault) {
514 spin_unlock(ptl);
515 return hmm_vma_fault(addr, end, required_fault, walk);
516 }
517
518 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
519 for (i = 0; i < npages; ++i, ++pfn) {
520 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
521 hmm_pfns[i] |= pfn | cpu_flags;
522 }
523 goto out_unlock;
524 }
525
526 /* Ask for the PUD to be split */
527 walk->action = ACTION_SUBTREE;
528
529 out_unlock:
530 spin_unlock(ptl);
531 return 0;
532 }
533 #else
534 #define hmm_vma_walk_pud NULL
535 #endif
536
537 #ifdef CONFIG_HUGETLB_PAGE
hmm_vma_walk_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)538 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
539 unsigned long start, unsigned long end,
540 struct mm_walk *walk)
541 {
542 unsigned long addr = start, i, pfn;
543 struct hmm_vma_walk *hmm_vma_walk = walk->private;
544 struct hmm_range *range = hmm_vma_walk->range;
545 struct vm_area_struct *vma = walk->vma;
546 unsigned int required_fault;
547 unsigned long pfn_req_flags;
548 unsigned long cpu_flags;
549 spinlock_t *ptl;
550 pte_t entry;
551
552 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
553 entry = huge_ptep_get(walk->mm, addr, pte);
554
555 i = (start - range->start) >> PAGE_SHIFT;
556 pfn_req_flags = range->hmm_pfns[i];
557 cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
558 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
559 required_fault =
560 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
561 if (required_fault) {
562 int ret;
563
564 spin_unlock(ptl);
565 hugetlb_vma_unlock_read(vma);
566 /*
567 * Avoid deadlock: drop the vma lock before calling
568 * hmm_vma_fault(), which will itself potentially take and
569 * drop the vma lock. This is also correct from a
570 * protection point of view, because there is no further
571 * use here of either pte or ptl after dropping the vma
572 * lock.
573 */
574 ret = hmm_vma_fault(addr, end, required_fault, walk);
575 hugetlb_vma_lock_read(vma);
576 return ret;
577 }
578
579 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
580 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) {
581 range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
582 range->hmm_pfns[i] |= pfn | cpu_flags;
583 }
584
585 spin_unlock(ptl);
586 return 0;
587 }
588 #else
589 #define hmm_vma_walk_hugetlb_entry NULL
590 #endif /* CONFIG_HUGETLB_PAGE */
591
hmm_vma_walk_test(unsigned long start,unsigned long end,struct mm_walk * walk)592 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
593 struct mm_walk *walk)
594 {
595 struct hmm_vma_walk *hmm_vma_walk = walk->private;
596 struct hmm_range *range = hmm_vma_walk->range;
597 struct vm_area_struct *vma = walk->vma;
598
599 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
600 vma->vm_flags & VM_READ)
601 return 0;
602
603 /*
604 * vma ranges that don't have struct page backing them or map I/O
605 * devices directly cannot be handled by hmm_range_fault().
606 *
607 * If the vma does not allow read access, then assume that it does not
608 * allow write access either. HMM does not support architectures that
609 * allow write without read.
610 *
611 * If a fault is requested for an unsupported range then it is a hard
612 * failure.
613 */
614 if (hmm_range_need_fault(hmm_vma_walk,
615 range->hmm_pfns +
616 ((start - range->start) >> PAGE_SHIFT),
617 (end - start) >> PAGE_SHIFT, 0))
618 return -EFAULT;
619
620 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
621
622 /* Skip this vma and continue processing the next vma. */
623 return 1;
624 }
625
626 static const struct mm_walk_ops hmm_walk_ops = {
627 .pud_entry = hmm_vma_walk_pud,
628 .pmd_entry = hmm_vma_walk_pmd,
629 .pte_hole = hmm_vma_walk_hole,
630 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
631 .test_walk = hmm_vma_walk_test,
632 .walk_lock = PGWALK_RDLOCK,
633 };
634
635 /**
636 * hmm_range_fault - try to fault some address in a virtual address range
637 * @range: argument structure
638 *
639 * Returns 0 on success or one of the following error codes:
640 *
641 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
642 * (e.g., device file vma).
643 * -ENOMEM: Out of memory.
644 * -EPERM: Invalid permission (e.g., asking for write and range is read
645 * only).
646 * -EBUSY: The range has been invalidated and the caller needs to wait for
647 * the invalidation to finish.
648 * -EFAULT: A page was requested to be valid and could not be made valid
649 * ie it has no backing VMA or it is illegal to access
650 *
651 * This is similar to get_user_pages(), except that it can read the page tables
652 * without mutating them (ie causing faults).
653 */
hmm_range_fault(struct hmm_range * range)654 int hmm_range_fault(struct hmm_range *range)
655 {
656 struct hmm_vma_walk hmm_vma_walk = {
657 .range = range,
658 .last = range->start,
659 };
660 struct mm_struct *mm = range->notifier->mm;
661 int ret;
662
663 mmap_assert_locked(mm);
664
665 do {
666 /* If range is no longer valid force retry. */
667 if (mmu_interval_check_retry(range->notifier,
668 range->notifier_seq))
669 return -EBUSY;
670 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
671 &hmm_walk_ops, &hmm_vma_walk);
672 /*
673 * When -EBUSY is returned the loop restarts with
674 * hmm_vma_walk.last set to an address that has not been stored
675 * in pfns. All entries < last in the pfn array are set to their
676 * output, and all >= are still at their input values.
677 */
678 } while (ret == -EBUSY);
679 return ret;
680 }
681 EXPORT_SYMBOL(hmm_range_fault);
682
683 /**
684 * hmm_dma_map_alloc - Allocate HMM map structure
685 * @dev: device to allocate structure for
686 * @map: HMM map to allocate
687 * @nr_entries: number of entries in the map
688 * @dma_entry_size: size of the DMA entry in the map
689 *
690 * Allocate the HMM map structure and all the lists it contains.
691 * Return 0 on success, -ENOMEM on failure.
692 */
hmm_dma_map_alloc(struct device * dev,struct hmm_dma_map * map,size_t nr_entries,size_t dma_entry_size)693 int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map,
694 size_t nr_entries, size_t dma_entry_size)
695 {
696 bool dma_need_sync = false;
697 bool use_iova;
698
699 WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size));
700
701 /*
702 * The HMM API violates our normal DMA buffer ownership rules and can't
703 * transfer buffer ownership. The dma_addressing_limited() check is a
704 * best approximation to ensure no swiotlb buffering happens.
705 */
706 #ifdef CONFIG_DMA_NEED_SYNC
707 dma_need_sync = !dev->dma_skip_sync;
708 #endif /* CONFIG_DMA_NEED_SYNC */
709 if (dma_need_sync || dma_addressing_limited(dev))
710 return -EOPNOTSUPP;
711
712 map->dma_entry_size = dma_entry_size;
713 map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list),
714 GFP_KERNEL | __GFP_NOWARN);
715 if (!map->pfn_list)
716 return -ENOMEM;
717
718 use_iova = dma_iova_try_alloc(dev, &map->state, 0,
719 nr_entries * PAGE_SIZE);
720 if (!use_iova && dma_need_unmap(dev)) {
721 map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list),
722 GFP_KERNEL | __GFP_NOWARN);
723 if (!map->dma_list)
724 goto err_dma;
725 }
726 return 0;
727
728 err_dma:
729 kvfree(map->pfn_list);
730 return -ENOMEM;
731 }
732 EXPORT_SYMBOL_GPL(hmm_dma_map_alloc);
733
734 /**
735 * hmm_dma_map_free - iFree HMM map structure
736 * @dev: device to free structure from
737 * @map: HMM map containing the various lists and state
738 *
739 * Free the HMM map structure and all the lists it contains.
740 */
hmm_dma_map_free(struct device * dev,struct hmm_dma_map * map)741 void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map)
742 {
743 if (dma_use_iova(&map->state))
744 dma_iova_free(dev, &map->state);
745 kvfree(map->pfn_list);
746 kvfree(map->dma_list);
747 }
748 EXPORT_SYMBOL_GPL(hmm_dma_map_free);
749
750 /**
751 * hmm_dma_map_pfn - Map a physical HMM page to DMA address
752 * @dev: Device to map the page for
753 * @map: HMM map
754 * @idx: Index into the PFN and dma address arrays
755 * @p2pdma_state: PCI P2P state.
756 *
757 * dma_alloc_iova() allocates IOVA based on the size specified by their use in
758 * iova->size. Call this function after IOVA allocation to link whole @page
759 * to get the DMA address. Note that very first call to this function
760 * will have @offset set to 0 in the IOVA space allocated from
761 * dma_alloc_iova(). For subsequent calls to this function on same @iova,
762 * @offset needs to be advanced by the caller with the size of previous
763 * page that was linked + DMA address returned for the previous page that was
764 * linked by this function.
765 */
hmm_dma_map_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx,struct pci_p2pdma_map_state * p2pdma_state)766 dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map,
767 size_t idx,
768 struct pci_p2pdma_map_state *p2pdma_state)
769 {
770 struct dma_iova_state *state = &map->state;
771 dma_addr_t *dma_addrs = map->dma_list;
772 unsigned long *pfns = map->pfn_list;
773 struct page *page = hmm_pfn_to_page(pfns[idx]);
774 phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]);
775 size_t offset = idx * map->dma_entry_size;
776 unsigned long attrs = 0;
777 dma_addr_t dma_addr;
778 int ret;
779
780 if ((pfns[idx] & HMM_PFN_DMA_MAPPED) &&
781 !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) {
782 /*
783 * We are in this flow when there is a need to resync flags,
784 * for example when page was already linked in prefetch call
785 * with READ flag and now we need to add WRITE flag
786 *
787 * This page was already programmed to HW and we don't want/need
788 * to unlink and link it again just to resync flags.
789 */
790 if (dma_use_iova(state))
791 return state->addr + offset;
792
793 /*
794 * Without dma_need_unmap, the dma_addrs array is NULL, thus we
795 * need to regenerate the address below even if there already
796 * was a mapping. But !dma_need_unmap implies that the
797 * mapping stateless, so this is fine.
798 */
799 if (dma_need_unmap(dev))
800 return dma_addrs[idx];
801
802 /* Continue to remapping */
803 }
804
805 switch (pci_p2pdma_state(p2pdma_state, dev, page)) {
806 case PCI_P2PDMA_MAP_NONE:
807 break;
808 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
809 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
810 pfns[idx] |= HMM_PFN_P2PDMA;
811 break;
812 case PCI_P2PDMA_MAP_BUS_ADDR:
813 pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED;
814 return pci_p2pdma_bus_addr_map(p2pdma_state, paddr);
815 default:
816 return DMA_MAPPING_ERROR;
817 }
818
819 if (dma_use_iova(state)) {
820 ret = dma_iova_link(dev, state, paddr, offset,
821 map->dma_entry_size, DMA_BIDIRECTIONAL,
822 attrs);
823 if (ret)
824 goto error;
825
826 ret = dma_iova_sync(dev, state, offset, map->dma_entry_size);
827 if (ret) {
828 dma_iova_unlink(dev, state, offset, map->dma_entry_size,
829 DMA_BIDIRECTIONAL, attrs);
830 goto error;
831 }
832
833 dma_addr = state->addr + offset;
834 } else {
835 if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs))
836 goto error;
837
838 dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size,
839 DMA_BIDIRECTIONAL);
840 if (dma_mapping_error(dev, dma_addr))
841 goto error;
842
843 if (dma_need_unmap(dev))
844 dma_addrs[idx] = dma_addr;
845 }
846 pfns[idx] |= HMM_PFN_DMA_MAPPED;
847 return dma_addr;
848 error:
849 pfns[idx] &= ~HMM_PFN_P2PDMA;
850 return DMA_MAPPING_ERROR;
851
852 }
853 EXPORT_SYMBOL_GPL(hmm_dma_map_pfn);
854
855 /**
856 * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address
857 * @dev: Device to unmap the page from
858 * @map: HMM map
859 * @idx: Index of the PFN to unmap
860 *
861 * Returns true if the PFN was mapped and has been unmapped, false otherwise.
862 */
hmm_dma_unmap_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx)863 bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx)
864 {
865 const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED;
866 struct dma_iova_state *state = &map->state;
867 dma_addr_t *dma_addrs = map->dma_list;
868 unsigned long *pfns = map->pfn_list;
869 unsigned long attrs = 0;
870
871 if ((pfns[idx] & valid_dma) != valid_dma)
872 return false;
873
874 if (pfns[idx] & HMM_PFN_P2PDMA_BUS)
875 ; /* no need to unmap bus address P2P mappings */
876 else if (dma_use_iova(state)) {
877 if (pfns[idx] & HMM_PFN_P2PDMA)
878 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
879 dma_iova_unlink(dev, state, idx * map->dma_entry_size,
880 map->dma_entry_size, DMA_BIDIRECTIONAL, attrs);
881 } else if (dma_need_unmap(dev))
882 dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size,
883 DMA_BIDIRECTIONAL);
884
885 pfns[idx] &=
886 ~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS);
887 return true;
888 }
889 EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn);
890