xref: /linux/mm/hmm.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/hmm-dma.h>
14 #include <linux/init.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/mmzone.h>
20 #include <linux/pagemap.h>
21 #include <linux/swapops.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memremap.h>
24 #include <linux/sched/mm.h>
25 #include <linux/jump_label.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/pci-p2pdma.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memory_hotplug.h>
30 
31 #include "internal.h"
32 
33 struct hmm_vma_walk {
34 	struct hmm_range	*range;
35 	unsigned long		last;
36 };
37 
38 enum {
39 	HMM_NEED_FAULT = 1 << 0,
40 	HMM_NEED_WRITE_FAULT = 1 << 1,
41 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
42 };
43 
44 enum {
45 	/* These flags are carried from input-to-output */
46 	HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA |
47 			      HMM_PFN_P2PDMA_BUS,
48 };
49 
hmm_pfns_fill(unsigned long addr,unsigned long end,struct hmm_range * range,unsigned long cpu_flags)50 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
51 			 struct hmm_range *range, unsigned long cpu_flags)
52 {
53 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
54 
55 	for (; addr < end; addr += PAGE_SIZE, i++) {
56 		range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
57 		range->hmm_pfns[i] |= cpu_flags;
58 	}
59 	return 0;
60 }
61 
62 /*
63  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
64  * @addr: range virtual start address (inclusive)
65  * @end: range virtual end address (exclusive)
66  * @required_fault: HMM_NEED_* flags
67  * @walk: mm_walk structure
68  * Return: -EBUSY after page fault, or page fault error
69  *
70  * This function will be called whenever pmd_none() or pte_none() returns true,
71  * or whenever there is no page directory covering the virtual address range.
72  */
hmm_vma_fault(unsigned long addr,unsigned long end,unsigned int required_fault,struct mm_walk * walk)73 static int hmm_vma_fault(unsigned long addr, unsigned long end,
74 			 unsigned int required_fault, struct mm_walk *walk)
75 {
76 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
77 	struct vm_area_struct *vma = walk->vma;
78 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
79 
80 	WARN_ON_ONCE(!required_fault);
81 	hmm_vma_walk->last = addr;
82 
83 	if (required_fault & HMM_NEED_WRITE_FAULT) {
84 		if (!(vma->vm_flags & VM_WRITE))
85 			return -EPERM;
86 		fault_flags |= FAULT_FLAG_WRITE;
87 	}
88 
89 	for (; addr < end; addr += PAGE_SIZE)
90 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
91 		    VM_FAULT_ERROR)
92 			return -EFAULT;
93 	return -EBUSY;
94 }
95 
hmm_pte_need_fault(const struct hmm_vma_walk * hmm_vma_walk,unsigned long pfn_req_flags,unsigned long cpu_flags)96 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
97 				       unsigned long pfn_req_flags,
98 				       unsigned long cpu_flags)
99 {
100 	struct hmm_range *range = hmm_vma_walk->range;
101 
102 	/*
103 	 * So we not only consider the individual per page request we also
104 	 * consider the default flags requested for the range. The API can
105 	 * be used 2 ways. The first one where the HMM user coalesces
106 	 * multiple page faults into one request and sets flags per pfn for
107 	 * those faults. The second one where the HMM user wants to pre-
108 	 * fault a range with specific flags. For the latter one it is a
109 	 * waste to have the user pre-fill the pfn arrays with a default
110 	 * flags value.
111 	 */
112 	pfn_req_flags &= range->pfn_flags_mask;
113 	pfn_req_flags |= range->default_flags;
114 
115 	/* We aren't ask to do anything ... */
116 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
117 		return 0;
118 
119 	/* Need to write fault ? */
120 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
121 	    !(cpu_flags & HMM_PFN_WRITE))
122 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
123 
124 	/* If CPU page table is not valid then we need to fault */
125 	if (!(cpu_flags & HMM_PFN_VALID))
126 		return HMM_NEED_FAULT;
127 	return 0;
128 }
129 
130 static unsigned int
hmm_range_need_fault(const struct hmm_vma_walk * hmm_vma_walk,const unsigned long hmm_pfns[],unsigned long npages,unsigned long cpu_flags)131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
132 		     const unsigned long hmm_pfns[], unsigned long npages,
133 		     unsigned long cpu_flags)
134 {
135 	struct hmm_range *range = hmm_vma_walk->range;
136 	unsigned int required_fault = 0;
137 	unsigned long i;
138 
139 	/*
140 	 * If the default flags do not request to fault pages, and the mask does
141 	 * not allow for individual pages to be faulted, then
142 	 * hmm_pte_need_fault() will always return 0.
143 	 */
144 	if (!((range->default_flags | range->pfn_flags_mask) &
145 	      HMM_PFN_REQ_FAULT))
146 		return 0;
147 
148 	for (i = 0; i < npages; ++i) {
149 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
150 						     cpu_flags);
151 		if (required_fault == HMM_NEED_ALL_BITS)
152 			return required_fault;
153 	}
154 	return required_fault;
155 }
156 
hmm_vma_walk_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
158 			     __always_unused int depth, struct mm_walk *walk)
159 {
160 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
161 	struct hmm_range *range = hmm_vma_walk->range;
162 	unsigned int required_fault;
163 	unsigned long i, npages;
164 	unsigned long *hmm_pfns;
165 
166 	i = (addr - range->start) >> PAGE_SHIFT;
167 	npages = (end - addr) >> PAGE_SHIFT;
168 	hmm_pfns = &range->hmm_pfns[i];
169 	required_fault =
170 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
171 	if (!walk->vma) {
172 		if (required_fault)
173 			return -EFAULT;
174 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
175 	}
176 	if (required_fault)
177 		return hmm_vma_fault(addr, end, required_fault, walk);
178 	return hmm_pfns_fill(addr, end, range, 0);
179 }
180 
hmm_pfn_flags_order(unsigned long order)181 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
182 {
183 	return order << HMM_PFN_ORDER_SHIFT;
184 }
185 
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_to_hmm_pfn_flags(struct hmm_range * range,pmd_t pmd)187 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
188 						 pmd_t pmd)
189 {
190 	if (pmd_protnone(pmd))
191 		return 0;
192 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
193 				 HMM_PFN_VALID) |
194 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
195 }
196 
hmm_vma_handle_pmd(struct mm_walk * walk,unsigned long addr,unsigned long end,unsigned long hmm_pfns[],pmd_t pmd)197 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
198 			      unsigned long end, unsigned long hmm_pfns[],
199 			      pmd_t pmd)
200 {
201 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
202 	struct hmm_range *range = hmm_vma_walk->range;
203 	unsigned long pfn, npages, i;
204 	unsigned int required_fault;
205 	unsigned long cpu_flags;
206 
207 	npages = (end - addr) >> PAGE_SHIFT;
208 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
209 	required_fault =
210 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
211 	if (required_fault)
212 		return hmm_vma_fault(addr, end, required_fault, walk);
213 
214 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
215 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
216 		hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
217 		hmm_pfns[i] |= pfn | cpu_flags;
218 	}
219 	return 0;
220 }
221 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
222 /* stub to allow the code below to compile */
223 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
224 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
225 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226 
pte_to_hmm_pfn_flags(struct hmm_range * range,pte_t pte)227 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
228 						 pte_t pte)
229 {
230 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
231 		return 0;
232 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
233 }
234 
hmm_vma_handle_pte(struct mm_walk * walk,unsigned long addr,unsigned long end,pmd_t * pmdp,pte_t * ptep,unsigned long * hmm_pfn)235 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
236 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
237 			      unsigned long *hmm_pfn)
238 {
239 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
240 	struct hmm_range *range = hmm_vma_walk->range;
241 	unsigned int required_fault;
242 	unsigned long cpu_flags;
243 	pte_t pte = ptep_get(ptep);
244 	uint64_t pfn_req_flags = *hmm_pfn;
245 	uint64_t new_pfn_flags = 0;
246 
247 	if (pte_none_mostly(pte)) {
248 		required_fault =
249 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
250 		if (required_fault)
251 			goto fault;
252 		goto out;
253 	}
254 
255 	if (!pte_present(pte)) {
256 		swp_entry_t entry = pte_to_swp_entry(pte);
257 
258 		/*
259 		 * Don't fault in device private pages owned by the caller,
260 		 * just report the PFN.
261 		 */
262 		if (is_device_private_entry(entry) &&
263 		    page_pgmap(pfn_swap_entry_to_page(entry))->owner ==
264 		    range->dev_private_owner) {
265 			cpu_flags = HMM_PFN_VALID;
266 			if (is_writable_device_private_entry(entry))
267 				cpu_flags |= HMM_PFN_WRITE;
268 			new_pfn_flags = swp_offset_pfn(entry) | cpu_flags;
269 			goto out;
270 		}
271 
272 		required_fault =
273 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
274 		if (!required_fault)
275 			goto out;
276 
277 		if (!non_swap_entry(entry))
278 			goto fault;
279 
280 		if (is_device_private_entry(entry))
281 			goto fault;
282 
283 		if (is_device_exclusive_entry(entry))
284 			goto fault;
285 
286 		if (is_migration_entry(entry)) {
287 			pte_unmap(ptep);
288 			hmm_vma_walk->last = addr;
289 			migration_entry_wait(walk->mm, pmdp, addr);
290 			return -EBUSY;
291 		}
292 
293 		/* Report error for everything else */
294 		pte_unmap(ptep);
295 		return -EFAULT;
296 	}
297 
298 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
299 	required_fault =
300 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
301 	if (required_fault)
302 		goto fault;
303 
304 	/*
305 	 * Since each architecture defines a struct page for the zero page, just
306 	 * fall through and treat it like a normal page.
307 	 */
308 	if (!vm_normal_page(walk->vma, addr, pte) &&
309 	    !is_zero_pfn(pte_pfn(pte))) {
310 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
311 			pte_unmap(ptep);
312 			return -EFAULT;
313 		}
314 		new_pfn_flags = HMM_PFN_ERROR;
315 		goto out;
316 	}
317 
318 	new_pfn_flags = pte_pfn(pte) | cpu_flags;
319 out:
320 	*hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags;
321 	return 0;
322 
323 fault:
324 	pte_unmap(ptep);
325 	/* Fault any virtual address we were asked to fault */
326 	return hmm_vma_fault(addr, end, required_fault, walk);
327 }
328 
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
hmm_vma_handle_absent_pmd(struct mm_walk * walk,unsigned long start,unsigned long end,unsigned long * hmm_pfns,pmd_t pmd)330 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start,
331 				     unsigned long end, unsigned long *hmm_pfns,
332 				     pmd_t pmd)
333 {
334 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
335 	struct hmm_range *range = hmm_vma_walk->range;
336 	unsigned long npages = (end - start) >> PAGE_SHIFT;
337 	unsigned long addr = start;
338 	swp_entry_t entry = pmd_to_swp_entry(pmd);
339 	unsigned int required_fault;
340 
341 	if (is_device_private_entry(entry) &&
342 	    pfn_swap_entry_folio(entry)->pgmap->owner ==
343 	    range->dev_private_owner) {
344 		unsigned long cpu_flags = HMM_PFN_VALID |
345 			hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
346 		unsigned long pfn = swp_offset_pfn(entry);
347 		unsigned long i;
348 
349 		if (is_writable_device_private_entry(entry))
350 			cpu_flags |= HMM_PFN_WRITE;
351 
352 		/*
353 		 * Fully populate the PFN list though subsequent PFNs could be
354 		 * inferred, because drivers which are not yet aware of large
355 		 * folios probably do not support sparsely populated PFN lists.
356 		 */
357 		for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
358 			hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
359 			hmm_pfns[i] |= pfn | cpu_flags;
360 		}
361 
362 		return 0;
363 	}
364 
365 	required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
366 					      npages, 0);
367 	if (required_fault) {
368 		if (is_device_private_entry(entry))
369 			return hmm_vma_fault(addr, end, required_fault, walk);
370 		else
371 			return -EFAULT;
372 	}
373 
374 	return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
375 }
376 #else
hmm_vma_handle_absent_pmd(struct mm_walk * walk,unsigned long start,unsigned long end,unsigned long * hmm_pfns,pmd_t pmd)377 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start,
378 				     unsigned long end, unsigned long *hmm_pfns,
379 				     pmd_t pmd)
380 {
381 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
382 	struct hmm_range *range = hmm_vma_walk->range;
383 	unsigned long npages = (end - start) >> PAGE_SHIFT;
384 
385 	if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
386 		return -EFAULT;
387 	return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
388 }
389 #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
390 
hmm_vma_walk_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)391 static int hmm_vma_walk_pmd(pmd_t *pmdp,
392 			    unsigned long start,
393 			    unsigned long end,
394 			    struct mm_walk *walk)
395 {
396 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
397 	struct hmm_range *range = hmm_vma_walk->range;
398 	unsigned long *hmm_pfns =
399 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
400 	unsigned long npages = (end - start) >> PAGE_SHIFT;
401 	unsigned long addr = start;
402 	pte_t *ptep;
403 	pmd_t pmd;
404 
405 again:
406 	pmd = pmdp_get_lockless(pmdp);
407 	if (pmd_none(pmd))
408 		return hmm_vma_walk_hole(start, end, -1, walk);
409 
410 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
411 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
412 			hmm_vma_walk->last = addr;
413 			pmd_migration_entry_wait(walk->mm, pmdp);
414 			return -EBUSY;
415 		}
416 		return hmm_pfns_fill(start, end, range, 0);
417 	}
418 
419 	if (!pmd_present(pmd))
420 		return hmm_vma_handle_absent_pmd(walk, start, end, hmm_pfns,
421 						 pmd);
422 
423 	if (pmd_trans_huge(pmd)) {
424 		/*
425 		 * No need to take pmd_lock here, even if some other thread
426 		 * is splitting the huge pmd we will get that event through
427 		 * mmu_notifier callback.
428 		 *
429 		 * So just read pmd value and check again it's a transparent
430 		 * huge or device mapping one and compute corresponding pfn
431 		 * values.
432 		 */
433 		pmd = pmdp_get_lockless(pmdp);
434 		if (!pmd_trans_huge(pmd))
435 			goto again;
436 
437 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
438 	}
439 
440 	/*
441 	 * We have handled all the valid cases above ie either none, migration,
442 	 * huge or transparent huge. At this point either it is a valid pmd
443 	 * entry pointing to pte directory or it is a bad pmd that will not
444 	 * recover.
445 	 */
446 	if (pmd_bad(pmd)) {
447 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
448 			return -EFAULT;
449 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
450 	}
451 
452 	ptep = pte_offset_map(pmdp, addr);
453 	if (!ptep)
454 		goto again;
455 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
456 		int r;
457 
458 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
459 		if (r) {
460 			/* hmm_vma_handle_pte() did pte_unmap() */
461 			return r;
462 		}
463 	}
464 	pte_unmap(ptep - 1);
465 	return 0;
466 }
467 
468 #if defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_to_hmm_pfn_flags(struct hmm_range * range,pud_t pud)469 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
470 						 pud_t pud)
471 {
472 	if (!pud_present(pud))
473 		return 0;
474 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
475 				 HMM_PFN_VALID) |
476 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
477 }
478 
hmm_vma_walk_pud(pud_t * pudp,unsigned long start,unsigned long end,struct mm_walk * walk)479 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
480 		struct mm_walk *walk)
481 {
482 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
483 	struct hmm_range *range = hmm_vma_walk->range;
484 	unsigned long addr = start;
485 	pud_t pud;
486 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
487 
488 	if (!ptl)
489 		return 0;
490 
491 	/* Normally we don't want to split the huge page */
492 	walk->action = ACTION_CONTINUE;
493 
494 	pud = READ_ONCE(*pudp);
495 	if (!pud_present(pud)) {
496 		spin_unlock(ptl);
497 		return hmm_vma_walk_hole(start, end, -1, walk);
498 	}
499 
500 	if (pud_leaf(pud)) {
501 		unsigned long i, npages, pfn;
502 		unsigned int required_fault;
503 		unsigned long *hmm_pfns;
504 		unsigned long cpu_flags;
505 
506 		i = (addr - range->start) >> PAGE_SHIFT;
507 		npages = (end - addr) >> PAGE_SHIFT;
508 		hmm_pfns = &range->hmm_pfns[i];
509 
510 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
511 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
512 						      npages, cpu_flags);
513 		if (required_fault) {
514 			spin_unlock(ptl);
515 			return hmm_vma_fault(addr, end, required_fault, walk);
516 		}
517 
518 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
519 		for (i = 0; i < npages; ++i, ++pfn) {
520 			hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
521 			hmm_pfns[i] |= pfn | cpu_flags;
522 		}
523 		goto out_unlock;
524 	}
525 
526 	/* Ask for the PUD to be split */
527 	walk->action = ACTION_SUBTREE;
528 
529 out_unlock:
530 	spin_unlock(ptl);
531 	return 0;
532 }
533 #else
534 #define hmm_vma_walk_pud	NULL
535 #endif
536 
537 #ifdef CONFIG_HUGETLB_PAGE
hmm_vma_walk_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)538 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
539 				      unsigned long start, unsigned long end,
540 				      struct mm_walk *walk)
541 {
542 	unsigned long addr = start, i, pfn;
543 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
544 	struct hmm_range *range = hmm_vma_walk->range;
545 	struct vm_area_struct *vma = walk->vma;
546 	unsigned int required_fault;
547 	unsigned long pfn_req_flags;
548 	unsigned long cpu_flags;
549 	spinlock_t *ptl;
550 	pte_t entry;
551 
552 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
553 	entry = huge_ptep_get(walk->mm, addr, pte);
554 
555 	i = (start - range->start) >> PAGE_SHIFT;
556 	pfn_req_flags = range->hmm_pfns[i];
557 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
558 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
559 	required_fault =
560 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
561 	if (required_fault) {
562 		int ret;
563 
564 		spin_unlock(ptl);
565 		hugetlb_vma_unlock_read(vma);
566 		/*
567 		 * Avoid deadlock: drop the vma lock before calling
568 		 * hmm_vma_fault(), which will itself potentially take and
569 		 * drop the vma lock. This is also correct from a
570 		 * protection point of view, because there is no further
571 		 * use here of either pte or ptl after dropping the vma
572 		 * lock.
573 		 */
574 		ret = hmm_vma_fault(addr, end, required_fault, walk);
575 		hugetlb_vma_lock_read(vma);
576 		return ret;
577 	}
578 
579 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
580 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++) {
581 		range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
582 		range->hmm_pfns[i] |= pfn | cpu_flags;
583 	}
584 
585 	spin_unlock(ptl);
586 	return 0;
587 }
588 #else
589 #define hmm_vma_walk_hugetlb_entry NULL
590 #endif /* CONFIG_HUGETLB_PAGE */
591 
hmm_vma_walk_test(unsigned long start,unsigned long end,struct mm_walk * walk)592 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
593 			     struct mm_walk *walk)
594 {
595 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
596 	struct hmm_range *range = hmm_vma_walk->range;
597 	struct vm_area_struct *vma = walk->vma;
598 
599 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
600 	    vma->vm_flags & VM_READ)
601 		return 0;
602 
603 	/*
604 	 * vma ranges that don't have struct page backing them or map I/O
605 	 * devices directly cannot be handled by hmm_range_fault().
606 	 *
607 	 * If the vma does not allow read access, then assume that it does not
608 	 * allow write access either. HMM does not support architectures that
609 	 * allow write without read.
610 	 *
611 	 * If a fault is requested for an unsupported range then it is a hard
612 	 * failure.
613 	 */
614 	if (hmm_range_need_fault(hmm_vma_walk,
615 				 range->hmm_pfns +
616 					 ((start - range->start) >> PAGE_SHIFT),
617 				 (end - start) >> PAGE_SHIFT, 0))
618 		return -EFAULT;
619 
620 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
621 
622 	/* Skip this vma and continue processing the next vma. */
623 	return 1;
624 }
625 
626 static const struct mm_walk_ops hmm_walk_ops = {
627 	.pud_entry	= hmm_vma_walk_pud,
628 	.pmd_entry	= hmm_vma_walk_pmd,
629 	.pte_hole	= hmm_vma_walk_hole,
630 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
631 	.test_walk	= hmm_vma_walk_test,
632 	.walk_lock	= PGWALK_RDLOCK,
633 };
634 
635 /**
636  * hmm_range_fault - try to fault some address in a virtual address range
637  * @range:	argument structure
638  *
639  * Returns 0 on success or one of the following error codes:
640  *
641  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
642  *		(e.g., device file vma).
643  * -ENOMEM:	Out of memory.
644  * -EPERM:	Invalid permission (e.g., asking for write and range is read
645  *		only).
646  * -EBUSY:	The range has been invalidated and the caller needs to wait for
647  *		the invalidation to finish.
648  * -EFAULT:     A page was requested to be valid and could not be made valid
649  *              ie it has no backing VMA or it is illegal to access
650  *
651  * This is similar to get_user_pages(), except that it can read the page tables
652  * without mutating them (ie causing faults).
653  */
hmm_range_fault(struct hmm_range * range)654 int hmm_range_fault(struct hmm_range *range)
655 {
656 	struct hmm_vma_walk hmm_vma_walk = {
657 		.range = range,
658 		.last = range->start,
659 	};
660 	struct mm_struct *mm = range->notifier->mm;
661 	int ret;
662 
663 	mmap_assert_locked(mm);
664 
665 	do {
666 		/* If range is no longer valid force retry. */
667 		if (mmu_interval_check_retry(range->notifier,
668 					     range->notifier_seq))
669 			return -EBUSY;
670 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
671 				      &hmm_walk_ops, &hmm_vma_walk);
672 		/*
673 		 * When -EBUSY is returned the loop restarts with
674 		 * hmm_vma_walk.last set to an address that has not been stored
675 		 * in pfns. All entries < last in the pfn array are set to their
676 		 * output, and all >= are still at their input values.
677 		 */
678 	} while (ret == -EBUSY);
679 	return ret;
680 }
681 EXPORT_SYMBOL(hmm_range_fault);
682 
683 /**
684  * hmm_dma_map_alloc - Allocate HMM map structure
685  * @dev: device to allocate structure for
686  * @map: HMM map to allocate
687  * @nr_entries: number of entries in the map
688  * @dma_entry_size: size of the DMA entry in the map
689  *
690  * Allocate the HMM map structure and all the lists it contains.
691  * Return 0 on success, -ENOMEM on failure.
692  */
hmm_dma_map_alloc(struct device * dev,struct hmm_dma_map * map,size_t nr_entries,size_t dma_entry_size)693 int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map,
694 		      size_t nr_entries, size_t dma_entry_size)
695 {
696 	bool dma_need_sync = false;
697 	bool use_iova;
698 
699 	WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size));
700 
701 	/*
702 	 * The HMM API violates our normal DMA buffer ownership rules and can't
703 	 * transfer buffer ownership.  The dma_addressing_limited() check is a
704 	 * best approximation to ensure no swiotlb buffering happens.
705 	 */
706 #ifdef CONFIG_DMA_NEED_SYNC
707 	dma_need_sync = !dev->dma_skip_sync;
708 #endif /* CONFIG_DMA_NEED_SYNC */
709 	if (dma_need_sync || dma_addressing_limited(dev))
710 		return -EOPNOTSUPP;
711 
712 	map->dma_entry_size = dma_entry_size;
713 	map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list),
714 				 GFP_KERNEL | __GFP_NOWARN);
715 	if (!map->pfn_list)
716 		return -ENOMEM;
717 
718 	use_iova = dma_iova_try_alloc(dev, &map->state, 0,
719 			nr_entries * PAGE_SIZE);
720 	if (!use_iova && dma_need_unmap(dev)) {
721 		map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list),
722 					 GFP_KERNEL | __GFP_NOWARN);
723 		if (!map->dma_list)
724 			goto err_dma;
725 	}
726 	return 0;
727 
728 err_dma:
729 	kvfree(map->pfn_list);
730 	return -ENOMEM;
731 }
732 EXPORT_SYMBOL_GPL(hmm_dma_map_alloc);
733 
734 /**
735  * hmm_dma_map_free - iFree HMM map structure
736  * @dev: device to free structure from
737  * @map: HMM map containing the various lists and state
738  *
739  * Free the HMM map structure and all the lists it contains.
740  */
hmm_dma_map_free(struct device * dev,struct hmm_dma_map * map)741 void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map)
742 {
743 	if (dma_use_iova(&map->state))
744 		dma_iova_free(dev, &map->state);
745 	kvfree(map->pfn_list);
746 	kvfree(map->dma_list);
747 }
748 EXPORT_SYMBOL_GPL(hmm_dma_map_free);
749 
750 /**
751  * hmm_dma_map_pfn - Map a physical HMM page to DMA address
752  * @dev: Device to map the page for
753  * @map: HMM map
754  * @idx: Index into the PFN and dma address arrays
755  * @p2pdma_state: PCI P2P state.
756  *
757  * dma_alloc_iova() allocates IOVA based on the size specified by their use in
758  * iova->size. Call this function after IOVA allocation to link whole @page
759  * to get the DMA address. Note that very first call to this function
760  * will have @offset set to 0 in the IOVA space allocated from
761  * dma_alloc_iova(). For subsequent calls to this function on same @iova,
762  * @offset needs to be advanced by the caller with the size of previous
763  * page that was linked + DMA address returned for the previous page that was
764  * linked by this function.
765  */
hmm_dma_map_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx,struct pci_p2pdma_map_state * p2pdma_state)766 dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map,
767 			   size_t idx,
768 			   struct pci_p2pdma_map_state *p2pdma_state)
769 {
770 	struct dma_iova_state *state = &map->state;
771 	dma_addr_t *dma_addrs = map->dma_list;
772 	unsigned long *pfns = map->pfn_list;
773 	struct page *page = hmm_pfn_to_page(pfns[idx]);
774 	phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]);
775 	size_t offset = idx * map->dma_entry_size;
776 	unsigned long attrs = 0;
777 	dma_addr_t dma_addr;
778 	int ret;
779 
780 	if ((pfns[idx] & HMM_PFN_DMA_MAPPED) &&
781 	    !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) {
782 		/*
783 		 * We are in this flow when there is a need to resync flags,
784 		 * for example when page was already linked in prefetch call
785 		 * with READ flag and now we need to add WRITE flag
786 		 *
787 		 * This page was already programmed to HW and we don't want/need
788 		 * to unlink and link it again just to resync flags.
789 		 */
790 		if (dma_use_iova(state))
791 			return state->addr + offset;
792 
793 		/*
794 		 * Without dma_need_unmap, the dma_addrs array is NULL, thus we
795 		 * need to regenerate the address below even if there already
796 		 * was a mapping. But !dma_need_unmap implies that the
797 		 * mapping stateless, so this is fine.
798 		 */
799 		if (dma_need_unmap(dev))
800 			return dma_addrs[idx];
801 
802 		/* Continue to remapping */
803 	}
804 
805 	switch (pci_p2pdma_state(p2pdma_state, dev, page)) {
806 	case PCI_P2PDMA_MAP_NONE:
807 		break;
808 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
809 		attrs |= DMA_ATTR_SKIP_CPU_SYNC;
810 		pfns[idx] |= HMM_PFN_P2PDMA;
811 		break;
812 	case PCI_P2PDMA_MAP_BUS_ADDR:
813 		pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED;
814 		return pci_p2pdma_bus_addr_map(p2pdma_state, paddr);
815 	default:
816 		return DMA_MAPPING_ERROR;
817 	}
818 
819 	if (dma_use_iova(state)) {
820 		ret = dma_iova_link(dev, state, paddr, offset,
821 				    map->dma_entry_size, DMA_BIDIRECTIONAL,
822 				    attrs);
823 		if (ret)
824 			goto error;
825 
826 		ret = dma_iova_sync(dev, state, offset, map->dma_entry_size);
827 		if (ret) {
828 			dma_iova_unlink(dev, state, offset, map->dma_entry_size,
829 					DMA_BIDIRECTIONAL, attrs);
830 			goto error;
831 		}
832 
833 		dma_addr = state->addr + offset;
834 	} else {
835 		if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs))
836 			goto error;
837 
838 		dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size,
839 					DMA_BIDIRECTIONAL);
840 		if (dma_mapping_error(dev, dma_addr))
841 			goto error;
842 
843 		if (dma_need_unmap(dev))
844 			dma_addrs[idx] = dma_addr;
845 	}
846 	pfns[idx] |= HMM_PFN_DMA_MAPPED;
847 	return dma_addr;
848 error:
849 	pfns[idx] &= ~HMM_PFN_P2PDMA;
850 	return DMA_MAPPING_ERROR;
851 
852 }
853 EXPORT_SYMBOL_GPL(hmm_dma_map_pfn);
854 
855 /**
856  * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address
857  * @dev: Device to unmap the page from
858  * @map: HMM map
859  * @idx: Index of the PFN to unmap
860  *
861  * Returns true if the PFN was mapped and has been unmapped, false otherwise.
862  */
hmm_dma_unmap_pfn(struct device * dev,struct hmm_dma_map * map,size_t idx)863 bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx)
864 {
865 	const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED;
866 	struct dma_iova_state *state = &map->state;
867 	dma_addr_t *dma_addrs = map->dma_list;
868 	unsigned long *pfns = map->pfn_list;
869 	unsigned long attrs = 0;
870 
871 	if ((pfns[idx] & valid_dma) != valid_dma)
872 		return false;
873 
874 	if (pfns[idx] & HMM_PFN_P2PDMA_BUS)
875 		; /* no need to unmap bus address P2P mappings */
876 	else if (dma_use_iova(state)) {
877 		if (pfns[idx] & HMM_PFN_P2PDMA)
878 			attrs |= DMA_ATTR_SKIP_CPU_SYNC;
879 		dma_iova_unlink(dev, state, idx * map->dma_entry_size,
880 				map->dma_entry_size, DMA_BIDIRECTIONAL, attrs);
881 	} else if (dma_need_unmap(dev))
882 		dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size,
883 			       DMA_BIDIRECTIONAL);
884 
885 	pfns[idx] &=
886 		~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS);
887 	return true;
888 }
889 EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn);
890