xref: /linux/mm/filemap.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/leafops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <linux/pgalloc.h>
52 
53 #include <asm/tlbflush.h>
54 #include "internal.h"
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/filemap.h>
58 
59 /*
60  * FIXME: remove all knowledge of the buffer layer from the core VM
61  */
62 #include <linux/buffer_head.h> /* for try_to_free_buffers */
63 
64 #include <asm/mman.h>
65 
66 #include "swap.h"
67 
68 /*
69  * Shared mappings implemented 30.11.1994. It's not fully working yet,
70  * though.
71  *
72  * Shared mappings now work. 15.8.1995  Bruno.
73  *
74  * finished 'unifying' the page and buffer cache and SMP-threaded the
75  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
76  *
77  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
78  */
79 
80 /*
81  * Lock ordering:
82  *
83  *  ->i_mmap_rwsem		(truncate_pagecache)
84  *    ->private_lock		(__free_pte->block_dirty_folio)
85  *      ->swap_lock		(exclusive_swap_page, others)
86  *        ->i_pages lock
87  *
88  *  ->i_rwsem
89  *    ->invalidate_lock		(acquired by fs in truncate path)
90  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
91  *
92  *  ->mmap_lock
93  *    ->i_mmap_rwsem
94  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
95  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
96  *
97  *  ->mmap_lock
98  *    ->invalidate_lock		(filemap_fault)
99  *      ->lock_page		(filemap_fault, access_process_vm)
100  *
101  *  ->i_rwsem			(generic_perform_write)
102  *    ->mmap_lock		(fault_in_readable->do_page_fault)
103  *
104  *  bdi->wb.list_lock
105  *    sb_lock			(fs/fs-writeback.c)
106  *    ->i_pages lock		(__sync_single_inode)
107  *
108  *  ->i_mmap_rwsem
109  *    ->anon_vma.lock		(vma_merge)
110  *
111  *  ->anon_vma.lock
112  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
113  *
114  *  ->page_table_lock or pte_lock
115  *    ->swap_lock		(try_to_unmap_one)
116  *    ->private_lock		(try_to_unmap_one)
117  *    ->i_pages lock		(try_to_unmap_one)
118  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
119  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
120  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
123  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
124  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
125  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
126  *    ->private_lock		(zap_pte_range->block_dirty_folio)
127  */
128 
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)129 static void page_cache_delete(struct address_space *mapping,
130 				   struct folio *folio, void *shadow)
131 {
132 	XA_STATE(xas, &mapping->i_pages, folio->index);
133 	long nr = 1;
134 
135 	mapping_set_update(&xas, mapping);
136 
137 	xas_set_order(&xas, folio->index, folio_order(folio));
138 	nr = folio_nr_pages(folio);
139 
140 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	folio->mapping = NULL;
146 	/* Leave folio->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)150 static void filemap_unaccount_folio(struct address_space *mapping,
151 		struct folio *folio)
152 {
153 	long nr;
154 
155 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 			int mapcount = folio_mapcount(folio);
165 
166 			if (folio_ref_count(folio) >= mapcount + 2) {
167 				/*
168 				 * All vmas have already been torn down, so it's
169 				 * a good bet that actually the page is unmapped
170 				 * and we'd rather not leak it: if we're wrong,
171 				 * another bad page check should catch it later.
172 				 */
173 				atomic_set(&folio->_mapcount, -1);
174 				folio_ref_sub(folio, mapcount);
175 			}
176 		}
177 	}
178 
179 	/* hugetlb folios do not participate in page cache accounting. */
180 	if (folio_test_hugetlb(folio))
181 		return;
182 
183 	nr = folio_nr_pages(folio);
184 
185 	lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 	if (folio_test_swapbacked(folio)) {
187 		lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 		if (folio_test_pmd_mappable(folio))
189 			lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 	} else if (folio_test_pmd_mappable(folio)) {
191 		lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 		filemap_nr_thps_dec(mapping);
193 	}
194 	if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags))
195 		mod_node_page_state(folio_pgdat(folio),
196 				    NR_KERNEL_FILE_PAGES, -nr);
197 
198 	/*
199 	 * At this point folio must be either written or cleaned by
200 	 * truncate.  Dirty folio here signals a bug and loss of
201 	 * unwritten data - on ordinary filesystems.
202 	 *
203 	 * But it's harmless on in-memory filesystems like tmpfs; and can
204 	 * occur when a driver which did get_user_pages() sets page dirty
205 	 * before putting it, while the inode is being finally evicted.
206 	 *
207 	 * Below fixes dirty accounting after removing the folio entirely
208 	 * but leaves the dirty flag set: it has no effect for truncated
209 	 * folio and anyway will be cleared before returning folio to
210 	 * buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 			 mapping_can_writeback(mapping)))
214 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
215 }
216 
217 /*
218  * Delete a page from the page cache and free it. Caller has to make
219  * sure the page is locked and that nobody else uses it - or that usage
220  * is safe.  The caller must hold the i_pages lock.
221  */
__filemap_remove_folio(struct folio * folio,void * shadow)222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 	struct address_space *mapping = folio->mapping;
225 
226 	trace_mm_filemap_delete_from_page_cache(folio);
227 	filemap_unaccount_folio(mapping, folio);
228 	page_cache_delete(mapping, folio, shadow);
229 }
230 
filemap_free_folio(struct address_space * mapping,struct folio * folio)231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 	void (*free_folio)(struct folio *);
234 
235 	free_folio = mapping->a_ops->free_folio;
236 	if (free_folio)
237 		free_folio(folio);
238 
239 	folio_put_refs(folio, folio_nr_pages(folio));
240 }
241 
242 /**
243  * filemap_remove_folio - Remove folio from page cache.
244  * @folio: The folio.
245  *
246  * This must be called only on folios that are locked and have been
247  * verified to be in the page cache.  It will never put the folio into
248  * the free list because the caller has a reference on the page.
249  */
filemap_remove_folio(struct folio * folio)250 void filemap_remove_folio(struct folio *folio)
251 {
252 	struct address_space *mapping = folio->mapping;
253 
254 	BUG_ON(!folio_test_locked(folio));
255 	spin_lock(&mapping->host->i_lock);
256 	xa_lock_irq(&mapping->i_pages);
257 	__filemap_remove_folio(folio, NULL);
258 	xa_unlock_irq(&mapping->i_pages);
259 	if (mapping_shrinkable(mapping))
260 		inode_lru_list_add(mapping->host);
261 	spin_unlock(&mapping->host->i_lock);
262 
263 	filemap_free_folio(mapping, folio);
264 }
265 
266 /*
267  * page_cache_delete_batch - delete several folios from page cache
268  * @mapping: the mapping to which folios belong
269  * @fbatch: batch of folios to delete
270  *
271  * The function walks over mapping->i_pages and removes folios passed in
272  * @fbatch from the mapping. The function expects @fbatch to be sorted
273  * by page index and is optimised for it to be dense.
274  * It tolerates holes in @fbatch (mapping entries at those indices are not
275  * modified).
276  *
277  * The function expects the i_pages lock to be held.
278  */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)279 static void page_cache_delete_batch(struct address_space *mapping,
280 			     struct folio_batch *fbatch)
281 {
282 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 	long total_pages = 0;
284 	int i = 0;
285 	struct folio *folio;
286 
287 	mapping_set_update(&xas, mapping);
288 	xas_for_each(&xas, folio, ULONG_MAX) {
289 		if (i >= folio_batch_count(fbatch))
290 			break;
291 
292 		/* A swap/dax/shadow entry got inserted? Skip it. */
293 		if (xa_is_value(folio))
294 			continue;
295 		/*
296 		 * A page got inserted in our range? Skip it. We have our
297 		 * pages locked so they are protected from being removed.
298 		 * If we see a page whose index is higher than ours, it
299 		 * means our page has been removed, which shouldn't be
300 		 * possible because we're holding the PageLock.
301 		 */
302 		if (folio != fbatch->folios[i]) {
303 			VM_BUG_ON_FOLIO(folio->index >
304 					fbatch->folios[i]->index, folio);
305 			continue;
306 		}
307 
308 		WARN_ON_ONCE(!folio_test_locked(folio));
309 
310 		folio->mapping = NULL;
311 		/* Leave folio->index set: truncation lookup relies on it */
312 
313 		i++;
314 		xas_store(&xas, NULL);
315 		total_pages += folio_nr_pages(folio);
316 	}
317 	mapping->nrpages -= total_pages;
318 }
319 
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)320 void delete_from_page_cache_batch(struct address_space *mapping,
321 				  struct folio_batch *fbatch)
322 {
323 	int i;
324 
325 	if (!folio_batch_count(fbatch))
326 		return;
327 
328 	spin_lock(&mapping->host->i_lock);
329 	xa_lock_irq(&mapping->i_pages);
330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
331 		struct folio *folio = fbatch->folios[i];
332 
333 		trace_mm_filemap_delete_from_page_cache(folio);
334 		filemap_unaccount_folio(mapping, folio);
335 	}
336 	page_cache_delete_batch(mapping, fbatch);
337 	xa_unlock_irq(&mapping->i_pages);
338 	if (mapping_shrinkable(mapping))
339 		inode_lru_list_add(mapping->host);
340 	spin_unlock(&mapping->host->i_lock);
341 
342 	for (i = 0; i < folio_batch_count(fbatch); i++)
343 		filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345 
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
filemap_check_and_keep_errors(struct address_space * mapping)360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_EIO, &mapping->flags))
364 		return -EIO;
365 	if (test_bit(AS_ENOSPC, &mapping->flags))
366 		return -ENOSPC;
367 	return 0;
368 }
369 
filemap_writeback(struct address_space * mapping,loff_t start,loff_t end,enum writeback_sync_modes sync_mode,long * nr_to_write)370 static int filemap_writeback(struct address_space *mapping, loff_t start,
371 		loff_t end, enum writeback_sync_modes sync_mode,
372 		long *nr_to_write)
373 {
374 	struct writeback_control wbc = {
375 		.sync_mode	= sync_mode,
376 		.nr_to_write	= nr_to_write ? *nr_to_write : LONG_MAX,
377 		.range_start	= start,
378 		.range_end	= end,
379 	};
380 	int ret;
381 
382 	if (!mapping_can_writeback(mapping) ||
383 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
384 		return 0;
385 
386 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
387 	ret = do_writepages(mapping, &wbc);
388 	wbc_detach_inode(&wbc);
389 
390 	if (!ret && nr_to_write)
391 		*nr_to_write = wbc.nr_to_write;
392 	return ret;
393 }
394 
395 /**
396  * filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397  * @mapping:	address space structure to write
398  * @start:	offset in bytes where the range starts
399  * @end:	offset in bytes where the range ends (inclusive)
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * This is a data integrity operation that waits upon dirty or in writeback
405  * pages.
406  *
407  * Return: %0 on success, negative error code otherwise.
408  */
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)409 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
410 		loff_t end)
411 {
412 	return filemap_writeback(mapping, start, end, WB_SYNC_ALL, NULL);
413 }
414 EXPORT_SYMBOL(filemap_fdatawrite_range);
415 
filemap_fdatawrite(struct address_space * mapping)416 int filemap_fdatawrite(struct address_space *mapping)
417 {
418 	return filemap_fdatawrite_range(mapping, 0, LLONG_MAX);
419 }
420 EXPORT_SYMBOL(filemap_fdatawrite);
421 
422 /**
423  * filemap_flush_range - start writeback on a range
424  * @mapping:	target address_space
425  * @start:	index to start writeback on
426  * @end:	last (inclusive) index for writeback
427  *
428  * This is a non-integrity writeback helper, to start writing back folios
429  * for the indicated range.
430  *
431  * Return: %0 on success, negative error code otherwise.
432  */
filemap_flush_range(struct address_space * mapping,loff_t start,loff_t end)433 int filemap_flush_range(struct address_space *mapping, loff_t start,
434 				  loff_t end)
435 {
436 	return filemap_writeback(mapping, start, end, WB_SYNC_NONE, NULL);
437 }
438 EXPORT_SYMBOL_GPL(filemap_flush_range);
439 
440 /**
441  * filemap_flush - mostly a non-blocking flush
442  * @mapping:	target address_space
443  *
444  * This is a mostly non-blocking flush.  Not suitable for data-integrity
445  * purposes - I/O may not be started against all dirty pages.
446  *
447  * Return: %0 on success, negative error code otherwise.
448  */
filemap_flush(struct address_space * mapping)449 int filemap_flush(struct address_space *mapping)
450 {
451 	return filemap_flush_range(mapping, 0, LLONG_MAX);
452 }
453 EXPORT_SYMBOL(filemap_flush);
454 
455 /*
456  * Start writeback on @nr_to_write pages from @mapping.  No one but the existing
457  * btrfs caller should be using this.  Talk to linux-mm if you think adding a
458  * new caller is a good idea.
459  */
filemap_flush_nr(struct address_space * mapping,long * nr_to_write)460 int filemap_flush_nr(struct address_space *mapping, long *nr_to_write)
461 {
462 	return filemap_writeback(mapping, 0, LLONG_MAX, WB_SYNC_NONE,
463 			nr_to_write);
464 }
465 EXPORT_SYMBOL_FOR_MODULES(filemap_flush_nr, "btrfs");
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct folio *folio;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		folio = xas_find(&xas, max);
492 		if (xas_retry(&xas, folio))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(folio))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct folio_batch fbatch;
516 	unsigned nr_folios;
517 
518 	folio_batch_init(&fbatch);
519 
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 				PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526 		if (!nr_folios)
527 			break;
528 
529 		for (i = 0; i < nr_folios; i++) {
530 			struct folio *folio = fbatch.folios[i];
531 
532 			folio_wait_writeback(folio);
533 		}
534 		folio_batch_release(&fbatch);
535 		cond_resched();
536 	}
537 }
538 
539 /**
540  * filemap_fdatawait_range - wait for writeback to complete
541  * @mapping:		address space structure to wait for
542  * @start_byte:		offset in bytes where the range starts
543  * @end_byte:		offset in bytes where the range ends (inclusive)
544  *
545  * Walk the list of under-writeback pages of the given address space
546  * in the given range and wait for all of them.  Check error status of
547  * the address space and return it.
548  *
549  * Since the error status of the address space is cleared by this function,
550  * callers are responsible for checking the return value and handling and/or
551  * reporting the error.
552  *
553  * Return: error status of the address space.
554  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 			    loff_t end_byte)
557 {
558 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
559 	return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562 
563 /**
564  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565  * @mapping:		address space structure to wait for
566  * @start_byte:		offset in bytes where the range starts
567  * @end_byte:		offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the given address space in the
570  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
571  * this function does not clear error status of the address space.
572  *
573  * Use this function if callers don't handle errors themselves.  Expected
574  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575  * fsfreeze(8)
576  */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 		loff_t start_byte, loff_t end_byte)
579 {
580 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
581 	return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584 
585 /**
586  * file_fdatawait_range - wait for writeback to complete
587  * @file:		file pointing to address space structure to wait for
588  * @start_byte:		offset in bytes where the range starts
589  * @end_byte:		offset in bytes where the range ends (inclusive)
590  *
591  * Walk the list of under-writeback pages of the address space that file
592  * refers to, in the given range and wait for all of them.  Check error
593  * status of the address space vs. the file->f_wb_err cursor and return it.
594  *
595  * Since the error status of the file is advanced by this function,
596  * callers are responsible for checking the return value and handling and/or
597  * reporting the error.
598  *
599  * Return: error status of the address space vs. the file->f_wb_err cursor.
600  */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 	struct address_space *mapping = file->f_mapping;
604 
605 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
606 	return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609 
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  *
622  * Return: error status of the address space.
623  */
filemap_fdatawait_keep_errors(struct address_space * mapping)624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 	return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630 
631 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 	return mapping->nrpages;
635 }
636 
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)637 bool filemap_range_has_writeback(struct address_space *mapping,
638 				 loff_t start_byte, loff_t end_byte)
639 {
640 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 	pgoff_t max = end_byte >> PAGE_SHIFT;
642 	struct folio *folio;
643 
644 	if (end_byte < start_byte)
645 		return false;
646 
647 	rcu_read_lock();
648 	xas_for_each(&xas, folio, max) {
649 		if (xas_retry(&xas, folio))
650 			continue;
651 		if (xa_is_value(folio))
652 			continue;
653 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
654 				folio_test_writeback(folio))
655 			break;
656 	}
657 	rcu_read_unlock();
658 	return folio != NULL;
659 }
660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
661 
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:	the address_space for the pages
665  * @lstart:	offset in bytes where the range starts
666  * @lend:	offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  *
673  * Return: error status of the address space.
674  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)675 int filemap_write_and_wait_range(struct address_space *mapping,
676 				 loff_t lstart, loff_t lend)
677 {
678 	int err = 0, err2;
679 
680 	if (lend < lstart)
681 		return 0;
682 
683 	if (mapping_needs_writeback(mapping)) {
684 		err = filemap_fdatawrite_range(mapping, lstart, lend);
685 		/*
686 		 * Even if the above returned error, the pages may be
687 		 * written partially (e.g. -ENOSPC), so we wait for it.
688 		 * But the -EIO is special case, it may indicate the worst
689 		 * thing (e.g. bug) happened, so we avoid waiting for it.
690 		 */
691 		if (err != -EIO)
692 			__filemap_fdatawait_range(mapping, lstart, lend);
693 	}
694 	err2 = filemap_check_errors(mapping);
695 	if (!err)
696 		err = err2;
697 	return err;
698 }
699 EXPORT_SYMBOL(filemap_write_and_wait_range);
700 
__filemap_set_wb_err(struct address_space * mapping,int err)701 void __filemap_set_wb_err(struct address_space *mapping, int err)
702 {
703 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
704 
705 	trace_filemap_set_wb_err(mapping, eseq);
706 }
707 EXPORT_SYMBOL(__filemap_set_wb_err);
708 
709 /**
710  * file_check_and_advance_wb_err - report wb error (if any) that was previously
711  * 				   and advance wb_err to current one
712  * @file: struct file on which the error is being reported
713  *
714  * When userland calls fsync (or something like nfsd does the equivalent), we
715  * want to report any writeback errors that occurred since the last fsync (or
716  * since the file was opened if there haven't been any).
717  *
718  * Grab the wb_err from the mapping. If it matches what we have in the file,
719  * then just quickly return 0. The file is all caught up.
720  *
721  * If it doesn't match, then take the mapping value, set the "seen" flag in
722  * it and try to swap it into place. If it works, or another task beat us
723  * to it with the new value, then update the f_wb_err and return the error
724  * portion. The error at this point must be reported via proper channels
725  * (a'la fsync, or NFS COMMIT operation, etc.).
726  *
727  * While we handle mapping->wb_err with atomic operations, the f_wb_err
728  * value is protected by the f_lock since we must ensure that it reflects
729  * the latest value swapped in for this file descriptor.
730  *
731  * Return: %0 on success, negative error code otherwise.
732  */
file_check_and_advance_wb_err(struct file * file)733 int file_check_and_advance_wb_err(struct file *file)
734 {
735 	int err = 0;
736 	errseq_t old = READ_ONCE(file->f_wb_err);
737 	struct address_space *mapping = file->f_mapping;
738 
739 	/* Locklessly handle the common case where nothing has changed */
740 	if (errseq_check(&mapping->wb_err, old)) {
741 		/* Something changed, must use slow path */
742 		spin_lock(&file->f_lock);
743 		old = file->f_wb_err;
744 		err = errseq_check_and_advance(&mapping->wb_err,
745 						&file->f_wb_err);
746 		trace_file_check_and_advance_wb_err(file, old);
747 		spin_unlock(&file->f_lock);
748 	}
749 
750 	/*
751 	 * We're mostly using this function as a drop in replacement for
752 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
753 	 * that the legacy code would have had on these flags.
754 	 */
755 	clear_bit(AS_EIO, &mapping->flags);
756 	clear_bit(AS_ENOSPC, &mapping->flags);
757 	return err;
758 }
759 EXPORT_SYMBOL(file_check_and_advance_wb_err);
760 
761 /**
762  * file_write_and_wait_range - write out & wait on a file range
763  * @file:	file pointing to address_space with pages
764  * @lstart:	offset in bytes where the range starts
765  * @lend:	offset in bytes where the range ends (inclusive)
766  *
767  * Write out and wait upon file offsets lstart->lend, inclusive.
768  *
769  * Note that @lend is inclusive (describes the last byte to be written) so
770  * that this function can be used to write to the very end-of-file (end = -1).
771  *
772  * After writing out and waiting on the data, we check and advance the
773  * f_wb_err cursor to the latest value, and return any errors detected there.
774  *
775  * Return: %0 on success, negative error code otherwise.
776  */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)777 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
778 {
779 	int err = 0, err2;
780 	struct address_space *mapping = file->f_mapping;
781 
782 	if (lend < lstart)
783 		return 0;
784 
785 	if (mapping_needs_writeback(mapping)) {
786 		err = filemap_fdatawrite_range(mapping, lstart, lend);
787 		/* See comment of filemap_write_and_wait() */
788 		if (err != -EIO)
789 			__filemap_fdatawait_range(mapping, lstart, lend);
790 	}
791 	err2 = file_check_and_advance_wb_err(file);
792 	if (!err)
793 		err = err2;
794 	return err;
795 }
796 EXPORT_SYMBOL(file_write_and_wait_range);
797 
798 /**
799  * replace_page_cache_folio - replace a pagecache folio with a new one
800  * @old:	folio to be replaced
801  * @new:	folio to replace with
802  *
803  * This function replaces a folio in the pagecache with a new one.  On
804  * success it acquires the pagecache reference for the new folio and
805  * drops it for the old folio.  Both the old and new folios must be
806  * locked.  This function does not add the new folio to the LRU, the
807  * caller must do that.
808  *
809  * The remove + add is atomic.  This function cannot fail.
810  */
replace_page_cache_folio(struct folio * old,struct folio * new)811 void replace_page_cache_folio(struct folio *old, struct folio *new)
812 {
813 	struct address_space *mapping = old->mapping;
814 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
815 	pgoff_t offset = old->index;
816 	XA_STATE(xas, &mapping->i_pages, offset);
817 
818 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
819 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
820 	VM_BUG_ON_FOLIO(new->mapping, new);
821 
822 	folio_get(new);
823 	new->mapping = mapping;
824 	new->index = offset;
825 
826 	mem_cgroup_replace_folio(old, new);
827 
828 	xas_lock_irq(&xas);
829 	xas_store(&xas, new);
830 
831 	old->mapping = NULL;
832 	/* hugetlb pages do not participate in page cache accounting. */
833 	if (!folio_test_hugetlb(old))
834 		lruvec_stat_sub_folio(old, NR_FILE_PAGES);
835 	if (!folio_test_hugetlb(new))
836 		lruvec_stat_add_folio(new, NR_FILE_PAGES);
837 	if (folio_test_swapbacked(old))
838 		lruvec_stat_sub_folio(old, NR_SHMEM);
839 	if (folio_test_swapbacked(new))
840 		lruvec_stat_add_folio(new, NR_SHMEM);
841 	xas_unlock_irq(&xas);
842 	if (free_folio)
843 		free_folio(old);
844 	folio_put(old);
845 }
846 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
847 
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)848 noinline int __filemap_add_folio(struct address_space *mapping,
849 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
850 {
851 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
852 	bool huge;
853 	long nr;
854 	unsigned int forder = folio_order(folio);
855 
856 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
857 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
858 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
859 			folio);
860 	mapping_set_update(&xas, mapping);
861 
862 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
863 	huge = folio_test_hugetlb(folio);
864 	nr = folio_nr_pages(folio);
865 
866 	gfp &= GFP_RECLAIM_MASK;
867 	folio_ref_add(folio, nr);
868 	folio->mapping = mapping;
869 	folio->index = xas.xa_index;
870 
871 	for (;;) {
872 		int order = -1;
873 		void *entry, *old = NULL;
874 
875 		xas_lock_irq(&xas);
876 		xas_for_each_conflict(&xas, entry) {
877 			old = entry;
878 			if (!xa_is_value(entry)) {
879 				xas_set_err(&xas, -EEXIST);
880 				goto unlock;
881 			}
882 			/*
883 			 * If a larger entry exists,
884 			 * it will be the first and only entry iterated.
885 			 */
886 			if (order == -1)
887 				order = xas_get_order(&xas);
888 		}
889 
890 		if (old) {
891 			if (order > 0 && order > forder) {
892 				unsigned int split_order = max(forder,
893 						xas_try_split_min_order(order));
894 
895 				/* How to handle large swap entries? */
896 				BUG_ON(shmem_mapping(mapping));
897 
898 				while (order > forder) {
899 					xas_set_order(&xas, index, split_order);
900 					xas_try_split(&xas, old, order);
901 					if (xas_error(&xas))
902 						goto unlock;
903 					order = split_order;
904 					split_order =
905 						max(xas_try_split_min_order(
906 							    split_order),
907 						    forder);
908 				}
909 				xas_reset(&xas);
910 			}
911 			if (shadowp)
912 				*shadowp = old;
913 		}
914 
915 		xas_store(&xas, folio);
916 		if (xas_error(&xas))
917 			goto unlock;
918 
919 		mapping->nrpages += nr;
920 
921 		/* hugetlb pages do not participate in page cache accounting */
922 		if (!huge) {
923 			lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
924 			if (folio_test_pmd_mappable(folio))
925 				lruvec_stat_mod_folio(folio,
926 						NR_FILE_THPS, nr);
927 		}
928 
929 unlock:
930 		xas_unlock_irq(&xas);
931 
932 		if (!xas_nomem(&xas, gfp))
933 			break;
934 	}
935 
936 	if (xas_error(&xas))
937 		goto error;
938 
939 	trace_mm_filemap_add_to_page_cache(folio);
940 	return 0;
941 error:
942 	folio->mapping = NULL;
943 	/* Leave folio->index set: truncation relies upon it */
944 	folio_put_refs(folio, nr);
945 	return xas_error(&xas);
946 }
947 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
948 
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)949 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
950 				pgoff_t index, gfp_t gfp)
951 {
952 	void *shadow = NULL;
953 	int ret;
954 	struct mem_cgroup *tmp;
955 	bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags);
956 
957 	if (kernel_file)
958 		tmp = set_active_memcg(root_mem_cgroup);
959 	ret = mem_cgroup_charge(folio, NULL, gfp);
960 	if (kernel_file)
961 		set_active_memcg(tmp);
962 	if (ret)
963 		return ret;
964 
965 	__folio_set_locked(folio);
966 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
967 	if (unlikely(ret)) {
968 		mem_cgroup_uncharge(folio);
969 		__folio_clear_locked(folio);
970 	} else {
971 		/*
972 		 * The folio might have been evicted from cache only
973 		 * recently, in which case it should be activated like
974 		 * any other repeatedly accessed folio.
975 		 * The exception is folios getting rewritten; evicting other
976 		 * data from the working set, only to cache data that will
977 		 * get overwritten with something else, is a waste of memory.
978 		 */
979 		WARN_ON_ONCE(folio_test_active(folio));
980 		if (!(gfp & __GFP_WRITE) && shadow)
981 			workingset_refault(folio, shadow);
982 		folio_add_lru(folio);
983 		if (kernel_file)
984 			mod_node_page_state(folio_pgdat(folio),
985 					    NR_KERNEL_FILE_PAGES,
986 					    folio_nr_pages(folio));
987 	}
988 	return ret;
989 }
990 EXPORT_SYMBOL_GPL(filemap_add_folio);
991 
992 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order,struct mempolicy * policy)993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order,
994 		struct mempolicy *policy)
995 {
996 	int n;
997 	struct folio *folio;
998 
999 	if (policy)
1000 		return folio_alloc_mpol_noprof(gfp, order, policy,
1001 				NO_INTERLEAVE_INDEX, numa_node_id());
1002 
1003 	if (cpuset_do_page_mem_spread()) {
1004 		unsigned int cpuset_mems_cookie;
1005 		do {
1006 			cpuset_mems_cookie = read_mems_allowed_begin();
1007 			n = cpuset_mem_spread_node();
1008 			folio = __folio_alloc_node_noprof(gfp, order, n);
1009 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1010 
1011 		return folio;
1012 	}
1013 	return folio_alloc_noprof(gfp, order);
1014 }
1015 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1016 #endif
1017 
1018 /*
1019  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1020  *
1021  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1022  *
1023  * @mapping1: the first mapping to lock
1024  * @mapping2: the second mapping to lock
1025  */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1026 void filemap_invalidate_lock_two(struct address_space *mapping1,
1027 				 struct address_space *mapping2)
1028 {
1029 	if (mapping1 > mapping2)
1030 		swap(mapping1, mapping2);
1031 	if (mapping1)
1032 		down_write(&mapping1->invalidate_lock);
1033 	if (mapping2 && mapping1 != mapping2)
1034 		down_write_nested(&mapping2->invalidate_lock, 1);
1035 }
1036 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1037 
1038 /*
1039  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1040  *
1041  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1042  *
1043  * @mapping1: the first mapping to unlock
1044  * @mapping2: the second mapping to unlock
1045  */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1046 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1047 				   struct address_space *mapping2)
1048 {
1049 	if (mapping1)
1050 		up_write(&mapping1->invalidate_lock);
1051 	if (mapping2 && mapping1 != mapping2)
1052 		up_write(&mapping2->invalidate_lock);
1053 }
1054 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1055 
1056 /*
1057  * In order to wait for pages to become available there must be
1058  * waitqueues associated with pages. By using a hash table of
1059  * waitqueues where the bucket discipline is to maintain all
1060  * waiters on the same queue and wake all when any of the pages
1061  * become available, and for the woken contexts to check to be
1062  * sure the appropriate page became available, this saves space
1063  * at a cost of "thundering herd" phenomena during rare hash
1064  * collisions.
1065  */
1066 #define PAGE_WAIT_TABLE_BITS 8
1067 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1068 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1069 
folio_waitqueue(struct folio * folio)1070 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1071 {
1072 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1073 }
1074 
1075 /* How many times do we accept lock stealing from under a waiter? */
1076 static int sysctl_page_lock_unfairness = 5;
1077 static const struct ctl_table filemap_sysctl_table[] = {
1078 	{
1079 		.procname	= "page_lock_unfairness",
1080 		.data		= &sysctl_page_lock_unfairness,
1081 		.maxlen		= sizeof(sysctl_page_lock_unfairness),
1082 		.mode		= 0644,
1083 		.proc_handler	= proc_dointvec_minmax,
1084 		.extra1		= SYSCTL_ZERO,
1085 	}
1086 };
1087 
pagecache_init(void)1088 void __init pagecache_init(void)
1089 {
1090 	int i;
1091 
1092 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1093 		init_waitqueue_head(&folio_wait_table[i]);
1094 
1095 	page_writeback_init();
1096 	register_sysctl_init("vm", filemap_sysctl_table);
1097 }
1098 
1099 /*
1100  * The page wait code treats the "wait->flags" somewhat unusually, because
1101  * we have multiple different kinds of waits, not just the usual "exclusive"
1102  * one.
1103  *
1104  * We have:
1105  *
1106  *  (a) no special bits set:
1107  *
1108  *	We're just waiting for the bit to be released, and when a waker
1109  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1110  *	and remove it from the wait queue.
1111  *
1112  *	Simple and straightforward.
1113  *
1114  *  (b) WQ_FLAG_EXCLUSIVE:
1115  *
1116  *	The waiter is waiting to get the lock, and only one waiter should
1117  *	be woken up to avoid any thundering herd behavior. We'll set the
1118  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1119  *
1120  *	This is the traditional exclusive wait.
1121  *
1122  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1123  *
1124  *	The waiter is waiting to get the bit, and additionally wants the
1125  *	lock to be transferred to it for fair lock behavior. If the lock
1126  *	cannot be taken, we stop walking the wait queue without waking
1127  *	the waiter.
1128  *
1129  *	This is the "fair lock handoff" case, and in addition to setting
1130  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1131  *	that it now has the lock.
1132  */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1133 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1134 {
1135 	unsigned int flags;
1136 	struct wait_page_key *key = arg;
1137 	struct wait_page_queue *wait_page
1138 		= container_of(wait, struct wait_page_queue, wait);
1139 
1140 	if (!wake_page_match(wait_page, key))
1141 		return 0;
1142 
1143 	/*
1144 	 * If it's a lock handoff wait, we get the bit for it, and
1145 	 * stop walking (and do not wake it up) if we can't.
1146 	 */
1147 	flags = wait->flags;
1148 	if (flags & WQ_FLAG_EXCLUSIVE) {
1149 		if (test_bit(key->bit_nr, &key->folio->flags.f))
1150 			return -1;
1151 		if (flags & WQ_FLAG_CUSTOM) {
1152 			if (test_and_set_bit(key->bit_nr, &key->folio->flags.f))
1153 				return -1;
1154 			flags |= WQ_FLAG_DONE;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * We are holding the wait-queue lock, but the waiter that
1160 	 * is waiting for this will be checking the flags without
1161 	 * any locking.
1162 	 *
1163 	 * So update the flags atomically, and wake up the waiter
1164 	 * afterwards to avoid any races. This store-release pairs
1165 	 * with the load-acquire in folio_wait_bit_common().
1166 	 */
1167 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1168 	wake_up_state(wait->private, mode);
1169 
1170 	/*
1171 	 * Ok, we have successfully done what we're waiting for,
1172 	 * and we can unconditionally remove the wait entry.
1173 	 *
1174 	 * Note that this pairs with the "finish_wait()" in the
1175 	 * waiter, and has to be the absolute last thing we do.
1176 	 * After this list_del_init(&wait->entry) the wait entry
1177 	 * might be de-allocated and the process might even have
1178 	 * exited.
1179 	 */
1180 	list_del_init_careful(&wait->entry);
1181 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1182 }
1183 
folio_wake_bit(struct folio * folio,int bit_nr)1184 static void folio_wake_bit(struct folio *folio, int bit_nr)
1185 {
1186 	wait_queue_head_t *q = folio_waitqueue(folio);
1187 	struct wait_page_key key;
1188 	unsigned long flags;
1189 
1190 	key.folio = folio;
1191 	key.bit_nr = bit_nr;
1192 	key.page_match = 0;
1193 
1194 	spin_lock_irqsave(&q->lock, flags);
1195 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1196 
1197 	/*
1198 	 * It's possible to miss clearing waiters here, when we woke our page
1199 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1200 	 * That's okay, it's a rare case. The next waker will clear it.
1201 	 *
1202 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1203 	 * other), the flag may be cleared in the course of freeing the page;
1204 	 * but that is not required for correctness.
1205 	 */
1206 	if (!waitqueue_active(q) || !key.page_match)
1207 		folio_clear_waiters(folio);
1208 
1209 	spin_unlock_irqrestore(&q->lock, flags);
1210 }
1211 
1212 /*
1213  * A choice of three behaviors for folio_wait_bit_common():
1214  */
1215 enum behavior {
1216 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1217 			 * __folio_lock() waiting on then setting PG_locked.
1218 			 */
1219 	SHARED,		/* Hold ref to page and check the bit when woken, like
1220 			 * folio_wait_writeback() waiting on PG_writeback.
1221 			 */
1222 	DROP,		/* Drop ref to page before wait, no check when woken,
1223 			 * like folio_put_wait_locked() on PG_locked.
1224 			 */
1225 };
1226 
1227 /*
1228  * Attempt to check (or get) the folio flag, and mark us done
1229  * if successful.
1230  */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1231 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1232 					struct wait_queue_entry *wait)
1233 {
1234 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1235 		if (test_and_set_bit(bit_nr, &folio->flags.f))
1236 			return false;
1237 	} else if (test_bit(bit_nr, &folio->flags.f))
1238 		return false;
1239 
1240 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1241 	return true;
1242 }
1243 
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1244 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1245 		int state, enum behavior behavior)
1246 {
1247 	wait_queue_head_t *q = folio_waitqueue(folio);
1248 	int unfairness = sysctl_page_lock_unfairness;
1249 	struct wait_page_queue wait_page;
1250 	wait_queue_entry_t *wait = &wait_page.wait;
1251 	bool thrashing = false;
1252 	unsigned long pflags;
1253 	bool in_thrashing;
1254 
1255 	if (bit_nr == PG_locked &&
1256 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1257 		delayacct_thrashing_start(&in_thrashing);
1258 		psi_memstall_enter(&pflags);
1259 		thrashing = true;
1260 	}
1261 
1262 	init_wait(wait);
1263 	wait->func = wake_page_function;
1264 	wait_page.folio = folio;
1265 	wait_page.bit_nr = bit_nr;
1266 
1267 repeat:
1268 	wait->flags = 0;
1269 	if (behavior == EXCLUSIVE) {
1270 		wait->flags = WQ_FLAG_EXCLUSIVE;
1271 		if (--unfairness < 0)
1272 			wait->flags |= WQ_FLAG_CUSTOM;
1273 	}
1274 
1275 	/*
1276 	 * Do one last check whether we can get the
1277 	 * page bit synchronously.
1278 	 *
1279 	 * Do the folio_set_waiters() marking before that
1280 	 * to let any waker we _just_ missed know they
1281 	 * need to wake us up (otherwise they'll never
1282 	 * even go to the slow case that looks at the
1283 	 * page queue), and add ourselves to the wait
1284 	 * queue if we need to sleep.
1285 	 *
1286 	 * This part needs to be done under the queue
1287 	 * lock to avoid races.
1288 	 */
1289 	spin_lock_irq(&q->lock);
1290 	folio_set_waiters(folio);
1291 	if (!folio_trylock_flag(folio, bit_nr, wait))
1292 		__add_wait_queue_entry_tail(q, wait);
1293 	spin_unlock_irq(&q->lock);
1294 
1295 	/*
1296 	 * From now on, all the logic will be based on
1297 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1298 	 * see whether the page bit testing has already
1299 	 * been done by the wake function.
1300 	 *
1301 	 * We can drop our reference to the folio.
1302 	 */
1303 	if (behavior == DROP)
1304 		folio_put(folio);
1305 
1306 	/*
1307 	 * Note that until the "finish_wait()", or until
1308 	 * we see the WQ_FLAG_WOKEN flag, we need to
1309 	 * be very careful with the 'wait->flags', because
1310 	 * we may race with a waker that sets them.
1311 	 */
1312 	for (;;) {
1313 		unsigned int flags;
1314 
1315 		set_current_state(state);
1316 
1317 		/* Loop until we've been woken or interrupted */
1318 		flags = smp_load_acquire(&wait->flags);
1319 		if (!(flags & WQ_FLAG_WOKEN)) {
1320 			if (signal_pending_state(state, current))
1321 				break;
1322 
1323 			io_schedule();
1324 			continue;
1325 		}
1326 
1327 		/* If we were non-exclusive, we're done */
1328 		if (behavior != EXCLUSIVE)
1329 			break;
1330 
1331 		/* If the waker got the lock for us, we're done */
1332 		if (flags & WQ_FLAG_DONE)
1333 			break;
1334 
1335 		/*
1336 		 * Otherwise, if we're getting the lock, we need to
1337 		 * try to get it ourselves.
1338 		 *
1339 		 * And if that fails, we'll have to retry this all.
1340 		 */
1341 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1342 			goto repeat;
1343 
1344 		wait->flags |= WQ_FLAG_DONE;
1345 		break;
1346 	}
1347 
1348 	/*
1349 	 * If a signal happened, this 'finish_wait()' may remove the last
1350 	 * waiter from the wait-queues, but the folio waiters bit will remain
1351 	 * set. That's ok. The next wakeup will take care of it, and trying
1352 	 * to do it here would be difficult and prone to races.
1353 	 */
1354 	finish_wait(q, wait);
1355 
1356 	if (thrashing) {
1357 		delayacct_thrashing_end(&in_thrashing);
1358 		psi_memstall_leave(&pflags);
1359 	}
1360 
1361 	/*
1362 	 * NOTE! The wait->flags weren't stable until we've done the
1363 	 * 'finish_wait()', and we could have exited the loop above due
1364 	 * to a signal, and had a wakeup event happen after the signal
1365 	 * test but before the 'finish_wait()'.
1366 	 *
1367 	 * So only after the finish_wait() can we reliably determine
1368 	 * if we got woken up or not, so we can now figure out the final
1369 	 * return value based on that state without races.
1370 	 *
1371 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1372 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1373 	 */
1374 	if (behavior == EXCLUSIVE)
1375 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1376 
1377 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1378 }
1379 
1380 #ifdef CONFIG_MIGRATION
1381 /**
1382  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1383  * @entry: migration swap entry.
1384  * @ptl: already locked ptl. This function will drop the lock.
1385  *
1386  * Wait for a migration entry referencing the given page to be removed. This is
1387  * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1388  * this can be called without taking a reference on the page. Instead this
1389  * should be called while holding the ptl for the migration entry referencing
1390  * the page.
1391  *
1392  * Returns after unlocking the ptl.
1393  *
1394  * This follows the same logic as folio_wait_bit_common() so see the comments
1395  * there.
1396  */
migration_entry_wait_on_locked(softleaf_t entry,spinlock_t * ptl)1397 void migration_entry_wait_on_locked(softleaf_t entry, spinlock_t *ptl)
1398 	__releases(ptl)
1399 {
1400 	struct wait_page_queue wait_page;
1401 	wait_queue_entry_t *wait = &wait_page.wait;
1402 	bool thrashing = false;
1403 	unsigned long pflags;
1404 	bool in_thrashing;
1405 	wait_queue_head_t *q;
1406 	struct folio *folio = softleaf_to_folio(entry);
1407 
1408 	q = folio_waitqueue(folio);
1409 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1410 		delayacct_thrashing_start(&in_thrashing);
1411 		psi_memstall_enter(&pflags);
1412 		thrashing = true;
1413 	}
1414 
1415 	init_wait(wait);
1416 	wait->func = wake_page_function;
1417 	wait_page.folio = folio;
1418 	wait_page.bit_nr = PG_locked;
1419 	wait->flags = 0;
1420 
1421 	spin_lock_irq(&q->lock);
1422 	folio_set_waiters(folio);
1423 	if (!folio_trylock_flag(folio, PG_locked, wait))
1424 		__add_wait_queue_entry_tail(q, wait);
1425 	spin_unlock_irq(&q->lock);
1426 
1427 	/*
1428 	 * If a migration entry exists for the page the migration path must hold
1429 	 * a valid reference to the page, and it must take the ptl to remove the
1430 	 * migration entry. So the page is valid until the ptl is dropped.
1431 	 */
1432 	spin_unlock(ptl);
1433 
1434 	for (;;) {
1435 		unsigned int flags;
1436 
1437 		set_current_state(TASK_UNINTERRUPTIBLE);
1438 
1439 		/* Loop until we've been woken or interrupted */
1440 		flags = smp_load_acquire(&wait->flags);
1441 		if (!(flags & WQ_FLAG_WOKEN)) {
1442 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1443 				break;
1444 
1445 			io_schedule();
1446 			continue;
1447 		}
1448 		break;
1449 	}
1450 
1451 	finish_wait(q, wait);
1452 
1453 	if (thrashing) {
1454 		delayacct_thrashing_end(&in_thrashing);
1455 		psi_memstall_leave(&pflags);
1456 	}
1457 }
1458 #endif
1459 
folio_wait_bit(struct folio * folio,int bit_nr)1460 void folio_wait_bit(struct folio *folio, int bit_nr)
1461 {
1462 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit);
1465 
folio_wait_bit_killable(struct folio * folio,int bit_nr)1466 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1467 {
1468 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1469 }
1470 EXPORT_SYMBOL(folio_wait_bit_killable);
1471 
1472 /**
1473  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1474  * @folio: The folio to wait for.
1475  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1476  *
1477  * The caller should hold a reference on @folio.  They expect the page to
1478  * become unlocked relatively soon, but do not wish to hold up migration
1479  * (for example) by holding the reference while waiting for the folio to
1480  * come unlocked.  After this function returns, the caller should not
1481  * dereference @folio.
1482  *
1483  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1484  */
folio_put_wait_locked(struct folio * folio,int state)1485 static int folio_put_wait_locked(struct folio *folio, int state)
1486 {
1487 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1488 }
1489 
1490 /**
1491  * folio_unlock - Unlock a locked folio.
1492  * @folio: The folio.
1493  *
1494  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1495  *
1496  * Context: May be called from interrupt or process context.  May not be
1497  * called from NMI context.
1498  */
folio_unlock(struct folio * folio)1499 void folio_unlock(struct folio *folio)
1500 {
1501 	/* Bit 7 allows x86 to check the byte's sign bit */
1502 	BUILD_BUG_ON(PG_waiters != 7);
1503 	BUILD_BUG_ON(PG_locked > 7);
1504 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1505 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1506 		folio_wake_bit(folio, PG_locked);
1507 }
1508 EXPORT_SYMBOL(folio_unlock);
1509 
1510 /**
1511  * folio_end_read - End read on a folio.
1512  * @folio: The folio.
1513  * @success: True if all reads completed successfully.
1514  *
1515  * When all reads against a folio have completed, filesystems should
1516  * call this function to let the pagecache know that no more reads
1517  * are outstanding.  This will unlock the folio and wake up any thread
1518  * sleeping on the lock.  The folio will also be marked uptodate if all
1519  * reads succeeded.
1520  *
1521  * Context: May be called from interrupt or process context.  May not be
1522  * called from NMI context.
1523  */
folio_end_read(struct folio * folio,bool success)1524 void folio_end_read(struct folio *folio, bool success)
1525 {
1526 	unsigned long mask = 1 << PG_locked;
1527 
1528 	/* Must be in bottom byte for x86 to work */
1529 	BUILD_BUG_ON(PG_uptodate > 7);
1530 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1531 	VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1532 
1533 	if (likely(success))
1534 		mask |= 1 << PG_uptodate;
1535 	if (folio_xor_flags_has_waiters(folio, mask))
1536 		folio_wake_bit(folio, PG_locked);
1537 }
1538 EXPORT_SYMBOL(folio_end_read);
1539 
1540 /**
1541  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1542  * @folio: The folio.
1543  *
1544  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1545  * it.  The folio reference held for PG_private_2 being set is released.
1546  *
1547  * This is, for example, used when a netfs folio is being written to a local
1548  * disk cache, thereby allowing writes to the cache for the same folio to be
1549  * serialised.
1550  */
folio_end_private_2(struct folio * folio)1551 void folio_end_private_2(struct folio *folio)
1552 {
1553 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1554 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1555 	folio_wake_bit(folio, PG_private_2);
1556 	folio_put(folio);
1557 }
1558 EXPORT_SYMBOL(folio_end_private_2);
1559 
1560 /**
1561  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1562  * @folio: The folio to wait on.
1563  *
1564  * Wait for PG_private_2 to be cleared on a folio.
1565  */
folio_wait_private_2(struct folio * folio)1566 void folio_wait_private_2(struct folio *folio)
1567 {
1568 	while (folio_test_private_2(folio))
1569 		folio_wait_bit(folio, PG_private_2);
1570 }
1571 EXPORT_SYMBOL(folio_wait_private_2);
1572 
1573 /**
1574  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1575  * @folio: The folio to wait on.
1576  *
1577  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1578  * received by the calling task.
1579  *
1580  * Return:
1581  * - 0 if successful.
1582  * - -EINTR if a fatal signal was encountered.
1583  */
folio_wait_private_2_killable(struct folio * folio)1584 int folio_wait_private_2_killable(struct folio *folio)
1585 {
1586 	int ret = 0;
1587 
1588 	while (folio_test_private_2(folio)) {
1589 		ret = folio_wait_bit_killable(folio, PG_private_2);
1590 		if (ret < 0)
1591 			break;
1592 	}
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(folio_wait_private_2_killable);
1597 
filemap_end_dropbehind(struct folio * folio)1598 static void filemap_end_dropbehind(struct folio *folio)
1599 {
1600 	struct address_space *mapping = folio->mapping;
1601 
1602 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1603 
1604 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
1605 		return;
1606 	if (!folio_test_clear_dropbehind(folio))
1607 		return;
1608 	if (mapping)
1609 		folio_unmap_invalidate(mapping, folio, 0);
1610 }
1611 
1612 /*
1613  * If folio was marked as dropbehind, then pages should be dropped when writeback
1614  * completes. Do that now. If we fail, it's likely because of a big folio -
1615  * just reset dropbehind for that case and latter completions should invalidate.
1616  */
folio_end_dropbehind(struct folio * folio)1617 void folio_end_dropbehind(struct folio *folio)
1618 {
1619 	if (!folio_test_dropbehind(folio))
1620 		return;
1621 
1622 	/*
1623 	 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1624 	 * but can happen if normal writeback just happens to find dirty folios
1625 	 * that were created as part of uncached writeback, and that writeback
1626 	 * would otherwise not need non-IRQ handling. Just skip the
1627 	 * invalidation in that case.
1628 	 */
1629 	if (in_task() && folio_trylock(folio)) {
1630 		filemap_end_dropbehind(folio);
1631 		folio_unlock(folio);
1632 	}
1633 }
1634 EXPORT_SYMBOL_GPL(folio_end_dropbehind);
1635 
1636 /**
1637  * folio_end_writeback_no_dropbehind - End writeback against a folio.
1638  * @folio: The folio.
1639  *
1640  * The folio must actually be under writeback.
1641  * This call is intended for filesystems that need to defer dropbehind.
1642  *
1643  * Context: May be called from process or interrupt context.
1644  */
folio_end_writeback_no_dropbehind(struct folio * folio)1645 void folio_end_writeback_no_dropbehind(struct folio *folio)
1646 {
1647 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1648 
1649 	/*
1650 	 * folio_test_clear_reclaim() could be used here but it is an
1651 	 * atomic operation and overkill in this particular case. Failing
1652 	 * to shuffle a folio marked for immediate reclaim is too mild
1653 	 * a gain to justify taking an atomic operation penalty at the
1654 	 * end of every folio writeback.
1655 	 */
1656 	if (folio_test_reclaim(folio)) {
1657 		folio_clear_reclaim(folio);
1658 		folio_rotate_reclaimable(folio);
1659 	}
1660 
1661 	if (__folio_end_writeback(folio))
1662 		folio_wake_bit(folio, PG_writeback);
1663 
1664 	acct_reclaim_writeback(folio);
1665 }
1666 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind);
1667 
1668 /**
1669  * folio_end_writeback - End writeback against a folio.
1670  * @folio: The folio.
1671  *
1672  * The folio must actually be under writeback.
1673  *
1674  * Context: May be called from process or interrupt context.
1675  */
folio_end_writeback(struct folio * folio)1676 void folio_end_writeback(struct folio *folio)
1677 {
1678 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1679 
1680 	/*
1681 	 * Writeback does not hold a folio reference of its own, relying
1682 	 * on truncation to wait for the clearing of PG_writeback.
1683 	 * But here we must make sure that the folio is not freed and
1684 	 * reused before the folio_wake_bit().
1685 	 */
1686 	folio_get(folio);
1687 	folio_end_writeback_no_dropbehind(folio);
1688 	folio_end_dropbehind(folio);
1689 	folio_put(folio);
1690 }
1691 EXPORT_SYMBOL(folio_end_writeback);
1692 
1693 /**
1694  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1695  * @folio: The folio to lock
1696  */
__folio_lock(struct folio * folio)1697 void __folio_lock(struct folio *folio)
1698 {
1699 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1700 				EXCLUSIVE);
1701 }
1702 EXPORT_SYMBOL(__folio_lock);
1703 
__folio_lock_killable(struct folio * folio)1704 int __folio_lock_killable(struct folio *folio)
1705 {
1706 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1707 					EXCLUSIVE);
1708 }
1709 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1710 
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1711 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1712 {
1713 	struct wait_queue_head *q = folio_waitqueue(folio);
1714 	int ret;
1715 
1716 	wait->folio = folio;
1717 	wait->bit_nr = PG_locked;
1718 
1719 	spin_lock_irq(&q->lock);
1720 	__add_wait_queue_entry_tail(q, &wait->wait);
1721 	folio_set_waiters(folio);
1722 	ret = !folio_trylock(folio);
1723 	/*
1724 	 * If we were successful now, we know we're still on the
1725 	 * waitqueue as we're still under the lock. This means it's
1726 	 * safe to remove and return success, we know the callback
1727 	 * isn't going to trigger.
1728 	 */
1729 	if (!ret)
1730 		__remove_wait_queue(q, &wait->wait);
1731 	else
1732 		ret = -EIOCBQUEUED;
1733 	spin_unlock_irq(&q->lock);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Return values:
1739  * 0 - folio is locked.
1740  * non-zero - folio is not locked.
1741  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1742  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1743  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1744  *
1745  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1746  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1747  */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1748 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1749 {
1750 	unsigned int flags = vmf->flags;
1751 
1752 	if (fault_flag_allow_retry_first(flags)) {
1753 		/*
1754 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1755 		 * released even though returning VM_FAULT_RETRY.
1756 		 */
1757 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1758 			return VM_FAULT_RETRY;
1759 
1760 		release_fault_lock(vmf);
1761 		if (flags & FAULT_FLAG_KILLABLE)
1762 			folio_wait_locked_killable(folio);
1763 		else
1764 			folio_wait_locked(folio);
1765 		return VM_FAULT_RETRY;
1766 	}
1767 	if (flags & FAULT_FLAG_KILLABLE) {
1768 		bool ret;
1769 
1770 		ret = __folio_lock_killable(folio);
1771 		if (ret) {
1772 			release_fault_lock(vmf);
1773 			return VM_FAULT_RETRY;
1774 		}
1775 	} else {
1776 		__folio_lock(folio);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * page_cache_next_miss() - Find the next gap in the page cache.
1784  * @mapping: Mapping.
1785  * @index: Index.
1786  * @max_scan: Maximum range to search.
1787  *
1788  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1789  * gap with the lowest index.
1790  *
1791  * This function may be called under the rcu_read_lock.  However, this will
1792  * not atomically search a snapshot of the cache at a single point in time.
1793  * For example, if a gap is created at index 5, then subsequently a gap is
1794  * created at index 10, page_cache_next_miss covering both indices may
1795  * return 10 if called under the rcu_read_lock.
1796  *
1797  * Return: The index of the gap if found, otherwise an index outside the
1798  * range specified (in which case 'return - index >= max_scan' will be true).
1799  * In the rare case of index wrap-around, 0 will be returned.
1800  */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1801 pgoff_t page_cache_next_miss(struct address_space *mapping,
1802 			     pgoff_t index, unsigned long max_scan)
1803 {
1804 	XA_STATE(xas, &mapping->i_pages, index);
1805 	unsigned long nr = max_scan;
1806 
1807 	while (nr--) {
1808 		void *entry = xas_next(&xas);
1809 		if (!entry || xa_is_value(entry))
1810 			return xas.xa_index;
1811 		if (xas.xa_index == 0)
1812 			return 0;
1813 	}
1814 
1815 	return index + max_scan;
1816 }
1817 EXPORT_SYMBOL(page_cache_next_miss);
1818 
1819 /**
1820  * page_cache_prev_miss() - Find the previous gap in the page cache.
1821  * @mapping: Mapping.
1822  * @index: Index.
1823  * @max_scan: Maximum range to search.
1824  *
1825  * Search the range [max(index - max_scan + 1, 0), index] for the
1826  * gap with the highest index.
1827  *
1828  * This function may be called under the rcu_read_lock.  However, this will
1829  * not atomically search a snapshot of the cache at a single point in time.
1830  * For example, if a gap is created at index 10, then subsequently a gap is
1831  * created at index 5, page_cache_prev_miss() covering both indices may
1832  * return 5 if called under the rcu_read_lock.
1833  *
1834  * Return: The index of the gap if found, otherwise an index outside the
1835  * range specified (in which case 'index - return >= max_scan' will be true).
1836  * In the rare case of wrap-around, ULONG_MAX will be returned.
1837  */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1838 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1839 			     pgoff_t index, unsigned long max_scan)
1840 {
1841 	XA_STATE(xas, &mapping->i_pages, index);
1842 
1843 	while (max_scan--) {
1844 		void *entry = xas_prev(&xas);
1845 		if (!entry || xa_is_value(entry))
1846 			break;
1847 		if (xas.xa_index == ULONG_MAX)
1848 			break;
1849 	}
1850 
1851 	return xas.xa_index;
1852 }
1853 EXPORT_SYMBOL(page_cache_prev_miss);
1854 
1855 /*
1856  * Lockless page cache protocol:
1857  * On the lookup side:
1858  * 1. Load the folio from i_pages
1859  * 2. Increment the refcount if it's not zero
1860  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1861  *
1862  * On the removal side:
1863  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1864  * B. Remove the page from i_pages
1865  * C. Return the page to the page allocator
1866  *
1867  * This means that any page may have its reference count temporarily
1868  * increased by a speculative page cache (or GUP-fast) lookup as it can
1869  * be allocated by another user before the RCU grace period expires.
1870  * Because the refcount temporarily acquired here may end up being the
1871  * last refcount on the page, any page allocation must be freeable by
1872  * folio_put().
1873  */
1874 
1875 /*
1876  * filemap_get_entry - Get a page cache entry.
1877  * @mapping: the address_space to search
1878  * @index: The page cache index.
1879  *
1880  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1881  * it is returned with an increased refcount.  If it is a shadow entry
1882  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1883  * it is returned without further action.
1884  *
1885  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1886  */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1887 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1888 {
1889 	XA_STATE(xas, &mapping->i_pages, index);
1890 	struct folio *folio;
1891 
1892 	rcu_read_lock();
1893 repeat:
1894 	xas_reset(&xas);
1895 	folio = xas_load(&xas);
1896 	if (xas_retry(&xas, folio))
1897 		goto repeat;
1898 	/*
1899 	 * A shadow entry of a recently evicted page, or a swap entry from
1900 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1901 	 */
1902 	if (!folio || xa_is_value(folio))
1903 		goto out;
1904 
1905 	if (!folio_try_get(folio))
1906 		goto repeat;
1907 
1908 	if (unlikely(folio != xas_reload(&xas))) {
1909 		folio_put(folio);
1910 		goto repeat;
1911 	}
1912 out:
1913 	rcu_read_unlock();
1914 
1915 	return folio;
1916 }
1917 
1918 /**
1919  * __filemap_get_folio_mpol - Find and get a reference to a folio.
1920  * @mapping: The address_space to search.
1921  * @index: The page index.
1922  * @fgp_flags: %FGP flags modify how the folio is returned.
1923  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1924  * @policy: NUMA memory allocation policy to follow.
1925  *
1926  * Looks up the page cache entry at @mapping & @index.
1927  *
1928  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1929  * if the %GFP flags specified for %FGP_CREAT are atomic.
1930  *
1931  * If this function returns a folio, it is returned with an increased refcount.
1932  *
1933  * Return: The found folio or an ERR_PTR() otherwise.
1934  */
__filemap_get_folio_mpol(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp,struct mempolicy * policy)1935 struct folio *__filemap_get_folio_mpol(struct address_space *mapping,
1936 		pgoff_t index, fgf_t fgp_flags, gfp_t gfp, struct mempolicy *policy)
1937 {
1938 	struct folio *folio;
1939 
1940 repeat:
1941 	folio = filemap_get_entry(mapping, index);
1942 	if (xa_is_value(folio))
1943 		folio = NULL;
1944 	if (!folio)
1945 		goto no_page;
1946 
1947 	if (fgp_flags & FGP_LOCK) {
1948 		if (fgp_flags & FGP_NOWAIT) {
1949 			if (!folio_trylock(folio)) {
1950 				folio_put(folio);
1951 				return ERR_PTR(-EAGAIN);
1952 			}
1953 		} else {
1954 			folio_lock(folio);
1955 		}
1956 
1957 		/* Has the page been truncated? */
1958 		if (unlikely(folio->mapping != mapping)) {
1959 			folio_unlock(folio);
1960 			folio_put(folio);
1961 			goto repeat;
1962 		}
1963 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1964 	}
1965 
1966 	if (fgp_flags & FGP_ACCESSED)
1967 		folio_mark_accessed(folio);
1968 	else if (fgp_flags & FGP_WRITE) {
1969 		/* Clear idle flag for buffer write */
1970 		if (folio_test_idle(folio))
1971 			folio_clear_idle(folio);
1972 	}
1973 
1974 	if (fgp_flags & FGP_STABLE)
1975 		folio_wait_stable(folio);
1976 no_page:
1977 	if (!folio && (fgp_flags & FGP_CREAT)) {
1978 		unsigned int min_order = mapping_min_folio_order(mapping);
1979 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1980 		int err;
1981 		index = mapping_align_index(mapping, index);
1982 
1983 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1984 			gfp |= __GFP_WRITE;
1985 		if (fgp_flags & FGP_NOFS)
1986 			gfp &= ~__GFP_FS;
1987 		if (fgp_flags & FGP_NOWAIT) {
1988 			gfp &= ~GFP_KERNEL;
1989 			gfp |= GFP_NOWAIT;
1990 		}
1991 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1992 			fgp_flags |= FGP_LOCK;
1993 
1994 		if (order > mapping_max_folio_order(mapping))
1995 			order = mapping_max_folio_order(mapping);
1996 		/* If we're not aligned, allocate a smaller folio */
1997 		if (index & ((1UL << order) - 1))
1998 			order = __ffs(index);
1999 
2000 		do {
2001 			gfp_t alloc_gfp = gfp;
2002 
2003 			err = -ENOMEM;
2004 			if (order > min_order)
2005 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
2006 			folio = filemap_alloc_folio(alloc_gfp, order, policy);
2007 			if (!folio)
2008 				continue;
2009 
2010 			/* Init accessed so avoid atomic mark_page_accessed later */
2011 			if (fgp_flags & FGP_ACCESSED)
2012 				__folio_set_referenced(folio);
2013 			if (fgp_flags & FGP_DONTCACHE)
2014 				__folio_set_dropbehind(folio);
2015 
2016 			err = filemap_add_folio(mapping, folio, index, gfp);
2017 			if (!err)
2018 				break;
2019 			folio_put(folio);
2020 			folio = NULL;
2021 		} while (order-- > min_order);
2022 
2023 		if (err == -EEXIST)
2024 			goto repeat;
2025 		if (err) {
2026 			/*
2027 			 * When NOWAIT I/O fails to allocate folios this could
2028 			 * be due to a nonblocking memory allocation and not
2029 			 * because the system actually is out of memory.
2030 			 * Return -EAGAIN so that there caller retries in a
2031 			 * blocking fashion instead of propagating -ENOMEM
2032 			 * to the application.
2033 			 */
2034 			if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2035 				err = -EAGAIN;
2036 			return ERR_PTR(err);
2037 		}
2038 		/*
2039 		 * filemap_add_folio locks the page, and for mmap
2040 		 * we expect an unlocked page.
2041 		 */
2042 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2043 			folio_unlock(folio);
2044 	}
2045 
2046 	if (!folio)
2047 		return ERR_PTR(-ENOENT);
2048 	/* not an uncached lookup, clear uncached if set */
2049 	if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2050 		folio_clear_dropbehind(folio);
2051 	return folio;
2052 }
2053 EXPORT_SYMBOL(__filemap_get_folio_mpol);
2054 
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2055 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2056 		xa_mark_t mark)
2057 {
2058 	struct folio *folio;
2059 
2060 retry:
2061 	if (mark == XA_PRESENT)
2062 		folio = xas_find(xas, max);
2063 	else
2064 		folio = xas_find_marked(xas, max, mark);
2065 
2066 	if (xas_retry(xas, folio))
2067 		goto retry;
2068 	/*
2069 	 * A shadow entry of a recently evicted page, a swap
2070 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2071 	 * without attempting to raise page count.
2072 	 */
2073 	if (!folio || xa_is_value(folio))
2074 		return folio;
2075 
2076 	if (!folio_try_get(folio))
2077 		goto reset;
2078 
2079 	if (unlikely(folio != xas_reload(xas))) {
2080 		folio_put(folio);
2081 		goto reset;
2082 	}
2083 
2084 	return folio;
2085 reset:
2086 	xas_reset(xas);
2087 	goto retry;
2088 }
2089 
2090 /**
2091  * find_get_entries - gang pagecache lookup
2092  * @mapping:	The address_space to search
2093  * @start:	The starting page cache index
2094  * @end:	The final page index (inclusive).
2095  * @fbatch:	Where the resulting entries are placed.
2096  * @indices:	The cache indices corresponding to the entries in @entries
2097  *
2098  * find_get_entries() will search for and return a batch of entries in
2099  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2100  * takes a reference on any actual folios it returns.
2101  *
2102  * The entries have ascending indexes.  The indices may not be consecutive
2103  * due to not-present entries or large folios.
2104  *
2105  * Any shadow entries of evicted folios, or swap entries from
2106  * shmem/tmpfs, are included in the returned array.
2107  *
2108  * Return: The number of entries which were found.
2109  */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2110 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2111 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2112 {
2113 	XA_STATE(xas, &mapping->i_pages, *start);
2114 	struct folio *folio;
2115 
2116 	rcu_read_lock();
2117 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2118 		indices[fbatch->nr] = xas.xa_index;
2119 		if (!folio_batch_add(fbatch, folio))
2120 			break;
2121 	}
2122 
2123 	if (folio_batch_count(fbatch)) {
2124 		unsigned long nr;
2125 		int idx = folio_batch_count(fbatch) - 1;
2126 
2127 		folio = fbatch->folios[idx];
2128 		if (!xa_is_value(folio))
2129 			nr = folio_nr_pages(folio);
2130 		else
2131 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2132 		*start = round_down(indices[idx] + nr, nr);
2133 	}
2134 	rcu_read_unlock();
2135 
2136 	return folio_batch_count(fbatch);
2137 }
2138 
2139 /**
2140  * find_lock_entries - Find a batch of pagecache entries.
2141  * @mapping:	The address_space to search.
2142  * @start:	The starting page cache index.
2143  * @end:	The final page index (inclusive).
2144  * @fbatch:	Where the resulting entries are placed.
2145  * @indices:	The cache indices of the entries in @fbatch.
2146  *
2147  * find_lock_entries() will return a batch of entries from @mapping.
2148  * Swap, shadow and DAX entries are included.  Folios are returned
2149  * locked and with an incremented refcount.  Folios which are locked
2150  * by somebody else or under writeback are skipped.  Folios which are
2151  * partially outside the range are not returned.
2152  *
2153  * The entries have ascending indexes.  The indices may not be consecutive
2154  * due to not-present entries, large folios, folios which could not be
2155  * locked or folios under writeback.
2156  *
2157  * Return: The number of entries which were found.
2158  */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2159 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2160 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2161 {
2162 	XA_STATE(xas, &mapping->i_pages, *start);
2163 	struct folio *folio;
2164 
2165 	rcu_read_lock();
2166 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2167 		unsigned long base;
2168 		unsigned long nr;
2169 
2170 		if (!xa_is_value(folio)) {
2171 			nr = folio_nr_pages(folio);
2172 			base = folio->index;
2173 			/* Omit large folio which begins before the start */
2174 			if (base < *start)
2175 				goto put;
2176 			/* Omit large folio which extends beyond the end */
2177 			if (base + nr - 1 > end)
2178 				goto put;
2179 			if (!folio_trylock(folio))
2180 				goto put;
2181 			if (folio->mapping != mapping ||
2182 			    folio_test_writeback(folio))
2183 				goto unlock;
2184 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2185 					folio);
2186 		} else {
2187 			nr = 1 << xas_get_order(&xas);
2188 			base = xas.xa_index & ~(nr - 1);
2189 			/* Omit order>0 value which begins before the start */
2190 			if (base < *start)
2191 				continue;
2192 			/* Omit order>0 value which extends beyond the end */
2193 			if (base + nr - 1 > end)
2194 				break;
2195 		}
2196 
2197 		/* Update start now so that last update is correct on return */
2198 		*start = base + nr;
2199 		indices[fbatch->nr] = xas.xa_index;
2200 		if (!folio_batch_add(fbatch, folio))
2201 			break;
2202 		continue;
2203 unlock:
2204 		folio_unlock(folio);
2205 put:
2206 		folio_put(folio);
2207 	}
2208 	rcu_read_unlock();
2209 
2210 	return folio_batch_count(fbatch);
2211 }
2212 
2213 /**
2214  * filemap_get_folios - Get a batch of folios
2215  * @mapping:	The address_space to search
2216  * @start:	The starting page index
2217  * @end:	The final page index (inclusive)
2218  * @fbatch:	The batch to fill.
2219  *
2220  * Search for and return a batch of folios in the mapping starting at
2221  * index @start and up to index @end (inclusive).  The folios are returned
2222  * in @fbatch with an elevated reference count.
2223  *
2224  * Return: The number of folios which were found.
2225  * We also update @start to index the next folio for the traversal.
2226  */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2227 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2228 		pgoff_t end, struct folio_batch *fbatch)
2229 {
2230 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2231 }
2232 EXPORT_SYMBOL(filemap_get_folios);
2233 
2234 /**
2235  * filemap_get_folios_contig - Get a batch of contiguous folios
2236  * @mapping:	The address_space to search
2237  * @start:	The starting page index
2238  * @end:	The final page index (inclusive)
2239  * @fbatch:	The batch to fill
2240  *
2241  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2242  * except the returned folios are guaranteed to be contiguous. This may
2243  * not return all contiguous folios if the batch gets filled up.
2244  *
2245  * Return: The number of folios found.
2246  * Also update @start to be positioned for traversal of the next folio.
2247  */
2248 
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2249 unsigned filemap_get_folios_contig(struct address_space *mapping,
2250 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2251 {
2252 	XA_STATE(xas, &mapping->i_pages, *start);
2253 	unsigned long nr;
2254 	struct folio *folio;
2255 
2256 	rcu_read_lock();
2257 
2258 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2259 			folio = xas_next(&xas)) {
2260 		if (xas_retry(&xas, folio))
2261 			continue;
2262 		/*
2263 		 * If the entry has been swapped out, we can stop looking.
2264 		 * No current caller is looking for DAX entries.
2265 		 */
2266 		if (xa_is_value(folio))
2267 			goto update_start;
2268 
2269 		/* If we landed in the middle of a THP, continue at its end. */
2270 		if (xa_is_sibling(folio))
2271 			goto update_start;
2272 
2273 		if (!folio_try_get(folio))
2274 			goto retry;
2275 
2276 		if (unlikely(folio != xas_reload(&xas)))
2277 			goto put_folio;
2278 
2279 		if (!folio_batch_add(fbatch, folio)) {
2280 			nr = folio_nr_pages(folio);
2281 			*start = folio->index + nr;
2282 			goto out;
2283 		}
2284 		xas_advance(&xas, folio_next_index(folio) - 1);
2285 		continue;
2286 put_folio:
2287 		folio_put(folio);
2288 
2289 retry:
2290 		xas_reset(&xas);
2291 	}
2292 
2293 update_start:
2294 	nr = folio_batch_count(fbatch);
2295 
2296 	if (nr) {
2297 		folio = fbatch->folios[nr - 1];
2298 		*start = folio_next_index(folio);
2299 	}
2300 out:
2301 	rcu_read_unlock();
2302 	return folio_batch_count(fbatch);
2303 }
2304 EXPORT_SYMBOL(filemap_get_folios_contig);
2305 
2306 /**
2307  * filemap_get_folios_tag - Get a batch of folios matching @tag
2308  * @mapping:    The address_space to search
2309  * @start:      The starting page index
2310  * @end:        The final page index (inclusive)
2311  * @tag:        The tag index
2312  * @fbatch:     The batch to fill
2313  *
2314  * The first folio may start before @start; if it does, it will contain
2315  * @start.  The final folio may extend beyond @end; if it does, it will
2316  * contain @end.  The folios have ascending indices.  There may be gaps
2317  * between the folios if there are indices which have no folio in the
2318  * page cache.  If folios are added to or removed from the page cache
2319  * while this is running, they may or may not be found by this call.
2320  * Only returns folios that are tagged with @tag.
2321  *
2322  * Return: The number of folios found.
2323  * Also update @start to index the next folio for traversal.
2324  */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2325 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2326 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2327 {
2328 	XA_STATE(xas, &mapping->i_pages, *start);
2329 	struct folio *folio;
2330 
2331 	rcu_read_lock();
2332 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2333 		/*
2334 		 * Shadow entries should never be tagged, but this iteration
2335 		 * is lockless so there is a window for page reclaim to evict
2336 		 * a page we saw tagged. Skip over it.
2337 		 */
2338 		if (xa_is_value(folio))
2339 			continue;
2340 		if (!folio_batch_add(fbatch, folio)) {
2341 			unsigned long nr = folio_nr_pages(folio);
2342 			*start = folio->index + nr;
2343 			goto out;
2344 		}
2345 	}
2346 	/*
2347 	 * We come here when there is no page beyond @end. We take care to not
2348 	 * overflow the index @start as it confuses some of the callers. This
2349 	 * breaks the iteration when there is a page at index -1 but that is
2350 	 * already broke anyway.
2351 	 */
2352 	if (end == (pgoff_t)-1)
2353 		*start = (pgoff_t)-1;
2354 	else
2355 		*start = end + 1;
2356 out:
2357 	rcu_read_unlock();
2358 
2359 	return folio_batch_count(fbatch);
2360 }
2361 EXPORT_SYMBOL(filemap_get_folios_tag);
2362 
2363 /**
2364  * filemap_get_folios_dirty - Get a batch of dirty folios
2365  * @mapping:	The address_space to search
2366  * @start:	The starting folio index
2367  * @end:	The final folio index (inclusive)
2368  * @fbatch:	The batch to fill
2369  *
2370  * filemap_get_folios_dirty() works exactly like filemap_get_folios(), except
2371  * the returned folios are presumed to be dirty or undergoing writeback. Dirty
2372  * state is presumed because we don't block on folio lock nor want to miss
2373  * folios. Callers that need to can recheck state upon locking the folio.
2374  *
2375  * This may not return all dirty folios if the batch gets filled up.
2376  *
2377  * Return: The number of folios found.
2378  * Also update @start to be positioned for traversal of the next folio.
2379  */
filemap_get_folios_dirty(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2380 unsigned filemap_get_folios_dirty(struct address_space *mapping, pgoff_t *start,
2381 			pgoff_t end, struct folio_batch *fbatch)
2382 {
2383 	XA_STATE(xas, &mapping->i_pages, *start);
2384 	struct folio *folio;
2385 
2386 	rcu_read_lock();
2387 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2388 		if (xa_is_value(folio))
2389 			continue;
2390 		if (folio_trylock(folio)) {
2391 			bool clean = !folio_test_dirty(folio) &&
2392 				     !folio_test_writeback(folio);
2393 			folio_unlock(folio);
2394 			if (clean) {
2395 				folio_put(folio);
2396 				continue;
2397 			}
2398 		}
2399 		if (!folio_batch_add(fbatch, folio)) {
2400 			unsigned long nr = folio_nr_pages(folio);
2401 			*start = folio->index + nr;
2402 			goto out;
2403 		}
2404 	}
2405 	/*
2406 	 * We come here when there is no folio beyond @end. We take care to not
2407 	 * overflow the index @start as it confuses some of the callers. This
2408 	 * breaks the iteration when there is a folio at index -1 but that is
2409 	 * already broke anyway.
2410 	 */
2411 	if (end == (pgoff_t)-1)
2412 		*start = (pgoff_t)-1;
2413 	else
2414 		*start = end + 1;
2415 out:
2416 	rcu_read_unlock();
2417 
2418 	return folio_batch_count(fbatch);
2419 }
2420 
2421 /*
2422  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2423  * a _large_ part of the i/o request. Imagine the worst scenario:
2424  *
2425  *      ---R__________________________________________B__________
2426  *         ^ reading here                             ^ bad block(assume 4k)
2427  *
2428  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2429  * => failing the whole request => read(R) => read(R+1) =>
2430  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2431  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2432  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2433  *
2434  * It is going insane. Fix it by quickly scaling down the readahead size.
2435  */
shrink_readahead_size_eio(struct file_ra_state * ra)2436 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2437 {
2438 	ra->ra_pages /= 4;
2439 }
2440 
2441 /*
2442  * filemap_get_read_batch - Get a batch of folios for read
2443  *
2444  * Get a batch of folios which represent a contiguous range of bytes in
2445  * the file.  No exceptional entries will be returned.  If @index is in
2446  * the middle of a folio, the entire folio will be returned.  The last
2447  * folio in the batch may have the readahead flag set or the uptodate flag
2448  * clear so that the caller can take the appropriate action.
2449  */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2450 static void filemap_get_read_batch(struct address_space *mapping,
2451 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2452 {
2453 	XA_STATE(xas, &mapping->i_pages, index);
2454 	struct folio *folio;
2455 
2456 	rcu_read_lock();
2457 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2458 		if (xas_retry(&xas, folio))
2459 			continue;
2460 		if (xas.xa_index > max || xa_is_value(folio))
2461 			break;
2462 		if (xa_is_sibling(folio))
2463 			break;
2464 		if (!folio_try_get(folio))
2465 			goto retry;
2466 
2467 		if (unlikely(folio != xas_reload(&xas)))
2468 			goto put_folio;
2469 
2470 		if (!folio_batch_add(fbatch, folio))
2471 			break;
2472 		if (!folio_test_uptodate(folio))
2473 			break;
2474 		if (folio_test_readahead(folio))
2475 			break;
2476 		xas_advance(&xas, folio_next_index(folio) - 1);
2477 		continue;
2478 put_folio:
2479 		folio_put(folio);
2480 retry:
2481 		xas_reset(&xas);
2482 	}
2483 	rcu_read_unlock();
2484 }
2485 
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2486 static int filemap_read_folio(struct file *file, filler_t filler,
2487 		struct folio *folio)
2488 {
2489 	bool workingset = folio_test_workingset(folio);
2490 	unsigned long pflags;
2491 	int error;
2492 
2493 	/* Start the actual read. The read will unlock the page. */
2494 	if (unlikely(workingset))
2495 		psi_memstall_enter(&pflags);
2496 	error = filler(file, folio);
2497 	if (unlikely(workingset))
2498 		psi_memstall_leave(&pflags);
2499 	if (error)
2500 		return error;
2501 
2502 	error = folio_wait_locked_killable(folio);
2503 	if (error)
2504 		return error;
2505 	if (folio_test_uptodate(folio))
2506 		return 0;
2507 	if (file)
2508 		shrink_readahead_size_eio(&file->f_ra);
2509 	return -EIO;
2510 }
2511 
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2512 static bool filemap_range_uptodate(struct address_space *mapping,
2513 		loff_t pos, size_t count, struct folio *folio,
2514 		bool need_uptodate)
2515 {
2516 	if (folio_test_uptodate(folio))
2517 		return true;
2518 	/* pipes can't handle partially uptodate pages */
2519 	if (need_uptodate)
2520 		return false;
2521 	if (!mapping->a_ops->is_partially_uptodate)
2522 		return false;
2523 	if (mapping->host->i_blkbits >= folio_shift(folio))
2524 		return false;
2525 
2526 	if (folio_pos(folio) > pos) {
2527 		count -= folio_pos(folio) - pos;
2528 		pos = 0;
2529 	} else {
2530 		pos -= folio_pos(folio);
2531 	}
2532 
2533 	if (pos == 0 && count >= folio_size(folio))
2534 		return false;
2535 
2536 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2537 }
2538 
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2539 static int filemap_update_page(struct kiocb *iocb,
2540 		struct address_space *mapping, size_t count,
2541 		struct folio *folio, bool need_uptodate)
2542 {
2543 	int error;
2544 
2545 	if (iocb->ki_flags & IOCB_NOWAIT) {
2546 		if (!filemap_invalidate_trylock_shared(mapping))
2547 			return -EAGAIN;
2548 	} else {
2549 		filemap_invalidate_lock_shared(mapping);
2550 	}
2551 
2552 	if (!folio_trylock(folio)) {
2553 		error = -EAGAIN;
2554 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2555 			goto unlock_mapping;
2556 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2557 			filemap_invalidate_unlock_shared(mapping);
2558 			/*
2559 			 * This is where we usually end up waiting for a
2560 			 * previously submitted readahead to finish.
2561 			 */
2562 			folio_put_wait_locked(folio, TASK_KILLABLE);
2563 			return AOP_TRUNCATED_PAGE;
2564 		}
2565 		error = __folio_lock_async(folio, iocb->ki_waitq);
2566 		if (error)
2567 			goto unlock_mapping;
2568 	}
2569 
2570 	error = AOP_TRUNCATED_PAGE;
2571 	if (!folio->mapping)
2572 		goto unlock;
2573 
2574 	error = 0;
2575 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2576 				   need_uptodate))
2577 		goto unlock;
2578 
2579 	error = -EAGAIN;
2580 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2581 		goto unlock;
2582 
2583 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2584 			folio);
2585 	goto unlock_mapping;
2586 unlock:
2587 	folio_unlock(folio);
2588 unlock_mapping:
2589 	filemap_invalidate_unlock_shared(mapping);
2590 	if (error == AOP_TRUNCATED_PAGE)
2591 		folio_put(folio);
2592 	return error;
2593 }
2594 
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2595 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2596 {
2597 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2598 	struct folio *folio;
2599 	int error;
2600 	unsigned int min_order = mapping_min_folio_order(mapping);
2601 	pgoff_t index;
2602 
2603 	if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 		return -EAGAIN;
2605 
2606 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order, NULL);
2607 	if (!folio)
2608 		return -ENOMEM;
2609 	if (iocb->ki_flags & IOCB_DONTCACHE)
2610 		__folio_set_dropbehind(folio);
2611 
2612 	/*
2613 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2614 	 * here assures we cannot instantiate and bring uptodate new
2615 	 * pagecache folios after evicting page cache during truncate
2616 	 * and before actually freeing blocks.	Note that we could
2617 	 * release invalidate_lock after inserting the folio into
2618 	 * the page cache as the locked folio would then be enough to
2619 	 * synchronize with hole punching. But there are code paths
2620 	 * such as filemap_update_page() filling in partially uptodate
2621 	 * pages or ->readahead() that need to hold invalidate_lock
2622 	 * while mapping blocks for IO so let's hold the lock here as
2623 	 * well to keep locking rules simple.
2624 	 */
2625 	filemap_invalidate_lock_shared(mapping);
2626 	index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2627 	error = filemap_add_folio(mapping, folio, index,
2628 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2629 	if (error == -EEXIST)
2630 		error = AOP_TRUNCATED_PAGE;
2631 	if (error)
2632 		goto error;
2633 
2634 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2635 					folio);
2636 	if (error)
2637 		goto error;
2638 
2639 	filemap_invalidate_unlock_shared(mapping);
2640 	folio_batch_add(fbatch, folio);
2641 	return 0;
2642 error:
2643 	filemap_invalidate_unlock_shared(mapping);
2644 	folio_put(folio);
2645 	return error;
2646 }
2647 
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2648 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2649 		struct address_space *mapping, struct folio *folio,
2650 		pgoff_t last_index)
2651 {
2652 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2653 
2654 	if (iocb->ki_flags & IOCB_NOIO)
2655 		return -EAGAIN;
2656 	if (iocb->ki_flags & IOCB_DONTCACHE)
2657 		ractl.dropbehind = 1;
2658 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2659 	return 0;
2660 }
2661 
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2662 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2663 		struct folio_batch *fbatch, bool need_uptodate)
2664 {
2665 	struct file *filp = iocb->ki_filp;
2666 	struct address_space *mapping = filp->f_mapping;
2667 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2668 	pgoff_t last_index;
2669 	struct folio *folio;
2670 	unsigned int flags;
2671 	int err = 0;
2672 
2673 	/* "last_index" is the index of the folio beyond the end of the read */
2674 	last_index = round_up(iocb->ki_pos + count,
2675 			mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT;
2676 retry:
2677 	if (fatal_signal_pending(current))
2678 		return -EINTR;
2679 
2680 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2681 	if (!folio_batch_count(fbatch)) {
2682 		DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2683 
2684 		if (iocb->ki_flags & IOCB_NOIO)
2685 			return -EAGAIN;
2686 		if (iocb->ki_flags & IOCB_NOWAIT)
2687 			flags = memalloc_noio_save();
2688 		if (iocb->ki_flags & IOCB_DONTCACHE)
2689 			ractl.dropbehind = 1;
2690 		page_cache_sync_ra(&ractl, last_index - index);
2691 		if (iocb->ki_flags & IOCB_NOWAIT)
2692 			memalloc_noio_restore(flags);
2693 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2694 	}
2695 	if (!folio_batch_count(fbatch)) {
2696 		err = filemap_create_folio(iocb, fbatch);
2697 		if (err == AOP_TRUNCATED_PAGE)
2698 			goto retry;
2699 		return err;
2700 	}
2701 
2702 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2703 	if (folio_test_readahead(folio)) {
2704 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2705 		if (err)
2706 			goto err;
2707 	}
2708 	if (!folio_test_uptodate(folio)) {
2709 		if (folio_batch_count(fbatch) > 1) {
2710 			err = -EAGAIN;
2711 			goto err;
2712 		}
2713 		err = filemap_update_page(iocb, mapping, count, folio,
2714 					  need_uptodate);
2715 		if (err)
2716 			goto err;
2717 	}
2718 
2719 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2720 	return 0;
2721 err:
2722 	if (err < 0)
2723 		folio_put(folio);
2724 	if (likely(--fbatch->nr))
2725 		return 0;
2726 	if (err == AOP_TRUNCATED_PAGE)
2727 		goto retry;
2728 	return err;
2729 }
2730 
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2731 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2732 {
2733 	unsigned int shift = folio_shift(folio);
2734 
2735 	return (pos1 >> shift == pos2 >> shift);
2736 }
2737 
filemap_end_dropbehind_read(struct folio * folio)2738 static void filemap_end_dropbehind_read(struct folio *folio)
2739 {
2740 	if (!folio_test_dropbehind(folio))
2741 		return;
2742 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
2743 		return;
2744 	if (folio_trylock(folio)) {
2745 		filemap_end_dropbehind(folio);
2746 		folio_unlock(folio);
2747 	}
2748 }
2749 
2750 /**
2751  * filemap_read - Read data from the page cache.
2752  * @iocb: The iocb to read.
2753  * @iter: Destination for the data.
2754  * @already_read: Number of bytes already read by the caller.
2755  *
2756  * Copies data from the page cache.  If the data is not currently present,
2757  * uses the readahead and read_folio address_space operations to fetch it.
2758  *
2759  * Return: Total number of bytes copied, including those already read by
2760  * the caller.  If an error happens before any bytes are copied, returns
2761  * a negative error number.
2762  */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2763 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2764 		ssize_t already_read)
2765 {
2766 	struct file *filp = iocb->ki_filp;
2767 	struct file_ra_state *ra = &filp->f_ra;
2768 	struct address_space *mapping = filp->f_mapping;
2769 	struct inode *inode = mapping->host;
2770 	struct folio_batch fbatch;
2771 	int i, error = 0;
2772 	bool writably_mapped;
2773 	loff_t isize, end_offset;
2774 	loff_t last_pos = ra->prev_pos;
2775 
2776 	if (unlikely(iocb->ki_pos < 0))
2777 		return -EINVAL;
2778 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2779 		return 0;
2780 	if (unlikely(!iov_iter_count(iter)))
2781 		return 0;
2782 
2783 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2784 	folio_batch_init(&fbatch);
2785 
2786 	do {
2787 		cond_resched();
2788 
2789 		/*
2790 		 * If we've already successfully copied some data, then we
2791 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2792 		 * an async read NOWAIT at that point.
2793 		 */
2794 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2795 			iocb->ki_flags |= IOCB_NOWAIT;
2796 
2797 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2798 			break;
2799 
2800 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2801 		if (error < 0)
2802 			break;
2803 
2804 		/*
2805 		 * i_size must be checked after we know the pages are Uptodate.
2806 		 *
2807 		 * Checking i_size after the check allows us to calculate
2808 		 * the correct value for "nr", which means the zero-filled
2809 		 * part of the page is not copied back to userspace (unless
2810 		 * another truncate extends the file - this is desired though).
2811 		 */
2812 		isize = i_size_read(inode);
2813 		if (unlikely(iocb->ki_pos >= isize))
2814 			goto put_folios;
2815 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2816 
2817 		/*
2818 		 * Once we start copying data, we don't want to be touching any
2819 		 * cachelines that might be contended:
2820 		 */
2821 		writably_mapped = mapping_writably_mapped(mapping);
2822 
2823 		/*
2824 		 * When a read accesses the same folio several times, only
2825 		 * mark it as accessed the first time.
2826 		 */
2827 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2828 				    fbatch.folios[0]))
2829 			folio_mark_accessed(fbatch.folios[0]);
2830 
2831 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2832 			struct folio *folio = fbatch.folios[i];
2833 			size_t fsize = folio_size(folio);
2834 			size_t offset = iocb->ki_pos & (fsize - 1);
2835 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2836 					     fsize - offset);
2837 			size_t copied;
2838 
2839 			if (end_offset < folio_pos(folio))
2840 				break;
2841 			if (i > 0)
2842 				folio_mark_accessed(folio);
2843 			/*
2844 			 * If users can be writing to this folio using arbitrary
2845 			 * virtual addresses, take care of potential aliasing
2846 			 * before reading the folio on the kernel side.
2847 			 */
2848 			if (writably_mapped)
2849 				flush_dcache_folio(folio);
2850 
2851 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2852 
2853 			already_read += copied;
2854 			iocb->ki_pos += copied;
2855 			last_pos = iocb->ki_pos;
2856 
2857 			if (copied < bytes) {
2858 				error = -EFAULT;
2859 				break;
2860 			}
2861 		}
2862 put_folios:
2863 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2864 			struct folio *folio = fbatch.folios[i];
2865 
2866 			filemap_end_dropbehind_read(folio);
2867 			folio_put(folio);
2868 		}
2869 		folio_batch_init(&fbatch);
2870 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2871 
2872 	file_accessed(filp);
2873 	ra->prev_pos = last_pos;
2874 	return already_read ? already_read : error;
2875 }
2876 EXPORT_SYMBOL_GPL(filemap_read);
2877 
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2878 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2879 {
2880 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2881 	loff_t pos = iocb->ki_pos;
2882 	loff_t end = pos + count - 1;
2883 
2884 	if (iocb->ki_flags & IOCB_NOWAIT) {
2885 		if (filemap_range_needs_writeback(mapping, pos, end))
2886 			return -EAGAIN;
2887 		return 0;
2888 	}
2889 
2890 	return filemap_write_and_wait_range(mapping, pos, end);
2891 }
2892 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2893 
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2894 int filemap_invalidate_pages(struct address_space *mapping,
2895 			     loff_t pos, loff_t end, bool nowait)
2896 {
2897 	int ret;
2898 
2899 	if (nowait) {
2900 		/* we could block if there are any pages in the range */
2901 		if (filemap_range_has_page(mapping, pos, end))
2902 			return -EAGAIN;
2903 	} else {
2904 		ret = filemap_write_and_wait_range(mapping, pos, end);
2905 		if (ret)
2906 			return ret;
2907 	}
2908 
2909 	/*
2910 	 * After a write we want buffered reads to be sure to go to disk to get
2911 	 * the new data.  We invalidate clean cached page from the region we're
2912 	 * about to write.  We do this *before* the write so that we can return
2913 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2914 	 */
2915 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2916 					     end >> PAGE_SHIFT);
2917 }
2918 
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2919 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2920 {
2921 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2922 
2923 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2924 					iocb->ki_pos + count - 1,
2925 					iocb->ki_flags & IOCB_NOWAIT);
2926 }
2927 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2928 
2929 /**
2930  * generic_file_read_iter - generic filesystem read routine
2931  * @iocb:	kernel I/O control block
2932  * @iter:	destination for the data read
2933  *
2934  * This is the "read_iter()" routine for all filesystems
2935  * that can use the page cache directly.
2936  *
2937  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2938  * be returned when no data can be read without waiting for I/O requests
2939  * to complete; it doesn't prevent readahead.
2940  *
2941  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2942  * requests shall be made for the read or for readahead.  When no data
2943  * can be read, -EAGAIN shall be returned.  When readahead would be
2944  * triggered, a partial, possibly empty read shall be returned.
2945  *
2946  * Return:
2947  * * number of bytes copied, even for partial reads
2948  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2949  */
2950 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2951 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2952 {
2953 	size_t count = iov_iter_count(iter);
2954 	ssize_t retval = 0;
2955 
2956 	if (!count)
2957 		return 0; /* skip atime */
2958 
2959 	if (iocb->ki_flags & IOCB_DIRECT) {
2960 		struct file *file = iocb->ki_filp;
2961 		struct address_space *mapping = file->f_mapping;
2962 		struct inode *inode = mapping->host;
2963 
2964 		retval = kiocb_write_and_wait(iocb, count);
2965 		if (retval < 0)
2966 			return retval;
2967 		file_accessed(file);
2968 
2969 		retval = mapping->a_ops->direct_IO(iocb, iter);
2970 		if (retval >= 0) {
2971 			iocb->ki_pos += retval;
2972 			count -= retval;
2973 		}
2974 		if (retval != -EIOCBQUEUED)
2975 			iov_iter_revert(iter, count - iov_iter_count(iter));
2976 
2977 		/*
2978 		 * Btrfs can have a short DIO read if we encounter
2979 		 * compressed extents, so if there was an error, or if
2980 		 * we've already read everything we wanted to, or if
2981 		 * there was a short read because we hit EOF, go ahead
2982 		 * and return.  Otherwise fallthrough to buffered io for
2983 		 * the rest of the read.  Buffered reads will not work for
2984 		 * DAX files, so don't bother trying.
2985 		 */
2986 		if (retval < 0 || !count || IS_DAX(inode))
2987 			return retval;
2988 		if (iocb->ki_pos >= i_size_read(inode))
2989 			return retval;
2990 	}
2991 
2992 	return filemap_read(iocb, iter, retval);
2993 }
2994 EXPORT_SYMBOL(generic_file_read_iter);
2995 
2996 /*
2997  * Splice subpages from a folio into a pipe.
2998  */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2999 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
3000 			      struct folio *folio, loff_t fpos, size_t size)
3001 {
3002 	struct page *page;
3003 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
3004 
3005 	page = folio_page(folio, offset / PAGE_SIZE);
3006 	size = min(size, folio_size(folio) - offset);
3007 	offset %= PAGE_SIZE;
3008 
3009 	while (spliced < size && !pipe_is_full(pipe)) {
3010 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3011 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
3012 
3013 		*buf = (struct pipe_buffer) {
3014 			.ops	= &page_cache_pipe_buf_ops,
3015 			.page	= page,
3016 			.offset	= offset,
3017 			.len	= part,
3018 		};
3019 		folio_get(folio);
3020 		pipe->head++;
3021 		page++;
3022 		spliced += part;
3023 		offset = 0;
3024 	}
3025 
3026 	return spliced;
3027 }
3028 
3029 /**
3030  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
3031  * @in: The file to read from
3032  * @ppos: Pointer to the file position to read from
3033  * @pipe: The pipe to splice into
3034  * @len: The amount to splice
3035  * @flags: The SPLICE_F_* flags
3036  *
3037  * This function gets folios from a file's pagecache and splices them into the
3038  * pipe.  Readahead will be called as necessary to fill more folios.  This may
3039  * be used for blockdevs also.
3040  *
3041  * Return: On success, the number of bytes read will be returned and *@ppos
3042  * will be updated if appropriate; 0 will be returned if there is no more data
3043  * to be read; -EAGAIN will be returned if the pipe had no space, and some
3044  * other negative error code will be returned on error.  A short read may occur
3045  * if the pipe has insufficient space, we reach the end of the data or we hit a
3046  * hole.
3047  */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3048 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3049 			    struct pipe_inode_info *pipe,
3050 			    size_t len, unsigned int flags)
3051 {
3052 	struct folio_batch fbatch;
3053 	struct kiocb iocb;
3054 	size_t total_spliced = 0, used, npages;
3055 	loff_t isize, end_offset;
3056 	bool writably_mapped;
3057 	int i, error = 0;
3058 
3059 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3060 		return 0;
3061 
3062 	init_sync_kiocb(&iocb, in);
3063 	iocb.ki_pos = *ppos;
3064 
3065 	/* Work out how much data we can actually add into the pipe */
3066 	used = pipe_buf_usage(pipe);
3067 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3068 	len = min_t(size_t, len, npages * PAGE_SIZE);
3069 
3070 	folio_batch_init(&fbatch);
3071 
3072 	do {
3073 		cond_resched();
3074 
3075 		if (*ppos >= i_size_read(in->f_mapping->host))
3076 			break;
3077 
3078 		iocb.ki_pos = *ppos;
3079 		error = filemap_get_pages(&iocb, len, &fbatch, true);
3080 		if (error < 0)
3081 			break;
3082 
3083 		/*
3084 		 * i_size must be checked after we know the pages are Uptodate.
3085 		 *
3086 		 * Checking i_size after the check allows us to calculate
3087 		 * the correct value for "nr", which means the zero-filled
3088 		 * part of the page is not copied back to userspace (unless
3089 		 * another truncate extends the file - this is desired though).
3090 		 */
3091 		isize = i_size_read(in->f_mapping->host);
3092 		if (unlikely(*ppos >= isize))
3093 			break;
3094 		end_offset = min_t(loff_t, isize, *ppos + len);
3095 
3096 		/*
3097 		 * Once we start copying data, we don't want to be touching any
3098 		 * cachelines that might be contended:
3099 		 */
3100 		writably_mapped = mapping_writably_mapped(in->f_mapping);
3101 
3102 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
3103 			struct folio *folio = fbatch.folios[i];
3104 			size_t n;
3105 
3106 			if (folio_pos(folio) >= end_offset)
3107 				goto out;
3108 			folio_mark_accessed(folio);
3109 
3110 			/*
3111 			 * If users can be writing to this folio using arbitrary
3112 			 * virtual addresses, take care of potential aliasing
3113 			 * before reading the folio on the kernel side.
3114 			 */
3115 			if (writably_mapped)
3116 				flush_dcache_folio(folio);
3117 
3118 			n = min_t(loff_t, len, isize - *ppos);
3119 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3120 			if (!n)
3121 				goto out;
3122 			len -= n;
3123 			total_spliced += n;
3124 			*ppos += n;
3125 			in->f_ra.prev_pos = *ppos;
3126 			if (pipe_is_full(pipe))
3127 				goto out;
3128 		}
3129 
3130 		folio_batch_release(&fbatch);
3131 	} while (len);
3132 
3133 out:
3134 	folio_batch_release(&fbatch);
3135 	file_accessed(in);
3136 
3137 	return total_spliced ? total_spliced : error;
3138 }
3139 EXPORT_SYMBOL(filemap_splice_read);
3140 
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3141 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3142 		struct address_space *mapping, struct folio *folio,
3143 		loff_t start, loff_t end, bool seek_data)
3144 {
3145 	const struct address_space_operations *ops = mapping->a_ops;
3146 	size_t offset, bsz = i_blocksize(mapping->host);
3147 
3148 	if (xa_is_value(folio) || folio_test_uptodate(folio))
3149 		return seek_data ? start : end;
3150 	if (!ops->is_partially_uptodate)
3151 		return seek_data ? end : start;
3152 
3153 	xas_pause(xas);
3154 	rcu_read_unlock();
3155 	folio_lock(folio);
3156 	if (unlikely(folio->mapping != mapping))
3157 		goto unlock;
3158 
3159 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3160 
3161 	do {
3162 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3163 							seek_data)
3164 			break;
3165 		start = (start + bsz) & ~((u64)bsz - 1);
3166 		offset += bsz;
3167 	} while (offset < folio_size(folio));
3168 unlock:
3169 	folio_unlock(folio);
3170 	rcu_read_lock();
3171 	return start;
3172 }
3173 
seek_folio_size(struct xa_state * xas,struct folio * folio)3174 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3175 {
3176 	if (xa_is_value(folio))
3177 		return PAGE_SIZE << xas_get_order(xas);
3178 	return folio_size(folio);
3179 }
3180 
3181 /**
3182  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3183  * @mapping: Address space to search.
3184  * @start: First byte to consider.
3185  * @end: Limit of search (exclusive).
3186  * @whence: Either SEEK_HOLE or SEEK_DATA.
3187  *
3188  * If the page cache knows which blocks contain holes and which blocks
3189  * contain data, your filesystem can use this function to implement
3190  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3191  * entirely memory-based such as tmpfs, and filesystems which support
3192  * unwritten extents.
3193  *
3194  * Return: The requested offset on success, or -ENXIO if @whence specifies
3195  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3196  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3197  * and @end contain data.
3198  */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3199 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3200 		loff_t end, int whence)
3201 {
3202 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3203 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3204 	bool seek_data = (whence == SEEK_DATA);
3205 	struct folio *folio;
3206 
3207 	if (end <= start)
3208 		return -ENXIO;
3209 
3210 	rcu_read_lock();
3211 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3212 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3213 		size_t seek_size;
3214 
3215 		if (start < pos) {
3216 			if (!seek_data)
3217 				goto unlock;
3218 			start = pos;
3219 		}
3220 
3221 		seek_size = seek_folio_size(&xas, folio);
3222 		pos = round_up((u64)pos + 1, seek_size);
3223 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3224 				seek_data);
3225 		if (start < pos)
3226 			goto unlock;
3227 		if (start >= end)
3228 			break;
3229 		if (seek_size > PAGE_SIZE)
3230 			xas_set(&xas, pos >> PAGE_SHIFT);
3231 		if (!xa_is_value(folio))
3232 			folio_put(folio);
3233 	}
3234 	if (seek_data)
3235 		start = -ENXIO;
3236 unlock:
3237 	rcu_read_unlock();
3238 	if (folio && !xa_is_value(folio))
3239 		folio_put(folio);
3240 	if (start > end)
3241 		return end;
3242 	return start;
3243 }
3244 
3245 #ifdef CONFIG_MMU
3246 #define MMAP_LOTSAMISS  (100)
3247 /*
3248  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3249  * @vmf - the vm_fault for this fault.
3250  * @folio - the folio to lock.
3251  * @fpin - the pointer to the file we may pin (or is already pinned).
3252  *
3253  * This works similar to lock_folio_or_retry in that it can drop the
3254  * mmap_lock.  It differs in that it actually returns the folio locked
3255  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3256  * to drop the mmap_lock then fpin will point to the pinned file and
3257  * needs to be fput()'ed at a later point.
3258  */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3259 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3260 				     struct file **fpin)
3261 {
3262 	if (folio_trylock(folio))
3263 		return 1;
3264 
3265 	/*
3266 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3267 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3268 	 * is supposed to work. We have way too many special cases..
3269 	 */
3270 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3271 		return 0;
3272 
3273 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3274 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3275 		if (__folio_lock_killable(folio)) {
3276 			/*
3277 			 * We didn't have the right flags to drop the
3278 			 * fault lock, but all fault_handlers only check
3279 			 * for fatal signals if we return VM_FAULT_RETRY,
3280 			 * so we need to drop the fault lock here and
3281 			 * return 0 if we don't have a fpin.
3282 			 */
3283 			if (*fpin == NULL)
3284 				release_fault_lock(vmf);
3285 			return 0;
3286 		}
3287 	} else
3288 		__folio_lock(folio);
3289 
3290 	return 1;
3291 }
3292 
3293 /*
3294  * Synchronous readahead happens when we don't even find a page in the page
3295  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3296  * to drop the mmap sem we return the file that was pinned in order for us to do
3297  * that.  If we didn't pin a file then we return NULL.  The file that is
3298  * returned needs to be fput()'ed when we're done with it.
3299  */
do_sync_mmap_readahead(struct vm_fault * vmf)3300 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3301 {
3302 	struct file *file = vmf->vma->vm_file;
3303 	struct file_ra_state *ra = &file->f_ra;
3304 	struct address_space *mapping = file->f_mapping;
3305 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3306 	struct file *fpin = NULL;
3307 	vm_flags_t vm_flags = vmf->vma->vm_flags;
3308 	bool force_thp_readahead = false;
3309 	unsigned short mmap_miss;
3310 
3311 	/* Use the readahead code, even if readahead is disabled */
3312 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3313 	    (vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER)
3314 		force_thp_readahead = true;
3315 
3316 	if (!force_thp_readahead) {
3317 		/*
3318 		 * If we don't want any read-ahead, don't bother.
3319 		 * VM_EXEC case below is already intended for random access.
3320 		 */
3321 		if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3322 			return fpin;
3323 
3324 		if (!ra->ra_pages)
3325 			return fpin;
3326 
3327 		if (vm_flags & VM_SEQ_READ) {
3328 			fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3329 			page_cache_sync_ra(&ractl, ra->ra_pages);
3330 			return fpin;
3331 		}
3332 	}
3333 
3334 	if (!(vm_flags & VM_SEQ_READ)) {
3335 		/* Avoid banging the cache line if not needed */
3336 		mmap_miss = READ_ONCE(ra->mmap_miss);
3337 		if (mmap_miss < MMAP_LOTSAMISS * 10)
3338 			WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3339 
3340 		/*
3341 		 * Do we miss much more than hit in this file? If so,
3342 		 * stop bothering with read-ahead. It will only hurt.
3343 		 */
3344 		if (mmap_miss > MMAP_LOTSAMISS)
3345 			return fpin;
3346 	}
3347 
3348 	if (force_thp_readahead) {
3349 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3350 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3351 		ra->size = HPAGE_PMD_NR;
3352 		/*
3353 		 * Fetch two PMD folios, so we get the chance to actually
3354 		 * readahead, unless we've been told not to.
3355 		 */
3356 		if (!(vm_flags & VM_RAND_READ))
3357 			ra->size *= 2;
3358 		ra->async_size = HPAGE_PMD_NR;
3359 		ra->order = HPAGE_PMD_ORDER;
3360 		page_cache_ra_order(&ractl, ra);
3361 		return fpin;
3362 	}
3363 
3364 	if (vm_flags & VM_EXEC) {
3365 		/*
3366 		 * Allow arch to request a preferred minimum folio order for
3367 		 * executable memory. This can often be beneficial to
3368 		 * performance if (e.g.) arm64 can contpte-map the folio.
3369 		 * Executable memory rarely benefits from readahead, due to its
3370 		 * random access nature, so set async_size to 0.
3371 		 *
3372 		 * Limit to the boundaries of the VMA to avoid reading in any
3373 		 * pad that might exist between sections, which would be a waste
3374 		 * of memory.
3375 		 */
3376 		struct vm_area_struct *vma = vmf->vma;
3377 		unsigned long start = vma->vm_pgoff;
3378 		unsigned long end = start + vma_pages(vma);
3379 		unsigned long ra_end;
3380 
3381 		ra->order = exec_folio_order();
3382 		ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3383 		ra->start = max(ra->start, start);
3384 		ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3385 		ra_end = min(ra_end, end);
3386 		ra->size = ra_end - ra->start;
3387 		ra->async_size = 0;
3388 	} else {
3389 		/*
3390 		 * mmap read-around
3391 		 */
3392 		ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3393 		ra->size = ra->ra_pages;
3394 		ra->async_size = ra->ra_pages / 4;
3395 		ra->order = 0;
3396 	}
3397 
3398 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3399 	ractl._index = ra->start;
3400 	page_cache_ra_order(&ractl, ra);
3401 	return fpin;
3402 }
3403 
3404 /*
3405  * Asynchronous readahead happens when we find the page and PG_readahead,
3406  * so we want to possibly extend the readahead further.  We return the file that
3407  * was pinned if we have to drop the mmap_lock in order to do IO.
3408  */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3409 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3410 					    struct folio *folio)
3411 {
3412 	struct file *file = vmf->vma->vm_file;
3413 	struct file_ra_state *ra = &file->f_ra;
3414 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3415 	struct file *fpin = NULL;
3416 	unsigned short mmap_miss;
3417 
3418 	/* If we don't want any read-ahead, don't bother */
3419 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3420 		return fpin;
3421 
3422 	/*
3423 	 * If the folio is locked, we're likely racing against another fault.
3424 	 * Don't touch the mmap_miss counter to avoid decreasing it multiple
3425 	 * times for a single folio and break the balance with mmap_miss
3426 	 * increase in do_sync_mmap_readahead().
3427 	 */
3428 	if (likely(!folio_test_locked(folio))) {
3429 		mmap_miss = READ_ONCE(ra->mmap_miss);
3430 		if (mmap_miss)
3431 			WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3432 	}
3433 
3434 	if (folio_test_readahead(folio)) {
3435 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3436 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3437 	}
3438 	return fpin;
3439 }
3440 
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3441 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3442 {
3443 	struct vm_area_struct *vma = vmf->vma;
3444 	vm_fault_t ret = 0;
3445 	pte_t *ptep;
3446 
3447 	/*
3448 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3449 	 * anon folio mapped. The original pagecache folio is not mlocked and
3450 	 * might have been evicted. During a read+clear/modify/write update of
3451 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3452 	 * temporarily clear the PTE under PT lock and might detect it here as
3453 	 * "none" when not holding the PT lock.
3454 	 *
3455 	 * Not rechecking the PTE under PT lock could result in an unexpected
3456 	 * major fault in an mlock'ed region. Recheck only for this special
3457 	 * scenario while holding the PT lock, to not degrade non-mlocked
3458 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3459 	 * the number of times we hold PT lock.
3460 	 */
3461 	if (!(vma->vm_flags & VM_LOCKED))
3462 		return 0;
3463 
3464 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3465 		return 0;
3466 
3467 	ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3468 					&vmf->ptl);
3469 	if (unlikely(!ptep))
3470 		return VM_FAULT_NOPAGE;
3471 
3472 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3473 		ret = VM_FAULT_NOPAGE;
3474 	} else {
3475 		spin_lock(vmf->ptl);
3476 		if (unlikely(!pte_none(ptep_get(ptep))))
3477 			ret = VM_FAULT_NOPAGE;
3478 		spin_unlock(vmf->ptl);
3479 	}
3480 	pte_unmap(ptep);
3481 	return ret;
3482 }
3483 
3484 /**
3485  * filemap_fault - read in file data for page fault handling
3486  * @vmf:	struct vm_fault containing details of the fault
3487  *
3488  * filemap_fault() is invoked via the vma operations vector for a
3489  * mapped memory region to read in file data during a page fault.
3490  *
3491  * The goto's are kind of ugly, but this streamlines the normal case of having
3492  * it in the page cache, and handles the special cases reasonably without
3493  * having a lot of duplicated code.
3494  *
3495  * vma->vm_mm->mmap_lock must be held on entry.
3496  *
3497  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3498  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3499  *
3500  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3501  * has not been released.
3502  *
3503  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3504  *
3505  * Return: bitwise-OR of %VM_FAULT_ codes.
3506  */
filemap_fault(struct vm_fault * vmf)3507 vm_fault_t filemap_fault(struct vm_fault *vmf)
3508 {
3509 	int error;
3510 	struct file *file = vmf->vma->vm_file;
3511 	struct file *fpin = NULL;
3512 	struct address_space *mapping = file->f_mapping;
3513 	struct inode *inode = mapping->host;
3514 	pgoff_t max_idx, index = vmf->pgoff;
3515 	struct folio *folio;
3516 	vm_fault_t ret = 0;
3517 	bool mapping_locked = false;
3518 
3519 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3520 	if (unlikely(index >= max_idx))
3521 		return VM_FAULT_SIGBUS;
3522 
3523 	trace_mm_filemap_fault(mapping, index);
3524 
3525 	/*
3526 	 * Do we have something in the page cache already?
3527 	 */
3528 	folio = filemap_get_folio(mapping, index);
3529 	if (likely(!IS_ERR(folio))) {
3530 		/*
3531 		 * We found the page, so try async readahead before waiting for
3532 		 * the lock.
3533 		 */
3534 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3535 			fpin = do_async_mmap_readahead(vmf, folio);
3536 		if (unlikely(!folio_test_uptodate(folio))) {
3537 			filemap_invalidate_lock_shared(mapping);
3538 			mapping_locked = true;
3539 		}
3540 	} else {
3541 		ret = filemap_fault_recheck_pte_none(vmf);
3542 		if (unlikely(ret))
3543 			return ret;
3544 
3545 		/* No page in the page cache at all */
3546 		count_vm_event(PGMAJFAULT);
3547 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3548 		ret = VM_FAULT_MAJOR;
3549 		fpin = do_sync_mmap_readahead(vmf);
3550 retry_find:
3551 		/*
3552 		 * See comment in filemap_create_folio() why we need
3553 		 * invalidate_lock
3554 		 */
3555 		if (!mapping_locked) {
3556 			filemap_invalidate_lock_shared(mapping);
3557 			mapping_locked = true;
3558 		}
3559 		folio = __filemap_get_folio(mapping, index,
3560 					  FGP_CREAT|FGP_FOR_MMAP,
3561 					  vmf->gfp_mask);
3562 		if (IS_ERR(folio)) {
3563 			if (fpin)
3564 				goto out_retry;
3565 			filemap_invalidate_unlock_shared(mapping);
3566 			return VM_FAULT_OOM;
3567 		}
3568 	}
3569 
3570 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3571 		goto out_retry;
3572 
3573 	/* Did it get truncated? */
3574 	if (unlikely(folio->mapping != mapping)) {
3575 		folio_unlock(folio);
3576 		folio_put(folio);
3577 		goto retry_find;
3578 	}
3579 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3580 
3581 	/*
3582 	 * We have a locked folio in the page cache, now we need to check
3583 	 * that it's up-to-date. If not, it is going to be due to an error,
3584 	 * or because readahead was otherwise unable to retrieve it.
3585 	 */
3586 	if (unlikely(!folio_test_uptodate(folio))) {
3587 		/*
3588 		 * If the invalidate lock is not held, the folio was in cache
3589 		 * and uptodate and now it is not. Strange but possible since we
3590 		 * didn't hold the page lock all the time. Let's drop
3591 		 * everything, get the invalidate lock and try again.
3592 		 */
3593 		if (!mapping_locked) {
3594 			folio_unlock(folio);
3595 			folio_put(folio);
3596 			goto retry_find;
3597 		}
3598 
3599 		/*
3600 		 * OK, the folio is really not uptodate. This can be because the
3601 		 * VMA has the VM_RAND_READ flag set, or because an error
3602 		 * arose. Let's read it in directly.
3603 		 */
3604 		goto page_not_uptodate;
3605 	}
3606 
3607 	/*
3608 	 * We've made it this far and we had to drop our mmap_lock, now is the
3609 	 * time to return to the upper layer and have it re-find the vma and
3610 	 * redo the fault.
3611 	 */
3612 	if (fpin) {
3613 		folio_unlock(folio);
3614 		goto out_retry;
3615 	}
3616 	if (mapping_locked)
3617 		filemap_invalidate_unlock_shared(mapping);
3618 
3619 	/*
3620 	 * Found the page and have a reference on it.
3621 	 * We must recheck i_size under page lock.
3622 	 */
3623 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3624 	if (unlikely(index >= max_idx)) {
3625 		folio_unlock(folio);
3626 		folio_put(folio);
3627 		return VM_FAULT_SIGBUS;
3628 	}
3629 
3630 	vmf->page = folio_file_page(folio, index);
3631 	return ret | VM_FAULT_LOCKED;
3632 
3633 page_not_uptodate:
3634 	/*
3635 	 * Umm, take care of errors if the page isn't up-to-date.
3636 	 * Try to re-read it _once_. We do this synchronously,
3637 	 * because there really aren't any performance issues here
3638 	 * and we need to check for errors.
3639 	 */
3640 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3641 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3642 	if (fpin)
3643 		goto out_retry;
3644 	folio_put(folio);
3645 
3646 	if (!error || error == AOP_TRUNCATED_PAGE)
3647 		goto retry_find;
3648 	filemap_invalidate_unlock_shared(mapping);
3649 
3650 	return VM_FAULT_SIGBUS;
3651 
3652 out_retry:
3653 	/*
3654 	 * We dropped the mmap_lock, we need to return to the fault handler to
3655 	 * re-find the vma and come back and find our hopefully still populated
3656 	 * page.
3657 	 */
3658 	if (!IS_ERR(folio))
3659 		folio_put(folio);
3660 	if (mapping_locked)
3661 		filemap_invalidate_unlock_shared(mapping);
3662 	if (fpin)
3663 		fput(fpin);
3664 	return ret | VM_FAULT_RETRY;
3665 }
3666 EXPORT_SYMBOL(filemap_fault);
3667 
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3668 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3669 		pgoff_t start)
3670 {
3671 	struct mm_struct *mm = vmf->vma->vm_mm;
3672 
3673 	/* Huge page is mapped? No need to proceed. */
3674 	if (pmd_trans_huge(*vmf->pmd)) {
3675 		folio_unlock(folio);
3676 		folio_put(folio);
3677 		return true;
3678 	}
3679 
3680 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3681 		struct page *page = folio_file_page(folio, start);
3682 		vm_fault_t ret = do_set_pmd(vmf, folio, page);
3683 		if (!ret) {
3684 			/* The page is mapped successfully, reference consumed. */
3685 			folio_unlock(folio);
3686 			return true;
3687 		}
3688 	}
3689 
3690 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3691 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3692 
3693 	return false;
3694 }
3695 
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3696 static struct folio *next_uptodate_folio(struct xa_state *xas,
3697 		struct address_space *mapping, pgoff_t end_pgoff)
3698 {
3699 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3700 	unsigned long max_idx;
3701 
3702 	do {
3703 		if (!folio)
3704 			return NULL;
3705 		if (xas_retry(xas, folio))
3706 			continue;
3707 		if (xa_is_value(folio))
3708 			continue;
3709 		if (!folio_try_get(folio))
3710 			continue;
3711 		if (folio_test_locked(folio))
3712 			goto skip;
3713 		/* Has the page moved or been split? */
3714 		if (unlikely(folio != xas_reload(xas)))
3715 			goto skip;
3716 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3717 			goto skip;
3718 		if (!folio_trylock(folio))
3719 			goto skip;
3720 		if (folio->mapping != mapping)
3721 			goto unlock;
3722 		if (!folio_test_uptodate(folio))
3723 			goto unlock;
3724 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3725 		if (xas->xa_index >= max_idx)
3726 			goto unlock;
3727 		return folio;
3728 unlock:
3729 		folio_unlock(folio);
3730 skip:
3731 		folio_put(folio);
3732 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3733 
3734 	return NULL;
3735 }
3736 
3737 /*
3738  * Map page range [start_page, start_page + nr_pages) of folio.
3739  * start_page is gotten from start by folio_page(folio, start)
3740  */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned short * mmap_miss,pgoff_t file_end)3741 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3742 			struct folio *folio, unsigned long start,
3743 			unsigned long addr, unsigned int nr_pages,
3744 			unsigned long *rss, unsigned short *mmap_miss,
3745 			pgoff_t file_end)
3746 {
3747 	struct address_space *mapping = folio->mapping;
3748 	unsigned int ref_from_caller = 1;
3749 	vm_fault_t ret = 0;
3750 	struct page *page = folio_page(folio, start);
3751 	unsigned int count = 0;
3752 	pte_t *old_ptep = vmf->pte;
3753 	unsigned long addr0;
3754 
3755 	/*
3756 	 * Map the large folio fully where possible:
3757 	 *
3758 	 *  - The folio is fully within size of the file or belong
3759 	 *    to shmem/tmpfs;
3760 	 *  - The folio doesn't cross VMA boundary;
3761 	 *  - The folio doesn't cross page table boundary;
3762 	 */
3763 	addr0 = addr - start * PAGE_SIZE;
3764 	if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3765 	    folio_within_vma(folio, vmf->vma) &&
3766 	    (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) {
3767 		vmf->pte -= start;
3768 		page -= start;
3769 		addr = addr0;
3770 		nr_pages = folio_nr_pages(folio);
3771 	}
3772 
3773 	do {
3774 		if (PageHWPoison(page + count))
3775 			goto skip;
3776 
3777 		/*
3778 		 * If there are too many folios that are recently evicted
3779 		 * in a file, they will probably continue to be evicted.
3780 		 * In such situation, read-ahead is only a waste of IO.
3781 		 * Don't decrease mmap_miss in this scenario to make sure
3782 		 * we can stop read-ahead.
3783 		 */
3784 		if (!folio_test_workingset(folio))
3785 			(*mmap_miss)++;
3786 
3787 		/*
3788 		 * NOTE: If there're PTE markers, we'll leave them to be
3789 		 * handled in the specific fault path, and it'll prohibit the
3790 		 * fault-around logic.
3791 		 */
3792 		if (!pte_none(ptep_get(&vmf->pte[count])))
3793 			goto skip;
3794 
3795 		count++;
3796 		continue;
3797 skip:
3798 		if (count) {
3799 			set_pte_range(vmf, folio, page, count, addr);
3800 			*rss += count;
3801 			folio_ref_add(folio, count - ref_from_caller);
3802 			ref_from_caller = 0;
3803 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3804 				ret = VM_FAULT_NOPAGE;
3805 		}
3806 
3807 		count++;
3808 		page += count;
3809 		vmf->pte += count;
3810 		addr += count * PAGE_SIZE;
3811 		count = 0;
3812 	} while (--nr_pages > 0);
3813 
3814 	if (count) {
3815 		set_pte_range(vmf, folio, page, count, addr);
3816 		*rss += count;
3817 		folio_ref_add(folio, count - ref_from_caller);
3818 		ref_from_caller = 0;
3819 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3820 			ret = VM_FAULT_NOPAGE;
3821 	}
3822 
3823 	vmf->pte = old_ptep;
3824 	if (ref_from_caller)
3825 		/* Locked folios cannot get truncated. */
3826 		folio_ref_dec(folio);
3827 
3828 	return ret;
3829 }
3830 
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned short * mmap_miss)3831 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3832 		struct folio *folio, unsigned long addr,
3833 		unsigned long *rss, unsigned short *mmap_miss)
3834 {
3835 	vm_fault_t ret = 0;
3836 	struct page *page = &folio->page;
3837 
3838 	if (PageHWPoison(page))
3839 		goto out;
3840 
3841 	/* See comment of filemap_map_folio_range() */
3842 	if (!folio_test_workingset(folio))
3843 		(*mmap_miss)++;
3844 
3845 	/*
3846 	 * NOTE: If there're PTE markers, we'll leave them to be
3847 	 * handled in the specific fault path, and it'll prohibit
3848 	 * the fault-around logic.
3849 	 */
3850 	if (!pte_none(ptep_get(vmf->pte)))
3851 		goto out;
3852 
3853 	if (vmf->address == addr)
3854 		ret = VM_FAULT_NOPAGE;
3855 
3856 	set_pte_range(vmf, folio, page, 1, addr);
3857 	(*rss)++;
3858 	return ret;
3859 
3860 out:
3861 	/* Locked folios cannot get truncated. */
3862 	folio_ref_dec(folio);
3863 	return ret;
3864 }
3865 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3866 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3867 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3868 {
3869 	struct vm_area_struct *vma = vmf->vma;
3870 	struct file *file = vma->vm_file;
3871 	struct address_space *mapping = file->f_mapping;
3872 	pgoff_t file_end, last_pgoff = start_pgoff;
3873 	unsigned long addr;
3874 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3875 	struct folio *folio;
3876 	vm_fault_t ret = 0;
3877 	unsigned long rss = 0;
3878 	unsigned int nr_pages = 0, folio_type;
3879 	unsigned short mmap_miss = 0, mmap_miss_saved;
3880 
3881 	rcu_read_lock();
3882 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3883 	if (!folio)
3884 		goto out;
3885 
3886 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3887 	end_pgoff = min(end_pgoff, file_end);
3888 
3889 	/*
3890 	 * Do not allow to map with PMD across i_size to preserve
3891 	 * SIGBUS semantics.
3892 	 *
3893 	 * Make an exception for shmem/tmpfs that for long time
3894 	 * intentionally mapped with PMDs across i_size.
3895 	 */
3896 	if ((file_end >= folio_next_index(folio) || shmem_mapping(mapping)) &&
3897 	    filemap_map_pmd(vmf, folio, start_pgoff)) {
3898 		ret = VM_FAULT_NOPAGE;
3899 		goto out;
3900 	}
3901 
3902 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3903 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3904 	if (!vmf->pte) {
3905 		folio_unlock(folio);
3906 		folio_put(folio);
3907 		goto out;
3908 	}
3909 
3910 	folio_type = mm_counter_file(folio);
3911 	do {
3912 		unsigned long end;
3913 
3914 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3915 		vmf->pte += xas.xa_index - last_pgoff;
3916 		last_pgoff = xas.xa_index;
3917 		end = folio_next_index(folio) - 1;
3918 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3919 
3920 		if (!folio_test_large(folio))
3921 			ret |= filemap_map_order0_folio(vmf,
3922 					folio, addr, &rss, &mmap_miss);
3923 		else
3924 			ret |= filemap_map_folio_range(vmf, folio,
3925 					xas.xa_index - folio->index, addr,
3926 					nr_pages, &rss, &mmap_miss, file_end);
3927 
3928 		folio_unlock(folio);
3929 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3930 	add_mm_counter(vma->vm_mm, folio_type, rss);
3931 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3932 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3933 out:
3934 	rcu_read_unlock();
3935 
3936 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3937 	if (mmap_miss >= mmap_miss_saved)
3938 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3939 	else
3940 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3941 
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL(filemap_map_pages);
3945 
filemap_page_mkwrite(struct vm_fault * vmf)3946 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3947 {
3948 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3949 	struct folio *folio = page_folio(vmf->page);
3950 	vm_fault_t ret = VM_FAULT_LOCKED;
3951 
3952 	sb_start_pagefault(mapping->host->i_sb);
3953 	file_update_time(vmf->vma->vm_file);
3954 	folio_lock(folio);
3955 	if (folio->mapping != mapping) {
3956 		folio_unlock(folio);
3957 		ret = VM_FAULT_NOPAGE;
3958 		goto out;
3959 	}
3960 	/*
3961 	 * We mark the folio dirty already here so that when freeze is in
3962 	 * progress, we are guaranteed that writeback during freezing will
3963 	 * see the dirty folio and writeprotect it again.
3964 	 */
3965 	folio_mark_dirty(folio);
3966 	folio_wait_stable(folio);
3967 out:
3968 	sb_end_pagefault(mapping->host->i_sb);
3969 	return ret;
3970 }
3971 
3972 const struct vm_operations_struct generic_file_vm_ops = {
3973 	.fault		= filemap_fault,
3974 	.map_pages	= filemap_map_pages,
3975 	.page_mkwrite	= filemap_page_mkwrite,
3976 };
3977 
3978 /* This is used for a general mmap of a disk file */
3979 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3980 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3981 {
3982 	struct address_space *mapping = file->f_mapping;
3983 
3984 	if (!mapping->a_ops->read_folio)
3985 		return -ENOEXEC;
3986 	file_accessed(file);
3987 	vma->vm_ops = &generic_file_vm_ops;
3988 	return 0;
3989 }
3990 
generic_file_mmap_prepare(struct vm_area_desc * desc)3991 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3992 {
3993 	struct file *file = desc->file;
3994 	struct address_space *mapping = file->f_mapping;
3995 
3996 	if (!mapping->a_ops->read_folio)
3997 		return -ENOEXEC;
3998 	file_accessed(file);
3999 	desc->vm_ops = &generic_file_vm_ops;
4000 	return 0;
4001 }
4002 
4003 /*
4004  * This is for filesystems which do not implement ->writepage.
4005  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)4006 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
4007 {
4008 	if (vma_is_shared_maywrite(vma))
4009 		return -EINVAL;
4010 	return generic_file_mmap(file, vma);
4011 }
4012 
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)4013 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
4014 {
4015 	if (is_shared_maywrite(desc->vm_flags))
4016 		return -EINVAL;
4017 	return generic_file_mmap_prepare(desc);
4018 }
4019 #else
filemap_page_mkwrite(struct vm_fault * vmf)4020 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4021 {
4022 	return VM_FAULT_SIGBUS;
4023 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)4024 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
4025 {
4026 	return -ENOSYS;
4027 }
generic_file_mmap_prepare(struct vm_area_desc * desc)4028 int generic_file_mmap_prepare(struct vm_area_desc *desc)
4029 {
4030 	return -ENOSYS;
4031 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)4032 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
4033 {
4034 	return -ENOSYS;
4035 }
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)4036 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
4037 {
4038 	return -ENOSYS;
4039 }
4040 #endif /* CONFIG_MMU */
4041 
4042 EXPORT_SYMBOL(filemap_page_mkwrite);
4043 EXPORT_SYMBOL(generic_file_mmap);
4044 EXPORT_SYMBOL(generic_file_mmap_prepare);
4045 EXPORT_SYMBOL(generic_file_readonly_mmap);
4046 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
4047 
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)4048 static struct folio *do_read_cache_folio(struct address_space *mapping,
4049 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
4050 {
4051 	struct folio *folio;
4052 	int err;
4053 
4054 	if (!filler)
4055 		filler = mapping->a_ops->read_folio;
4056 repeat:
4057 	folio = filemap_get_folio(mapping, index);
4058 	if (IS_ERR(folio)) {
4059 		folio = filemap_alloc_folio(gfp, mapping_min_folio_order(mapping), NULL);
4060 		if (!folio)
4061 			return ERR_PTR(-ENOMEM);
4062 		index = mapping_align_index(mapping, index);
4063 		err = filemap_add_folio(mapping, folio, index, gfp);
4064 		if (unlikely(err)) {
4065 			folio_put(folio);
4066 			if (err == -EEXIST)
4067 				goto repeat;
4068 			/* Presumably ENOMEM for xarray node */
4069 			return ERR_PTR(err);
4070 		}
4071 
4072 		goto filler;
4073 	}
4074 	if (folio_test_uptodate(folio))
4075 		goto out;
4076 
4077 	if (!folio_trylock(folio)) {
4078 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
4079 		goto repeat;
4080 	}
4081 
4082 	/* Folio was truncated from mapping */
4083 	if (!folio->mapping) {
4084 		folio_unlock(folio);
4085 		folio_put(folio);
4086 		goto repeat;
4087 	}
4088 
4089 	/* Someone else locked and filled the page in a very small window */
4090 	if (folio_test_uptodate(folio)) {
4091 		folio_unlock(folio);
4092 		goto out;
4093 	}
4094 
4095 filler:
4096 	err = filemap_read_folio(file, filler, folio);
4097 	if (err) {
4098 		folio_put(folio);
4099 		if (err == AOP_TRUNCATED_PAGE)
4100 			goto repeat;
4101 		return ERR_PTR(err);
4102 	}
4103 
4104 out:
4105 	folio_mark_accessed(folio);
4106 	return folio;
4107 }
4108 
4109 /**
4110  * read_cache_folio - Read into page cache, fill it if needed.
4111  * @mapping: The address_space to read from.
4112  * @index: The index to read.
4113  * @filler: Function to perform the read, or NULL to use aops->read_folio().
4114  * @file: Passed to filler function, may be NULL if not required.
4115  *
4116  * Read one page into the page cache.  If it succeeds, the folio returned
4117  * will contain @index, but it may not be the first page of the folio.
4118  *
4119  * If the filler function returns an error, it will be returned to the
4120  * caller.
4121  *
4122  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
4123  * Return: An uptodate folio on success, ERR_PTR() on failure.
4124  */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)4125 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4126 		filler_t filler, struct file *file)
4127 {
4128 	return do_read_cache_folio(mapping, index, filler, file,
4129 			mapping_gfp_mask(mapping));
4130 }
4131 EXPORT_SYMBOL(read_cache_folio);
4132 
4133 /**
4134  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4135  * @mapping:	The address_space for the folio.
4136  * @index:	The index that the allocated folio will contain.
4137  * @gfp:	The page allocator flags to use if allocating.
4138  *
4139  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4140  * any new memory allocations done using the specified allocation flags.
4141  *
4142  * The most likely error from this function is EIO, but ENOMEM is
4143  * possible and so is EINTR.  If ->read_folio returns another error,
4144  * that will be returned to the caller.
4145  *
4146  * The function expects mapping->invalidate_lock to be already held.
4147  *
4148  * Return: Uptodate folio on success, ERR_PTR() on failure.
4149  */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4150 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4151 		pgoff_t index, gfp_t gfp)
4152 {
4153 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4154 }
4155 EXPORT_SYMBOL(mapping_read_folio_gfp);
4156 
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4157 static struct page *do_read_cache_page(struct address_space *mapping,
4158 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4159 {
4160 	struct folio *folio;
4161 
4162 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4163 	if (IS_ERR(folio))
4164 		return &folio->page;
4165 	return folio_file_page(folio, index);
4166 }
4167 
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4168 struct page *read_cache_page(struct address_space *mapping,
4169 			pgoff_t index, filler_t *filler, struct file *file)
4170 {
4171 	return do_read_cache_page(mapping, index, filler, file,
4172 			mapping_gfp_mask(mapping));
4173 }
4174 EXPORT_SYMBOL(read_cache_page);
4175 
4176 /**
4177  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4178  * @mapping:	the page's address_space
4179  * @index:	the page index
4180  * @gfp:	the page allocator flags to use if allocating
4181  *
4182  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4183  * any new page allocations done using the specified allocation flags.
4184  *
4185  * If the page does not get brought uptodate, return -EIO.
4186  *
4187  * The function expects mapping->invalidate_lock to be already held.
4188  *
4189  * Return: up to date page on success, ERR_PTR() on failure.
4190  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4191 struct page *read_cache_page_gfp(struct address_space *mapping,
4192 				pgoff_t index,
4193 				gfp_t gfp)
4194 {
4195 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4196 }
4197 EXPORT_SYMBOL(read_cache_page_gfp);
4198 
4199 /*
4200  * Warn about a page cache invalidation failure during a direct I/O write.
4201  */
dio_warn_stale_pagecache(struct file * filp)4202 static void dio_warn_stale_pagecache(struct file *filp)
4203 {
4204 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4205 	char pathname[128];
4206 	char *path;
4207 
4208 	errseq_set(&filp->f_mapping->wb_err, -EIO);
4209 	if (__ratelimit(&_rs)) {
4210 		path = file_path(filp, pathname, sizeof(pathname));
4211 		if (IS_ERR(path))
4212 			path = "(unknown)";
4213 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
4214 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4215 			current->comm);
4216 	}
4217 }
4218 
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4219 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4220 {
4221 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4222 
4223 	if (mapping->nrpages &&
4224 	    invalidate_inode_pages2_range(mapping,
4225 			iocb->ki_pos >> PAGE_SHIFT,
4226 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4227 		dio_warn_stale_pagecache(iocb->ki_filp);
4228 }
4229 
4230 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4231 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4232 {
4233 	struct address_space *mapping = iocb->ki_filp->f_mapping;
4234 	size_t write_len = iov_iter_count(from);
4235 	ssize_t written;
4236 
4237 	/*
4238 	 * If a page can not be invalidated, return 0 to fall back
4239 	 * to buffered write.
4240 	 */
4241 	written = kiocb_invalidate_pages(iocb, write_len);
4242 	if (written) {
4243 		if (written == -EBUSY)
4244 			return 0;
4245 		return written;
4246 	}
4247 
4248 	written = mapping->a_ops->direct_IO(iocb, from);
4249 
4250 	/*
4251 	 * Finally, try again to invalidate clean pages which might have been
4252 	 * cached by non-direct readahead, or faulted in by get_user_pages()
4253 	 * if the source of the write was an mmap'ed region of the file
4254 	 * we're writing.  Either one is a pretty crazy thing to do,
4255 	 * so we don't support it 100%.  If this invalidation
4256 	 * fails, tough, the write still worked...
4257 	 *
4258 	 * Most of the time we do not need this since dio_complete() will do
4259 	 * the invalidation for us. However there are some file systems that
4260 	 * do not end up with dio_complete() being called, so let's not break
4261 	 * them by removing it completely.
4262 	 *
4263 	 * Noticeable example is a blkdev_direct_IO().
4264 	 *
4265 	 * Skip invalidation for async writes or if mapping has no pages.
4266 	 */
4267 	if (written > 0) {
4268 		struct inode *inode = mapping->host;
4269 		loff_t pos = iocb->ki_pos;
4270 
4271 		kiocb_invalidate_post_direct_write(iocb, written);
4272 		pos += written;
4273 		write_len -= written;
4274 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4275 			i_size_write(inode, pos);
4276 			mark_inode_dirty(inode);
4277 		}
4278 		iocb->ki_pos = pos;
4279 	}
4280 	if (written != -EIOCBQUEUED)
4281 		iov_iter_revert(from, write_len - iov_iter_count(from));
4282 	return written;
4283 }
4284 EXPORT_SYMBOL(generic_file_direct_write);
4285 
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4286 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4287 {
4288 	struct file *file = iocb->ki_filp;
4289 	loff_t pos = iocb->ki_pos;
4290 	struct address_space *mapping = file->f_mapping;
4291 	const struct address_space_operations *a_ops = mapping->a_ops;
4292 	size_t chunk = mapping_max_folio_size(mapping);
4293 	long status = 0;
4294 	ssize_t written = 0;
4295 
4296 	do {
4297 		struct folio *folio;
4298 		size_t offset;		/* Offset into folio */
4299 		size_t bytes;		/* Bytes to write to folio */
4300 		size_t copied;		/* Bytes copied from user */
4301 		void *fsdata = NULL;
4302 
4303 		bytes = iov_iter_count(i);
4304 retry:
4305 		offset = pos & (chunk - 1);
4306 		bytes = min(chunk - offset, bytes);
4307 		balance_dirty_pages_ratelimited(mapping);
4308 
4309 		if (fatal_signal_pending(current)) {
4310 			status = -EINTR;
4311 			break;
4312 		}
4313 
4314 		status = a_ops->write_begin(iocb, mapping, pos, bytes,
4315 						&folio, &fsdata);
4316 		if (unlikely(status < 0))
4317 			break;
4318 
4319 		offset = offset_in_folio(folio, pos);
4320 		if (bytes > folio_size(folio) - offset)
4321 			bytes = folio_size(folio) - offset;
4322 
4323 		if (mapping_writably_mapped(mapping))
4324 			flush_dcache_folio(folio);
4325 
4326 		/*
4327 		 * Faults here on mmap()s can recurse into arbitrary
4328 		 * filesystem code. Lots of locks are held that can
4329 		 * deadlock. Use an atomic copy to avoid deadlocking
4330 		 * in page fault handling.
4331 		 */
4332 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4333 		flush_dcache_folio(folio);
4334 
4335 		status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4336 						folio, fsdata);
4337 		if (unlikely(status != copied)) {
4338 			iov_iter_revert(i, copied - max(status, 0L));
4339 			if (unlikely(status < 0))
4340 				break;
4341 		}
4342 		cond_resched();
4343 
4344 		if (unlikely(status == 0)) {
4345 			/*
4346 			 * A short copy made ->write_end() reject the
4347 			 * thing entirely.  Might be memory poisoning
4348 			 * halfway through, might be a race with munmap,
4349 			 * might be severe memory pressure.
4350 			 */
4351 			if (chunk > PAGE_SIZE)
4352 				chunk /= 2;
4353 			if (copied) {
4354 				bytes = copied;
4355 				goto retry;
4356 			}
4357 
4358 			/*
4359 			 * 'folio' is now unlocked and faults on it can be
4360 			 * handled. Ensure forward progress by trying to
4361 			 * fault it in now.
4362 			 */
4363 			if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4364 				status = -EFAULT;
4365 				break;
4366 			}
4367 		} else {
4368 			pos += status;
4369 			written += status;
4370 		}
4371 	} while (iov_iter_count(i));
4372 
4373 	if (!written)
4374 		return status;
4375 	iocb->ki_pos += written;
4376 	return written;
4377 }
4378 EXPORT_SYMBOL(generic_perform_write);
4379 
4380 /**
4381  * __generic_file_write_iter - write data to a file
4382  * @iocb:	IO state structure (file, offset, etc.)
4383  * @from:	iov_iter with data to write
4384  *
4385  * This function does all the work needed for actually writing data to a
4386  * file. It does all basic checks, removes SUID from the file, updates
4387  * modification times and calls proper subroutines depending on whether we
4388  * do direct IO or a standard buffered write.
4389  *
4390  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4391  * object which does not need locking at all.
4392  *
4393  * This function does *not* take care of syncing data in case of O_SYNC write.
4394  * A caller has to handle it. This is mainly due to the fact that we want to
4395  * avoid syncing under i_rwsem.
4396  *
4397  * Return:
4398  * * number of bytes written, even for truncated writes
4399  * * negative error code if no data has been written at all
4400  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4401 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4402 {
4403 	struct file *file = iocb->ki_filp;
4404 	struct address_space *mapping = file->f_mapping;
4405 	struct inode *inode = mapping->host;
4406 	ssize_t ret;
4407 
4408 	ret = file_remove_privs(file);
4409 	if (ret)
4410 		return ret;
4411 
4412 	ret = file_update_time(file);
4413 	if (ret)
4414 		return ret;
4415 
4416 	if (iocb->ki_flags & IOCB_DIRECT) {
4417 		ret = generic_file_direct_write(iocb, from);
4418 		/*
4419 		 * If the write stopped short of completing, fall back to
4420 		 * buffered writes.  Some filesystems do this for writes to
4421 		 * holes, for example.  For DAX files, a buffered write will
4422 		 * not succeed (even if it did, DAX does not handle dirty
4423 		 * page-cache pages correctly).
4424 		 */
4425 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4426 			return ret;
4427 		return direct_write_fallback(iocb, from, ret,
4428 				generic_perform_write(iocb, from));
4429 	}
4430 
4431 	return generic_perform_write(iocb, from);
4432 }
4433 EXPORT_SYMBOL(__generic_file_write_iter);
4434 
4435 /**
4436  * generic_file_write_iter - write data to a file
4437  * @iocb:	IO state structure
4438  * @from:	iov_iter with data to write
4439  *
4440  * This is a wrapper around __generic_file_write_iter() to be used by most
4441  * filesystems. It takes care of syncing the file in case of O_SYNC file
4442  * and acquires i_rwsem as needed.
4443  * Return:
4444  * * negative error code if no data has been written at all of
4445  *   vfs_fsync_range() failed for a synchronous write
4446  * * number of bytes written, even for truncated writes
4447  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4448 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4449 {
4450 	struct file *file = iocb->ki_filp;
4451 	struct inode *inode = file->f_mapping->host;
4452 	ssize_t ret;
4453 
4454 	inode_lock(inode);
4455 	ret = generic_write_checks(iocb, from);
4456 	if (ret > 0)
4457 		ret = __generic_file_write_iter(iocb, from);
4458 	inode_unlock(inode);
4459 
4460 	if (ret > 0)
4461 		ret = generic_write_sync(iocb, ret);
4462 	return ret;
4463 }
4464 EXPORT_SYMBOL(generic_file_write_iter);
4465 
4466 /**
4467  * filemap_release_folio() - Release fs-specific metadata on a folio.
4468  * @folio: The folio which the kernel is trying to free.
4469  * @gfp: Memory allocation flags (and I/O mode).
4470  *
4471  * The address_space is trying to release any data attached to a folio
4472  * (presumably at folio->private).
4473  *
4474  * This will also be called if the private_2 flag is set on a page,
4475  * indicating that the folio has other metadata associated with it.
4476  *
4477  * The @gfp argument specifies whether I/O may be performed to release
4478  * this page (__GFP_IO), and whether the call may block
4479  * (__GFP_RECLAIM & __GFP_FS).
4480  *
4481  * Return: %true if the release was successful, otherwise %false.
4482  */
filemap_release_folio(struct folio * folio,gfp_t gfp)4483 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4484 {
4485 	struct address_space * const mapping = folio->mapping;
4486 
4487 	BUG_ON(!folio_test_locked(folio));
4488 	if (!folio_needs_release(folio))
4489 		return true;
4490 	if (folio_test_writeback(folio))
4491 		return false;
4492 
4493 	if (mapping && mapping->a_ops->release_folio)
4494 		return mapping->a_ops->release_folio(folio, gfp);
4495 	return try_to_free_buffers(folio);
4496 }
4497 EXPORT_SYMBOL(filemap_release_folio);
4498 
4499 /**
4500  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4501  * @inode: The inode to flush
4502  * @flush: Set to write back rather than simply invalidate.
4503  * @start: First byte to in range.
4504  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4505  *       onwards.
4506  *
4507  * Invalidate all the folios on an inode that contribute to the specified
4508  * range, possibly writing them back first.  Whilst the operation is
4509  * undertaken, the invalidate lock is held to prevent new folios from being
4510  * installed.
4511  */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4512 int filemap_invalidate_inode(struct inode *inode, bool flush,
4513 			     loff_t start, loff_t end)
4514 {
4515 	struct address_space *mapping = inode->i_mapping;
4516 	pgoff_t first = start >> PAGE_SHIFT;
4517 	pgoff_t last = end >> PAGE_SHIFT;
4518 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4519 
4520 	if (!mapping || !mapping->nrpages || end < start)
4521 		goto out;
4522 
4523 	/* Prevent new folios from being added to the inode. */
4524 	filemap_invalidate_lock(mapping);
4525 
4526 	if (!mapping->nrpages)
4527 		goto unlock;
4528 
4529 	unmap_mapping_pages(mapping, first, nr, false);
4530 
4531 	/* Write back the data if we're asked to. */
4532 	if (flush)
4533 		filemap_fdatawrite_range(mapping, start, end);
4534 
4535 	/* Wait for writeback to complete on all folios and discard. */
4536 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4537 
4538 unlock:
4539 	filemap_invalidate_unlock(mapping);
4540 out:
4541 	return filemap_check_errors(mapping);
4542 }
4543 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4544 
4545 #ifdef CONFIG_CACHESTAT_SYSCALL
4546 /**
4547  * filemap_cachestat() - compute the page cache statistics of a mapping
4548  * @mapping:	The mapping to compute the statistics for.
4549  * @first_index:	The starting page cache index.
4550  * @last_index:	The final page index (inclusive).
4551  * @cs:	the cachestat struct to write the result to.
4552  *
4553  * This will query the page cache statistics of a mapping in the
4554  * page range of [first_index, last_index] (inclusive). The statistics
4555  * queried include: number of dirty pages, number of pages marked for
4556  * writeback, and the number of (recently) evicted pages.
4557  */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4558 static void filemap_cachestat(struct address_space *mapping,
4559 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4560 {
4561 	XA_STATE(xas, &mapping->i_pages, first_index);
4562 	struct folio *folio;
4563 
4564 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4565 	mem_cgroup_flush_stats_ratelimited(NULL);
4566 
4567 	rcu_read_lock();
4568 	xas_for_each(&xas, folio, last_index) {
4569 		int order;
4570 		unsigned long nr_pages;
4571 		pgoff_t folio_first_index, folio_last_index;
4572 
4573 		/*
4574 		 * Don't deref the folio. It is not pinned, and might
4575 		 * get freed (and reused) underneath us.
4576 		 *
4577 		 * We *could* pin it, but that would be expensive for
4578 		 * what should be a fast and lightweight syscall.
4579 		 *
4580 		 * Instead, derive all information of interest from
4581 		 * the rcu-protected xarray.
4582 		 */
4583 
4584 		if (xas_retry(&xas, folio))
4585 			continue;
4586 
4587 		order = xas_get_order(&xas);
4588 		nr_pages = 1 << order;
4589 		folio_first_index = round_down(xas.xa_index, 1 << order);
4590 		folio_last_index = folio_first_index + nr_pages - 1;
4591 
4592 		/* Folios might straddle the range boundaries, only count covered pages */
4593 		if (folio_first_index < first_index)
4594 			nr_pages -= first_index - folio_first_index;
4595 
4596 		if (folio_last_index > last_index)
4597 			nr_pages -= folio_last_index - last_index;
4598 
4599 		if (xa_is_value(folio)) {
4600 			/* page is evicted */
4601 			void *shadow = (void *)folio;
4602 			bool workingset; /* not used */
4603 
4604 			cs->nr_evicted += nr_pages;
4605 
4606 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4607 			if (shmem_mapping(mapping)) {
4608 				/* shmem file - in swap cache */
4609 				swp_entry_t swp = radix_to_swp_entry(folio);
4610 
4611 				/* swapin error results in poisoned entry */
4612 				if (!softleaf_is_swap(swp))
4613 					goto resched;
4614 
4615 				/*
4616 				 * Getting a swap entry from the shmem
4617 				 * inode means we beat
4618 				 * shmem_unuse(). rcu_read_lock()
4619 				 * ensures swapoff waits for us before
4620 				 * freeing the swapper space. However,
4621 				 * we can race with swapping and
4622 				 * invalidation, so there might not be
4623 				 * a shadow in the swapcache (yet).
4624 				 */
4625 				shadow = swap_cache_get_shadow(swp);
4626 				if (!shadow)
4627 					goto resched;
4628 			}
4629 #endif
4630 			if (workingset_test_recent(shadow, true, &workingset, false))
4631 				cs->nr_recently_evicted += nr_pages;
4632 
4633 			goto resched;
4634 		}
4635 
4636 		/* page is in cache */
4637 		cs->nr_cache += nr_pages;
4638 
4639 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4640 			cs->nr_dirty += nr_pages;
4641 
4642 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4643 			cs->nr_writeback += nr_pages;
4644 
4645 resched:
4646 		if (need_resched()) {
4647 			xas_pause(&xas);
4648 			cond_resched_rcu();
4649 		}
4650 	}
4651 	rcu_read_unlock();
4652 }
4653 
4654 /*
4655  * See mincore: reveal pagecache information only for files
4656  * that the calling process has write access to, or could (if
4657  * tried) open for writing.
4658  */
can_do_cachestat(struct file * f)4659 static inline bool can_do_cachestat(struct file *f)
4660 {
4661 	if (f->f_mode & FMODE_WRITE)
4662 		return true;
4663 	if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4664 		return true;
4665 	return file_permission(f, MAY_WRITE) == 0;
4666 }
4667 
4668 /*
4669  * The cachestat(2) system call.
4670  *
4671  * cachestat() returns the page cache statistics of a file in the
4672  * bytes range specified by `off` and `len`: number of cached pages,
4673  * number of dirty pages, number of pages marked for writeback,
4674  * number of evicted pages, and number of recently evicted pages.
4675  *
4676  * An evicted page is a page that is previously in the page cache
4677  * but has been evicted since. A page is recently evicted if its last
4678  * eviction was recent enough that its reentry to the cache would
4679  * indicate that it is actively being used by the system, and that
4680  * there is memory pressure on the system.
4681  *
4682  * `off` and `len` must be non-negative integers. If `len` > 0,
4683  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4684  * we will query in the range from `off` to the end of the file.
4685  *
4686  * The `flags` argument is unused for now, but is included for future
4687  * extensibility. User should pass 0 (i.e no flag specified).
4688  *
4689  * Currently, hugetlbfs is not supported.
4690  *
4691  * Because the status of a page can change after cachestat() checks it
4692  * but before it returns to the application, the returned values may
4693  * contain stale information.
4694  *
4695  * return values:
4696  *  zero        - success
4697  *  -EFAULT     - cstat or cstat_range points to an illegal address
4698  *  -EINVAL     - invalid flags
4699  *  -EBADF      - invalid file descriptor
4700  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4701  */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4702 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4703 		struct cachestat_range __user *, cstat_range,
4704 		struct cachestat __user *, cstat, unsigned int, flags)
4705 {
4706 	CLASS(fd, f)(fd);
4707 	struct address_space *mapping;
4708 	struct cachestat_range csr;
4709 	struct cachestat cs;
4710 	pgoff_t first_index, last_index;
4711 
4712 	if (fd_empty(f))
4713 		return -EBADF;
4714 
4715 	if (copy_from_user(&csr, cstat_range,
4716 			sizeof(struct cachestat_range)))
4717 		return -EFAULT;
4718 
4719 	/* hugetlbfs is not supported */
4720 	if (is_file_hugepages(fd_file(f)))
4721 		return -EOPNOTSUPP;
4722 
4723 	if (!can_do_cachestat(fd_file(f)))
4724 		return -EPERM;
4725 
4726 	if (flags != 0)
4727 		return -EINVAL;
4728 
4729 	first_index = csr.off >> PAGE_SHIFT;
4730 	last_index =
4731 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4732 	memset(&cs, 0, sizeof(struct cachestat));
4733 	mapping = fd_file(f)->f_mapping;
4734 	filemap_cachestat(mapping, first_index, last_index, &cs);
4735 
4736 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4737 		return -EFAULT;
4738 
4739 	return 0;
4740 }
4741 #endif /* CONFIG_CACHESTAT_SYSCALL */
4742