xref: /linux/include/linux/memremap.h (revision bcb6058a4b4596f12065276faeb9363dc4887ea9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MEMREMAP_H_
3 #define _LINUX_MEMREMAP_H_
4 
5 #include <linux/mmzone.h>
6 #include <linux/range.h>
7 #include <linux/ioport.h>
8 #include <linux/percpu-refcount.h>
9 
10 struct resource;
11 struct device;
12 
13 /**
14  * struct vmem_altmap - pre-allocated storage for vmemmap_populate
15  * @base_pfn: base of the entire dev_pagemap mapping
16  * @reserve: pages mapped, but reserved for driver use (relative to @base)
17  * @free: free pages set aside in the mapping for memmap storage
18  * @align: pages reserved to meet allocation alignments
19  * @alloc: track pages consumed, private to vmemmap_populate()
20  */
21 struct vmem_altmap {
22 	unsigned long base_pfn;
23 	const unsigned long end_pfn;
24 	const unsigned long reserve;
25 	unsigned long free;
26 	unsigned long align;
27 	unsigned long alloc;
28 };
29 
30 /*
31  * Specialize ZONE_DEVICE memory into multiple types each has a different
32  * usage.
33  *
34  * MEMORY_DEVICE_PRIVATE:
35  * Device memory that is not directly addressable by the CPU: CPU can neither
36  * read nor write private memory. In this case, we do still have struct pages
37  * backing the device memory. Doing so simplifies the implementation, but it is
38  * important to remember that there are certain points at which the struct page
39  * must be treated as an opaque object, rather than a "normal" struct page.
40  *
41  * A more complete discussion of unaddressable memory may be found in
42  * include/linux/hmm.h and Documentation/mm/hmm.rst.
43  *
44  * MEMORY_DEVICE_COHERENT:
45  * Device memory that is cache coherent from device and CPU point of view. This
46  * is used on platforms that have an advanced system bus (like CAPI or CXL). A
47  * driver can hotplug the device memory using ZONE_DEVICE and with that memory
48  * type. Any page of a process can be migrated to such memory. However no one
49  * should be allowed to pin such memory so that it can always be evicted.
50  *
51  * MEMORY_DEVICE_FS_DAX:
52  * Host memory that has similar access semantics as System RAM i.e. DMA
53  * coherent and supports page pinning. In support of coordinating page
54  * pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a
55  * wakeup event whenever a page is unpinned and becomes idle. This
56  * wakeup is used to coordinate physical address space management (ex:
57  * fs truncate/hole punch) vs pinned pages (ex: device dma).
58  *
59  * MEMORY_DEVICE_GENERIC:
60  * Host memory that has similar access semantics as System RAM i.e. DMA
61  * coherent and supports page pinning. This is for example used by DAX devices
62  * that expose memory using a character device.
63  *
64  * MEMORY_DEVICE_PCI_P2PDMA:
65  * Device memory residing in a PCI BAR intended for use with Peer-to-Peer
66  * transactions.
67  */
68 enum memory_type {
69 	/* 0 is reserved to catch uninitialized type fields */
70 	MEMORY_DEVICE_PRIVATE = 1,
71 	MEMORY_DEVICE_COHERENT,
72 	MEMORY_DEVICE_FS_DAX,
73 	MEMORY_DEVICE_GENERIC,
74 	MEMORY_DEVICE_PCI_P2PDMA,
75 };
76 
77 struct dev_pagemap_ops {
78 	/*
79 	 * Called once the folio refcount reaches 0.  The reference count will be
80 	 * reset to one by the core code after the method is called to prepare
81 	 * for handing out the folio again.
82 	 */
83 	void (*folio_free)(struct folio *folio);
84 
85 	/*
86 	 * Used for private (un-addressable) device memory only.  Must migrate
87 	 * the page back to a CPU accessible page.
88 	 */
89 	vm_fault_t (*migrate_to_ram)(struct vm_fault *vmf);
90 
91 	/*
92 	 * Handle the memory failure happens on a range of pfns.  Notify the
93 	 * processes who are using these pfns, and try to recover the data on
94 	 * them if necessary.  The mf_flags is finally passed to the recover
95 	 * function through the whole notify routine.
96 	 *
97 	 * When this is not implemented, or it returns -EOPNOTSUPP, the caller
98 	 * will fall back to a common handler called mf_generic_kill_procs().
99 	 */
100 	int (*memory_failure)(struct dev_pagemap *pgmap, unsigned long pfn,
101 			      unsigned long nr_pages, int mf_flags);
102 
103 	/*
104 	 * Used for private (un-addressable) device memory only.
105 	 * This callback is used when a folio is split into
106 	 * a smaller folio
107 	 */
108 	void (*folio_split)(struct folio *head, struct folio *tail);
109 };
110 
111 #define PGMAP_ALTMAP_VALID	(1 << 0)
112 
113 /**
114  * struct dev_pagemap - metadata for ZONE_DEVICE mappings
115  * @altmap: pre-allocated/reserved memory for vmemmap allocations
116  * @ref: reference count that pins the devm_memremap_pages() mapping
117  * @done: completion for @ref
118  * @type: memory type: see MEMORY_* above in memremap.h
119  * @flags: PGMAP_* flags to specify defailed behavior
120  * @vmemmap_shift: structural definition of how the vmemmap page metadata
121  *      is populated, specifically the metadata page order.
122  *	A zero value (default) uses base pages as the vmemmap metadata
123  *	representation. A bigger value will set up compound struct pages
124  *	of the requested order value.
125  * @ops: method table
126  * @owner: an opaque pointer identifying the entity that manages this
127  *	instance.  Used by various helpers to make sure that no
128  *	foreign ZONE_DEVICE memory is accessed.
129  * @nr_range: number of ranges to be mapped
130  * @range: range to be mapped when nr_range == 1
131  * @ranges: array of ranges to be mapped when nr_range > 1
132  */
133 struct dev_pagemap {
134 	struct vmem_altmap altmap;
135 	struct percpu_ref ref;
136 	struct completion done;
137 	enum memory_type type;
138 	unsigned int flags;
139 	unsigned long vmemmap_shift;
140 	const struct dev_pagemap_ops *ops;
141 	void *owner;
142 	int nr_range;
143 	union {
144 		struct range range;
145 		DECLARE_FLEX_ARRAY(struct range, ranges);
146 	};
147 };
148 
pgmap_has_memory_failure(struct dev_pagemap * pgmap)149 static inline bool pgmap_has_memory_failure(struct dev_pagemap *pgmap)
150 {
151 	return pgmap->ops && pgmap->ops->memory_failure;
152 }
153 
pgmap_altmap(struct dev_pagemap * pgmap)154 static inline struct vmem_altmap *pgmap_altmap(struct dev_pagemap *pgmap)
155 {
156 	if (pgmap->flags & PGMAP_ALTMAP_VALID)
157 		return &pgmap->altmap;
158 	return NULL;
159 }
160 
pgmap_vmemmap_nr(struct dev_pagemap * pgmap)161 static inline unsigned long pgmap_vmemmap_nr(struct dev_pagemap *pgmap)
162 {
163 	return 1 << pgmap->vmemmap_shift;
164 }
165 
folio_is_device_private(const struct folio * folio)166 static inline bool folio_is_device_private(const struct folio *folio)
167 {
168 	return IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
169 		folio_is_zone_device(folio) &&
170 		folio->pgmap->type == MEMORY_DEVICE_PRIVATE;
171 }
172 
is_device_private_page(const struct page * page)173 static inline bool is_device_private_page(const struct page *page)
174 {
175 	return IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
176 		folio_is_device_private(page_folio(page));
177 }
178 
folio_is_pci_p2pdma(const struct folio * folio)179 static inline bool folio_is_pci_p2pdma(const struct folio *folio)
180 {
181 	return IS_ENABLED(CONFIG_PCI_P2PDMA) &&
182 		folio_is_zone_device(folio) &&
183 		folio->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
184 }
185 
folio_zone_device_data(const struct folio * folio)186 static inline void *folio_zone_device_data(const struct folio *folio)
187 {
188 	VM_WARN_ON_FOLIO(!folio_is_device_private(folio), folio);
189 	return folio->page.zone_device_data;
190 }
191 
folio_set_zone_device_data(struct folio * folio,void * data)192 static inline void folio_set_zone_device_data(struct folio *folio, void *data)
193 {
194 	VM_WARN_ON_FOLIO(!folio_is_device_private(folio), folio);
195 	folio->page.zone_device_data = data;
196 }
197 
is_pci_p2pdma_page(const struct page * page)198 static inline bool is_pci_p2pdma_page(const struct page *page)
199 {
200 	return IS_ENABLED(CONFIG_PCI_P2PDMA) &&
201 		folio_is_pci_p2pdma(page_folio(page));
202 }
203 
folio_is_device_coherent(const struct folio * folio)204 static inline bool folio_is_device_coherent(const struct folio *folio)
205 {
206 	return folio_is_zone_device(folio) &&
207 		folio->pgmap->type == MEMORY_DEVICE_COHERENT;
208 }
209 
is_device_coherent_page(const struct page * page)210 static inline bool is_device_coherent_page(const struct page *page)
211 {
212 	return folio_is_device_coherent(page_folio(page));
213 }
214 
folio_is_fsdax(const struct folio * folio)215 static inline bool folio_is_fsdax(const struct folio *folio)
216 {
217 	return folio_is_zone_device(folio) &&
218 		folio->pgmap->type == MEMORY_DEVICE_FS_DAX;
219 }
220 
is_fsdax_page(const struct page * page)221 static inline bool is_fsdax_page(const struct page *page)
222 {
223 	return folio_is_fsdax(page_folio(page));
224 }
225 
226 #ifdef CONFIG_ZONE_DEVICE
227 void zone_device_page_init(struct page *page, struct dev_pagemap *pgmap,
228 			   unsigned int order);
229 void *memremap_pages(struct dev_pagemap *pgmap, int nid);
230 void memunmap_pages(struct dev_pagemap *pgmap);
231 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap);
232 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap);
233 struct dev_pagemap *get_dev_pagemap(unsigned long pfn);
234 bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn);
235 
236 unsigned long memremap_compat_align(void);
237 
zone_device_folio_init(struct folio * folio,struct dev_pagemap * pgmap,unsigned int order)238 static inline void zone_device_folio_init(struct folio *folio,
239 					  struct dev_pagemap *pgmap,
240 					  unsigned int order)
241 {
242 	zone_device_page_init(&folio->page, pgmap, order);
243 	if (order)
244 		folio_set_large_rmappable(folio);
245 }
246 
zone_device_private_split_cb(struct folio * original_folio,struct folio * new_folio)247 static inline void zone_device_private_split_cb(struct folio *original_folio,
248 						struct folio *new_folio)
249 {
250 	if (folio_is_device_private(original_folio)) {
251 		if (!original_folio->pgmap->ops->folio_split) {
252 			if (new_folio) {
253 				new_folio->pgmap = original_folio->pgmap;
254 				new_folio->page.mapping =
255 					original_folio->page.mapping;
256 			}
257 		} else {
258 			original_folio->pgmap->ops->folio_split(original_folio,
259 								 new_folio);
260 		}
261 	}
262 }
263 
264 #else
devm_memremap_pages(struct device * dev,struct dev_pagemap * pgmap)265 static inline void *devm_memremap_pages(struct device *dev,
266 		struct dev_pagemap *pgmap)
267 {
268 	/*
269 	 * Fail attempts to call devm_memremap_pages() without
270 	 * ZONE_DEVICE support enabled, this requires callers to fall
271 	 * back to plain devm_memremap() based on config
272 	 */
273 	WARN_ON_ONCE(1);
274 	return ERR_PTR(-ENXIO);
275 }
276 
devm_memunmap_pages(struct device * dev,struct dev_pagemap * pgmap)277 static inline void devm_memunmap_pages(struct device *dev,
278 		struct dev_pagemap *pgmap)
279 {
280 }
281 
get_dev_pagemap(unsigned long pfn)282 static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn)
283 {
284 	return NULL;
285 }
286 
pgmap_pfn_valid(struct dev_pagemap * pgmap,unsigned long pfn)287 static inline bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn)
288 {
289 	return false;
290 }
291 
292 /* when memremap_pages() is disabled all archs can remap a single page */
memremap_compat_align(void)293 static inline unsigned long memremap_compat_align(void)
294 {
295 	return PAGE_SIZE;
296 }
297 
zone_device_private_split_cb(struct folio * original_folio,struct folio * new_folio)298 static inline void zone_device_private_split_cb(struct folio *original_folio,
299 						struct folio *new_folio)
300 {
301 }
302 #endif /* CONFIG_ZONE_DEVICE */
303 
put_dev_pagemap(struct dev_pagemap * pgmap)304 static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
305 {
306 	if (pgmap)
307 		percpu_ref_put(&pgmap->ref);
308 }
309 
310 #endif /* _LINUX_MEMREMAP_H_ */
311