1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #include <asm/syscall.h>
33
34 /* Not exposed in headers: strictly internal use only. */
35 #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1)
36
37 #ifdef CONFIG_SECCOMP_FILTER
38 #include <linux/file.h>
39 #include <linux/filter.h>
40 #include <linux/pid.h>
41 #include <linux/ptrace.h>
42 #include <linux/capability.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ioctl_flags: The flags used for the seccomp_addfd ioctl.
111 * @setfd: whether or not SECCOMP_ADDFD_FLAG_SETFD was set during notify_addfd
112 * @ret: The return value of the installing process. It is set to the fd num
113 * upon success (>= 0).
114 * @completion: Indicates that the installing process has completed fd
115 * installation, or gone away (either due to successful
116 * reply, or signal)
117 * @list: list_head for chaining seccomp_kaddfd together.
118 *
119 */
120 struct seccomp_kaddfd {
121 struct file *file;
122 int fd;
123 unsigned int flags;
124 __u32 ioctl_flags;
125
126 union {
127 bool setfd;
128 /* To only be set on reply */
129 int ret;
130 };
131 struct completion completion;
132 struct list_head list;
133 };
134
135 /**
136 * struct notification - container for seccomp userspace notifications. Since
137 * most seccomp filters will not have notification listeners attached and this
138 * structure is fairly large, we store the notification-specific stuff in a
139 * separate structure.
140 *
141 * @requests: A semaphore that users of this notification can wait on for
142 * changes. Actual reads and writes are still controlled with
143 * filter->notify_lock.
144 * @flags: A set of SECCOMP_USER_NOTIF_FD_* flags.
145 * @next_id: The id of the next request.
146 * @notifications: A list of struct seccomp_knotif elements.
147 */
148
149 struct notification {
150 atomic_t requests;
151 u32 flags;
152 u64 next_id;
153 struct list_head notifications;
154 };
155
156 #ifdef SECCOMP_ARCH_NATIVE
157 /**
158 * struct action_cache - per-filter cache of seccomp actions per
159 * arch/syscall pair
160 *
161 * @allow_native: A bitmap where each bit represents whether the
162 * filter will always allow the syscall, for the
163 * native architecture.
164 * @allow_compat: A bitmap where each bit represents whether the
165 * filter will always allow the syscall, for the
166 * compat architecture.
167 */
168 struct action_cache {
169 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
170 #ifdef SECCOMP_ARCH_COMPAT
171 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
172 #endif
173 };
174 #else
175 struct action_cache { };
176
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)177 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
178 const struct seccomp_data *sd)
179 {
180 return false;
181 }
182
seccomp_cache_prepare(struct seccomp_filter * sfilter)183 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
184 {
185 }
186 #endif /* SECCOMP_ARCH_NATIVE */
187
188 /**
189 * struct seccomp_filter - container for seccomp BPF programs
190 *
191 * @refs: Reference count to manage the object lifetime.
192 * A filter's reference count is incremented for each directly
193 * attached task, once for the dependent filter, and if
194 * requested for the user notifier. When @refs reaches zero,
195 * the filter can be freed.
196 * @users: A filter's @users count is incremented for each directly
197 * attached task (filter installation, fork(), thread_sync),
198 * and once for the dependent filter (tracked in filter->prev).
199 * When it reaches zero it indicates that no direct or indirect
200 * users of that filter exist. No new tasks can get associated with
201 * this filter after reaching 0. The @users count is always smaller
202 * or equal to @refs. Hence, reaching 0 for @users does not mean
203 * the filter can be freed.
204 * @cache: cache of arch/syscall mappings to actions
205 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
206 * @wait_killable_recv: Put notifying process in killable state once the
207 * notification is received by the userspace listener.
208 * @prev: points to a previously installed, or inherited, filter
209 * @prog: the BPF program to evaluate
210 * @notif: the struct that holds all notification related information
211 * @notify_lock: A lock for all notification-related accesses.
212 * @wqh: A wait queue for poll if a notifier is in use.
213 *
214 * seccomp_filter objects are organized in a tree linked via the @prev
215 * pointer. For any task, it appears to be a singly-linked list starting
216 * with current->seccomp.filter, the most recently attached or inherited filter.
217 * However, multiple filters may share a @prev node, by way of fork(), which
218 * results in a unidirectional tree existing in memory. This is similar to
219 * how namespaces work.
220 *
221 * seccomp_filter objects should never be modified after being attached
222 * to a task_struct (other than @refs).
223 */
224 struct seccomp_filter {
225 refcount_t refs;
226 refcount_t users;
227 bool log;
228 bool wait_killable_recv;
229 struct action_cache cache;
230 struct seccomp_filter *prev;
231 struct bpf_prog *prog;
232 struct notification *notif;
233 struct mutex notify_lock;
234 wait_queue_head_t wqh;
235 };
236
237 /* Limit any path through the tree to 256KB worth of instructions. */
238 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
239
240 /*
241 * Endianness is explicitly ignored and left for BPF program authors to manage
242 * as per the specific architecture.
243 */
populate_seccomp_data(struct seccomp_data * sd)244 static void populate_seccomp_data(struct seccomp_data *sd)
245 {
246 /*
247 * Instead of using current_pt_reg(), we're already doing the work
248 * to safely fetch "current", so just use "task" everywhere below.
249 */
250 struct task_struct *task = current;
251 struct pt_regs *regs = task_pt_regs(task);
252 unsigned long args[6];
253
254 sd->nr = syscall_get_nr(task, regs);
255 sd->arch = syscall_get_arch(task);
256 syscall_get_arguments(task, regs, args);
257 sd->args[0] = args[0];
258 sd->args[1] = args[1];
259 sd->args[2] = args[2];
260 sd->args[3] = args[3];
261 sd->args[4] = args[4];
262 sd->args[5] = args[5];
263 sd->instruction_pointer = KSTK_EIP(task);
264 }
265
266 /**
267 * seccomp_check_filter - verify seccomp filter code
268 * @filter: filter to verify
269 * @flen: length of filter
270 *
271 * Takes a previously checked filter (by bpf_check_classic) and
272 * redirects all filter code that loads struct sk_buff data
273 * and related data through seccomp_bpf_load. It also
274 * enforces length and alignment checking of those loads.
275 *
276 * Returns 0 if the rule set is legal or -EINVAL if not.
277 */
seccomp_check_filter(struct sock_filter * filter,unsigned int flen)278 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
279 {
280 int pc;
281 for (pc = 0; pc < flen; pc++) {
282 struct sock_filter *ftest = &filter[pc];
283 u16 code = ftest->code;
284 u32 k = ftest->k;
285
286 switch (code) {
287 case BPF_LD | BPF_W | BPF_ABS:
288 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
289 /* 32-bit aligned and not out of bounds. */
290 if (k >= sizeof(struct seccomp_data) || k & 3)
291 return -EINVAL;
292 continue;
293 case BPF_LD | BPF_W | BPF_LEN:
294 ftest->code = BPF_LD | BPF_IMM;
295 ftest->k = sizeof(struct seccomp_data);
296 continue;
297 case BPF_LDX | BPF_W | BPF_LEN:
298 ftest->code = BPF_LDX | BPF_IMM;
299 ftest->k = sizeof(struct seccomp_data);
300 continue;
301 /* Explicitly include allowed calls. */
302 case BPF_RET | BPF_K:
303 case BPF_RET | BPF_A:
304 case BPF_ALU | BPF_ADD | BPF_K:
305 case BPF_ALU | BPF_ADD | BPF_X:
306 case BPF_ALU | BPF_SUB | BPF_K:
307 case BPF_ALU | BPF_SUB | BPF_X:
308 case BPF_ALU | BPF_MUL | BPF_K:
309 case BPF_ALU | BPF_MUL | BPF_X:
310 case BPF_ALU | BPF_DIV | BPF_K:
311 case BPF_ALU | BPF_DIV | BPF_X:
312 case BPF_ALU | BPF_AND | BPF_K:
313 case BPF_ALU | BPF_AND | BPF_X:
314 case BPF_ALU | BPF_OR | BPF_K:
315 case BPF_ALU | BPF_OR | BPF_X:
316 case BPF_ALU | BPF_XOR | BPF_K:
317 case BPF_ALU | BPF_XOR | BPF_X:
318 case BPF_ALU | BPF_LSH | BPF_K:
319 case BPF_ALU | BPF_LSH | BPF_X:
320 case BPF_ALU | BPF_RSH | BPF_K:
321 case BPF_ALU | BPF_RSH | BPF_X:
322 case BPF_ALU | BPF_NEG:
323 case BPF_LD | BPF_IMM:
324 case BPF_LDX | BPF_IMM:
325 case BPF_MISC | BPF_TAX:
326 case BPF_MISC | BPF_TXA:
327 case BPF_LD | BPF_MEM:
328 case BPF_LDX | BPF_MEM:
329 case BPF_ST:
330 case BPF_STX:
331 case BPF_JMP | BPF_JA:
332 case BPF_JMP | BPF_JEQ | BPF_K:
333 case BPF_JMP | BPF_JEQ | BPF_X:
334 case BPF_JMP | BPF_JGE | BPF_K:
335 case BPF_JMP | BPF_JGE | BPF_X:
336 case BPF_JMP | BPF_JGT | BPF_K:
337 case BPF_JMP | BPF_JGT | BPF_X:
338 case BPF_JMP | BPF_JSET | BPF_K:
339 case BPF_JMP | BPF_JSET | BPF_X:
340 continue;
341 default:
342 return -EINVAL;
343 }
344 }
345 return 0;
346 }
347
348 #ifdef SECCOMP_ARCH_NATIVE
seccomp_cache_check_allow_bitmap(const void * bitmap,size_t bitmap_size,int syscall_nr)349 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
350 size_t bitmap_size,
351 int syscall_nr)
352 {
353 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
354 return false;
355 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
356
357 return test_bit(syscall_nr, bitmap);
358 }
359
360 /**
361 * seccomp_cache_check_allow - lookup seccomp cache
362 * @sfilter: The seccomp filter
363 * @sd: The seccomp data to lookup the cache with
364 *
365 * Returns true if the seccomp_data is cached and allowed.
366 */
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)367 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
368 const struct seccomp_data *sd)
369 {
370 int syscall_nr = sd->nr;
371 const struct action_cache *cache = &sfilter->cache;
372
373 #ifndef SECCOMP_ARCH_COMPAT
374 /* A native-only architecture doesn't need to check sd->arch. */
375 return seccomp_cache_check_allow_bitmap(cache->allow_native,
376 SECCOMP_ARCH_NATIVE_NR,
377 syscall_nr);
378 #else
379 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
380 return seccomp_cache_check_allow_bitmap(cache->allow_native,
381 SECCOMP_ARCH_NATIVE_NR,
382 syscall_nr);
383 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
384 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
385 SECCOMP_ARCH_COMPAT_NR,
386 syscall_nr);
387 #endif /* SECCOMP_ARCH_COMPAT */
388
389 WARN_ON_ONCE(true);
390 return false;
391 }
392 #endif /* SECCOMP_ARCH_NATIVE */
393
394 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
395 /**
396 * seccomp_run_filters - evaluates all seccomp filters against @sd
397 * @sd: optional seccomp data to be passed to filters
398 * @match: stores struct seccomp_filter that resulted in the return value,
399 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
400 * be unchanged.
401 *
402 * Returns valid seccomp BPF response codes.
403 */
seccomp_run_filters(const struct seccomp_data * sd,struct seccomp_filter ** match)404 static u32 seccomp_run_filters(const struct seccomp_data *sd,
405 struct seccomp_filter **match)
406 {
407 u32 ret = SECCOMP_RET_ALLOW;
408 /* Make sure cross-thread synced filter points somewhere sane. */
409 struct seccomp_filter *f =
410 READ_ONCE(current->seccomp.filter);
411
412 /* Ensure unexpected behavior doesn't result in failing open. */
413 if (WARN_ON(f == NULL))
414 return SECCOMP_RET_KILL_PROCESS;
415
416 if (seccomp_cache_check_allow(f, sd))
417 return SECCOMP_RET_ALLOW;
418
419 /*
420 * All filters in the list are evaluated and the lowest BPF return
421 * value always takes priority (ignoring the DATA).
422 */
423 for (; f; f = f->prev) {
424 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
425
426 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
427 ret = cur_ret;
428 *match = f;
429 }
430 }
431 return ret;
432 }
433 #endif /* CONFIG_SECCOMP_FILTER */
434
seccomp_may_assign_mode(unsigned long seccomp_mode)435 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
436 {
437 assert_spin_locked(¤t->sighand->siglock);
438
439 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
440 return false;
441
442 return true;
443 }
444
arch_seccomp_spec_mitigate(struct task_struct * task)445 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
446
seccomp_assign_mode(struct task_struct * task,unsigned long seccomp_mode,unsigned long flags)447 static inline void seccomp_assign_mode(struct task_struct *task,
448 unsigned long seccomp_mode,
449 unsigned long flags)
450 {
451 assert_spin_locked(&task->sighand->siglock);
452
453 task->seccomp.mode = seccomp_mode;
454 /*
455 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
456 * filter) is set.
457 */
458 smp_mb__before_atomic();
459 /* Assume default seccomp processes want spec flaw mitigation. */
460 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
461 arch_seccomp_spec_mitigate(task);
462 set_task_syscall_work(task, SECCOMP);
463 }
464
465 #ifdef CONFIG_SECCOMP_FILTER
466 /* Returns 1 if the parent is an ancestor of the child. */
is_ancestor(struct seccomp_filter * parent,struct seccomp_filter * child)467 static int is_ancestor(struct seccomp_filter *parent,
468 struct seccomp_filter *child)
469 {
470 /* NULL is the root ancestor. */
471 if (parent == NULL)
472 return 1;
473 for (; child; child = child->prev)
474 if (child == parent)
475 return 1;
476 return 0;
477 }
478
479 /**
480 * seccomp_can_sync_threads: checks if all threads can be synchronized
481 *
482 * Expects sighand and cred_guard_mutex locks to be held.
483 *
484 * Returns 0 on success, -ve on error, or the pid of a thread which was
485 * either not in the correct seccomp mode or did not have an ancestral
486 * seccomp filter.
487 */
seccomp_can_sync_threads(void)488 static inline pid_t seccomp_can_sync_threads(void)
489 {
490 struct task_struct *thread, *caller;
491
492 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
493 assert_spin_locked(¤t->sighand->siglock);
494
495 /* Validate all threads being eligible for synchronization. */
496 caller = current;
497 for_each_thread(caller, thread) {
498 pid_t failed;
499
500 /* Skip current, since it is initiating the sync. */
501 if (thread == caller)
502 continue;
503 /* Skip exited threads. */
504 if (thread->flags & PF_EXITING)
505 continue;
506
507 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
508 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
509 is_ancestor(thread->seccomp.filter,
510 caller->seccomp.filter)))
511 continue;
512
513 /* Return the first thread that cannot be synchronized. */
514 failed = task_pid_vnr(thread);
515 /* If the pid cannot be resolved, then return -ESRCH */
516 if (WARN_ON(failed == 0))
517 failed = -ESRCH;
518 return failed;
519 }
520
521 return 0;
522 }
523
seccomp_filter_free(struct seccomp_filter * filter)524 static inline void seccomp_filter_free(struct seccomp_filter *filter)
525 {
526 if (filter) {
527 bpf_prog_destroy(filter->prog);
528 kfree(filter);
529 }
530 }
531
__seccomp_filter_orphan(struct seccomp_filter * orig)532 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
533 {
534 while (orig && refcount_dec_and_test(&orig->users)) {
535 if (waitqueue_active(&orig->wqh))
536 wake_up_poll(&orig->wqh, EPOLLHUP);
537 orig = orig->prev;
538 }
539 }
540
__put_seccomp_filter(struct seccomp_filter * orig)541 static void __put_seccomp_filter(struct seccomp_filter *orig)
542 {
543 /* Clean up single-reference branches iteratively. */
544 while (orig && refcount_dec_and_test(&orig->refs)) {
545 struct seccomp_filter *freeme = orig;
546 orig = orig->prev;
547 seccomp_filter_free(freeme);
548 }
549 }
550
__seccomp_filter_release(struct seccomp_filter * orig)551 static void __seccomp_filter_release(struct seccomp_filter *orig)
552 {
553 /* Notify about any unused filters in the task's former filter tree. */
554 __seccomp_filter_orphan(orig);
555 /* Finally drop all references to the task's former tree. */
556 __put_seccomp_filter(orig);
557 }
558
559 /**
560 * seccomp_filter_release - Detach the task from its filter tree,
561 * drop its reference count, and notify
562 * about unused filters
563 *
564 * @tsk: task the filter should be released from.
565 *
566 * This function should only be called when the task is exiting as
567 * it detaches it from its filter tree. PF_EXITING has to be set
568 * for the task.
569 */
seccomp_filter_release(struct task_struct * tsk)570 void seccomp_filter_release(struct task_struct *tsk)
571 {
572 struct seccomp_filter *orig;
573
574 if (WARN_ON((tsk->flags & PF_EXITING) == 0))
575 return;
576
577 if (READ_ONCE(tsk->seccomp.filter) == NULL)
578 return;
579
580 spin_lock_irq(&tsk->sighand->siglock);
581 orig = tsk->seccomp.filter;
582 /* Detach task from its filter tree. */
583 tsk->seccomp.filter = NULL;
584 spin_unlock_irq(&tsk->sighand->siglock);
585 __seccomp_filter_release(orig);
586 }
587
588 /**
589 * seccomp_sync_threads: sets all threads to use current's filter
590 *
591 * @flags: SECCOMP_FILTER_FLAG_* flags to set during sync.
592 *
593 * Expects sighand and cred_guard_mutex locks to be held, and for
594 * seccomp_can_sync_threads() to have returned success already
595 * without dropping the locks.
596 *
597 */
seccomp_sync_threads(unsigned long flags)598 static inline void seccomp_sync_threads(unsigned long flags)
599 {
600 struct task_struct *thread, *caller;
601
602 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
603 assert_spin_locked(¤t->sighand->siglock);
604
605 /*
606 * Don't touch any of the threads if the process is being killed.
607 * This allows for a lockless check in seccomp_filter_release.
608 */
609 if (current->signal->flags & SIGNAL_GROUP_EXIT)
610 return;
611
612 /* Synchronize all threads. */
613 caller = current;
614 for_each_thread(caller, thread) {
615 /* Skip current, since it needs no changes. */
616 if (thread == caller)
617 continue;
618
619 /*
620 * Skip exited threads. seccomp_filter_release could have
621 * been already called for this task.
622 */
623 if (thread->flags & PF_EXITING)
624 continue;
625
626 /* Get a task reference for the new leaf node. */
627 get_seccomp_filter(caller);
628
629 /*
630 * Drop the task reference to the shared ancestor since
631 * current's path will hold a reference. (This also
632 * allows a put before the assignment.)
633 */
634 __seccomp_filter_release(thread->seccomp.filter);
635
636 /* Make our new filter tree visible. */
637 smp_store_release(&thread->seccomp.filter,
638 caller->seccomp.filter);
639 atomic_set(&thread->seccomp.filter_count,
640 atomic_read(&caller->seccomp.filter_count));
641
642 /*
643 * Don't let an unprivileged task work around
644 * the no_new_privs restriction by creating
645 * a thread that sets it up, enters seccomp,
646 * then dies.
647 */
648 if (task_no_new_privs(caller))
649 task_set_no_new_privs(thread);
650
651 /*
652 * Opt the other thread into seccomp if needed.
653 * As threads are considered to be trust-realm
654 * equivalent (see ptrace_may_access), it is safe to
655 * allow one thread to transition the other.
656 */
657 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
658 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
659 flags);
660 }
661 }
662
663 /**
664 * seccomp_prepare_filter: Prepares a seccomp filter for use.
665 * @fprog: BPF program to install
666 *
667 * Returns filter on success or an ERR_PTR on failure.
668 */
seccomp_prepare_filter(struct sock_fprog * fprog)669 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
670 {
671 struct seccomp_filter *sfilter;
672 int ret;
673 const bool save_orig =
674 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
675 true;
676 #else
677 false;
678 #endif
679
680 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
681 return ERR_PTR(-EINVAL);
682
683 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
684
685 /*
686 * Installing a seccomp filter requires that the task has
687 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
688 * This avoids scenarios where unprivileged tasks can affect the
689 * behavior of privileged children.
690 */
691 if (!task_no_new_privs(current) &&
692 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
693 return ERR_PTR(-EACCES);
694
695 /* Allocate a new seccomp_filter */
696 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
697 if (!sfilter)
698 return ERR_PTR(-ENOMEM);
699
700 mutex_init(&sfilter->notify_lock);
701 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
702 seccomp_check_filter, save_orig);
703 if (ret < 0) {
704 kfree(sfilter);
705 return ERR_PTR(ret);
706 }
707
708 refcount_set(&sfilter->refs, 1);
709 refcount_set(&sfilter->users, 1);
710 init_waitqueue_head(&sfilter->wqh);
711
712 return sfilter;
713 }
714
715 /**
716 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
717 * @user_filter: pointer to the user data containing a sock_fprog.
718 *
719 * Returns 0 on success and non-zero otherwise.
720 */
721 static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user * user_filter)722 seccomp_prepare_user_filter(const char __user *user_filter)
723 {
724 struct sock_fprog fprog;
725 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
726
727 #ifdef CONFIG_COMPAT
728 if (in_compat_syscall()) {
729 struct compat_sock_fprog fprog32;
730 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
731 goto out;
732 fprog.len = fprog32.len;
733 fprog.filter = compat_ptr(fprog32.filter);
734 } else /* falls through to the if below. */
735 #endif
736 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
737 goto out;
738 filter = seccomp_prepare_filter(&fprog);
739 out:
740 return filter;
741 }
742
743 #ifdef SECCOMP_ARCH_NATIVE
744 /**
745 * seccomp_is_const_allow - check if filter is constant allow with given data
746 * @fprog: The BPF programs
747 * @sd: The seccomp data to check against, only syscall number and arch
748 * number are considered constant.
749 */
seccomp_is_const_allow(struct sock_fprog_kern * fprog,struct seccomp_data * sd)750 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
751 struct seccomp_data *sd)
752 {
753 unsigned int reg_value = 0;
754 unsigned int pc;
755 bool op_res;
756
757 if (WARN_ON_ONCE(!fprog))
758 return false;
759
760 /* Our single exception to filtering. */
761 #ifdef __NR_uretprobe
762 #ifdef SECCOMP_ARCH_COMPAT
763 if (sd->arch == SECCOMP_ARCH_NATIVE)
764 #endif
765 if (sd->nr == __NR_uretprobe)
766 return true;
767 #endif
768
769 for (pc = 0; pc < fprog->len; pc++) {
770 struct sock_filter *insn = &fprog->filter[pc];
771 u16 code = insn->code;
772 u32 k = insn->k;
773
774 switch (code) {
775 case BPF_LD | BPF_W | BPF_ABS:
776 switch (k) {
777 case offsetof(struct seccomp_data, nr):
778 reg_value = sd->nr;
779 break;
780 case offsetof(struct seccomp_data, arch):
781 reg_value = sd->arch;
782 break;
783 default:
784 /* can't optimize (non-constant value load) */
785 return false;
786 }
787 break;
788 case BPF_RET | BPF_K:
789 /* reached return with constant values only, check allow */
790 return k == SECCOMP_RET_ALLOW;
791 case BPF_JMP | BPF_JA:
792 pc += insn->k;
793 break;
794 case BPF_JMP | BPF_JEQ | BPF_K:
795 case BPF_JMP | BPF_JGE | BPF_K:
796 case BPF_JMP | BPF_JGT | BPF_K:
797 case BPF_JMP | BPF_JSET | BPF_K:
798 switch (BPF_OP(code)) {
799 case BPF_JEQ:
800 op_res = reg_value == k;
801 break;
802 case BPF_JGE:
803 op_res = reg_value >= k;
804 break;
805 case BPF_JGT:
806 op_res = reg_value > k;
807 break;
808 case BPF_JSET:
809 op_res = !!(reg_value & k);
810 break;
811 default:
812 /* can't optimize (unknown jump) */
813 return false;
814 }
815
816 pc += op_res ? insn->jt : insn->jf;
817 break;
818 case BPF_ALU | BPF_AND | BPF_K:
819 reg_value &= k;
820 break;
821 default:
822 /* can't optimize (unknown insn) */
823 return false;
824 }
825 }
826
827 /* ran off the end of the filter?! */
828 WARN_ON(1);
829 return false;
830 }
831
seccomp_cache_prepare_bitmap(struct seccomp_filter * sfilter,void * bitmap,const void * bitmap_prev,size_t bitmap_size,int arch)832 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
833 void *bitmap, const void *bitmap_prev,
834 size_t bitmap_size, int arch)
835 {
836 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
837 struct seccomp_data sd;
838 int nr;
839
840 if (bitmap_prev) {
841 /* The new filter must be as restrictive as the last. */
842 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
843 } else {
844 /* Before any filters, all syscalls are always allowed. */
845 bitmap_fill(bitmap, bitmap_size);
846 }
847
848 for (nr = 0; nr < bitmap_size; nr++) {
849 /* No bitmap change: not a cacheable action. */
850 if (!test_bit(nr, bitmap))
851 continue;
852
853 sd.nr = nr;
854 sd.arch = arch;
855
856 /* No bitmap change: continue to always allow. */
857 if (seccomp_is_const_allow(fprog, &sd))
858 continue;
859
860 /*
861 * Not a cacheable action: always run filters.
862 * atomic clear_bit() not needed, filter not visible yet.
863 */
864 __clear_bit(nr, bitmap);
865 }
866 }
867
868 /**
869 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
870 * @sfilter: The seccomp filter
871 *
872 * Returns 0 if successful or -errno if error occurred.
873 */
seccomp_cache_prepare(struct seccomp_filter * sfilter)874 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
875 {
876 struct action_cache *cache = &sfilter->cache;
877 const struct action_cache *cache_prev =
878 sfilter->prev ? &sfilter->prev->cache : NULL;
879
880 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
881 cache_prev ? cache_prev->allow_native : NULL,
882 SECCOMP_ARCH_NATIVE_NR,
883 SECCOMP_ARCH_NATIVE);
884
885 #ifdef SECCOMP_ARCH_COMPAT
886 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
887 cache_prev ? cache_prev->allow_compat : NULL,
888 SECCOMP_ARCH_COMPAT_NR,
889 SECCOMP_ARCH_COMPAT);
890 #endif /* SECCOMP_ARCH_COMPAT */
891 }
892 #endif /* SECCOMP_ARCH_NATIVE */
893
894 /**
895 * seccomp_attach_filter: validate and attach filter
896 * @flags: flags to change filter behavior
897 * @filter: seccomp filter to add to the current process
898 *
899 * Caller must be holding current->sighand->siglock lock.
900 *
901 * Returns 0 on success, -ve on error, or
902 * - in TSYNC mode: the pid of a thread which was either not in the correct
903 * seccomp mode or did not have an ancestral seccomp filter
904 * - in NEW_LISTENER mode: the fd of the new listener
905 */
seccomp_attach_filter(unsigned int flags,struct seccomp_filter * filter)906 static long seccomp_attach_filter(unsigned int flags,
907 struct seccomp_filter *filter)
908 {
909 unsigned long total_insns;
910 struct seccomp_filter *walker;
911
912 assert_spin_locked(¤t->sighand->siglock);
913
914 /* Validate resulting filter length. */
915 total_insns = filter->prog->len;
916 for (walker = current->seccomp.filter; walker; walker = walker->prev)
917 total_insns += walker->prog->len + 4; /* 4 instr penalty */
918 if (total_insns > MAX_INSNS_PER_PATH)
919 return -ENOMEM;
920
921 /* If thread sync has been requested, check that it is possible. */
922 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
923 int ret;
924
925 ret = seccomp_can_sync_threads();
926 if (ret) {
927 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
928 return -ESRCH;
929 else
930 return ret;
931 }
932 }
933
934 /* Set log flag, if present. */
935 if (flags & SECCOMP_FILTER_FLAG_LOG)
936 filter->log = true;
937
938 /* Set wait killable flag, if present. */
939 if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV)
940 filter->wait_killable_recv = true;
941
942 /*
943 * If there is an existing filter, make it the prev and don't drop its
944 * task reference.
945 */
946 filter->prev = current->seccomp.filter;
947 seccomp_cache_prepare(filter);
948 current->seccomp.filter = filter;
949 atomic_inc(¤t->seccomp.filter_count);
950
951 /* Now that the new filter is in place, synchronize to all threads. */
952 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
953 seccomp_sync_threads(flags);
954
955 return 0;
956 }
957
__get_seccomp_filter(struct seccomp_filter * filter)958 static void __get_seccomp_filter(struct seccomp_filter *filter)
959 {
960 refcount_inc(&filter->refs);
961 }
962
963 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
get_seccomp_filter(struct task_struct * tsk)964 void get_seccomp_filter(struct task_struct *tsk)
965 {
966 struct seccomp_filter *orig = tsk->seccomp.filter;
967 if (!orig)
968 return;
969 __get_seccomp_filter(orig);
970 refcount_inc(&orig->users);
971 }
972
973 #endif /* CONFIG_SECCOMP_FILTER */
974
975 /* For use with seccomp_actions_logged */
976 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
977 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
978 #define SECCOMP_LOG_TRAP (1 << 2)
979 #define SECCOMP_LOG_ERRNO (1 << 3)
980 #define SECCOMP_LOG_TRACE (1 << 4)
981 #define SECCOMP_LOG_LOG (1 << 5)
982 #define SECCOMP_LOG_ALLOW (1 << 6)
983 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
984
985 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
986 SECCOMP_LOG_KILL_THREAD |
987 SECCOMP_LOG_TRAP |
988 SECCOMP_LOG_ERRNO |
989 SECCOMP_LOG_USER_NOTIF |
990 SECCOMP_LOG_TRACE |
991 SECCOMP_LOG_LOG;
992
seccomp_log(unsigned long syscall,long signr,u32 action,bool requested)993 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
994 bool requested)
995 {
996 bool log = false;
997
998 switch (action) {
999 case SECCOMP_RET_ALLOW:
1000 break;
1001 case SECCOMP_RET_TRAP:
1002 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
1003 break;
1004 case SECCOMP_RET_ERRNO:
1005 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
1006 break;
1007 case SECCOMP_RET_TRACE:
1008 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
1009 break;
1010 case SECCOMP_RET_USER_NOTIF:
1011 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
1012 break;
1013 case SECCOMP_RET_LOG:
1014 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
1015 break;
1016 case SECCOMP_RET_KILL_THREAD:
1017 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
1018 break;
1019 case SECCOMP_RET_KILL_PROCESS:
1020 default:
1021 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
1022 }
1023
1024 /*
1025 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
1026 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
1027 * any action from being logged by removing the action name from the
1028 * seccomp_actions_logged sysctl.
1029 */
1030 if (!log)
1031 return;
1032
1033 audit_seccomp(syscall, signr, action);
1034 }
1035
1036 /*
1037 * Secure computing mode 1 allows only read/write/exit/sigreturn.
1038 * To be fully secure this must be combined with rlimit
1039 * to limit the stack allocations too.
1040 */
1041 static const int mode1_syscalls[] = {
1042 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1043 #ifdef __NR_uretprobe
1044 __NR_uretprobe,
1045 #endif
1046 -1, /* negative terminated */
1047 };
1048
__secure_computing_strict(int this_syscall)1049 static void __secure_computing_strict(int this_syscall)
1050 {
1051 const int *allowed_syscalls = mode1_syscalls;
1052 #ifdef CONFIG_COMPAT
1053 if (in_compat_syscall())
1054 allowed_syscalls = get_compat_mode1_syscalls();
1055 #endif
1056 do {
1057 if (*allowed_syscalls == this_syscall)
1058 return;
1059 } while (*++allowed_syscalls != -1);
1060
1061 #ifdef SECCOMP_DEBUG
1062 dump_stack();
1063 #endif
1064 current->seccomp.mode = SECCOMP_MODE_DEAD;
1065 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1066 do_exit(SIGKILL);
1067 }
1068
1069 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
secure_computing_strict(int this_syscall)1070 void secure_computing_strict(int this_syscall)
1071 {
1072 int mode = current->seccomp.mode;
1073
1074 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1075 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1076 return;
1077
1078 if (mode == SECCOMP_MODE_DISABLED)
1079 return;
1080 else if (mode == SECCOMP_MODE_STRICT)
1081 __secure_computing_strict(this_syscall);
1082 else
1083 BUG();
1084 }
__secure_computing(void)1085 int __secure_computing(void)
1086 {
1087 int this_syscall = syscall_get_nr(current, current_pt_regs());
1088
1089 secure_computing_strict(this_syscall);
1090 return 0;
1091 }
1092 #else
1093
1094 #ifdef CONFIG_SECCOMP_FILTER
seccomp_next_notify_id(struct seccomp_filter * filter)1095 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1096 {
1097 /*
1098 * Note: overflow is ok here, the id just needs to be unique per
1099 * filter.
1100 */
1101 lockdep_assert_held(&filter->notify_lock);
1102 return filter->notif->next_id++;
1103 }
1104
seccomp_handle_addfd(struct seccomp_kaddfd * addfd,struct seccomp_knotif * n)1105 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n)
1106 {
1107 int fd;
1108
1109 /*
1110 * Remove the notification, and reset the list pointers, indicating
1111 * that it has been handled.
1112 */
1113 list_del_init(&addfd->list);
1114 if (!addfd->setfd)
1115 fd = receive_fd(addfd->file, NULL, addfd->flags);
1116 else
1117 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1118 addfd->ret = fd;
1119
1120 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) {
1121 /* If we fail reset and return an error to the notifier */
1122 if (fd < 0) {
1123 n->state = SECCOMP_NOTIFY_SENT;
1124 } else {
1125 /* Return the FD we just added */
1126 n->flags = 0;
1127 n->error = 0;
1128 n->val = fd;
1129 }
1130 }
1131
1132 /*
1133 * Mark the notification as completed. From this point, addfd mem
1134 * might be invalidated and we can't safely read it anymore.
1135 */
1136 complete(&addfd->completion);
1137 }
1138
should_sleep_killable(struct seccomp_filter * match,struct seccomp_knotif * n)1139 static bool should_sleep_killable(struct seccomp_filter *match,
1140 struct seccomp_knotif *n)
1141 {
1142 return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT;
1143 }
1144
seccomp_do_user_notification(int this_syscall,struct seccomp_filter * match,const struct seccomp_data * sd)1145 static int seccomp_do_user_notification(int this_syscall,
1146 struct seccomp_filter *match,
1147 const struct seccomp_data *sd)
1148 {
1149 int err;
1150 u32 flags = 0;
1151 long ret = 0;
1152 struct seccomp_knotif n = {};
1153 struct seccomp_kaddfd *addfd, *tmp;
1154
1155 mutex_lock(&match->notify_lock);
1156 err = -ENOSYS;
1157 if (!match->notif)
1158 goto out;
1159
1160 n.task = current;
1161 n.state = SECCOMP_NOTIFY_INIT;
1162 n.data = sd;
1163 n.id = seccomp_next_notify_id(match);
1164 init_completion(&n.ready);
1165 list_add_tail(&n.list, &match->notif->notifications);
1166 INIT_LIST_HEAD(&n.addfd);
1167
1168 atomic_inc(&match->notif->requests);
1169 if (match->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP)
1170 wake_up_poll_on_current_cpu(&match->wqh, EPOLLIN | EPOLLRDNORM);
1171 else
1172 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1173
1174 /*
1175 * This is where we wait for a reply from userspace.
1176 */
1177 do {
1178 bool wait_killable = should_sleep_killable(match, &n);
1179
1180 mutex_unlock(&match->notify_lock);
1181 if (wait_killable)
1182 err = wait_for_completion_killable(&n.ready);
1183 else
1184 err = wait_for_completion_interruptible(&n.ready);
1185 mutex_lock(&match->notify_lock);
1186
1187 if (err != 0) {
1188 /*
1189 * Check to see if the notifcation got picked up and
1190 * whether we should switch to wait killable.
1191 */
1192 if (!wait_killable && should_sleep_killable(match, &n))
1193 continue;
1194
1195 goto interrupted;
1196 }
1197
1198 addfd = list_first_entry_or_null(&n.addfd,
1199 struct seccomp_kaddfd, list);
1200 /* Check if we were woken up by a addfd message */
1201 if (addfd)
1202 seccomp_handle_addfd(addfd, &n);
1203
1204 } while (n.state != SECCOMP_NOTIFY_REPLIED);
1205
1206 ret = n.val;
1207 err = n.error;
1208 flags = n.flags;
1209
1210 interrupted:
1211 /* If there were any pending addfd calls, clear them out */
1212 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1213 /* The process went away before we got a chance to handle it */
1214 addfd->ret = -ESRCH;
1215 list_del_init(&addfd->list);
1216 complete(&addfd->completion);
1217 }
1218
1219 /*
1220 * Note that it's possible the listener died in between the time when
1221 * we were notified of a response (or a signal) and when we were able to
1222 * re-acquire the lock, so only delete from the list if the
1223 * notification actually exists.
1224 *
1225 * Also note that this test is only valid because there's no way to
1226 * *reattach* to a notifier right now. If one is added, we'll need to
1227 * keep track of the notif itself and make sure they match here.
1228 */
1229 if (match->notif)
1230 list_del(&n.list);
1231 out:
1232 mutex_unlock(&match->notify_lock);
1233
1234 /* Userspace requests to continue the syscall. */
1235 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1236 return 0;
1237
1238 syscall_set_return_value(current, current_pt_regs(),
1239 err, ret);
1240 return -1;
1241 }
1242
__seccomp_filter(int this_syscall,const bool recheck_after_trace)1243 static int __seccomp_filter(int this_syscall, const bool recheck_after_trace)
1244 {
1245 u32 filter_ret, action;
1246 struct seccomp_data sd;
1247 struct seccomp_filter *match = NULL;
1248 int data;
1249
1250 /*
1251 * Make sure that any changes to mode from another thread have
1252 * been seen after SYSCALL_WORK_SECCOMP was seen.
1253 */
1254 smp_rmb();
1255
1256 populate_seccomp_data(&sd);
1257
1258 filter_ret = seccomp_run_filters(&sd, &match);
1259 data = filter_ret & SECCOMP_RET_DATA;
1260 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1261
1262 switch (action) {
1263 case SECCOMP_RET_ERRNO:
1264 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1265 if (data > MAX_ERRNO)
1266 data = MAX_ERRNO;
1267 syscall_set_return_value(current, current_pt_regs(),
1268 -data, 0);
1269 goto skip;
1270
1271 case SECCOMP_RET_TRAP:
1272 /* Show the handler the original registers. */
1273 syscall_rollback(current, current_pt_regs());
1274 /* Let the filter pass back 16 bits of data. */
1275 force_sig_seccomp(this_syscall, data, false);
1276 goto skip;
1277
1278 case SECCOMP_RET_TRACE:
1279 /* We've been put in this state by the ptracer already. */
1280 if (recheck_after_trace)
1281 return 0;
1282
1283 /* ENOSYS these calls if there is no tracer attached. */
1284 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1285 syscall_set_return_value(current,
1286 current_pt_regs(),
1287 -ENOSYS, 0);
1288 goto skip;
1289 }
1290
1291 /* Allow the BPF to provide the event message */
1292 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1293 /*
1294 * The delivery of a fatal signal during event
1295 * notification may silently skip tracer notification,
1296 * which could leave us with a potentially unmodified
1297 * syscall that the tracer would have liked to have
1298 * changed. Since the process is about to die, we just
1299 * force the syscall to be skipped and let the signal
1300 * kill the process and correctly handle any tracer exit
1301 * notifications.
1302 */
1303 if (fatal_signal_pending(current))
1304 goto skip;
1305 /* Check if the tracer forced the syscall to be skipped. */
1306 this_syscall = syscall_get_nr(current, current_pt_regs());
1307 if (this_syscall < 0)
1308 goto skip;
1309
1310 /*
1311 * Recheck the syscall, since it may have changed. This
1312 * intentionally uses a NULL struct seccomp_data to force
1313 * a reload of all registers. This does not goto skip since
1314 * a skip would have already been reported.
1315 */
1316 if (__seccomp_filter(this_syscall, true))
1317 return -1;
1318
1319 return 0;
1320
1321 case SECCOMP_RET_USER_NOTIF:
1322 if (seccomp_do_user_notification(this_syscall, match, &sd))
1323 goto skip;
1324
1325 return 0;
1326
1327 case SECCOMP_RET_LOG:
1328 seccomp_log(this_syscall, 0, action, true);
1329 return 0;
1330
1331 case SECCOMP_RET_ALLOW:
1332 /*
1333 * Note that the "match" filter will always be NULL for
1334 * this action since SECCOMP_RET_ALLOW is the starting
1335 * state in seccomp_run_filters().
1336 */
1337 return 0;
1338
1339 case SECCOMP_RET_KILL_THREAD:
1340 case SECCOMP_RET_KILL_PROCESS:
1341 default:
1342 current->seccomp.mode = SECCOMP_MODE_DEAD;
1343 seccomp_log(this_syscall, SIGSYS, action, true);
1344 /* Dump core only if this is the last remaining thread. */
1345 if (action != SECCOMP_RET_KILL_THREAD ||
1346 (atomic_read(¤t->signal->live) == 1)) {
1347 /* Show the original registers in the dump. */
1348 syscall_rollback(current, current_pt_regs());
1349 /* Trigger a coredump with SIGSYS */
1350 force_sig_seccomp(this_syscall, data, true);
1351 } else {
1352 do_exit(SIGSYS);
1353 }
1354 return -1; /* skip the syscall go directly to signal handling */
1355 }
1356
1357 unreachable();
1358
1359 skip:
1360 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1361 return -1;
1362 }
1363 #else
__seccomp_filter(int this_syscall,const bool recheck_after_trace)1364 static int __seccomp_filter(int this_syscall, const bool recheck_after_trace)
1365 {
1366 BUG();
1367
1368 return -1;
1369 }
1370 #endif
1371
__secure_computing(void)1372 int __secure_computing(void)
1373 {
1374 int mode = current->seccomp.mode;
1375 int this_syscall;
1376
1377 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1378 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1379 return 0;
1380
1381 this_syscall = syscall_get_nr(current, current_pt_regs());
1382
1383 switch (mode) {
1384 case SECCOMP_MODE_STRICT:
1385 __secure_computing_strict(this_syscall); /* may call do_exit */
1386 return 0;
1387 case SECCOMP_MODE_FILTER:
1388 return __seccomp_filter(this_syscall, false);
1389 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */
1390 case SECCOMP_MODE_DEAD:
1391 WARN_ON_ONCE(1);
1392 do_exit(SIGKILL);
1393 return -1;
1394 default:
1395 BUG();
1396 }
1397 }
1398 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1399
prctl_get_seccomp(void)1400 long prctl_get_seccomp(void)
1401 {
1402 return current->seccomp.mode;
1403 }
1404
1405 /**
1406 * seccomp_set_mode_strict: internal function for setting strict seccomp
1407 *
1408 * Once current->seccomp.mode is non-zero, it may not be changed.
1409 *
1410 * Returns 0 on success or -EINVAL on failure.
1411 */
seccomp_set_mode_strict(void)1412 static long seccomp_set_mode_strict(void)
1413 {
1414 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1415 long ret = -EINVAL;
1416
1417 spin_lock_irq(¤t->sighand->siglock);
1418
1419 if (!seccomp_may_assign_mode(seccomp_mode))
1420 goto out;
1421
1422 #ifdef TIF_NOTSC
1423 disable_TSC();
1424 #endif
1425 seccomp_assign_mode(current, seccomp_mode, 0);
1426 ret = 0;
1427
1428 out:
1429 spin_unlock_irq(¤t->sighand->siglock);
1430
1431 return ret;
1432 }
1433
1434 #ifdef CONFIG_SECCOMP_FILTER
seccomp_notify_free(struct seccomp_filter * filter)1435 static void seccomp_notify_free(struct seccomp_filter *filter)
1436 {
1437 kfree(filter->notif);
1438 filter->notif = NULL;
1439 }
1440
seccomp_notify_detach(struct seccomp_filter * filter)1441 static void seccomp_notify_detach(struct seccomp_filter *filter)
1442 {
1443 struct seccomp_knotif *knotif;
1444
1445 if (!filter)
1446 return;
1447
1448 mutex_lock(&filter->notify_lock);
1449
1450 /*
1451 * If this file is being closed because e.g. the task who owned it
1452 * died, let's wake everyone up who was waiting on us.
1453 */
1454 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1455 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1456 continue;
1457
1458 knotif->state = SECCOMP_NOTIFY_REPLIED;
1459 knotif->error = -ENOSYS;
1460 knotif->val = 0;
1461
1462 /*
1463 * We do not need to wake up any pending addfd messages, as
1464 * the notifier will do that for us, as this just looks
1465 * like a standard reply.
1466 */
1467 complete(&knotif->ready);
1468 }
1469
1470 seccomp_notify_free(filter);
1471 mutex_unlock(&filter->notify_lock);
1472 }
1473
seccomp_notify_release(struct inode * inode,struct file * file)1474 static int seccomp_notify_release(struct inode *inode, struct file *file)
1475 {
1476 struct seccomp_filter *filter = file->private_data;
1477
1478 seccomp_notify_detach(filter);
1479 __put_seccomp_filter(filter);
1480 return 0;
1481 }
1482
1483 /* must be called with notif_lock held */
1484 static inline struct seccomp_knotif *
find_notification(struct seccomp_filter * filter,u64 id)1485 find_notification(struct seccomp_filter *filter, u64 id)
1486 {
1487 struct seccomp_knotif *cur;
1488
1489 lockdep_assert_held(&filter->notify_lock);
1490
1491 list_for_each_entry(cur, &filter->notif->notifications, list) {
1492 if (cur->id == id)
1493 return cur;
1494 }
1495
1496 return NULL;
1497 }
1498
recv_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)1499 static int recv_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync,
1500 void *key)
1501 {
1502 /* Avoid a wakeup if event not interesting for us. */
1503 if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR | EPOLLHUP)))
1504 return 0;
1505 return autoremove_wake_function(wait, mode, sync, key);
1506 }
1507
recv_wait_event(struct seccomp_filter * filter)1508 static int recv_wait_event(struct seccomp_filter *filter)
1509 {
1510 DEFINE_WAIT_FUNC(wait, recv_wake_function);
1511 int ret;
1512
1513 if (refcount_read(&filter->users) == 0)
1514 return 0;
1515
1516 if (atomic_dec_if_positive(&filter->notif->requests) >= 0)
1517 return 0;
1518
1519 for (;;) {
1520 ret = prepare_to_wait_event(&filter->wqh, &wait, TASK_INTERRUPTIBLE);
1521
1522 if (atomic_dec_if_positive(&filter->notif->requests) >= 0)
1523 break;
1524 if (refcount_read(&filter->users) == 0)
1525 break;
1526
1527 if (ret)
1528 return ret;
1529
1530 schedule();
1531 }
1532 finish_wait(&filter->wqh, &wait);
1533 return 0;
1534 }
1535
seccomp_notify_recv(struct seccomp_filter * filter,void __user * buf)1536 static long seccomp_notify_recv(struct seccomp_filter *filter,
1537 void __user *buf)
1538 {
1539 struct seccomp_knotif *knotif = NULL, *cur;
1540 struct seccomp_notif unotif;
1541 ssize_t ret;
1542
1543 /* Verify that we're not given garbage to keep struct extensible. */
1544 ret = check_zeroed_user(buf, sizeof(unotif));
1545 if (ret < 0)
1546 return ret;
1547 if (!ret)
1548 return -EINVAL;
1549
1550 memset(&unotif, 0, sizeof(unotif));
1551
1552 ret = recv_wait_event(filter);
1553 if (ret < 0)
1554 return ret;
1555
1556 mutex_lock(&filter->notify_lock);
1557 list_for_each_entry(cur, &filter->notif->notifications, list) {
1558 if (cur->state == SECCOMP_NOTIFY_INIT) {
1559 knotif = cur;
1560 break;
1561 }
1562 }
1563
1564 /*
1565 * If we didn't find a notification, it could be that the task was
1566 * interrupted by a fatal signal between the time we were woken and
1567 * when we were able to acquire the rw lock.
1568 */
1569 if (!knotif) {
1570 ret = -ENOENT;
1571 goto out;
1572 }
1573
1574 unotif.id = knotif->id;
1575 unotif.pid = task_pid_vnr(knotif->task);
1576 unotif.data = *(knotif->data);
1577
1578 knotif->state = SECCOMP_NOTIFY_SENT;
1579 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1580 ret = 0;
1581 out:
1582 mutex_unlock(&filter->notify_lock);
1583
1584 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1585 ret = -EFAULT;
1586
1587 /*
1588 * Userspace screwed up. To make sure that we keep this
1589 * notification alive, let's reset it back to INIT. It
1590 * may have died when we released the lock, so we need to make
1591 * sure it's still around.
1592 */
1593 mutex_lock(&filter->notify_lock);
1594 knotif = find_notification(filter, unotif.id);
1595 if (knotif) {
1596 /* Reset the process to make sure it's not stuck */
1597 if (should_sleep_killable(filter, knotif))
1598 complete(&knotif->ready);
1599 knotif->state = SECCOMP_NOTIFY_INIT;
1600 atomic_inc(&filter->notif->requests);
1601 wake_up_poll(&filter->wqh, EPOLLIN | EPOLLRDNORM);
1602 }
1603 mutex_unlock(&filter->notify_lock);
1604 }
1605
1606 return ret;
1607 }
1608
seccomp_notify_send(struct seccomp_filter * filter,void __user * buf)1609 static long seccomp_notify_send(struct seccomp_filter *filter,
1610 void __user *buf)
1611 {
1612 struct seccomp_notif_resp resp = {};
1613 struct seccomp_knotif *knotif;
1614 long ret;
1615
1616 if (copy_from_user(&resp, buf, sizeof(resp)))
1617 return -EFAULT;
1618
1619 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1620 return -EINVAL;
1621
1622 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1623 (resp.error || resp.val))
1624 return -EINVAL;
1625
1626 ret = mutex_lock_interruptible(&filter->notify_lock);
1627 if (ret < 0)
1628 return ret;
1629
1630 knotif = find_notification(filter, resp.id);
1631 if (!knotif) {
1632 ret = -ENOENT;
1633 goto out;
1634 }
1635
1636 /* Allow exactly one reply. */
1637 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1638 ret = -EINPROGRESS;
1639 goto out;
1640 }
1641
1642 ret = 0;
1643 knotif->state = SECCOMP_NOTIFY_REPLIED;
1644 knotif->error = resp.error;
1645 knotif->val = resp.val;
1646 knotif->flags = resp.flags;
1647 if (filter->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP)
1648 complete_on_current_cpu(&knotif->ready);
1649 else
1650 complete(&knotif->ready);
1651 out:
1652 mutex_unlock(&filter->notify_lock);
1653 return ret;
1654 }
1655
seccomp_notify_id_valid(struct seccomp_filter * filter,void __user * buf)1656 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1657 void __user *buf)
1658 {
1659 struct seccomp_knotif *knotif;
1660 u64 id;
1661 long ret;
1662
1663 if (copy_from_user(&id, buf, sizeof(id)))
1664 return -EFAULT;
1665
1666 ret = mutex_lock_interruptible(&filter->notify_lock);
1667 if (ret < 0)
1668 return ret;
1669
1670 knotif = find_notification(filter, id);
1671 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1672 ret = 0;
1673 else
1674 ret = -ENOENT;
1675
1676 mutex_unlock(&filter->notify_lock);
1677 return ret;
1678 }
1679
seccomp_notify_set_flags(struct seccomp_filter * filter,unsigned long flags)1680 static long seccomp_notify_set_flags(struct seccomp_filter *filter,
1681 unsigned long flags)
1682 {
1683 long ret;
1684
1685 if (flags & ~SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP)
1686 return -EINVAL;
1687
1688 ret = mutex_lock_interruptible(&filter->notify_lock);
1689 if (ret < 0)
1690 return ret;
1691 filter->notif->flags = flags;
1692 mutex_unlock(&filter->notify_lock);
1693 return 0;
1694 }
1695
seccomp_notify_addfd(struct seccomp_filter * filter,struct seccomp_notif_addfd __user * uaddfd,unsigned int size)1696 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1697 struct seccomp_notif_addfd __user *uaddfd,
1698 unsigned int size)
1699 {
1700 struct seccomp_notif_addfd addfd;
1701 struct seccomp_knotif *knotif;
1702 struct seccomp_kaddfd kaddfd;
1703 int ret;
1704
1705 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1706 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1707
1708 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1709 return -EINVAL;
1710
1711 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1712 if (ret)
1713 return ret;
1714
1715 if (addfd.newfd_flags & ~O_CLOEXEC)
1716 return -EINVAL;
1717
1718 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND))
1719 return -EINVAL;
1720
1721 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1722 return -EINVAL;
1723
1724 kaddfd.file = fget(addfd.srcfd);
1725 if (!kaddfd.file)
1726 return -EBADF;
1727
1728 kaddfd.ioctl_flags = addfd.flags;
1729 kaddfd.flags = addfd.newfd_flags;
1730 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1731 kaddfd.fd = addfd.newfd;
1732 init_completion(&kaddfd.completion);
1733
1734 ret = mutex_lock_interruptible(&filter->notify_lock);
1735 if (ret < 0)
1736 goto out;
1737
1738 knotif = find_notification(filter, addfd.id);
1739 if (!knotif) {
1740 ret = -ENOENT;
1741 goto out_unlock;
1742 }
1743
1744 /*
1745 * We do not want to allow for FD injection to occur before the
1746 * notification has been picked up by a userspace handler, or after
1747 * the notification has been replied to.
1748 */
1749 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1750 ret = -EINPROGRESS;
1751 goto out_unlock;
1752 }
1753
1754 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) {
1755 /*
1756 * Disallow queuing an atomic addfd + send reply while there are
1757 * some addfd requests still to process.
1758 *
1759 * There is no clear reason to support it and allows us to keep
1760 * the loop on the other side straight-forward.
1761 */
1762 if (!list_empty(&knotif->addfd)) {
1763 ret = -EBUSY;
1764 goto out_unlock;
1765 }
1766
1767 /* Allow exactly only one reply */
1768 knotif->state = SECCOMP_NOTIFY_REPLIED;
1769 }
1770
1771 list_add(&kaddfd.list, &knotif->addfd);
1772 complete(&knotif->ready);
1773 mutex_unlock(&filter->notify_lock);
1774
1775 /* Now we wait for it to be processed or be interrupted */
1776 ret = wait_for_completion_interruptible(&kaddfd.completion);
1777 if (ret == 0) {
1778 /*
1779 * We had a successful completion. The other side has already
1780 * removed us from the addfd queue, and
1781 * wait_for_completion_interruptible has a memory barrier upon
1782 * success that lets us read this value directly without
1783 * locking.
1784 */
1785 ret = kaddfd.ret;
1786 goto out;
1787 }
1788
1789 mutex_lock(&filter->notify_lock);
1790 /*
1791 * Even though we were woken up by a signal and not a successful
1792 * completion, a completion may have happened in the mean time.
1793 *
1794 * We need to check again if the addfd request has been handled,
1795 * and if not, we will remove it from the queue.
1796 */
1797 if (list_empty(&kaddfd.list))
1798 ret = kaddfd.ret;
1799 else
1800 list_del(&kaddfd.list);
1801
1802 out_unlock:
1803 mutex_unlock(&filter->notify_lock);
1804 out:
1805 fput(kaddfd.file);
1806
1807 return ret;
1808 }
1809
seccomp_notify_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1810 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1811 unsigned long arg)
1812 {
1813 struct seccomp_filter *filter = file->private_data;
1814 void __user *buf = (void __user *)arg;
1815
1816 /* Fixed-size ioctls */
1817 switch (cmd) {
1818 case SECCOMP_IOCTL_NOTIF_RECV:
1819 return seccomp_notify_recv(filter, buf);
1820 case SECCOMP_IOCTL_NOTIF_SEND:
1821 return seccomp_notify_send(filter, buf);
1822 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1823 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1824 return seccomp_notify_id_valid(filter, buf);
1825 case SECCOMP_IOCTL_NOTIF_SET_FLAGS:
1826 return seccomp_notify_set_flags(filter, arg);
1827 }
1828
1829 /* Extensible Argument ioctls */
1830 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1831 switch (EA_IOCTL(cmd)) {
1832 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1833 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1834 default:
1835 return -EINVAL;
1836 }
1837 }
1838
seccomp_notify_poll(struct file * file,struct poll_table_struct * poll_tab)1839 static __poll_t seccomp_notify_poll(struct file *file,
1840 struct poll_table_struct *poll_tab)
1841 {
1842 struct seccomp_filter *filter = file->private_data;
1843 __poll_t ret = 0;
1844 struct seccomp_knotif *cur;
1845
1846 poll_wait(file, &filter->wqh, poll_tab);
1847
1848 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1849 return EPOLLERR;
1850
1851 list_for_each_entry(cur, &filter->notif->notifications, list) {
1852 if (cur->state == SECCOMP_NOTIFY_INIT)
1853 ret |= EPOLLIN | EPOLLRDNORM;
1854 if (cur->state == SECCOMP_NOTIFY_SENT)
1855 ret |= EPOLLOUT | EPOLLWRNORM;
1856 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1857 break;
1858 }
1859
1860 mutex_unlock(&filter->notify_lock);
1861
1862 if (refcount_read(&filter->users) == 0)
1863 ret |= EPOLLHUP;
1864
1865 return ret;
1866 }
1867
1868 static const struct file_operations seccomp_notify_ops = {
1869 .poll = seccomp_notify_poll,
1870 .release = seccomp_notify_release,
1871 .unlocked_ioctl = seccomp_notify_ioctl,
1872 .compat_ioctl = seccomp_notify_ioctl,
1873 };
1874
init_listener(struct seccomp_filter * filter)1875 static struct file *init_listener(struct seccomp_filter *filter)
1876 {
1877 struct file *ret;
1878
1879 ret = ERR_PTR(-ENOMEM);
1880 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1881 if (!filter->notif)
1882 goto out;
1883
1884 filter->notif->next_id = get_random_u64();
1885 INIT_LIST_HEAD(&filter->notif->notifications);
1886
1887 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1888 filter, O_RDWR);
1889 if (IS_ERR(ret))
1890 goto out_notif;
1891
1892 /* The file has a reference to it now */
1893 __get_seccomp_filter(filter);
1894
1895 out_notif:
1896 if (IS_ERR(ret))
1897 seccomp_notify_free(filter);
1898 out:
1899 return ret;
1900 }
1901
1902 /*
1903 * Does @new_child have a listener while an ancestor also has a listener?
1904 * If so, we'll want to reject this filter.
1905 * This only has to be tested for the current process, even in the TSYNC case,
1906 * because TSYNC installs @child with the same parent on all threads.
1907 * Note that @new_child is not hooked up to its parent at this point yet, so
1908 * we use current->seccomp.filter.
1909 */
has_duplicate_listener(struct seccomp_filter * new_child)1910 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1911 {
1912 struct seccomp_filter *cur;
1913
1914 /* must be protected against concurrent TSYNC */
1915 lockdep_assert_held(¤t->sighand->siglock);
1916
1917 if (!new_child->notif)
1918 return false;
1919 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1920 if (cur->notif)
1921 return true;
1922 }
1923
1924 return false;
1925 }
1926
1927 /**
1928 * seccomp_set_mode_filter: internal function for setting seccomp filter
1929 * @flags: flags to change filter behavior
1930 * @filter: struct sock_fprog containing filter
1931 *
1932 * This function may be called repeatedly to install additional filters.
1933 * Every filter successfully installed will be evaluated (in reverse order)
1934 * for each system call the task makes.
1935 *
1936 * Once current->seccomp.mode is non-zero, it may not be changed.
1937 *
1938 * Returns 0 on success or -EINVAL on failure.
1939 */
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)1940 static long seccomp_set_mode_filter(unsigned int flags,
1941 const char __user *filter)
1942 {
1943 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1944 struct seccomp_filter *prepared = NULL;
1945 long ret = -EINVAL;
1946 int listener = -1;
1947 struct file *listener_f = NULL;
1948
1949 /* Validate flags. */
1950 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1951 return -EINVAL;
1952
1953 /*
1954 * In the successful case, NEW_LISTENER returns the new listener fd.
1955 * But in the failure case, TSYNC returns the thread that died. If you
1956 * combine these two flags, there's no way to tell whether something
1957 * succeeded or failed. So, let's disallow this combination if the user
1958 * has not explicitly requested no errors from TSYNC.
1959 */
1960 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1961 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1962 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1963 return -EINVAL;
1964
1965 /*
1966 * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense
1967 * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag.
1968 */
1969 if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) &&
1970 ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0))
1971 return -EINVAL;
1972
1973 /* Prepare the new filter before holding any locks. */
1974 prepared = seccomp_prepare_user_filter(filter);
1975 if (IS_ERR(prepared))
1976 return PTR_ERR(prepared);
1977
1978 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1979 listener = get_unused_fd_flags(O_CLOEXEC);
1980 if (listener < 0) {
1981 ret = listener;
1982 goto out_free;
1983 }
1984
1985 listener_f = init_listener(prepared);
1986 if (IS_ERR(listener_f)) {
1987 put_unused_fd(listener);
1988 ret = PTR_ERR(listener_f);
1989 goto out_free;
1990 }
1991 }
1992
1993 /*
1994 * Make sure we cannot change seccomp or nnp state via TSYNC
1995 * while another thread is in the middle of calling exec.
1996 */
1997 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1998 mutex_lock_killable(¤t->signal->cred_guard_mutex))
1999 goto out_put_fd;
2000
2001 spin_lock_irq(¤t->sighand->siglock);
2002
2003 if (!seccomp_may_assign_mode(seccomp_mode))
2004 goto out;
2005
2006 if (has_duplicate_listener(prepared)) {
2007 ret = -EBUSY;
2008 goto out;
2009 }
2010
2011 ret = seccomp_attach_filter(flags, prepared);
2012 if (ret)
2013 goto out;
2014 /* Do not free the successfully attached filter. */
2015 prepared = NULL;
2016
2017 seccomp_assign_mode(current, seccomp_mode, flags);
2018 out:
2019 spin_unlock_irq(¤t->sighand->siglock);
2020 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
2021 mutex_unlock(¤t->signal->cred_guard_mutex);
2022 out_put_fd:
2023 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
2024 if (ret) {
2025 listener_f->private_data = NULL;
2026 fput(listener_f);
2027 put_unused_fd(listener);
2028 seccomp_notify_detach(prepared);
2029 } else {
2030 fd_install(listener, listener_f);
2031 ret = listener;
2032 }
2033 }
2034 out_free:
2035 seccomp_filter_free(prepared);
2036 return ret;
2037 }
2038 #else
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)2039 static inline long seccomp_set_mode_filter(unsigned int flags,
2040 const char __user *filter)
2041 {
2042 return -EINVAL;
2043 }
2044 #endif
2045
seccomp_get_action_avail(const char __user * uaction)2046 static long seccomp_get_action_avail(const char __user *uaction)
2047 {
2048 u32 action;
2049
2050 if (copy_from_user(&action, uaction, sizeof(action)))
2051 return -EFAULT;
2052
2053 switch (action) {
2054 case SECCOMP_RET_KILL_PROCESS:
2055 case SECCOMP_RET_KILL_THREAD:
2056 case SECCOMP_RET_TRAP:
2057 case SECCOMP_RET_ERRNO:
2058 case SECCOMP_RET_USER_NOTIF:
2059 case SECCOMP_RET_TRACE:
2060 case SECCOMP_RET_LOG:
2061 case SECCOMP_RET_ALLOW:
2062 break;
2063 default:
2064 return -EOPNOTSUPP;
2065 }
2066
2067 return 0;
2068 }
2069
seccomp_get_notif_sizes(void __user * usizes)2070 static long seccomp_get_notif_sizes(void __user *usizes)
2071 {
2072 struct seccomp_notif_sizes sizes = {
2073 .seccomp_notif = sizeof(struct seccomp_notif),
2074 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
2075 .seccomp_data = sizeof(struct seccomp_data),
2076 };
2077
2078 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
2079 return -EFAULT;
2080
2081 return 0;
2082 }
2083
2084 /* Common entry point for both prctl and syscall. */
do_seccomp(unsigned int op,unsigned int flags,void __user * uargs)2085 static long do_seccomp(unsigned int op, unsigned int flags,
2086 void __user *uargs)
2087 {
2088 switch (op) {
2089 case SECCOMP_SET_MODE_STRICT:
2090 if (flags != 0 || uargs != NULL)
2091 return -EINVAL;
2092 return seccomp_set_mode_strict();
2093 case SECCOMP_SET_MODE_FILTER:
2094 return seccomp_set_mode_filter(flags, uargs);
2095 case SECCOMP_GET_ACTION_AVAIL:
2096 if (flags != 0)
2097 return -EINVAL;
2098
2099 return seccomp_get_action_avail(uargs);
2100 case SECCOMP_GET_NOTIF_SIZES:
2101 if (flags != 0)
2102 return -EINVAL;
2103
2104 return seccomp_get_notif_sizes(uargs);
2105 default:
2106 return -EINVAL;
2107 }
2108 }
2109
SYSCALL_DEFINE3(seccomp,unsigned int,op,unsigned int,flags,void __user *,uargs)2110 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
2111 void __user *, uargs)
2112 {
2113 return do_seccomp(op, flags, uargs);
2114 }
2115
2116 /**
2117 * prctl_set_seccomp: configures current->seccomp.mode
2118 * @seccomp_mode: requested mode to use
2119 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
2120 *
2121 * Returns 0 on success or -EINVAL on failure.
2122 */
prctl_set_seccomp(unsigned long seccomp_mode,void __user * filter)2123 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
2124 {
2125 unsigned int op;
2126 void __user *uargs;
2127
2128 switch (seccomp_mode) {
2129 case SECCOMP_MODE_STRICT:
2130 op = SECCOMP_SET_MODE_STRICT;
2131 /*
2132 * Setting strict mode through prctl always ignored filter,
2133 * so make sure it is always NULL here to pass the internal
2134 * check in do_seccomp().
2135 */
2136 uargs = NULL;
2137 break;
2138 case SECCOMP_MODE_FILTER:
2139 op = SECCOMP_SET_MODE_FILTER;
2140 uargs = filter;
2141 break;
2142 default:
2143 return -EINVAL;
2144 }
2145
2146 /* prctl interface doesn't have flags, so they are always zero. */
2147 return do_seccomp(op, 0, uargs);
2148 }
2149
2150 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
get_nth_filter(struct task_struct * task,unsigned long filter_off)2151 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
2152 unsigned long filter_off)
2153 {
2154 struct seccomp_filter *orig, *filter;
2155 unsigned long count;
2156
2157 /*
2158 * Note: this is only correct because the caller should be the (ptrace)
2159 * tracer of the task, otherwise lock_task_sighand is needed.
2160 */
2161 spin_lock_irq(&task->sighand->siglock);
2162
2163 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2164 spin_unlock_irq(&task->sighand->siglock);
2165 return ERR_PTR(-EINVAL);
2166 }
2167
2168 orig = task->seccomp.filter;
2169 __get_seccomp_filter(orig);
2170 spin_unlock_irq(&task->sighand->siglock);
2171
2172 count = 0;
2173 for (filter = orig; filter; filter = filter->prev)
2174 count++;
2175
2176 if (filter_off >= count) {
2177 filter = ERR_PTR(-ENOENT);
2178 goto out;
2179 }
2180
2181 count -= filter_off;
2182 for (filter = orig; filter && count > 1; filter = filter->prev)
2183 count--;
2184
2185 if (WARN_ON(count != 1 || !filter)) {
2186 filter = ERR_PTR(-ENOENT);
2187 goto out;
2188 }
2189
2190 __get_seccomp_filter(filter);
2191
2192 out:
2193 __put_seccomp_filter(orig);
2194 return filter;
2195 }
2196
seccomp_get_filter(struct task_struct * task,unsigned long filter_off,void __user * data)2197 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2198 void __user *data)
2199 {
2200 struct seccomp_filter *filter;
2201 struct sock_fprog_kern *fprog;
2202 long ret;
2203
2204 if (!capable(CAP_SYS_ADMIN) ||
2205 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2206 return -EACCES;
2207 }
2208
2209 filter = get_nth_filter(task, filter_off);
2210 if (IS_ERR(filter))
2211 return PTR_ERR(filter);
2212
2213 fprog = filter->prog->orig_prog;
2214 if (!fprog) {
2215 /* This must be a new non-cBPF filter, since we save
2216 * every cBPF filter's orig_prog above when
2217 * CONFIG_CHECKPOINT_RESTORE is enabled.
2218 */
2219 ret = -EMEDIUMTYPE;
2220 goto out;
2221 }
2222
2223 ret = fprog->len;
2224 if (!data)
2225 goto out;
2226
2227 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2228 ret = -EFAULT;
2229
2230 out:
2231 __put_seccomp_filter(filter);
2232 return ret;
2233 }
2234
seccomp_get_metadata(struct task_struct * task,unsigned long size,void __user * data)2235 long seccomp_get_metadata(struct task_struct *task,
2236 unsigned long size, void __user *data)
2237 {
2238 long ret;
2239 struct seccomp_filter *filter;
2240 struct seccomp_metadata kmd = {};
2241
2242 if (!capable(CAP_SYS_ADMIN) ||
2243 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2244 return -EACCES;
2245 }
2246
2247 size = min_t(unsigned long, size, sizeof(kmd));
2248
2249 if (size < sizeof(kmd.filter_off))
2250 return -EINVAL;
2251
2252 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2253 return -EFAULT;
2254
2255 filter = get_nth_filter(task, kmd.filter_off);
2256 if (IS_ERR(filter))
2257 return PTR_ERR(filter);
2258
2259 if (filter->log)
2260 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2261
2262 ret = size;
2263 if (copy_to_user(data, &kmd, size))
2264 ret = -EFAULT;
2265
2266 __put_seccomp_filter(filter);
2267 return ret;
2268 }
2269 #endif
2270
2271 #ifdef CONFIG_SYSCTL
2272
2273 /* Human readable action names for friendly sysctl interaction */
2274 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2275 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2276 #define SECCOMP_RET_TRAP_NAME "trap"
2277 #define SECCOMP_RET_ERRNO_NAME "errno"
2278 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2279 #define SECCOMP_RET_TRACE_NAME "trace"
2280 #define SECCOMP_RET_LOG_NAME "log"
2281 #define SECCOMP_RET_ALLOW_NAME "allow"
2282
2283 static const char seccomp_actions_avail[] =
2284 SECCOMP_RET_KILL_PROCESS_NAME " "
2285 SECCOMP_RET_KILL_THREAD_NAME " "
2286 SECCOMP_RET_TRAP_NAME " "
2287 SECCOMP_RET_ERRNO_NAME " "
2288 SECCOMP_RET_USER_NOTIF_NAME " "
2289 SECCOMP_RET_TRACE_NAME " "
2290 SECCOMP_RET_LOG_NAME " "
2291 SECCOMP_RET_ALLOW_NAME;
2292
2293 struct seccomp_log_name {
2294 u32 log;
2295 const char *name;
2296 };
2297
2298 static const struct seccomp_log_name seccomp_log_names[] = {
2299 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2300 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2301 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2302 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2303 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2304 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2305 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2306 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2307 { }
2308 };
2309
seccomp_names_from_actions_logged(char * names,size_t size,u32 actions_logged,const char * sep)2310 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2311 u32 actions_logged,
2312 const char *sep)
2313 {
2314 const struct seccomp_log_name *cur;
2315 bool append_sep = false;
2316
2317 for (cur = seccomp_log_names; cur->name && size; cur++) {
2318 ssize_t ret;
2319
2320 if (!(actions_logged & cur->log))
2321 continue;
2322
2323 if (append_sep) {
2324 ret = strscpy(names, sep, size);
2325 if (ret < 0)
2326 return false;
2327
2328 names += ret;
2329 size -= ret;
2330 } else
2331 append_sep = true;
2332
2333 ret = strscpy(names, cur->name, size);
2334 if (ret < 0)
2335 return false;
2336
2337 names += ret;
2338 size -= ret;
2339 }
2340
2341 return true;
2342 }
2343
seccomp_action_logged_from_name(u32 * action_logged,const char * name)2344 static bool seccomp_action_logged_from_name(u32 *action_logged,
2345 const char *name)
2346 {
2347 const struct seccomp_log_name *cur;
2348
2349 for (cur = seccomp_log_names; cur->name; cur++) {
2350 if (!strcmp(cur->name, name)) {
2351 *action_logged = cur->log;
2352 return true;
2353 }
2354 }
2355
2356 return false;
2357 }
2358
seccomp_actions_logged_from_names(u32 * actions_logged,char * names)2359 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2360 {
2361 char *name;
2362
2363 *actions_logged = 0;
2364 while ((name = strsep(&names, " ")) && *name) {
2365 u32 action_logged = 0;
2366
2367 if (!seccomp_action_logged_from_name(&action_logged, name))
2368 return false;
2369
2370 *actions_logged |= action_logged;
2371 }
2372
2373 return true;
2374 }
2375
read_actions_logged(const struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos)2376 static int read_actions_logged(const struct ctl_table *ro_table, void *buffer,
2377 size_t *lenp, loff_t *ppos)
2378 {
2379 char names[sizeof(seccomp_actions_avail)];
2380 struct ctl_table table;
2381
2382 memset(names, 0, sizeof(names));
2383
2384 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2385 seccomp_actions_logged, " "))
2386 return -EINVAL;
2387
2388 table = *ro_table;
2389 table.data = names;
2390 table.maxlen = sizeof(names);
2391 return proc_dostring(&table, 0, buffer, lenp, ppos);
2392 }
2393
write_actions_logged(const struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos,u32 * actions_logged)2394 static int write_actions_logged(const struct ctl_table *ro_table, void *buffer,
2395 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2396 {
2397 char names[sizeof(seccomp_actions_avail)];
2398 struct ctl_table table;
2399 int ret;
2400
2401 if (!capable(CAP_SYS_ADMIN))
2402 return -EPERM;
2403
2404 memset(names, 0, sizeof(names));
2405
2406 table = *ro_table;
2407 table.data = names;
2408 table.maxlen = sizeof(names);
2409 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2410 if (ret)
2411 return ret;
2412
2413 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2414 return -EINVAL;
2415
2416 if (*actions_logged & SECCOMP_LOG_ALLOW)
2417 return -EINVAL;
2418
2419 seccomp_actions_logged = *actions_logged;
2420 return 0;
2421 }
2422
audit_actions_logged(u32 actions_logged,u32 old_actions_logged,int ret)2423 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2424 int ret)
2425 {
2426 char names[sizeof(seccomp_actions_avail)];
2427 char old_names[sizeof(seccomp_actions_avail)];
2428 const char *new = names;
2429 const char *old = old_names;
2430
2431 if (!audit_enabled)
2432 return;
2433
2434 memset(names, 0, sizeof(names));
2435 memset(old_names, 0, sizeof(old_names));
2436
2437 if (ret)
2438 new = "?";
2439 else if (!actions_logged)
2440 new = "(none)";
2441 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2442 actions_logged, ","))
2443 new = "?";
2444
2445 if (!old_actions_logged)
2446 old = "(none)";
2447 else if (!seccomp_names_from_actions_logged(old_names,
2448 sizeof(old_names),
2449 old_actions_logged, ","))
2450 old = "?";
2451
2452 return audit_seccomp_actions_logged(new, old, !ret);
2453 }
2454
seccomp_actions_logged_handler(const struct ctl_table * ro_table,int write,void * buffer,size_t * lenp,loff_t * ppos)2455 static int seccomp_actions_logged_handler(const struct ctl_table *ro_table, int write,
2456 void *buffer, size_t *lenp,
2457 loff_t *ppos)
2458 {
2459 int ret;
2460
2461 if (write) {
2462 u32 actions_logged = 0;
2463 u32 old_actions_logged = seccomp_actions_logged;
2464
2465 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2466 &actions_logged);
2467 audit_actions_logged(actions_logged, old_actions_logged, ret);
2468 } else
2469 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2470
2471 return ret;
2472 }
2473
2474 static const struct ctl_table seccomp_sysctl_table[] = {
2475 {
2476 .procname = "actions_avail",
2477 .data = (void *) &seccomp_actions_avail,
2478 .maxlen = sizeof(seccomp_actions_avail),
2479 .mode = 0444,
2480 .proc_handler = proc_dostring,
2481 },
2482 {
2483 .procname = "actions_logged",
2484 .mode = 0644,
2485 .proc_handler = seccomp_actions_logged_handler,
2486 },
2487 };
2488
seccomp_sysctl_init(void)2489 static int __init seccomp_sysctl_init(void)
2490 {
2491 register_sysctl_init("kernel/seccomp", seccomp_sysctl_table);
2492 return 0;
2493 }
2494
device_initcall(seccomp_sysctl_init)2495 device_initcall(seccomp_sysctl_init)
2496
2497 #endif /* CONFIG_SYSCTL */
2498
2499 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2500 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2501 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2502 const void *bitmap, size_t bitmap_size)
2503 {
2504 int nr;
2505
2506 for (nr = 0; nr < bitmap_size; nr++) {
2507 bool cached = test_bit(nr, bitmap);
2508 char *status = cached ? "ALLOW" : "FILTER";
2509
2510 seq_printf(m, "%s %d %s\n", name, nr, status);
2511 }
2512 }
2513
proc_pid_seccomp_cache(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2514 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2515 struct pid *pid, struct task_struct *task)
2516 {
2517 struct seccomp_filter *f;
2518 unsigned long flags;
2519
2520 /*
2521 * We don't want some sandboxed process to know what their seccomp
2522 * filters consist of.
2523 */
2524 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2525 return -EACCES;
2526
2527 if (!lock_task_sighand(task, &flags))
2528 return -ESRCH;
2529
2530 f = READ_ONCE(task->seccomp.filter);
2531 if (!f) {
2532 unlock_task_sighand(task, &flags);
2533 return 0;
2534 }
2535
2536 /* prevent filter from being freed while we are printing it */
2537 __get_seccomp_filter(f);
2538 unlock_task_sighand(task, &flags);
2539
2540 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2541 f->cache.allow_native,
2542 SECCOMP_ARCH_NATIVE_NR);
2543
2544 #ifdef SECCOMP_ARCH_COMPAT
2545 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2546 f->cache.allow_compat,
2547 SECCOMP_ARCH_COMPAT_NR);
2548 #endif /* SECCOMP_ARCH_COMPAT */
2549
2550 __put_seccomp_filter(f);
2551 return 0;
2552 }
2553 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */
2554