xref: /linux/net/ipv4/tcp.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us, rto_max_ms;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 
436 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438 
439 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 	icsk->icsk_delack_max = TCP_DELACK_MAX;
442 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444 
445 	/* So many TCP implementations out there (incorrectly) count the
446 	 * initial SYN frame in their delayed-ACK and congestion control
447 	 * algorithms that we must have the following bandaid to talk
448 	 * efficiently to them.  -DaveM
449 	 */
450 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451 
452 	/* There's a bubble in the pipe until at least the first ACK. */
453 	tp->app_limited = ~0U;
454 	tp->rate_app_limited = 1;
455 
456 	/* See draft-stevens-tcpca-spec-01 for discussion of the
457 	 * initialization of these values.
458 	 */
459 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 	tp->snd_cwnd_clamp = ~0;
461 	tp->mss_cache = TCP_MSS_DEFAULT;
462 
463 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 	tcp_assign_congestion_control(sk);
465 
466 	tp->tsoffset = 0;
467 	tp->rack.reo_wnd_steps = 1;
468 
469 	sk->sk_write_space = sk_stream_write_space;
470 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471 
472 	icsk->icsk_sync_mss = tcp_sync_mss;
473 
474 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 	tcp_scaling_ratio_init(sk);
477 
478 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 	sk_sockets_allocated_inc(sk);
480 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483 
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 	struct sk_buff *skb = tcp_write_queue_tail(sk);
487 	u32 tsflags = sockc->tsflags;
488 
489 	if (tsflags && skb) {
490 		struct skb_shared_info *shinfo = skb_shinfo(skb);
491 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492 
493 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 	}
499 
500 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504 
tcp_stream_is_readable(struct sock * sk,int target)505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 	if (tcp_epollin_ready(sk, target))
508 		return true;
509 	return sk_is_readable(sk);
510 }
511 
512 /*
513  *	Wait for a TCP event.
514  *
515  *	Note that we don't need to lock the socket, as the upper poll layers
516  *	take care of normal races (between the test and the event) and we don't
517  *	go look at any of the socket buffers directly.
518  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 	__poll_t mask;
522 	struct sock *sk = sock->sk;
523 	const struct tcp_sock *tp = tcp_sk(sk);
524 	u8 shutdown;
525 	int state;
526 
527 	sock_poll_wait(file, sock, wait);
528 
529 	state = inet_sk_state_load(sk);
530 	if (state == TCP_LISTEN)
531 		return inet_csk_listen_poll(sk);
532 
533 	/* Socket is not locked. We are protected from async events
534 	 * by poll logic and correct handling of state changes
535 	 * made by other threads is impossible in any case.
536 	 */
537 
538 	mask = 0;
539 
540 	/*
541 	 * EPOLLHUP is certainly not done right. But poll() doesn't
542 	 * have a notion of HUP in just one direction, and for a
543 	 * socket the read side is more interesting.
544 	 *
545 	 * Some poll() documentation says that EPOLLHUP is incompatible
546 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 	 * all. But careful, it tends to be safer to return too many
548 	 * bits than too few, and you can easily break real applications
549 	 * if you don't tell them that something has hung up!
550 	 *
551 	 * Check-me.
552 	 *
553 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 	 * our fs/select.c). It means that after we received EOF,
555 	 * poll always returns immediately, making impossible poll() on write()
556 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 	 * if and only if shutdown has been made in both directions.
558 	 * Actually, it is interesting to look how Solaris and DUX
559 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 	 * then we could set it on SND_SHUTDOWN. BTW examples given
561 	 * in Stevens' books assume exactly this behaviour, it explains
562 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
563 	 *
564 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 	 * blocking on fresh not-connected or disconnected socket. --ANK
566 	 */
567 	shutdown = READ_ONCE(sk->sk_shutdown);
568 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 		mask |= EPOLLHUP;
570 	if (shutdown & RCV_SHUTDOWN)
571 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572 
573 	/* Connected or passive Fast Open socket? */
574 	if (state != TCP_SYN_SENT &&
575 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 		int target = sock_rcvlowat(sk, 0, INT_MAX);
577 		u16 urg_data = READ_ONCE(tp->urg_data);
578 
579 		if (unlikely(urg_data) &&
580 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 		    !sock_flag(sk, SOCK_URGINLINE))
582 			target++;
583 
584 		if (tcp_stream_is_readable(sk, target))
585 			mask |= EPOLLIN | EPOLLRDNORM;
586 
587 		if (!(shutdown & SEND_SHUTDOWN)) {
588 			if (__sk_stream_is_writeable(sk, 1)) {
589 				mask |= EPOLLOUT | EPOLLWRNORM;
590 			} else {  /* send SIGIO later */
591 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593 
594 				/* Race breaker. If space is freed after
595 				 * wspace test but before the flags are set,
596 				 * IO signal will be lost. Memory barrier
597 				 * pairs with the input side.
598 				 */
599 				smp_mb__after_atomic();
600 				if (__sk_stream_is_writeable(sk, 1))
601 					mask |= EPOLLOUT | EPOLLWRNORM;
602 			}
603 		} else
604 			mask |= EPOLLOUT | EPOLLWRNORM;
605 
606 		if (urg_data & TCP_URG_VALID)
607 			mask |= EPOLLPRI;
608 	} else if (state == TCP_SYN_SENT &&
609 		   inet_test_bit(DEFER_CONNECT, sk)) {
610 		/* Active TCP fastopen socket with defer_connect
611 		 * Return EPOLLOUT so application can call write()
612 		 * in order for kernel to generate SYN+data
613 		 */
614 		mask |= EPOLLOUT | EPOLLWRNORM;
615 	}
616 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 	smp_rmb();
618 	if (READ_ONCE(sk->sk_err) ||
619 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
620 		mask |= EPOLLERR;
621 
622 	return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625 
tcp_ioctl(struct sock * sk,int cmd,int * karg)626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	int answ;
630 	bool slow;
631 
632 	switch (cmd) {
633 	case SIOCINQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		slow = lock_sock_fast(sk);
638 		answ = tcp_inq(sk);
639 		unlock_sock_fast(sk, slow);
640 		break;
641 	case SIOCATMARK:
642 		answ = READ_ONCE(tp->urg_data) &&
643 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 		break;
645 	case SIOCOUTQ:
646 		if (sk->sk_state == TCP_LISTEN)
647 			return -EINVAL;
648 
649 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 			answ = 0;
651 		else
652 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 		break;
654 	case SIOCOUTQNSD:
655 		if (sk->sk_state == TCP_LISTEN)
656 			return -EINVAL;
657 
658 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 			answ = 0;
660 		else
661 			answ = READ_ONCE(tp->write_seq) -
662 			       READ_ONCE(tp->snd_nxt);
663 		break;
664 	default:
665 		return -ENOIOCTLCMD;
666 	}
667 
668 	*karg = answ;
669 	return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 	tp->pushed_seq = tp->write_seq;
677 }
678 
forced_push(const struct tcp_sock * tp)679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688 
689 	tcb->seq     = tcb->end_seq = tp->write_seq;
690 	tcb->tcp_flags = TCPHDR_ACK;
691 	__skb_header_release(skb);
692 	tcp_add_write_queue_tail(sk, skb);
693 	sk_wmem_queued_add(sk, skb->truesize);
694 	sk_mem_charge(sk, skb->truesize);
695 	if (tp->nonagle & TCP_NAGLE_PUSH)
696 		tp->nonagle &= ~TCP_NAGLE_PUSH;
697 
698 	tcp_slow_start_after_idle_check(sk);
699 }
700 
tcp_mark_urg(struct tcp_sock * tp,int flags)701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 	if (flags & MSG_OOB)
704 		tp->snd_up = tp->write_seq;
705 }
706 
707 /* If a not yet filled skb is pushed, do not send it if
708  * we have data packets in Qdisc or NIC queues :
709  * Because TX completion will happen shortly, it gives a chance
710  * to coalesce future sendmsg() payload into this skb, without
711  * need for a timer, and with no latency trade off.
712  * As packets containing data payload have a bigger truesize
713  * than pure acks (dataless) packets, the last checks prevent
714  * autocorking if we only have an ACK in Qdisc/NIC queues,
715  * or if TX completion was delayed after we processed ACK packet.
716  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 				int size_goal)
719 {
720 	return skb->len < size_goal &&
721 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 	       !tcp_rtx_queue_empty(sk) &&
723 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 	       tcp_skb_can_collapse_to(skb);
725 }
726 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 	      int nonagle, int size_goal)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	struct sk_buff *skb;
732 
733 	skb = tcp_write_queue_tail(sk);
734 	if (!skb)
735 		return;
736 	if (!(flags & MSG_MORE) || forced_push(tp))
737 		tcp_mark_push(tp, skb);
738 
739 	tcp_mark_urg(tp, flags);
740 
741 	if (tcp_should_autocork(sk, skb, size_goal)) {
742 
743 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
744 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 			smp_mb__after_atomic();
748 		}
749 		/* It is possible TX completion already happened
750 		 * before we set TSQ_THROTTLED.
751 		 */
752 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 			return;
754 	}
755 
756 	if (flags & MSG_MORE)
757 		nonagle = TCP_NAGLE_CORK;
758 
759 	__tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 				unsigned int offset, size_t len)
764 {
765 	struct tcp_splice_state *tss = rd_desc->arg.data;
766 	int ret;
767 
768 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 			      min(rd_desc->count, len), tss->flags);
770 	if (ret > 0)
771 		rd_desc->count -= ret;
772 	return ret;
773 }
774 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 	/* Store TCP splice context information in read_descriptor_t. */
778 	read_descriptor_t rd_desc = {
779 		.arg.data = tss,
780 		.count	  = tss->len,
781 	};
782 
783 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785 
786 /**
787  *  tcp_splice_read - splice data from TCP socket to a pipe
788  * @sock:	socket to splice from
789  * @ppos:	position (not valid)
790  * @pipe:	pipe to splice to
791  * @len:	number of bytes to splice
792  * @flags:	splice modifier flags
793  *
794  * Description:
795  *    Will read pages from given socket and fill them into a pipe.
796  *
797  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 			struct pipe_inode_info *pipe, size_t len,
800 			unsigned int flags)
801 {
802 	struct sock *sk = sock->sk;
803 	struct tcp_splice_state tss = {
804 		.pipe = pipe,
805 		.len = len,
806 		.flags = flags,
807 	};
808 	long timeo;
809 	ssize_t spliced;
810 	int ret;
811 
812 	sock_rps_record_flow(sk);
813 	/*
814 	 * We can't seek on a socket input
815 	 */
816 	if (unlikely(*ppos))
817 		return -ESPIPE;
818 
819 	ret = spliced = 0;
820 
821 	lock_sock(sk);
822 
823 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 	while (tss.len) {
825 		ret = __tcp_splice_read(sk, &tss);
826 		if (ret < 0)
827 			break;
828 		else if (!ret) {
829 			if (spliced)
830 				break;
831 			if (sock_flag(sk, SOCK_DONE))
832 				break;
833 			if (sk->sk_err) {
834 				ret = sock_error(sk);
835 				break;
836 			}
837 			if (sk->sk_shutdown & RCV_SHUTDOWN)
838 				break;
839 			if (sk->sk_state == TCP_CLOSE) {
840 				/*
841 				 * This occurs when user tries to read
842 				 * from never connected socket.
843 				 */
844 				ret = -ENOTCONN;
845 				break;
846 			}
847 			if (!timeo) {
848 				ret = -EAGAIN;
849 				break;
850 			}
851 			/* if __tcp_splice_read() got nothing while we have
852 			 * an skb in receive queue, we do not want to loop.
853 			 * This might happen with URG data.
854 			 */
855 			if (!skb_queue_empty(&sk->sk_receive_queue))
856 				break;
857 			ret = sk_wait_data(sk, &timeo, NULL);
858 			if (ret < 0)
859 				break;
860 			if (signal_pending(current)) {
861 				ret = sock_intr_errno(timeo);
862 				break;
863 			}
864 			continue;
865 		}
866 		tss.len -= ret;
867 		spliced += ret;
868 
869 		if (!tss.len || !timeo)
870 			break;
871 		release_sock(sk);
872 		lock_sock(sk);
873 
874 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 		    signal_pending(current))
877 			break;
878 	}
879 
880 	release_sock(sk);
881 
882 	if (spliced)
883 		return spliced;
884 
885 	return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 				     bool force_schedule)
891 {
892 	struct sk_buff *skb;
893 
894 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 	if (likely(skb)) {
896 		bool mem_scheduled;
897 
898 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 		if (force_schedule) {
900 			mem_scheduled = true;
901 			sk_forced_mem_schedule(sk, skb->truesize);
902 		} else {
903 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 		}
905 		if (likely(mem_scheduled)) {
906 			skb_reserve(skb, MAX_TCP_HEADER);
907 			skb->ip_summed = CHECKSUM_PARTIAL;
908 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 			return skb;
910 		}
911 		__kfree_skb(skb);
912 	} else {
913 		sk->sk_prot->enter_memory_pressure(sk);
914 		sk_stream_moderate_sndbuf(sk);
915 	}
916 	return NULL;
917 }
918 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 				       int large_allowed)
921 {
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	u32 new_size_goal, size_goal;
924 
925 	if (!large_allowed)
926 		return mss_now;
927 
928 	/* Note : tcp_tso_autosize() will eventually split this later */
929 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930 
931 	/* We try hard to avoid divides here */
932 	size_goal = tp->gso_segs * mss_now;
933 	if (unlikely(new_size_goal < size_goal ||
934 		     new_size_goal >= size_goal + mss_now)) {
935 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 				     sk->sk_gso_max_segs);
937 		size_goal = tp->gso_segs * mss_now;
938 	}
939 
940 	return max(size_goal, mss_now);
941 }
942 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 	int mss_now;
946 
947 	mss_now = tcp_current_mss(sk);
948 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949 
950 	return mss_now;
951 }
952 
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954  * but failed adding payload on it. We need to remove it to consume less
955  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956  * epoll() users. Another reason is that tcp_write_xmit() does not like
957  * finding an empty skb in the write queue.
958  */
tcp_remove_empty_skb(struct sock * sk)959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 	struct sk_buff *skb = tcp_write_queue_tail(sk);
962 
963 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 		tcp_unlink_write_queue(skb, sk);
965 		if (tcp_write_queue_empty(sk))
966 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 		tcp_wmem_free_skb(sk, skb);
968 	}
969 }
970 
971 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 	if (unlikely(skb_zcopy_pure(skb))) {
975 		u32 extra = skb->truesize -
976 			    SKB_TRUESIZE(skb_end_offset(skb));
977 
978 		if (!sk_wmem_schedule(sk, extra))
979 			return -ENOMEM;
980 
981 		sk_mem_charge(sk, extra);
982 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 	}
984 	return 0;
985 }
986 
987 
tcp_wmem_schedule(struct sock * sk,int copy)988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 	int left;
991 
992 	if (likely(sk_wmem_schedule(sk, copy)))
993 		return copy;
994 
995 	/* We could be in trouble if we have nothing queued.
996 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 	 * to guarantee some progress.
998 	 */
999 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 	if (left > 0)
1001 		sk_forced_mem_schedule(sk, min(left, copy));
1002 	return min(copy, sk->sk_forward_alloc);
1003 }
1004 
tcp_free_fastopen_req(struct tcp_sock * tp)1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 	if (tp->fastopen_req) {
1008 		kfree(tp->fastopen_req);
1009 		tp->fastopen_req = NULL;
1010 	}
1011 }
1012 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 			 size_t size, struct ubuf_info *uarg)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 	struct inet_sock *inet = inet_sk(sk);
1018 	struct sockaddr *uaddr = msg->msg_name;
1019 	int err, flags;
1020 
1021 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 	      TFO_CLIENT_ENABLE) ||
1023 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 	     uaddr->sa_family == AF_UNSPEC))
1025 		return -EOPNOTSUPP;
1026 	if (tp->fastopen_req)
1027 		return -EALREADY; /* Another Fast Open is in progress */
1028 
1029 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 				   sk->sk_allocation);
1031 	if (unlikely(!tp->fastopen_req))
1032 		return -ENOBUFS;
1033 	tp->fastopen_req->data = msg;
1034 	tp->fastopen_req->size = size;
1035 	tp->fastopen_req->uarg = uarg;
1036 
1037 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 		err = tcp_connect(sk);
1039 		/* Same failure procedure as in tcp_v4/6_connect */
1040 		if (err) {
1041 			tcp_set_state(sk, TCP_CLOSE);
1042 			inet->inet_dport = 0;
1043 			sk->sk_route_caps = 0;
1044 		}
1045 	}
1046 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 				    msg->msg_namelen, flags, 1);
1049 	/* fastopen_req could already be freed in __inet_stream_connect
1050 	 * if the connection times out or gets rst
1051 	 */
1052 	if (tp->fastopen_req) {
1053 		*copied = tp->fastopen_req->copied;
1054 		tcp_free_fastopen_req(tp);
1055 		inet_clear_bit(DEFER_CONNECT, sk);
1056 	}
1057 	return err;
1058 }
1059 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 	struct tcp_sock *tp = tcp_sk(sk);
1063 	struct ubuf_info *uarg = NULL;
1064 	struct sk_buff *skb;
1065 	struct sockcm_cookie sockc;
1066 	int flags, err, copied = 0;
1067 	int mss_now = 0, size_goal, copied_syn = 0;
1068 	int process_backlog = 0;
1069 	int zc = 0;
1070 	long timeo;
1071 
1072 	flags = msg->msg_flags;
1073 
1074 	if ((flags & MSG_ZEROCOPY) && size) {
1075 		if (msg->msg_ubuf) {
1076 			uarg = msg->msg_ubuf;
1077 			if (sk->sk_route_caps & NETIF_F_SG)
1078 				zc = MSG_ZEROCOPY;
1079 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1080 			skb = tcp_write_queue_tail(sk);
1081 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1082 			if (!uarg) {
1083 				err = -ENOBUFS;
1084 				goto out_err;
1085 			}
1086 			if (sk->sk_route_caps & NETIF_F_SG)
1087 				zc = MSG_ZEROCOPY;
1088 			else
1089 				uarg_to_msgzc(uarg)->zerocopy = 0;
1090 		}
1091 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1092 		if (sk->sk_route_caps & NETIF_F_SG)
1093 			zc = MSG_SPLICE_PAGES;
1094 	}
1095 
1096 	if (unlikely(flags & MSG_FASTOPEN ||
1097 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1098 	    !tp->repair) {
1099 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1100 		if (err == -EINPROGRESS && copied_syn > 0)
1101 			goto out;
1102 		else if (err)
1103 			goto out_err;
1104 	}
1105 
1106 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107 
1108 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1109 
1110 	/* Wait for a connection to finish. One exception is TCP Fast Open
1111 	 * (passive side) where data is allowed to be sent before a connection
1112 	 * is fully established.
1113 	 */
1114 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1115 	    !tcp_passive_fastopen(sk)) {
1116 		err = sk_stream_wait_connect(sk, &timeo);
1117 		if (err != 0)
1118 			goto do_error;
1119 	}
1120 
1121 	if (unlikely(tp->repair)) {
1122 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1123 			copied = tcp_send_rcvq(sk, msg, size);
1124 			goto out_nopush;
1125 		}
1126 
1127 		err = -EINVAL;
1128 		if (tp->repair_queue == TCP_NO_QUEUE)
1129 			goto out_err;
1130 
1131 		/* 'common' sending to sendq */
1132 	}
1133 
1134 	sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)};
1135 	if (msg->msg_controllen) {
1136 		err = sock_cmsg_send(sk, msg, &sockc);
1137 		if (unlikely(err)) {
1138 			err = -EINVAL;
1139 			goto out_err;
1140 		}
1141 	}
1142 
1143 	/* This should be in poll */
1144 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1145 
1146 	/* Ok commence sending. */
1147 	copied = 0;
1148 
1149 restart:
1150 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1151 
1152 	err = -EPIPE;
1153 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1154 		goto do_error;
1155 
1156 	while (msg_data_left(msg)) {
1157 		ssize_t copy = 0;
1158 
1159 		skb = tcp_write_queue_tail(sk);
1160 		if (skb)
1161 			copy = size_goal - skb->len;
1162 
1163 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 			bool first_skb;
1165 
1166 new_segment:
1167 			if (!sk_stream_memory_free(sk))
1168 				goto wait_for_space;
1169 
1170 			if (unlikely(process_backlog >= 16)) {
1171 				process_backlog = 0;
1172 				if (sk_flush_backlog(sk))
1173 					goto restart;
1174 			}
1175 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1176 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1177 						   first_skb);
1178 			if (!skb)
1179 				goto wait_for_space;
1180 
1181 			process_backlog++;
1182 
1183 #ifdef CONFIG_SKB_DECRYPTED
1184 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1185 #endif
1186 			tcp_skb_entail(sk, skb);
1187 			copy = size_goal;
1188 
1189 			/* All packets are restored as if they have
1190 			 * already been sent. skb_mstamp_ns isn't set to
1191 			 * avoid wrong rtt estimation.
1192 			 */
1193 			if (tp->repair)
1194 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1195 		}
1196 
1197 		/* Try to append data to the end of skb. */
1198 		if (copy > msg_data_left(msg))
1199 			copy = msg_data_left(msg);
1200 
1201 		if (zc == 0) {
1202 			bool merge = true;
1203 			int i = skb_shinfo(skb)->nr_frags;
1204 			struct page_frag *pfrag = sk_page_frag(sk);
1205 
1206 			if (!sk_page_frag_refill(sk, pfrag))
1207 				goto wait_for_space;
1208 
1209 			if (!skb_can_coalesce(skb, i, pfrag->page,
1210 					      pfrag->offset)) {
1211 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1212 					tcp_mark_push(tp, skb);
1213 					goto new_segment;
1214 				}
1215 				merge = false;
1216 			}
1217 
1218 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1219 
1220 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1221 				if (tcp_downgrade_zcopy_pure(sk, skb))
1222 					goto wait_for_space;
1223 				skb_zcopy_downgrade_managed(skb);
1224 			}
1225 
1226 			copy = tcp_wmem_schedule(sk, copy);
1227 			if (!copy)
1228 				goto wait_for_space;
1229 
1230 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1231 						       pfrag->page,
1232 						       pfrag->offset,
1233 						       copy);
1234 			if (err)
1235 				goto do_error;
1236 
1237 			/* Update the skb. */
1238 			if (merge) {
1239 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1240 			} else {
1241 				skb_fill_page_desc(skb, i, pfrag->page,
1242 						   pfrag->offset, copy);
1243 				page_ref_inc(pfrag->page);
1244 			}
1245 			pfrag->offset += copy;
1246 		} else if (zc == MSG_ZEROCOPY)  {
1247 			/* First append to a fragless skb builds initial
1248 			 * pure zerocopy skb
1249 			 */
1250 			if (!skb->len)
1251 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1252 
1253 			if (!skb_zcopy_pure(skb)) {
1254 				copy = tcp_wmem_schedule(sk, copy);
1255 				if (!copy)
1256 					goto wait_for_space;
1257 			}
1258 
1259 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1260 			if (err == -EMSGSIZE || err == -EEXIST) {
1261 				tcp_mark_push(tp, skb);
1262 				goto new_segment;
1263 			}
1264 			if (err < 0)
1265 				goto do_error;
1266 			copy = err;
1267 		} else if (zc == MSG_SPLICE_PAGES) {
1268 			/* Splice in data if we can; copy if we can't. */
1269 			if (tcp_downgrade_zcopy_pure(sk, skb))
1270 				goto wait_for_space;
1271 			copy = tcp_wmem_schedule(sk, copy);
1272 			if (!copy)
1273 				goto wait_for_space;
1274 
1275 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1276 						   sk->sk_allocation);
1277 			if (err < 0) {
1278 				if (err == -EMSGSIZE) {
1279 					tcp_mark_push(tp, skb);
1280 					goto new_segment;
1281 				}
1282 				goto do_error;
1283 			}
1284 			copy = err;
1285 
1286 			if (!(flags & MSG_NO_SHARED_FRAGS))
1287 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1288 
1289 			sk_wmem_queued_add(sk, copy);
1290 			sk_mem_charge(sk, copy);
1291 		}
1292 
1293 		if (!copied)
1294 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1295 
1296 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1297 		TCP_SKB_CB(skb)->end_seq += copy;
1298 		tcp_skb_pcount_set(skb, 0);
1299 
1300 		copied += copy;
1301 		if (!msg_data_left(msg)) {
1302 			if (unlikely(flags & MSG_EOR))
1303 				TCP_SKB_CB(skb)->eor = 1;
1304 			goto out;
1305 		}
1306 
1307 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1308 			continue;
1309 
1310 		if (forced_push(tp)) {
1311 			tcp_mark_push(tp, skb);
1312 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1313 		} else if (skb == tcp_send_head(sk))
1314 			tcp_push_one(sk, mss_now);
1315 		continue;
1316 
1317 wait_for_space:
1318 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1319 		tcp_remove_empty_skb(sk);
1320 		if (copied)
1321 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1322 				 TCP_NAGLE_PUSH, size_goal);
1323 
1324 		err = sk_stream_wait_memory(sk, &timeo);
1325 		if (err != 0)
1326 			goto do_error;
1327 
1328 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1329 	}
1330 
1331 out:
1332 	if (copied) {
1333 		tcp_tx_timestamp(sk, &sockc);
1334 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1335 	}
1336 out_nopush:
1337 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1338 	if (uarg && !msg->msg_ubuf)
1339 		net_zcopy_put(uarg);
1340 	return copied + copied_syn;
1341 
1342 do_error:
1343 	tcp_remove_empty_skb(sk);
1344 
1345 	if (copied + copied_syn)
1346 		goto out;
1347 out_err:
1348 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1349 	if (uarg && !msg->msg_ubuf)
1350 		net_zcopy_put_abort(uarg, true);
1351 	err = sk_stream_error(sk, flags, err);
1352 	/* make sure we wake any epoll edge trigger waiter */
1353 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1354 		sk->sk_write_space(sk);
1355 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1356 	}
1357 	return err;
1358 }
1359 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1360 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1361 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1362 {
1363 	int ret;
1364 
1365 	lock_sock(sk);
1366 	ret = tcp_sendmsg_locked(sk, msg, size);
1367 	release_sock(sk);
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL(tcp_sendmsg);
1372 
tcp_splice_eof(struct socket * sock)1373 void tcp_splice_eof(struct socket *sock)
1374 {
1375 	struct sock *sk = sock->sk;
1376 	struct tcp_sock *tp = tcp_sk(sk);
1377 	int mss_now, size_goal;
1378 
1379 	if (!tcp_write_queue_tail(sk))
1380 		return;
1381 
1382 	lock_sock(sk);
1383 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1384 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1385 	release_sock(sk);
1386 }
1387 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1388 
1389 /*
1390  *	Handle reading urgent data. BSD has very simple semantics for
1391  *	this, no blocking and very strange errors 8)
1392  */
1393 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1394 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 
1398 	/* No URG data to read. */
1399 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1400 	    tp->urg_data == TCP_URG_READ)
1401 		return -EINVAL;	/* Yes this is right ! */
1402 
1403 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1404 		return -ENOTCONN;
1405 
1406 	if (tp->urg_data & TCP_URG_VALID) {
1407 		int err = 0;
1408 		char c = tp->urg_data;
1409 
1410 		if (!(flags & MSG_PEEK))
1411 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1412 
1413 		/* Read urgent data. */
1414 		msg->msg_flags |= MSG_OOB;
1415 
1416 		if (len > 0) {
1417 			if (!(flags & MSG_TRUNC))
1418 				err = memcpy_to_msg(msg, &c, 1);
1419 			len = 1;
1420 		} else
1421 			msg->msg_flags |= MSG_TRUNC;
1422 
1423 		return err ? -EFAULT : len;
1424 	}
1425 
1426 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1427 		return 0;
1428 
1429 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1430 	 * the available implementations agree in this case:
1431 	 * this call should never block, independent of the
1432 	 * blocking state of the socket.
1433 	 * Mike <pall@rz.uni-karlsruhe.de>
1434 	 */
1435 	return -EAGAIN;
1436 }
1437 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1438 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1439 {
1440 	struct sk_buff *skb;
1441 	int copied = 0, err = 0;
1442 
1443 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1444 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1445 		if (err)
1446 			return err;
1447 		copied += skb->len;
1448 	}
1449 
1450 	skb_queue_walk(&sk->sk_write_queue, skb) {
1451 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1452 		if (err)
1453 			break;
1454 
1455 		copied += skb->len;
1456 	}
1457 
1458 	return err ?: copied;
1459 }
1460 
1461 /* Clean up the receive buffer for full frames taken by the user,
1462  * then send an ACK if necessary.  COPIED is the number of bytes
1463  * tcp_recvmsg has given to the user so far, it speeds up the
1464  * calculation of whether or not we must ACK for the sake of
1465  * a window update.
1466  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1467 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1468 {
1469 	struct tcp_sock *tp = tcp_sk(sk);
1470 	bool time_to_ack = false;
1471 
1472 	if (inet_csk_ack_scheduled(sk)) {
1473 		const struct inet_connection_sock *icsk = inet_csk(sk);
1474 
1475 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1476 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1477 		    /*
1478 		     * If this read emptied read buffer, we send ACK, if
1479 		     * connection is not bidirectional, user drained
1480 		     * receive buffer and there was a small segment
1481 		     * in queue.
1482 		     */
1483 		    (copied > 0 &&
1484 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1485 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1486 		       !inet_csk_in_pingpong_mode(sk))) &&
1487 		      !atomic_read(&sk->sk_rmem_alloc)))
1488 			time_to_ack = true;
1489 	}
1490 
1491 	/* We send an ACK if we can now advertise a non-zero window
1492 	 * which has been raised "significantly".
1493 	 *
1494 	 * Even if window raised up to infinity, do not send window open ACK
1495 	 * in states, where we will not receive more. It is useless.
1496 	 */
1497 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1498 		__u32 rcv_window_now = tcp_receive_window(tp);
1499 
1500 		/* Optimize, __tcp_select_window() is not cheap. */
1501 		if (2*rcv_window_now <= tp->window_clamp) {
1502 			__u32 new_window = __tcp_select_window(sk);
1503 
1504 			/* Send ACK now, if this read freed lots of space
1505 			 * in our buffer. Certainly, new_window is new window.
1506 			 * We can advertise it now, if it is not less than current one.
1507 			 * "Lots" means "at least twice" here.
1508 			 */
1509 			if (new_window && new_window >= 2 * rcv_window_now)
1510 				time_to_ack = true;
1511 		}
1512 	}
1513 	if (time_to_ack)
1514 		tcp_send_ack(sk);
1515 }
1516 
tcp_cleanup_rbuf(struct sock * sk,int copied)1517 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1518 {
1519 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1520 	struct tcp_sock *tp = tcp_sk(sk);
1521 
1522 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1523 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1524 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1525 	__tcp_cleanup_rbuf(sk, copied);
1526 }
1527 
1528 /* private version of sock_rfree() avoiding one atomic_sub() */
tcp_sock_rfree(struct sk_buff * skb)1529 void tcp_sock_rfree(struct sk_buff *skb)
1530 {
1531 	struct sock *sk = skb->sk;
1532 	unsigned int len = skb->truesize;
1533 
1534 	sock_owned_by_me(sk);
1535 	atomic_set(&sk->sk_rmem_alloc,
1536 		   atomic_read(&sk->sk_rmem_alloc) - len);
1537 
1538 	sk_forward_alloc_add(sk, len);
1539 	sk_mem_reclaim(sk);
1540 }
1541 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1542 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1543 {
1544 	__skb_unlink(skb, &sk->sk_receive_queue);
1545 	if (likely(skb->destructor == tcp_sock_rfree)) {
1546 		tcp_sock_rfree(skb);
1547 		skb->destructor = NULL;
1548 		skb->sk = NULL;
1549 		return skb_attempt_defer_free(skb);
1550 	}
1551 	__kfree_skb(skb);
1552 }
1553 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1554 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1555 {
1556 	struct sk_buff *skb;
1557 	u32 offset;
1558 
1559 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1560 		offset = seq - TCP_SKB_CB(skb)->seq;
1561 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1562 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1563 			offset--;
1564 		}
1565 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1566 			*off = offset;
1567 			return skb;
1568 		}
1569 		/* This looks weird, but this can happen if TCP collapsing
1570 		 * splitted a fat GRO packet, while we released socket lock
1571 		 * in skb_splice_bits()
1572 		 */
1573 		tcp_eat_recv_skb(sk, skb);
1574 	}
1575 	return NULL;
1576 }
1577 EXPORT_SYMBOL(tcp_recv_skb);
1578 
1579 /*
1580  * This routine provides an alternative to tcp_recvmsg() for routines
1581  * that would like to handle copying from skbuffs directly in 'sendfile'
1582  * fashion.
1583  * Note:
1584  *	- It is assumed that the socket was locked by the caller.
1585  *	- The routine does not block.
1586  *	- At present, there is no support for reading OOB data
1587  *	  or for 'peeking' the socket using this routine
1588  *	  (although both would be easy to implement).
1589  */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1590 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1591 			   sk_read_actor_t recv_actor, bool noack,
1592 			   u32 *copied_seq)
1593 {
1594 	struct sk_buff *skb;
1595 	struct tcp_sock *tp = tcp_sk(sk);
1596 	u32 seq = *copied_seq;
1597 	u32 offset;
1598 	int copied = 0;
1599 
1600 	if (sk->sk_state == TCP_LISTEN)
1601 		return -ENOTCONN;
1602 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1603 		if (offset < skb->len) {
1604 			int used;
1605 			size_t len;
1606 
1607 			len = skb->len - offset;
1608 			/* Stop reading if we hit a patch of urgent data */
1609 			if (unlikely(tp->urg_data)) {
1610 				u32 urg_offset = tp->urg_seq - seq;
1611 				if (urg_offset < len)
1612 					len = urg_offset;
1613 				if (!len)
1614 					break;
1615 			}
1616 			used = recv_actor(desc, skb, offset, len);
1617 			if (used <= 0) {
1618 				if (!copied)
1619 					copied = used;
1620 				break;
1621 			}
1622 			if (WARN_ON_ONCE(used > len))
1623 				used = len;
1624 			seq += used;
1625 			copied += used;
1626 			offset += used;
1627 
1628 			/* If recv_actor drops the lock (e.g. TCP splice
1629 			 * receive) the skb pointer might be invalid when
1630 			 * getting here: tcp_collapse might have deleted it
1631 			 * while aggregating skbs from the socket queue.
1632 			 */
1633 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1634 			if (!skb)
1635 				break;
1636 			/* TCP coalescing might have appended data to the skb.
1637 			 * Try to splice more frags
1638 			 */
1639 			if (offset + 1 != skb->len)
1640 				continue;
1641 		}
1642 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1643 			tcp_eat_recv_skb(sk, skb);
1644 			++seq;
1645 			break;
1646 		}
1647 		tcp_eat_recv_skb(sk, skb);
1648 		if (!desc->count)
1649 			break;
1650 		WRITE_ONCE(*copied_seq, seq);
1651 	}
1652 	WRITE_ONCE(*copied_seq, seq);
1653 
1654 	if (noack)
1655 		goto out;
1656 
1657 	tcp_rcv_space_adjust(sk);
1658 
1659 	/* Clean up data we have read: This will do ACK frames. */
1660 	if (copied > 0) {
1661 		tcp_recv_skb(sk, seq, &offset);
1662 		tcp_cleanup_rbuf(sk, copied);
1663 	}
1664 out:
1665 	return copied;
1666 }
1667 
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1669 		  sk_read_actor_t recv_actor)
1670 {
1671 	return __tcp_read_sock(sk, desc, recv_actor, false,
1672 			       &tcp_sk(sk)->copied_seq);
1673 }
1674 EXPORT_SYMBOL(tcp_read_sock);
1675 
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1676 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1677 			sk_read_actor_t recv_actor, bool noack,
1678 			u32 *copied_seq)
1679 {
1680 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1681 }
1682 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1683 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1684 {
1685 	struct sk_buff *skb;
1686 	int copied = 0;
1687 
1688 	if (sk->sk_state == TCP_LISTEN)
1689 		return -ENOTCONN;
1690 
1691 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1692 		u8 tcp_flags;
1693 		int used;
1694 
1695 		__skb_unlink(skb, &sk->sk_receive_queue);
1696 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1697 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1698 		used = recv_actor(sk, skb);
1699 		if (used < 0) {
1700 			if (!copied)
1701 				copied = used;
1702 			break;
1703 		}
1704 		copied += used;
1705 
1706 		if (tcp_flags & TCPHDR_FIN)
1707 			break;
1708 	}
1709 	return copied;
1710 }
1711 EXPORT_IPV6_MOD(tcp_read_skb);
1712 
tcp_read_done(struct sock * sk,size_t len)1713 void tcp_read_done(struct sock *sk, size_t len)
1714 {
1715 	struct tcp_sock *tp = tcp_sk(sk);
1716 	u32 seq = tp->copied_seq;
1717 	struct sk_buff *skb;
1718 	size_t left;
1719 	u32 offset;
1720 
1721 	if (sk->sk_state == TCP_LISTEN)
1722 		return;
1723 
1724 	left = len;
1725 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1726 		int used;
1727 
1728 		used = min_t(size_t, skb->len - offset, left);
1729 		seq += used;
1730 		left -= used;
1731 
1732 		if (skb->len > offset + used)
1733 			break;
1734 
1735 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1736 			tcp_eat_recv_skb(sk, skb);
1737 			++seq;
1738 			break;
1739 		}
1740 		tcp_eat_recv_skb(sk, skb);
1741 	}
1742 	WRITE_ONCE(tp->copied_seq, seq);
1743 
1744 	tcp_rcv_space_adjust(sk);
1745 
1746 	/* Clean up data we have read: This will do ACK frames. */
1747 	if (left != len)
1748 		tcp_cleanup_rbuf(sk, len - left);
1749 }
1750 EXPORT_SYMBOL(tcp_read_done);
1751 
tcp_peek_len(struct socket * sock)1752 int tcp_peek_len(struct socket *sock)
1753 {
1754 	return tcp_inq(sock->sk);
1755 }
1756 EXPORT_IPV6_MOD(tcp_peek_len);
1757 
1758 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1759 int tcp_set_rcvlowat(struct sock *sk, int val)
1760 {
1761 	int space, cap;
1762 
1763 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1764 		cap = sk->sk_rcvbuf >> 1;
1765 	else
1766 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1767 	val = min(val, cap);
1768 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1769 
1770 	/* Check if we need to signal EPOLLIN right now */
1771 	tcp_data_ready(sk);
1772 
1773 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1774 		return 0;
1775 
1776 	space = tcp_space_from_win(sk, val);
1777 	if (space > sk->sk_rcvbuf) {
1778 		WRITE_ONCE(sk->sk_rcvbuf, space);
1779 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1780 	}
1781 	return 0;
1782 }
1783 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1784 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1785 void tcp_update_recv_tstamps(struct sk_buff *skb,
1786 			     struct scm_timestamping_internal *tss)
1787 {
1788 	if (skb->tstamp)
1789 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1790 	else
1791 		tss->ts[0] = (struct timespec64) {0};
1792 
1793 	if (skb_hwtstamps(skb)->hwtstamp)
1794 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1795 	else
1796 		tss->ts[2] = (struct timespec64) {0};
1797 }
1798 
1799 #ifdef CONFIG_MMU
1800 static const struct vm_operations_struct tcp_vm_ops = {
1801 };
1802 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1803 int tcp_mmap(struct file *file, struct socket *sock,
1804 	     struct vm_area_struct *vma)
1805 {
1806 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1807 		return -EPERM;
1808 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1809 
1810 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1811 	vm_flags_set(vma, VM_MIXEDMAP);
1812 
1813 	vma->vm_ops = &tcp_vm_ops;
1814 	return 0;
1815 }
1816 EXPORT_IPV6_MOD(tcp_mmap);
1817 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1818 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1819 				       u32 *offset_frag)
1820 {
1821 	skb_frag_t *frag;
1822 
1823 	if (unlikely(offset_skb >= skb->len))
1824 		return NULL;
1825 
1826 	offset_skb -= skb_headlen(skb);
1827 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1828 		return NULL;
1829 
1830 	frag = skb_shinfo(skb)->frags;
1831 	while (offset_skb) {
1832 		if (skb_frag_size(frag) > offset_skb) {
1833 			*offset_frag = offset_skb;
1834 			return frag;
1835 		}
1836 		offset_skb -= skb_frag_size(frag);
1837 		++frag;
1838 	}
1839 	*offset_frag = 0;
1840 	return frag;
1841 }
1842 
can_map_frag(const skb_frag_t * frag)1843 static bool can_map_frag(const skb_frag_t *frag)
1844 {
1845 	struct page *page;
1846 
1847 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1848 		return false;
1849 
1850 	page = skb_frag_page(frag);
1851 
1852 	if (PageCompound(page) || page->mapping)
1853 		return false;
1854 
1855 	return true;
1856 }
1857 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1858 static int find_next_mappable_frag(const skb_frag_t *frag,
1859 				   int remaining_in_skb)
1860 {
1861 	int offset = 0;
1862 
1863 	if (likely(can_map_frag(frag)))
1864 		return 0;
1865 
1866 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1867 		offset += skb_frag_size(frag);
1868 		++frag;
1869 	}
1870 	return offset;
1871 }
1872 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1873 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1874 					  struct tcp_zerocopy_receive *zc,
1875 					  struct sk_buff *skb, u32 offset)
1876 {
1877 	u32 frag_offset, partial_frag_remainder = 0;
1878 	int mappable_offset;
1879 	skb_frag_t *frag;
1880 
1881 	/* worst case: skip to next skb. try to improve on this case below */
1882 	zc->recv_skip_hint = skb->len - offset;
1883 
1884 	/* Find the frag containing this offset (and how far into that frag) */
1885 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1886 	if (!frag)
1887 		return;
1888 
1889 	if (frag_offset) {
1890 		struct skb_shared_info *info = skb_shinfo(skb);
1891 
1892 		/* We read part of the last frag, must recvmsg() rest of skb. */
1893 		if (frag == &info->frags[info->nr_frags - 1])
1894 			return;
1895 
1896 		/* Else, we must at least read the remainder in this frag. */
1897 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1898 		zc->recv_skip_hint -= partial_frag_remainder;
1899 		++frag;
1900 	}
1901 
1902 	/* partial_frag_remainder: If part way through a frag, must read rest.
1903 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1904 	 * in partial_frag_remainder.
1905 	 */
1906 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1907 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1908 }
1909 
1910 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1911 			      int flags, struct scm_timestamping_internal *tss,
1912 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1913 static int receive_fallback_to_copy(struct sock *sk,
1914 				    struct tcp_zerocopy_receive *zc, int inq,
1915 				    struct scm_timestamping_internal *tss)
1916 {
1917 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1918 	struct msghdr msg = {};
1919 	int err;
1920 
1921 	zc->length = 0;
1922 	zc->recv_skip_hint = 0;
1923 
1924 	if (copy_address != zc->copybuf_address)
1925 		return -EINVAL;
1926 
1927 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1928 			  &msg.msg_iter);
1929 	if (err)
1930 		return err;
1931 
1932 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1933 				 tss, &zc->msg_flags);
1934 	if (err < 0)
1935 		return err;
1936 
1937 	zc->copybuf_len = err;
1938 	if (likely(zc->copybuf_len)) {
1939 		struct sk_buff *skb;
1940 		u32 offset;
1941 
1942 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1943 		if (skb)
1944 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1945 	}
1946 	return 0;
1947 }
1948 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1949 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1950 				   struct sk_buff *skb, u32 copylen,
1951 				   u32 *offset, u32 *seq)
1952 {
1953 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1954 	struct msghdr msg = {};
1955 	int err;
1956 
1957 	if (copy_address != zc->copybuf_address)
1958 		return -EINVAL;
1959 
1960 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1961 			  &msg.msg_iter);
1962 	if (err)
1963 		return err;
1964 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1965 	if (err)
1966 		return err;
1967 	zc->recv_skip_hint -= copylen;
1968 	*offset += copylen;
1969 	*seq += copylen;
1970 	return (__s32)copylen;
1971 }
1972 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1973 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1974 				  struct sock *sk,
1975 				  struct sk_buff *skb,
1976 				  u32 *seq,
1977 				  s32 copybuf_len,
1978 				  struct scm_timestamping_internal *tss)
1979 {
1980 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1981 
1982 	if (!copylen)
1983 		return 0;
1984 	/* skb is null if inq < PAGE_SIZE. */
1985 	if (skb) {
1986 		offset = *seq - TCP_SKB_CB(skb)->seq;
1987 	} else {
1988 		skb = tcp_recv_skb(sk, *seq, &offset);
1989 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1990 			tcp_update_recv_tstamps(skb, tss);
1991 			zc->msg_flags |= TCP_CMSG_TS;
1992 		}
1993 	}
1994 
1995 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1996 						  seq);
1997 	return zc->copybuf_len < 0 ? 0 : copylen;
1998 }
1999 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2000 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2001 					      struct page **pending_pages,
2002 					      unsigned long pages_remaining,
2003 					      unsigned long *address,
2004 					      u32 *length,
2005 					      u32 *seq,
2006 					      struct tcp_zerocopy_receive *zc,
2007 					      u32 total_bytes_to_map,
2008 					      int err)
2009 {
2010 	/* At least one page did not map. Try zapping if we skipped earlier. */
2011 	if (err == -EBUSY &&
2012 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2013 		u32 maybe_zap_len;
2014 
2015 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2016 				*length + /* Mapped or pending */
2017 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2018 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2019 		err = 0;
2020 	}
2021 
2022 	if (!err) {
2023 		unsigned long leftover_pages = pages_remaining;
2024 		int bytes_mapped;
2025 
2026 		/* We called zap_page_range_single, try to reinsert. */
2027 		err = vm_insert_pages(vma, *address,
2028 				      pending_pages,
2029 				      &pages_remaining);
2030 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2031 		*seq += bytes_mapped;
2032 		*address += bytes_mapped;
2033 	}
2034 	if (err) {
2035 		/* Either we were unable to zap, OR we zapped, retried an
2036 		 * insert, and still had an issue. Either ways, pages_remaining
2037 		 * is the number of pages we were unable to map, and we unroll
2038 		 * some state we speculatively touched before.
2039 		 */
2040 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2041 
2042 		*length -= bytes_not_mapped;
2043 		zc->recv_skip_hint += bytes_not_mapped;
2044 	}
2045 	return err;
2046 }
2047 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2048 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2049 					struct page **pages,
2050 					unsigned int pages_to_map,
2051 					unsigned long *address,
2052 					u32 *length,
2053 					u32 *seq,
2054 					struct tcp_zerocopy_receive *zc,
2055 					u32 total_bytes_to_map)
2056 {
2057 	unsigned long pages_remaining = pages_to_map;
2058 	unsigned int pages_mapped;
2059 	unsigned int bytes_mapped;
2060 	int err;
2061 
2062 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2063 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2064 	bytes_mapped = PAGE_SIZE * pages_mapped;
2065 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2066 	 * mapping (some but not all of the pages).
2067 	 */
2068 	*seq += bytes_mapped;
2069 	*address += bytes_mapped;
2070 
2071 	if (likely(!err))
2072 		return 0;
2073 
2074 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2075 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2076 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2077 		err);
2078 }
2079 
2080 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2081 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2082 				      struct tcp_zerocopy_receive *zc,
2083 				      struct scm_timestamping_internal *tss)
2084 {
2085 	unsigned long msg_control_addr;
2086 	struct msghdr cmsg_dummy;
2087 
2088 	msg_control_addr = (unsigned long)zc->msg_control;
2089 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2090 	cmsg_dummy.msg_controllen =
2091 		(__kernel_size_t)zc->msg_controllen;
2092 	cmsg_dummy.msg_flags = in_compat_syscall()
2093 		? MSG_CMSG_COMPAT : 0;
2094 	cmsg_dummy.msg_control_is_user = true;
2095 	zc->msg_flags = 0;
2096 	if (zc->msg_control == msg_control_addr &&
2097 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2098 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2099 		zc->msg_control = (__u64)
2100 			((uintptr_t)cmsg_dummy.msg_control_user);
2101 		zc->msg_controllen =
2102 			(__u64)cmsg_dummy.msg_controllen;
2103 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2104 	}
2105 }
2106 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2107 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2108 					   unsigned long address,
2109 					   bool *mmap_locked)
2110 {
2111 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2112 
2113 	if (vma) {
2114 		if (vma->vm_ops != &tcp_vm_ops) {
2115 			vma_end_read(vma);
2116 			return NULL;
2117 		}
2118 		*mmap_locked = false;
2119 		return vma;
2120 	}
2121 
2122 	mmap_read_lock(mm);
2123 	vma = vma_lookup(mm, address);
2124 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2125 		mmap_read_unlock(mm);
2126 		return NULL;
2127 	}
2128 	*mmap_locked = true;
2129 	return vma;
2130 }
2131 
2132 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2133 static int tcp_zerocopy_receive(struct sock *sk,
2134 				struct tcp_zerocopy_receive *zc,
2135 				struct scm_timestamping_internal *tss)
2136 {
2137 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2138 	unsigned long address = (unsigned long)zc->address;
2139 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2140 	s32 copybuf_len = zc->copybuf_len;
2141 	struct tcp_sock *tp = tcp_sk(sk);
2142 	const skb_frag_t *frags = NULL;
2143 	unsigned int pages_to_map = 0;
2144 	struct vm_area_struct *vma;
2145 	struct sk_buff *skb = NULL;
2146 	u32 seq = tp->copied_seq;
2147 	u32 total_bytes_to_map;
2148 	int inq = tcp_inq(sk);
2149 	bool mmap_locked;
2150 	int ret;
2151 
2152 	zc->copybuf_len = 0;
2153 	zc->msg_flags = 0;
2154 
2155 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2156 		return -EINVAL;
2157 
2158 	if (sk->sk_state == TCP_LISTEN)
2159 		return -ENOTCONN;
2160 
2161 	sock_rps_record_flow(sk);
2162 
2163 	if (inq && inq <= copybuf_len)
2164 		return receive_fallback_to_copy(sk, zc, inq, tss);
2165 
2166 	if (inq < PAGE_SIZE) {
2167 		zc->length = 0;
2168 		zc->recv_skip_hint = inq;
2169 		if (!inq && sock_flag(sk, SOCK_DONE))
2170 			return -EIO;
2171 		return 0;
2172 	}
2173 
2174 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2175 	if (!vma)
2176 		return -EINVAL;
2177 
2178 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2179 	avail_len = min_t(u32, vma_len, inq);
2180 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2181 	if (total_bytes_to_map) {
2182 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2183 			zap_page_range_single(vma, address, total_bytes_to_map,
2184 					      NULL);
2185 		zc->length = total_bytes_to_map;
2186 		zc->recv_skip_hint = 0;
2187 	} else {
2188 		zc->length = avail_len;
2189 		zc->recv_skip_hint = avail_len;
2190 	}
2191 	ret = 0;
2192 	while (length + PAGE_SIZE <= zc->length) {
2193 		int mappable_offset;
2194 		struct page *page;
2195 
2196 		if (zc->recv_skip_hint < PAGE_SIZE) {
2197 			u32 offset_frag;
2198 
2199 			if (skb) {
2200 				if (zc->recv_skip_hint > 0)
2201 					break;
2202 				skb = skb->next;
2203 				offset = seq - TCP_SKB_CB(skb)->seq;
2204 			} else {
2205 				skb = tcp_recv_skb(sk, seq, &offset);
2206 			}
2207 
2208 			if (!skb_frags_readable(skb))
2209 				break;
2210 
2211 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2212 				tcp_update_recv_tstamps(skb, tss);
2213 				zc->msg_flags |= TCP_CMSG_TS;
2214 			}
2215 			zc->recv_skip_hint = skb->len - offset;
2216 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2217 			if (!frags || offset_frag)
2218 				break;
2219 		}
2220 
2221 		mappable_offset = find_next_mappable_frag(frags,
2222 							  zc->recv_skip_hint);
2223 		if (mappable_offset) {
2224 			zc->recv_skip_hint = mappable_offset;
2225 			break;
2226 		}
2227 		page = skb_frag_page(frags);
2228 		if (WARN_ON_ONCE(!page))
2229 			break;
2230 
2231 		prefetchw(page);
2232 		pages[pages_to_map++] = page;
2233 		length += PAGE_SIZE;
2234 		zc->recv_skip_hint -= PAGE_SIZE;
2235 		frags++;
2236 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2237 		    zc->recv_skip_hint < PAGE_SIZE) {
2238 			/* Either full batch, or we're about to go to next skb
2239 			 * (and we cannot unroll failed ops across skbs).
2240 			 */
2241 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2242 							   pages_to_map,
2243 							   &address, &length,
2244 							   &seq, zc,
2245 							   total_bytes_to_map);
2246 			if (ret)
2247 				goto out;
2248 			pages_to_map = 0;
2249 		}
2250 	}
2251 	if (pages_to_map) {
2252 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2253 						   &address, &length, &seq,
2254 						   zc, total_bytes_to_map);
2255 	}
2256 out:
2257 	if (mmap_locked)
2258 		mmap_read_unlock(current->mm);
2259 	else
2260 		vma_end_read(vma);
2261 	/* Try to copy straggler data. */
2262 	if (!ret)
2263 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2264 
2265 	if (length + copylen) {
2266 		WRITE_ONCE(tp->copied_seq, seq);
2267 		tcp_rcv_space_adjust(sk);
2268 
2269 		/* Clean up data we have read: This will do ACK frames. */
2270 		tcp_recv_skb(sk, seq, &offset);
2271 		tcp_cleanup_rbuf(sk, length + copylen);
2272 		ret = 0;
2273 		if (length == zc->length)
2274 			zc->recv_skip_hint = 0;
2275 	} else {
2276 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2277 			ret = -EIO;
2278 	}
2279 	zc->length = length;
2280 	return ret;
2281 }
2282 #endif
2283 
2284 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2285 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2286 			struct scm_timestamping_internal *tss)
2287 {
2288 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2289 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2290 	bool has_timestamping = false;
2291 
2292 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2293 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2294 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2295 				if (new_tstamp) {
2296 					struct __kernel_timespec kts = {
2297 						.tv_sec = tss->ts[0].tv_sec,
2298 						.tv_nsec = tss->ts[0].tv_nsec,
2299 					};
2300 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2301 						 sizeof(kts), &kts);
2302 				} else {
2303 					struct __kernel_old_timespec ts_old = {
2304 						.tv_sec = tss->ts[0].tv_sec,
2305 						.tv_nsec = tss->ts[0].tv_nsec,
2306 					};
2307 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2308 						 sizeof(ts_old), &ts_old);
2309 				}
2310 			} else {
2311 				if (new_tstamp) {
2312 					struct __kernel_sock_timeval stv = {
2313 						.tv_sec = tss->ts[0].tv_sec,
2314 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2315 					};
2316 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2317 						 sizeof(stv), &stv);
2318 				} else {
2319 					struct __kernel_old_timeval tv = {
2320 						.tv_sec = tss->ts[0].tv_sec,
2321 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2322 					};
2323 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2324 						 sizeof(tv), &tv);
2325 				}
2326 			}
2327 		}
2328 
2329 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2330 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2331 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2332 			has_timestamping = true;
2333 		else
2334 			tss->ts[0] = (struct timespec64) {0};
2335 	}
2336 
2337 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2338 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2339 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2340 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2341 			has_timestamping = true;
2342 		else
2343 			tss->ts[2] = (struct timespec64) {0};
2344 	}
2345 
2346 	if (has_timestamping) {
2347 		tss->ts[1] = (struct timespec64) {0};
2348 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2349 			put_cmsg_scm_timestamping64(msg, tss);
2350 		else
2351 			put_cmsg_scm_timestamping(msg, tss);
2352 	}
2353 }
2354 
tcp_inq_hint(struct sock * sk)2355 static int tcp_inq_hint(struct sock *sk)
2356 {
2357 	const struct tcp_sock *tp = tcp_sk(sk);
2358 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2359 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2360 	int inq;
2361 
2362 	inq = rcv_nxt - copied_seq;
2363 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2364 		lock_sock(sk);
2365 		inq = tp->rcv_nxt - tp->copied_seq;
2366 		release_sock(sk);
2367 	}
2368 	/* After receiving a FIN, tell the user-space to continue reading
2369 	 * by returning a non-zero inq.
2370 	 */
2371 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2372 		inq = 1;
2373 	return inq;
2374 }
2375 
2376 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2377 struct tcp_xa_pool {
2378 	u8		max; /* max <= MAX_SKB_FRAGS */
2379 	u8		idx; /* idx <= max */
2380 	__u32		tokens[MAX_SKB_FRAGS];
2381 	netmem_ref	netmems[MAX_SKB_FRAGS];
2382 };
2383 
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2384 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2385 {
2386 	int i;
2387 
2388 	/* Commit part that has been copied to user space. */
2389 	for (i = 0; i < p->idx; i++)
2390 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2391 			     (__force void *)p->netmems[i], GFP_KERNEL);
2392 	/* Rollback what has been pre-allocated and is no longer needed. */
2393 	for (; i < p->max; i++)
2394 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2395 
2396 	p->max = 0;
2397 	p->idx = 0;
2398 }
2399 
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2400 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2401 {
2402 	if (!p->max)
2403 		return;
2404 
2405 	xa_lock_bh(&sk->sk_user_frags);
2406 
2407 	tcp_xa_pool_commit_locked(sk, p);
2408 
2409 	xa_unlock_bh(&sk->sk_user_frags);
2410 }
2411 
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2412 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2413 			      unsigned int max_frags)
2414 {
2415 	int err, k;
2416 
2417 	if (p->idx < p->max)
2418 		return 0;
2419 
2420 	xa_lock_bh(&sk->sk_user_frags);
2421 
2422 	tcp_xa_pool_commit_locked(sk, p);
2423 
2424 	for (k = 0; k < max_frags; k++) {
2425 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2426 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2427 		if (err)
2428 			break;
2429 	}
2430 
2431 	xa_unlock_bh(&sk->sk_user_frags);
2432 
2433 	p->max = k;
2434 	p->idx = 0;
2435 	return k ? 0 : err;
2436 }
2437 
2438 /* On error, returns the -errno. On success, returns number of bytes sent to the
2439  * user. May not consume all of @remaining_len.
2440  */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2441 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2442 			      unsigned int offset, struct msghdr *msg,
2443 			      int remaining_len)
2444 {
2445 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2446 	struct tcp_xa_pool tcp_xa_pool;
2447 	unsigned int start;
2448 	int i, copy, n;
2449 	int sent = 0;
2450 	int err = 0;
2451 
2452 	tcp_xa_pool.max = 0;
2453 	tcp_xa_pool.idx = 0;
2454 	do {
2455 		start = skb_headlen(skb);
2456 
2457 		if (skb_frags_readable(skb)) {
2458 			err = -ENODEV;
2459 			goto out;
2460 		}
2461 
2462 		/* Copy header. */
2463 		copy = start - offset;
2464 		if (copy > 0) {
2465 			copy = min(copy, remaining_len);
2466 
2467 			n = copy_to_iter(skb->data + offset, copy,
2468 					 &msg->msg_iter);
2469 			if (n != copy) {
2470 				err = -EFAULT;
2471 				goto out;
2472 			}
2473 
2474 			offset += copy;
2475 			remaining_len -= copy;
2476 
2477 			/* First a dmabuf_cmsg for # bytes copied to user
2478 			 * buffer.
2479 			 */
2480 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2481 			dmabuf_cmsg.frag_size = copy;
2482 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2483 					       SO_DEVMEM_LINEAR,
2484 					       sizeof(dmabuf_cmsg),
2485 					       &dmabuf_cmsg);
2486 			if (err)
2487 				goto out;
2488 
2489 			sent += copy;
2490 
2491 			if (remaining_len == 0)
2492 				goto out;
2493 		}
2494 
2495 		/* after that, send information of dmabuf pages through a
2496 		 * sequence of cmsg
2497 		 */
2498 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 			struct net_iov *niov;
2501 			u64 frag_offset;
2502 			int end;
2503 
2504 			/* !skb_frags_readable() should indicate that ALL the
2505 			 * frags in this skb are dmabuf net_iovs. We're checking
2506 			 * for that flag above, but also check individual frags
2507 			 * here. If the tcp stack is not setting
2508 			 * skb_frags_readable() correctly, we still don't want
2509 			 * to crash here.
2510 			 */
2511 			if (!skb_frag_net_iov(frag)) {
2512 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2513 				err = -ENODEV;
2514 				goto out;
2515 			}
2516 
2517 			niov = skb_frag_net_iov(frag);
2518 			if (!net_is_devmem_iov(niov)) {
2519 				err = -ENODEV;
2520 				goto out;
2521 			}
2522 
2523 			end = start + skb_frag_size(frag);
2524 			copy = end - offset;
2525 
2526 			if (copy > 0) {
2527 				copy = min(copy, remaining_len);
2528 
2529 				frag_offset = net_iov_virtual_addr(niov) +
2530 					      skb_frag_off(frag) + offset -
2531 					      start;
2532 				dmabuf_cmsg.frag_offset = frag_offset;
2533 				dmabuf_cmsg.frag_size = copy;
2534 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2535 							 skb_shinfo(skb)->nr_frags - i);
2536 				if (err)
2537 					goto out;
2538 
2539 				/* Will perform the exchange later */
2540 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2541 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2542 
2543 				offset += copy;
2544 				remaining_len -= copy;
2545 
2546 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2547 						       SO_DEVMEM_DMABUF,
2548 						       sizeof(dmabuf_cmsg),
2549 						       &dmabuf_cmsg);
2550 				if (err)
2551 					goto out;
2552 
2553 				atomic_long_inc(&niov->pp_ref_count);
2554 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2555 
2556 				sent += copy;
2557 
2558 				if (remaining_len == 0)
2559 					goto out;
2560 			}
2561 			start = end;
2562 		}
2563 
2564 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2565 		if (!remaining_len)
2566 			goto out;
2567 
2568 		/* if remaining_len is not satisfied yet, we need to go to the
2569 		 * next frag in the frag_list to satisfy remaining_len.
2570 		 */
2571 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2572 
2573 		offset = offset - start;
2574 	} while (skb);
2575 
2576 	if (remaining_len) {
2577 		err = -EFAULT;
2578 		goto out;
2579 	}
2580 
2581 out:
2582 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2583 	if (!sent)
2584 		sent = err;
2585 
2586 	return sent;
2587 }
2588 
2589 /*
2590  *	This routine copies from a sock struct into the user buffer.
2591  *
2592  *	Technical note: in 2.3 we work on _locked_ socket, so that
2593  *	tricks with *seq access order and skb->users are not required.
2594  *	Probably, code can be easily improved even more.
2595  */
2596 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2597 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2598 			      int flags, struct scm_timestamping_internal *tss,
2599 			      int *cmsg_flags)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	int last_copied_dmabuf = -1; /* uninitialized */
2603 	int copied = 0;
2604 	u32 peek_seq;
2605 	u32 *seq;
2606 	unsigned long used;
2607 	int err;
2608 	int target;		/* Read at least this many bytes */
2609 	long timeo;
2610 	struct sk_buff *skb, *last;
2611 	u32 peek_offset = 0;
2612 	u32 urg_hole = 0;
2613 
2614 	err = -ENOTCONN;
2615 	if (sk->sk_state == TCP_LISTEN)
2616 		goto out;
2617 
2618 	if (tp->recvmsg_inq) {
2619 		*cmsg_flags = TCP_CMSG_INQ;
2620 		msg->msg_get_inq = 1;
2621 	}
2622 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2623 
2624 	/* Urgent data needs to be handled specially. */
2625 	if (flags & MSG_OOB)
2626 		goto recv_urg;
2627 
2628 	if (unlikely(tp->repair)) {
2629 		err = -EPERM;
2630 		if (!(flags & MSG_PEEK))
2631 			goto out;
2632 
2633 		if (tp->repair_queue == TCP_SEND_QUEUE)
2634 			goto recv_sndq;
2635 
2636 		err = -EINVAL;
2637 		if (tp->repair_queue == TCP_NO_QUEUE)
2638 			goto out;
2639 
2640 		/* 'common' recv queue MSG_PEEK-ing */
2641 	}
2642 
2643 	seq = &tp->copied_seq;
2644 	if (flags & MSG_PEEK) {
2645 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2646 		peek_seq = tp->copied_seq + peek_offset;
2647 		seq = &peek_seq;
2648 	}
2649 
2650 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2651 
2652 	do {
2653 		u32 offset;
2654 
2655 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2656 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2657 			if (copied)
2658 				break;
2659 			if (signal_pending(current)) {
2660 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2661 				break;
2662 			}
2663 		}
2664 
2665 		/* Next get a buffer. */
2666 
2667 		last = skb_peek_tail(&sk->sk_receive_queue);
2668 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2669 			last = skb;
2670 			/* Now that we have two receive queues this
2671 			 * shouldn't happen.
2672 			 */
2673 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2674 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2675 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2676 				 flags))
2677 				break;
2678 
2679 			offset = *seq - TCP_SKB_CB(skb)->seq;
2680 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2681 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2682 				offset--;
2683 			}
2684 			if (offset < skb->len)
2685 				goto found_ok_skb;
2686 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2687 				goto found_fin_ok;
2688 			WARN(!(flags & MSG_PEEK),
2689 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2690 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2691 		}
2692 
2693 		/* Well, if we have backlog, try to process it now yet. */
2694 
2695 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2696 			break;
2697 
2698 		if (copied) {
2699 			if (!timeo ||
2700 			    sk->sk_err ||
2701 			    sk->sk_state == TCP_CLOSE ||
2702 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2703 			    signal_pending(current))
2704 				break;
2705 		} else {
2706 			if (sock_flag(sk, SOCK_DONE))
2707 				break;
2708 
2709 			if (sk->sk_err) {
2710 				copied = sock_error(sk);
2711 				break;
2712 			}
2713 
2714 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2715 				break;
2716 
2717 			if (sk->sk_state == TCP_CLOSE) {
2718 				/* This occurs when user tries to read
2719 				 * from never connected socket.
2720 				 */
2721 				copied = -ENOTCONN;
2722 				break;
2723 			}
2724 
2725 			if (!timeo) {
2726 				copied = -EAGAIN;
2727 				break;
2728 			}
2729 
2730 			if (signal_pending(current)) {
2731 				copied = sock_intr_errno(timeo);
2732 				break;
2733 			}
2734 		}
2735 
2736 		if (copied >= target) {
2737 			/* Do not sleep, just process backlog. */
2738 			__sk_flush_backlog(sk);
2739 		} else {
2740 			tcp_cleanup_rbuf(sk, copied);
2741 			err = sk_wait_data(sk, &timeo, last);
2742 			if (err < 0) {
2743 				err = copied ? : err;
2744 				goto out;
2745 			}
2746 		}
2747 
2748 		if ((flags & MSG_PEEK) &&
2749 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2750 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2751 					    current->comm,
2752 					    task_pid_nr(current));
2753 			peek_seq = tp->copied_seq + peek_offset;
2754 		}
2755 		continue;
2756 
2757 found_ok_skb:
2758 		/* Ok so how much can we use? */
2759 		used = skb->len - offset;
2760 		if (len < used)
2761 			used = len;
2762 
2763 		/* Do we have urgent data here? */
2764 		if (unlikely(tp->urg_data)) {
2765 			u32 urg_offset = tp->urg_seq - *seq;
2766 			if (urg_offset < used) {
2767 				if (!urg_offset) {
2768 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2769 						WRITE_ONCE(*seq, *seq + 1);
2770 						urg_hole++;
2771 						offset++;
2772 						used--;
2773 						if (!used)
2774 							goto skip_copy;
2775 					}
2776 				} else
2777 					used = urg_offset;
2778 			}
2779 		}
2780 
2781 		if (!(flags & MSG_TRUNC)) {
2782 			if (last_copied_dmabuf != -1 &&
2783 			    last_copied_dmabuf != !skb_frags_readable(skb))
2784 				break;
2785 
2786 			if (skb_frags_readable(skb)) {
2787 				err = skb_copy_datagram_msg(skb, offset, msg,
2788 							    used);
2789 				if (err) {
2790 					/* Exception. Bailout! */
2791 					if (!copied)
2792 						copied = -EFAULT;
2793 					break;
2794 				}
2795 			} else {
2796 				if (!(flags & MSG_SOCK_DEVMEM)) {
2797 					/* dmabuf skbs can only be received
2798 					 * with the MSG_SOCK_DEVMEM flag.
2799 					 */
2800 					if (!copied)
2801 						copied = -EFAULT;
2802 
2803 					break;
2804 				}
2805 
2806 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2807 							 used);
2808 				if (err <= 0) {
2809 					if (!copied)
2810 						copied = -EFAULT;
2811 
2812 					break;
2813 				}
2814 				used = err;
2815 			}
2816 		}
2817 
2818 		last_copied_dmabuf = !skb_frags_readable(skb);
2819 
2820 		WRITE_ONCE(*seq, *seq + used);
2821 		copied += used;
2822 		len -= used;
2823 		if (flags & MSG_PEEK)
2824 			sk_peek_offset_fwd(sk, used);
2825 		else
2826 			sk_peek_offset_bwd(sk, used);
2827 		tcp_rcv_space_adjust(sk);
2828 
2829 skip_copy:
2830 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2831 			WRITE_ONCE(tp->urg_data, 0);
2832 			tcp_fast_path_check(sk);
2833 		}
2834 
2835 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2836 			tcp_update_recv_tstamps(skb, tss);
2837 			*cmsg_flags |= TCP_CMSG_TS;
2838 		}
2839 
2840 		if (used + offset < skb->len)
2841 			continue;
2842 
2843 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2844 			goto found_fin_ok;
2845 		if (!(flags & MSG_PEEK))
2846 			tcp_eat_recv_skb(sk, skb);
2847 		continue;
2848 
2849 found_fin_ok:
2850 		/* Process the FIN. */
2851 		WRITE_ONCE(*seq, *seq + 1);
2852 		if (!(flags & MSG_PEEK))
2853 			tcp_eat_recv_skb(sk, skb);
2854 		break;
2855 	} while (len > 0);
2856 
2857 	/* According to UNIX98, msg_name/msg_namelen are ignored
2858 	 * on connected socket. I was just happy when found this 8) --ANK
2859 	 */
2860 
2861 	/* Clean up data we have read: This will do ACK frames. */
2862 	tcp_cleanup_rbuf(sk, copied);
2863 	return copied;
2864 
2865 out:
2866 	return err;
2867 
2868 recv_urg:
2869 	err = tcp_recv_urg(sk, msg, len, flags);
2870 	goto out;
2871 
2872 recv_sndq:
2873 	err = tcp_peek_sndq(sk, msg, len);
2874 	goto out;
2875 }
2876 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2877 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2878 		int *addr_len)
2879 {
2880 	int cmsg_flags = 0, ret;
2881 	struct scm_timestamping_internal tss;
2882 
2883 	if (unlikely(flags & MSG_ERRQUEUE))
2884 		return inet_recv_error(sk, msg, len, addr_len);
2885 
2886 	if (sk_can_busy_loop(sk) &&
2887 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2888 	    sk->sk_state == TCP_ESTABLISHED)
2889 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2890 
2891 	lock_sock(sk);
2892 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2893 	release_sock(sk);
2894 
2895 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2896 		if (cmsg_flags & TCP_CMSG_TS)
2897 			tcp_recv_timestamp(msg, sk, &tss);
2898 		if (msg->msg_get_inq) {
2899 			msg->msg_inq = tcp_inq_hint(sk);
2900 			if (cmsg_flags & TCP_CMSG_INQ)
2901 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2902 					 sizeof(msg->msg_inq), &msg->msg_inq);
2903 		}
2904 	}
2905 	return ret;
2906 }
2907 EXPORT_IPV6_MOD(tcp_recvmsg);
2908 
tcp_set_state(struct sock * sk,int state)2909 void tcp_set_state(struct sock *sk, int state)
2910 {
2911 	int oldstate = sk->sk_state;
2912 
2913 	/* We defined a new enum for TCP states that are exported in BPF
2914 	 * so as not force the internal TCP states to be frozen. The
2915 	 * following checks will detect if an internal state value ever
2916 	 * differs from the BPF value. If this ever happens, then we will
2917 	 * need to remap the internal value to the BPF value before calling
2918 	 * tcp_call_bpf_2arg.
2919 	 */
2920 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2921 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2922 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2923 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2924 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2925 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2926 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2927 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2928 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2929 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2930 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2931 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2932 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2933 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2934 
2935 	/* bpf uapi header bpf.h defines an anonymous enum with values
2936 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2937 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2938 	 * But clang built vmlinux does not have this enum in DWARF
2939 	 * since clang removes the above code before generating IR/debuginfo.
2940 	 * Let us explicitly emit the type debuginfo to ensure the
2941 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2942 	 * regardless of which compiler is used.
2943 	 */
2944 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2945 
2946 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2947 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2948 
2949 	switch (state) {
2950 	case TCP_ESTABLISHED:
2951 		if (oldstate != TCP_ESTABLISHED)
2952 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2953 		break;
2954 	case TCP_CLOSE_WAIT:
2955 		if (oldstate == TCP_SYN_RECV)
2956 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2957 		break;
2958 
2959 	case TCP_CLOSE:
2960 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2961 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2962 
2963 		sk->sk_prot->unhash(sk);
2964 		if (inet_csk(sk)->icsk_bind_hash &&
2965 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2966 			inet_put_port(sk);
2967 		fallthrough;
2968 	default:
2969 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2970 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2971 	}
2972 
2973 	/* Change state AFTER socket is unhashed to avoid closed
2974 	 * socket sitting in hash tables.
2975 	 */
2976 	inet_sk_state_store(sk, state);
2977 }
2978 EXPORT_SYMBOL_GPL(tcp_set_state);
2979 
2980 /*
2981  *	State processing on a close. This implements the state shift for
2982  *	sending our FIN frame. Note that we only send a FIN for some
2983  *	states. A shutdown() may have already sent the FIN, or we may be
2984  *	closed.
2985  */
2986 
2987 static const unsigned char new_state[16] = {
2988   /* current state:        new state:      action:	*/
2989   [0 /* (Invalid) */]	= TCP_CLOSE,
2990   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2991   [TCP_SYN_SENT]	= TCP_CLOSE,
2992   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2993   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2994   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2995   [TCP_TIME_WAIT]	= TCP_CLOSE,
2996   [TCP_CLOSE]		= TCP_CLOSE,
2997   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2998   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2999   [TCP_LISTEN]		= TCP_CLOSE,
3000   [TCP_CLOSING]		= TCP_CLOSING,
3001   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3002 };
3003 
tcp_close_state(struct sock * sk)3004 static int tcp_close_state(struct sock *sk)
3005 {
3006 	int next = (int)new_state[sk->sk_state];
3007 	int ns = next & TCP_STATE_MASK;
3008 
3009 	tcp_set_state(sk, ns);
3010 
3011 	return next & TCP_ACTION_FIN;
3012 }
3013 
3014 /*
3015  *	Shutdown the sending side of a connection. Much like close except
3016  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3017  */
3018 
tcp_shutdown(struct sock * sk,int how)3019 void tcp_shutdown(struct sock *sk, int how)
3020 {
3021 	/*	We need to grab some memory, and put together a FIN,
3022 	 *	and then put it into the queue to be sent.
3023 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3024 	 */
3025 	if (!(how & SEND_SHUTDOWN))
3026 		return;
3027 
3028 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3029 	if ((1 << sk->sk_state) &
3030 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3031 	     TCPF_CLOSE_WAIT)) {
3032 		/* Clear out any half completed packets.  FIN if needed. */
3033 		if (tcp_close_state(sk))
3034 			tcp_send_fin(sk);
3035 	}
3036 }
3037 EXPORT_IPV6_MOD(tcp_shutdown);
3038 
tcp_orphan_count_sum(void)3039 int tcp_orphan_count_sum(void)
3040 {
3041 	int i, total = 0;
3042 
3043 	for_each_possible_cpu(i)
3044 		total += per_cpu(tcp_orphan_count, i);
3045 
3046 	return max(total, 0);
3047 }
3048 
3049 static int tcp_orphan_cache;
3050 static struct timer_list tcp_orphan_timer;
3051 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3052 
tcp_orphan_update(struct timer_list * unused)3053 static void tcp_orphan_update(struct timer_list *unused)
3054 {
3055 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3056 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3057 }
3058 
tcp_too_many_orphans(int shift)3059 static bool tcp_too_many_orphans(int shift)
3060 {
3061 	return READ_ONCE(tcp_orphan_cache) << shift >
3062 		READ_ONCE(sysctl_tcp_max_orphans);
3063 }
3064 
tcp_out_of_memory(const struct sock * sk)3065 static bool tcp_out_of_memory(const struct sock *sk)
3066 {
3067 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3068 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3069 		return true;
3070 	return false;
3071 }
3072 
tcp_check_oom(const struct sock * sk,int shift)3073 bool tcp_check_oom(const struct sock *sk, int shift)
3074 {
3075 	bool too_many_orphans, out_of_socket_memory;
3076 
3077 	too_many_orphans = tcp_too_many_orphans(shift);
3078 	out_of_socket_memory = tcp_out_of_memory(sk);
3079 
3080 	if (too_many_orphans)
3081 		net_info_ratelimited("too many orphaned sockets\n");
3082 	if (out_of_socket_memory)
3083 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3084 	return too_many_orphans || out_of_socket_memory;
3085 }
3086 
__tcp_close(struct sock * sk,long timeout)3087 void __tcp_close(struct sock *sk, long timeout)
3088 {
3089 	struct sk_buff *skb;
3090 	int data_was_unread = 0;
3091 	int state;
3092 
3093 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3094 
3095 	if (sk->sk_state == TCP_LISTEN) {
3096 		tcp_set_state(sk, TCP_CLOSE);
3097 
3098 		/* Special case. */
3099 		inet_csk_listen_stop(sk);
3100 
3101 		goto adjudge_to_death;
3102 	}
3103 
3104 	/*  We need to flush the recv. buffs.  We do this only on the
3105 	 *  descriptor close, not protocol-sourced closes, because the
3106 	 *  reader process may not have drained the data yet!
3107 	 */
3108 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3109 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3110 
3111 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3112 			len--;
3113 		data_was_unread += len;
3114 		__kfree_skb(skb);
3115 	}
3116 
3117 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3118 	if (sk->sk_state == TCP_CLOSE)
3119 		goto adjudge_to_death;
3120 
3121 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3122 	 * data was lost. To witness the awful effects of the old behavior of
3123 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3124 	 * GET in an FTP client, suspend the process, wait for the client to
3125 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3126 	 * Note: timeout is always zero in such a case.
3127 	 */
3128 	if (unlikely(tcp_sk(sk)->repair)) {
3129 		sk->sk_prot->disconnect(sk, 0);
3130 	} else if (data_was_unread) {
3131 		/* Unread data was tossed, zap the connection. */
3132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3133 		tcp_set_state(sk, TCP_CLOSE);
3134 		tcp_send_active_reset(sk, sk->sk_allocation,
3135 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3136 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3137 		/* Check zero linger _after_ checking for unread data. */
3138 		sk->sk_prot->disconnect(sk, 0);
3139 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3140 	} else if (tcp_close_state(sk)) {
3141 		/* We FIN if the application ate all the data before
3142 		 * zapping the connection.
3143 		 */
3144 
3145 		/* RED-PEN. Formally speaking, we have broken TCP state
3146 		 * machine. State transitions:
3147 		 *
3148 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3149 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3150 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3151 		 *
3152 		 * are legal only when FIN has been sent (i.e. in window),
3153 		 * rather than queued out of window. Purists blame.
3154 		 *
3155 		 * F.e. "RFC state" is ESTABLISHED,
3156 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3157 		 *
3158 		 * The visible declinations are that sometimes
3159 		 * we enter time-wait state, when it is not required really
3160 		 * (harmless), do not send active resets, when they are
3161 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3162 		 * they look as CLOSING or LAST_ACK for Linux)
3163 		 * Probably, I missed some more holelets.
3164 		 * 						--ANK
3165 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3166 		 * in a single packet! (May consider it later but will
3167 		 * probably need API support or TCP_CORK SYN-ACK until
3168 		 * data is written and socket is closed.)
3169 		 */
3170 		tcp_send_fin(sk);
3171 	}
3172 
3173 	sk_stream_wait_close(sk, timeout);
3174 
3175 adjudge_to_death:
3176 	state = sk->sk_state;
3177 	sock_hold(sk);
3178 	sock_orphan(sk);
3179 
3180 	local_bh_disable();
3181 	bh_lock_sock(sk);
3182 	/* remove backlog if any, without releasing ownership. */
3183 	__release_sock(sk);
3184 
3185 	this_cpu_inc(tcp_orphan_count);
3186 
3187 	/* Have we already been destroyed by a softirq or backlog? */
3188 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3189 		goto out;
3190 
3191 	/*	This is a (useful) BSD violating of the RFC. There is a
3192 	 *	problem with TCP as specified in that the other end could
3193 	 *	keep a socket open forever with no application left this end.
3194 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3195 	 *	our end. If they send after that then tough - BUT: long enough
3196 	 *	that we won't make the old 4*rto = almost no time - whoops
3197 	 *	reset mistake.
3198 	 *
3199 	 *	Nope, it was not mistake. It is really desired behaviour
3200 	 *	f.e. on http servers, when such sockets are useless, but
3201 	 *	consume significant resources. Let's do it with special
3202 	 *	linger2	option.					--ANK
3203 	 */
3204 
3205 	if (sk->sk_state == TCP_FIN_WAIT2) {
3206 		struct tcp_sock *tp = tcp_sk(sk);
3207 		if (READ_ONCE(tp->linger2) < 0) {
3208 			tcp_set_state(sk, TCP_CLOSE);
3209 			tcp_send_active_reset(sk, GFP_ATOMIC,
3210 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3211 			__NET_INC_STATS(sock_net(sk),
3212 					LINUX_MIB_TCPABORTONLINGER);
3213 		} else {
3214 			const int tmo = tcp_fin_time(sk);
3215 
3216 			if (tmo > TCP_TIMEWAIT_LEN) {
3217 				tcp_reset_keepalive_timer(sk,
3218 						tmo - TCP_TIMEWAIT_LEN);
3219 			} else {
3220 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3221 				goto out;
3222 			}
3223 		}
3224 	}
3225 	if (sk->sk_state != TCP_CLOSE) {
3226 		if (tcp_check_oom(sk, 0)) {
3227 			tcp_set_state(sk, TCP_CLOSE);
3228 			tcp_send_active_reset(sk, GFP_ATOMIC,
3229 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3230 			__NET_INC_STATS(sock_net(sk),
3231 					LINUX_MIB_TCPABORTONMEMORY);
3232 		} else if (!check_net(sock_net(sk))) {
3233 			/* Not possible to send reset; just close */
3234 			tcp_set_state(sk, TCP_CLOSE);
3235 		}
3236 	}
3237 
3238 	if (sk->sk_state == TCP_CLOSE) {
3239 		struct request_sock *req;
3240 
3241 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3242 						lockdep_sock_is_held(sk));
3243 		/* We could get here with a non-NULL req if the socket is
3244 		 * aborted (e.g., closed with unread data) before 3WHS
3245 		 * finishes.
3246 		 */
3247 		if (req)
3248 			reqsk_fastopen_remove(sk, req, false);
3249 		inet_csk_destroy_sock(sk);
3250 	}
3251 	/* Otherwise, socket is reprieved until protocol close. */
3252 
3253 out:
3254 	bh_unlock_sock(sk);
3255 	local_bh_enable();
3256 }
3257 
tcp_close(struct sock * sk,long timeout)3258 void tcp_close(struct sock *sk, long timeout)
3259 {
3260 	lock_sock(sk);
3261 	__tcp_close(sk, timeout);
3262 	release_sock(sk);
3263 	if (!sk->sk_net_refcnt)
3264 		inet_csk_clear_xmit_timers_sync(sk);
3265 	sock_put(sk);
3266 }
3267 EXPORT_SYMBOL(tcp_close);
3268 
3269 /* These states need RST on ABORT according to RFC793 */
3270 
tcp_need_reset(int state)3271 static inline bool tcp_need_reset(int state)
3272 {
3273 	return (1 << state) &
3274 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3275 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3276 }
3277 
tcp_rtx_queue_purge(struct sock * sk)3278 static void tcp_rtx_queue_purge(struct sock *sk)
3279 {
3280 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3281 
3282 	tcp_sk(sk)->highest_sack = NULL;
3283 	while (p) {
3284 		struct sk_buff *skb = rb_to_skb(p);
3285 
3286 		p = rb_next(p);
3287 		/* Since we are deleting whole queue, no need to
3288 		 * list_del(&skb->tcp_tsorted_anchor)
3289 		 */
3290 		tcp_rtx_queue_unlink(skb, sk);
3291 		tcp_wmem_free_skb(sk, skb);
3292 	}
3293 }
3294 
tcp_write_queue_purge(struct sock * sk)3295 void tcp_write_queue_purge(struct sock *sk)
3296 {
3297 	struct sk_buff *skb;
3298 
3299 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3300 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3301 		tcp_skb_tsorted_anchor_cleanup(skb);
3302 		tcp_wmem_free_skb(sk, skb);
3303 	}
3304 	tcp_rtx_queue_purge(sk);
3305 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3306 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3307 	tcp_sk(sk)->packets_out = 0;
3308 	inet_csk(sk)->icsk_backoff = 0;
3309 }
3310 
tcp_disconnect(struct sock * sk,int flags)3311 int tcp_disconnect(struct sock *sk, int flags)
3312 {
3313 	struct inet_sock *inet = inet_sk(sk);
3314 	struct inet_connection_sock *icsk = inet_csk(sk);
3315 	struct tcp_sock *tp = tcp_sk(sk);
3316 	int old_state = sk->sk_state;
3317 	u32 seq;
3318 
3319 	if (old_state != TCP_CLOSE)
3320 		tcp_set_state(sk, TCP_CLOSE);
3321 
3322 	/* ABORT function of RFC793 */
3323 	if (old_state == TCP_LISTEN) {
3324 		inet_csk_listen_stop(sk);
3325 	} else if (unlikely(tp->repair)) {
3326 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3327 	} else if (tcp_need_reset(old_state)) {
3328 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3329 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3330 	} else if (tp->snd_nxt != tp->write_seq &&
3331 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3332 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3333 		 * states
3334 		 */
3335 		tcp_send_active_reset(sk, gfp_any(),
3336 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3337 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3338 	} else if (old_state == TCP_SYN_SENT)
3339 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3340 
3341 	tcp_clear_xmit_timers(sk);
3342 	__skb_queue_purge(&sk->sk_receive_queue);
3343 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3344 	WRITE_ONCE(tp->urg_data, 0);
3345 	sk_set_peek_off(sk, -1);
3346 	tcp_write_queue_purge(sk);
3347 	tcp_fastopen_active_disable_ofo_check(sk);
3348 	skb_rbtree_purge(&tp->out_of_order_queue);
3349 
3350 	inet->inet_dport = 0;
3351 
3352 	inet_bhash2_reset_saddr(sk);
3353 
3354 	WRITE_ONCE(sk->sk_shutdown, 0);
3355 	sock_reset_flag(sk, SOCK_DONE);
3356 	tp->srtt_us = 0;
3357 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3358 	tp->rcv_rtt_last_tsecr = 0;
3359 
3360 	seq = tp->write_seq + tp->max_window + 2;
3361 	if (!seq)
3362 		seq = 1;
3363 	WRITE_ONCE(tp->write_seq, seq);
3364 
3365 	icsk->icsk_backoff = 0;
3366 	icsk->icsk_probes_out = 0;
3367 	icsk->icsk_probes_tstamp = 0;
3368 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3369 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3370 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3371 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3372 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3373 	tp->snd_cwnd_cnt = 0;
3374 	tp->is_cwnd_limited = 0;
3375 	tp->max_packets_out = 0;
3376 	tp->window_clamp = 0;
3377 	tp->delivered = 0;
3378 	tp->delivered_ce = 0;
3379 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3380 		icsk->icsk_ca_ops->release(sk);
3381 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3382 	icsk->icsk_ca_initialized = 0;
3383 	tcp_set_ca_state(sk, TCP_CA_Open);
3384 	tp->is_sack_reneg = 0;
3385 	tcp_clear_retrans(tp);
3386 	tp->total_retrans = 0;
3387 	inet_csk_delack_init(sk);
3388 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3389 	 * issue in __tcp_select_window()
3390 	 */
3391 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3392 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3393 	__sk_dst_reset(sk);
3394 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3395 	tcp_saved_syn_free(tp);
3396 	tp->compressed_ack = 0;
3397 	tp->segs_in = 0;
3398 	tp->segs_out = 0;
3399 	tp->bytes_sent = 0;
3400 	tp->bytes_acked = 0;
3401 	tp->bytes_received = 0;
3402 	tp->bytes_retrans = 0;
3403 	tp->data_segs_in = 0;
3404 	tp->data_segs_out = 0;
3405 	tp->duplicate_sack[0].start_seq = 0;
3406 	tp->duplicate_sack[0].end_seq = 0;
3407 	tp->dsack_dups = 0;
3408 	tp->reord_seen = 0;
3409 	tp->retrans_out = 0;
3410 	tp->sacked_out = 0;
3411 	tp->tlp_high_seq = 0;
3412 	tp->last_oow_ack_time = 0;
3413 	tp->plb_rehash = 0;
3414 	/* There's a bubble in the pipe until at least the first ACK. */
3415 	tp->app_limited = ~0U;
3416 	tp->rate_app_limited = 1;
3417 	tp->rack.mstamp = 0;
3418 	tp->rack.advanced = 0;
3419 	tp->rack.reo_wnd_steps = 1;
3420 	tp->rack.last_delivered = 0;
3421 	tp->rack.reo_wnd_persist = 0;
3422 	tp->rack.dsack_seen = 0;
3423 	tp->syn_data_acked = 0;
3424 	tp->rx_opt.saw_tstamp = 0;
3425 	tp->rx_opt.dsack = 0;
3426 	tp->rx_opt.num_sacks = 0;
3427 	tp->rcv_ooopack = 0;
3428 
3429 
3430 	/* Clean up fastopen related fields */
3431 	tcp_free_fastopen_req(tp);
3432 	inet_clear_bit(DEFER_CONNECT, sk);
3433 	tp->fastopen_client_fail = 0;
3434 
3435 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3436 
3437 	if (sk->sk_frag.page) {
3438 		put_page(sk->sk_frag.page);
3439 		sk->sk_frag.page = NULL;
3440 		sk->sk_frag.offset = 0;
3441 	}
3442 	sk_error_report(sk);
3443 	return 0;
3444 }
3445 EXPORT_SYMBOL(tcp_disconnect);
3446 
tcp_can_repair_sock(const struct sock * sk)3447 static inline bool tcp_can_repair_sock(const struct sock *sk)
3448 {
3449 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3450 		(sk->sk_state != TCP_LISTEN);
3451 }
3452 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3453 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3454 {
3455 	struct tcp_repair_window opt;
3456 
3457 	if (!tp->repair)
3458 		return -EPERM;
3459 
3460 	if (len != sizeof(opt))
3461 		return -EINVAL;
3462 
3463 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3464 		return -EFAULT;
3465 
3466 	if (opt.max_window < opt.snd_wnd)
3467 		return -EINVAL;
3468 
3469 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3470 		return -EINVAL;
3471 
3472 	if (after(opt.rcv_wup, tp->rcv_nxt))
3473 		return -EINVAL;
3474 
3475 	tp->snd_wl1	= opt.snd_wl1;
3476 	tp->snd_wnd	= opt.snd_wnd;
3477 	tp->max_window	= opt.max_window;
3478 
3479 	tp->rcv_wnd	= opt.rcv_wnd;
3480 	tp->rcv_wup	= opt.rcv_wup;
3481 
3482 	return 0;
3483 }
3484 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3485 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3486 		unsigned int len)
3487 {
3488 	struct tcp_sock *tp = tcp_sk(sk);
3489 	struct tcp_repair_opt opt;
3490 	size_t offset = 0;
3491 
3492 	while (len >= sizeof(opt)) {
3493 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3494 			return -EFAULT;
3495 
3496 		offset += sizeof(opt);
3497 		len -= sizeof(opt);
3498 
3499 		switch (opt.opt_code) {
3500 		case TCPOPT_MSS:
3501 			tp->rx_opt.mss_clamp = opt.opt_val;
3502 			tcp_mtup_init(sk);
3503 			break;
3504 		case TCPOPT_WINDOW:
3505 			{
3506 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3507 				u16 rcv_wscale = opt.opt_val >> 16;
3508 
3509 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3510 					return -EFBIG;
3511 
3512 				tp->rx_opt.snd_wscale = snd_wscale;
3513 				tp->rx_opt.rcv_wscale = rcv_wscale;
3514 				tp->rx_opt.wscale_ok = 1;
3515 			}
3516 			break;
3517 		case TCPOPT_SACK_PERM:
3518 			if (opt.opt_val != 0)
3519 				return -EINVAL;
3520 
3521 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3522 			break;
3523 		case TCPOPT_TIMESTAMP:
3524 			if (opt.opt_val != 0)
3525 				return -EINVAL;
3526 
3527 			tp->rx_opt.tstamp_ok = 1;
3528 			break;
3529 		}
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3536 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3537 
tcp_enable_tx_delay(void)3538 static void tcp_enable_tx_delay(void)
3539 {
3540 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3541 		static int __tcp_tx_delay_enabled = 0;
3542 
3543 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3544 			static_branch_enable(&tcp_tx_delay_enabled);
3545 			pr_info("TCP_TX_DELAY enabled\n");
3546 		}
3547 	}
3548 }
3549 
3550 /* When set indicates to always queue non-full frames.  Later the user clears
3551  * this option and we transmit any pending partial frames in the queue.  This is
3552  * meant to be used alongside sendfile() to get properly filled frames when the
3553  * user (for example) must write out headers with a write() call first and then
3554  * use sendfile to send out the data parts.
3555  *
3556  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3557  * TCP_NODELAY.
3558  */
__tcp_sock_set_cork(struct sock * sk,bool on)3559 void __tcp_sock_set_cork(struct sock *sk, bool on)
3560 {
3561 	struct tcp_sock *tp = tcp_sk(sk);
3562 
3563 	if (on) {
3564 		tp->nonagle |= TCP_NAGLE_CORK;
3565 	} else {
3566 		tp->nonagle &= ~TCP_NAGLE_CORK;
3567 		if (tp->nonagle & TCP_NAGLE_OFF)
3568 			tp->nonagle |= TCP_NAGLE_PUSH;
3569 		tcp_push_pending_frames(sk);
3570 	}
3571 }
3572 
tcp_sock_set_cork(struct sock * sk,bool on)3573 void tcp_sock_set_cork(struct sock *sk, bool on)
3574 {
3575 	lock_sock(sk);
3576 	__tcp_sock_set_cork(sk, on);
3577 	release_sock(sk);
3578 }
3579 EXPORT_SYMBOL(tcp_sock_set_cork);
3580 
3581 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3582  * remembered, but it is not activated until cork is cleared.
3583  *
3584  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3585  * even TCP_CORK for currently queued segments.
3586  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3587 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3588 {
3589 	if (on) {
3590 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3591 		tcp_push_pending_frames(sk);
3592 	} else {
3593 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3594 	}
3595 }
3596 
tcp_sock_set_nodelay(struct sock * sk)3597 void tcp_sock_set_nodelay(struct sock *sk)
3598 {
3599 	lock_sock(sk);
3600 	__tcp_sock_set_nodelay(sk, true);
3601 	release_sock(sk);
3602 }
3603 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3604 
__tcp_sock_set_quickack(struct sock * sk,int val)3605 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3606 {
3607 	if (!val) {
3608 		inet_csk_enter_pingpong_mode(sk);
3609 		return;
3610 	}
3611 
3612 	inet_csk_exit_pingpong_mode(sk);
3613 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3614 	    inet_csk_ack_scheduled(sk)) {
3615 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3616 		tcp_cleanup_rbuf(sk, 1);
3617 		if (!(val & 1))
3618 			inet_csk_enter_pingpong_mode(sk);
3619 	}
3620 }
3621 
tcp_sock_set_quickack(struct sock * sk,int val)3622 void tcp_sock_set_quickack(struct sock *sk, int val)
3623 {
3624 	lock_sock(sk);
3625 	__tcp_sock_set_quickack(sk, val);
3626 	release_sock(sk);
3627 }
3628 EXPORT_SYMBOL(tcp_sock_set_quickack);
3629 
tcp_sock_set_syncnt(struct sock * sk,int val)3630 int tcp_sock_set_syncnt(struct sock *sk, int val)
3631 {
3632 	if (val < 1 || val > MAX_TCP_SYNCNT)
3633 		return -EINVAL;
3634 
3635 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3636 	return 0;
3637 }
3638 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3639 
tcp_sock_set_user_timeout(struct sock * sk,int val)3640 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3641 {
3642 	/* Cap the max time in ms TCP will retry or probe the window
3643 	 * before giving up and aborting (ETIMEDOUT) a connection.
3644 	 */
3645 	if (val < 0)
3646 		return -EINVAL;
3647 
3648 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3649 	return 0;
3650 }
3651 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3652 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3653 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3654 {
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 
3657 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3658 		return -EINVAL;
3659 
3660 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3661 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3662 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3663 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3664 		u32 elapsed = keepalive_time_elapsed(tp);
3665 
3666 		if (tp->keepalive_time > elapsed)
3667 			elapsed = tp->keepalive_time - elapsed;
3668 		else
3669 			elapsed = 0;
3670 		tcp_reset_keepalive_timer(sk, elapsed);
3671 	}
3672 
3673 	return 0;
3674 }
3675 
tcp_sock_set_keepidle(struct sock * sk,int val)3676 int tcp_sock_set_keepidle(struct sock *sk, int val)
3677 {
3678 	int err;
3679 
3680 	lock_sock(sk);
3681 	err = tcp_sock_set_keepidle_locked(sk, val);
3682 	release_sock(sk);
3683 	return err;
3684 }
3685 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3686 
tcp_sock_set_keepintvl(struct sock * sk,int val)3687 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3688 {
3689 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3690 		return -EINVAL;
3691 
3692 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3693 	return 0;
3694 }
3695 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3696 
tcp_sock_set_keepcnt(struct sock * sk,int val)3697 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3698 {
3699 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3700 		return -EINVAL;
3701 
3702 	/* Paired with READ_ONCE() in keepalive_probes() */
3703 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3704 	return 0;
3705 }
3706 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3707 
tcp_set_window_clamp(struct sock * sk,int val)3708 int tcp_set_window_clamp(struct sock *sk, int val)
3709 {
3710 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3711 	struct tcp_sock *tp = tcp_sk(sk);
3712 
3713 	if (!val) {
3714 		if (sk->sk_state != TCP_CLOSE)
3715 			return -EINVAL;
3716 		WRITE_ONCE(tp->window_clamp, 0);
3717 		return 0;
3718 	}
3719 
3720 	old_window_clamp = tp->window_clamp;
3721 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3722 
3723 	if (new_window_clamp == old_window_clamp)
3724 		return 0;
3725 
3726 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3727 
3728 	/* Need to apply the reserved mem provisioning only
3729 	 * when shrinking the window clamp.
3730 	 */
3731 	if (new_window_clamp < old_window_clamp) {
3732 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3733 	} else {
3734 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3735 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3736 	}
3737 	return 0;
3738 }
3739 
3740 /*
3741  *	Socket option code for TCP.
3742  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3743 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3744 		      sockptr_t optval, unsigned int optlen)
3745 {
3746 	struct tcp_sock *tp = tcp_sk(sk);
3747 	struct inet_connection_sock *icsk = inet_csk(sk);
3748 	struct net *net = sock_net(sk);
3749 	int val;
3750 	int err = 0;
3751 
3752 	/* These are data/string values, all the others are ints */
3753 	switch (optname) {
3754 	case TCP_CONGESTION: {
3755 		char name[TCP_CA_NAME_MAX];
3756 
3757 		if (optlen < 1)
3758 			return -EINVAL;
3759 
3760 		val = strncpy_from_sockptr(name, optval,
3761 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3762 		if (val < 0)
3763 			return -EFAULT;
3764 		name[val] = 0;
3765 
3766 		sockopt_lock_sock(sk);
3767 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3768 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3769 								    CAP_NET_ADMIN));
3770 		sockopt_release_sock(sk);
3771 		return err;
3772 	}
3773 	case TCP_ULP: {
3774 		char name[TCP_ULP_NAME_MAX];
3775 
3776 		if (optlen < 1)
3777 			return -EINVAL;
3778 
3779 		val = strncpy_from_sockptr(name, optval,
3780 					min_t(long, TCP_ULP_NAME_MAX - 1,
3781 					      optlen));
3782 		if (val < 0)
3783 			return -EFAULT;
3784 		name[val] = 0;
3785 
3786 		sockopt_lock_sock(sk);
3787 		err = tcp_set_ulp(sk, name);
3788 		sockopt_release_sock(sk);
3789 		return err;
3790 	}
3791 	case TCP_FASTOPEN_KEY: {
3792 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3793 		__u8 *backup_key = NULL;
3794 
3795 		/* Allow a backup key as well to facilitate key rotation
3796 		 * First key is the active one.
3797 		 */
3798 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3799 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3800 			return -EINVAL;
3801 
3802 		if (copy_from_sockptr(key, optval, optlen))
3803 			return -EFAULT;
3804 
3805 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3806 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3807 
3808 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3809 	}
3810 	default:
3811 		/* fallthru */
3812 		break;
3813 	}
3814 
3815 	if (optlen < sizeof(int))
3816 		return -EINVAL;
3817 
3818 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3819 		return -EFAULT;
3820 
3821 	/* Handle options that can be set without locking the socket. */
3822 	switch (optname) {
3823 	case TCP_SYNCNT:
3824 		return tcp_sock_set_syncnt(sk, val);
3825 	case TCP_USER_TIMEOUT:
3826 		return tcp_sock_set_user_timeout(sk, val);
3827 	case TCP_KEEPINTVL:
3828 		return tcp_sock_set_keepintvl(sk, val);
3829 	case TCP_KEEPCNT:
3830 		return tcp_sock_set_keepcnt(sk, val);
3831 	case TCP_LINGER2:
3832 		if (val < 0)
3833 			WRITE_ONCE(tp->linger2, -1);
3834 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3835 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3836 		else
3837 			WRITE_ONCE(tp->linger2, val * HZ);
3838 		return 0;
3839 	case TCP_DEFER_ACCEPT:
3840 		/* Translate value in seconds to number of retransmits */
3841 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3842 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3843 					   TCP_RTO_MAX / HZ));
3844 		return 0;
3845 	case TCP_RTO_MAX_MS:
3846 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3847 			return -EINVAL;
3848 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3849 		return 0;
3850 	case TCP_RTO_MIN_US: {
3851 		int rto_min = usecs_to_jiffies(val);
3852 
3853 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3854 			return -EINVAL;
3855 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3856 		return 0;
3857 	}
3858 	case TCP_DELACK_MAX_US: {
3859 		int delack_max = usecs_to_jiffies(val);
3860 
3861 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3862 			return -EINVAL;
3863 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3864 		return 0;
3865 	}
3866 	}
3867 
3868 	sockopt_lock_sock(sk);
3869 
3870 	switch (optname) {
3871 	case TCP_MAXSEG:
3872 		/* Values greater than interface MTU won't take effect. However
3873 		 * at the point when this call is done we typically don't yet
3874 		 * know which interface is going to be used
3875 		 */
3876 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3877 			err = -EINVAL;
3878 			break;
3879 		}
3880 		tp->rx_opt.user_mss = val;
3881 		break;
3882 
3883 	case TCP_NODELAY:
3884 		__tcp_sock_set_nodelay(sk, val);
3885 		break;
3886 
3887 	case TCP_THIN_LINEAR_TIMEOUTS:
3888 		if (val < 0 || val > 1)
3889 			err = -EINVAL;
3890 		else
3891 			tp->thin_lto = val;
3892 		break;
3893 
3894 	case TCP_THIN_DUPACK:
3895 		if (val < 0 || val > 1)
3896 			err = -EINVAL;
3897 		break;
3898 
3899 	case TCP_REPAIR:
3900 		if (!tcp_can_repair_sock(sk))
3901 			err = -EPERM;
3902 		else if (val == TCP_REPAIR_ON) {
3903 			tp->repair = 1;
3904 			sk->sk_reuse = SK_FORCE_REUSE;
3905 			tp->repair_queue = TCP_NO_QUEUE;
3906 		} else if (val == TCP_REPAIR_OFF) {
3907 			tp->repair = 0;
3908 			sk->sk_reuse = SK_NO_REUSE;
3909 			tcp_send_window_probe(sk);
3910 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3911 			tp->repair = 0;
3912 			sk->sk_reuse = SK_NO_REUSE;
3913 		} else
3914 			err = -EINVAL;
3915 
3916 		break;
3917 
3918 	case TCP_REPAIR_QUEUE:
3919 		if (!tp->repair)
3920 			err = -EPERM;
3921 		else if ((unsigned int)val < TCP_QUEUES_NR)
3922 			tp->repair_queue = val;
3923 		else
3924 			err = -EINVAL;
3925 		break;
3926 
3927 	case TCP_QUEUE_SEQ:
3928 		if (sk->sk_state != TCP_CLOSE) {
3929 			err = -EPERM;
3930 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3931 			if (!tcp_rtx_queue_empty(sk))
3932 				err = -EPERM;
3933 			else
3934 				WRITE_ONCE(tp->write_seq, val);
3935 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3936 			if (tp->rcv_nxt != tp->copied_seq) {
3937 				err = -EPERM;
3938 			} else {
3939 				WRITE_ONCE(tp->rcv_nxt, val);
3940 				WRITE_ONCE(tp->copied_seq, val);
3941 			}
3942 		} else {
3943 			err = -EINVAL;
3944 		}
3945 		break;
3946 
3947 	case TCP_REPAIR_OPTIONS:
3948 		if (!tp->repair)
3949 			err = -EINVAL;
3950 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3951 			err = tcp_repair_options_est(sk, optval, optlen);
3952 		else
3953 			err = -EPERM;
3954 		break;
3955 
3956 	case TCP_CORK:
3957 		__tcp_sock_set_cork(sk, val);
3958 		break;
3959 
3960 	case TCP_KEEPIDLE:
3961 		err = tcp_sock_set_keepidle_locked(sk, val);
3962 		break;
3963 	case TCP_SAVE_SYN:
3964 		/* 0: disable, 1: enable, 2: start from ether_header */
3965 		if (val < 0 || val > 2)
3966 			err = -EINVAL;
3967 		else
3968 			tp->save_syn = val;
3969 		break;
3970 
3971 	case TCP_WINDOW_CLAMP:
3972 		err = tcp_set_window_clamp(sk, val);
3973 		break;
3974 
3975 	case TCP_QUICKACK:
3976 		__tcp_sock_set_quickack(sk, val);
3977 		break;
3978 
3979 	case TCP_AO_REPAIR:
3980 		if (!tcp_can_repair_sock(sk)) {
3981 			err = -EPERM;
3982 			break;
3983 		}
3984 		err = tcp_ao_set_repair(sk, optval, optlen);
3985 		break;
3986 #ifdef CONFIG_TCP_AO
3987 	case TCP_AO_ADD_KEY:
3988 	case TCP_AO_DEL_KEY:
3989 	case TCP_AO_INFO: {
3990 		/* If this is the first TCP-AO setsockopt() on the socket,
3991 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3992 		 * in any state.
3993 		 */
3994 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3995 			goto ao_parse;
3996 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3997 					      lockdep_sock_is_held(sk)))
3998 			goto ao_parse;
3999 		if (tp->repair)
4000 			goto ao_parse;
4001 		err = -EISCONN;
4002 		break;
4003 ao_parse:
4004 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4005 		break;
4006 	}
4007 #endif
4008 #ifdef CONFIG_TCP_MD5SIG
4009 	case TCP_MD5SIG:
4010 	case TCP_MD5SIG_EXT:
4011 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4012 		break;
4013 #endif
4014 	case TCP_FASTOPEN:
4015 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4016 		    TCPF_LISTEN))) {
4017 			tcp_fastopen_init_key_once(net);
4018 
4019 			fastopen_queue_tune(sk, val);
4020 		} else {
4021 			err = -EINVAL;
4022 		}
4023 		break;
4024 	case TCP_FASTOPEN_CONNECT:
4025 		if (val > 1 || val < 0) {
4026 			err = -EINVAL;
4027 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4028 			   TFO_CLIENT_ENABLE) {
4029 			if (sk->sk_state == TCP_CLOSE)
4030 				tp->fastopen_connect = val;
4031 			else
4032 				err = -EINVAL;
4033 		} else {
4034 			err = -EOPNOTSUPP;
4035 		}
4036 		break;
4037 	case TCP_FASTOPEN_NO_COOKIE:
4038 		if (val > 1 || val < 0)
4039 			err = -EINVAL;
4040 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4041 			err = -EINVAL;
4042 		else
4043 			tp->fastopen_no_cookie = val;
4044 		break;
4045 	case TCP_TIMESTAMP:
4046 		if (!tp->repair) {
4047 			err = -EPERM;
4048 			break;
4049 		}
4050 		/* val is an opaque field,
4051 		 * and low order bit contains usec_ts enable bit.
4052 		 * Its a best effort, and we do not care if user makes an error.
4053 		 */
4054 		tp->tcp_usec_ts = val & 1;
4055 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4056 		break;
4057 	case TCP_REPAIR_WINDOW:
4058 		err = tcp_repair_set_window(tp, optval, optlen);
4059 		break;
4060 	case TCP_NOTSENT_LOWAT:
4061 		WRITE_ONCE(tp->notsent_lowat, val);
4062 		sk->sk_write_space(sk);
4063 		break;
4064 	case TCP_INQ:
4065 		if (val > 1 || val < 0)
4066 			err = -EINVAL;
4067 		else
4068 			tp->recvmsg_inq = val;
4069 		break;
4070 	case TCP_TX_DELAY:
4071 		if (val)
4072 			tcp_enable_tx_delay();
4073 		WRITE_ONCE(tp->tcp_tx_delay, val);
4074 		break;
4075 	default:
4076 		err = -ENOPROTOOPT;
4077 		break;
4078 	}
4079 
4080 	sockopt_release_sock(sk);
4081 	return err;
4082 }
4083 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4084 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4085 		   unsigned int optlen)
4086 {
4087 	const struct inet_connection_sock *icsk = inet_csk(sk);
4088 
4089 	if (level != SOL_TCP)
4090 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4091 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4092 								optval, optlen);
4093 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4094 }
4095 EXPORT_IPV6_MOD(tcp_setsockopt);
4096 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4097 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4098 				      struct tcp_info *info)
4099 {
4100 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4101 	enum tcp_chrono i;
4102 
4103 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4104 		stats[i] = tp->chrono_stat[i - 1];
4105 		if (i == tp->chrono_type)
4106 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4107 		stats[i] *= USEC_PER_SEC / HZ;
4108 		total += stats[i];
4109 	}
4110 
4111 	info->tcpi_busy_time = total;
4112 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4113 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4114 }
4115 
4116 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4117 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4118 {
4119 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4120 	const struct inet_connection_sock *icsk = inet_csk(sk);
4121 	unsigned long rate;
4122 	u32 now;
4123 	u64 rate64;
4124 	bool slow;
4125 
4126 	memset(info, 0, sizeof(*info));
4127 	if (sk->sk_type != SOCK_STREAM)
4128 		return;
4129 
4130 	info->tcpi_state = inet_sk_state_load(sk);
4131 
4132 	/* Report meaningful fields for all TCP states, including listeners */
4133 	rate = READ_ONCE(sk->sk_pacing_rate);
4134 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4135 	info->tcpi_pacing_rate = rate64;
4136 
4137 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4138 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4139 	info->tcpi_max_pacing_rate = rate64;
4140 
4141 	info->tcpi_reordering = tp->reordering;
4142 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4143 
4144 	if (info->tcpi_state == TCP_LISTEN) {
4145 		/* listeners aliased fields :
4146 		 * tcpi_unacked -> Number of children ready for accept()
4147 		 * tcpi_sacked  -> max backlog
4148 		 */
4149 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4150 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4151 		return;
4152 	}
4153 
4154 	slow = lock_sock_fast(sk);
4155 
4156 	info->tcpi_ca_state = icsk->icsk_ca_state;
4157 	info->tcpi_retransmits = icsk->icsk_retransmits;
4158 	info->tcpi_probes = icsk->icsk_probes_out;
4159 	info->tcpi_backoff = icsk->icsk_backoff;
4160 
4161 	if (tp->rx_opt.tstamp_ok)
4162 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4163 	if (tcp_is_sack(tp))
4164 		info->tcpi_options |= TCPI_OPT_SACK;
4165 	if (tp->rx_opt.wscale_ok) {
4166 		info->tcpi_options |= TCPI_OPT_WSCALE;
4167 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4168 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4169 	}
4170 
4171 	if (tcp_ecn_mode_any(tp))
4172 		info->tcpi_options |= TCPI_OPT_ECN;
4173 	if (tp->ecn_flags & TCP_ECN_SEEN)
4174 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4175 	if (tp->syn_data_acked)
4176 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4177 	if (tp->tcp_usec_ts)
4178 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4179 
4180 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4181 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4182 						tcp_delack_max(sk)));
4183 	info->tcpi_snd_mss = tp->mss_cache;
4184 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4185 
4186 	info->tcpi_unacked = tp->packets_out;
4187 	info->tcpi_sacked = tp->sacked_out;
4188 
4189 	info->tcpi_lost = tp->lost_out;
4190 	info->tcpi_retrans = tp->retrans_out;
4191 
4192 	now = tcp_jiffies32;
4193 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4194 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4195 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4196 
4197 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4198 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4199 	info->tcpi_rtt = tp->srtt_us >> 3;
4200 	info->tcpi_rttvar = tp->mdev_us >> 2;
4201 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4202 	info->tcpi_advmss = tp->advmss;
4203 
4204 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4205 	info->tcpi_rcv_space = tp->rcvq_space.space;
4206 
4207 	info->tcpi_total_retrans = tp->total_retrans;
4208 
4209 	info->tcpi_bytes_acked = tp->bytes_acked;
4210 	info->tcpi_bytes_received = tp->bytes_received;
4211 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4212 	tcp_get_info_chrono_stats(tp, info);
4213 
4214 	info->tcpi_segs_out = tp->segs_out;
4215 
4216 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4217 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4218 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4219 
4220 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4221 	info->tcpi_data_segs_out = tp->data_segs_out;
4222 
4223 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4224 	rate64 = tcp_compute_delivery_rate(tp);
4225 	if (rate64)
4226 		info->tcpi_delivery_rate = rate64;
4227 	info->tcpi_delivered = tp->delivered;
4228 	info->tcpi_delivered_ce = tp->delivered_ce;
4229 	info->tcpi_bytes_sent = tp->bytes_sent;
4230 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4231 	info->tcpi_dsack_dups = tp->dsack_dups;
4232 	info->tcpi_reord_seen = tp->reord_seen;
4233 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4234 	info->tcpi_snd_wnd = tp->snd_wnd;
4235 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4236 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4237 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4238 
4239 	info->tcpi_total_rto = tp->total_rto;
4240 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4241 	info->tcpi_total_rto_time = tp->total_rto_time;
4242 	if (tp->rto_stamp)
4243 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4244 
4245 	unlock_sock_fast(sk, slow);
4246 }
4247 EXPORT_SYMBOL_GPL(tcp_get_info);
4248 
tcp_opt_stats_get_size(void)4249 static size_t tcp_opt_stats_get_size(void)
4250 {
4251 	return
4252 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4253 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4254 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4255 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4256 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4257 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4258 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4259 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4260 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4261 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4262 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4263 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4264 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4265 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4266 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4267 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4268 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4269 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4270 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4271 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4272 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4273 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4274 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4275 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4276 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4277 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4278 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4279 		0;
4280 }
4281 
4282 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4283 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4284 {
4285 	if (skb->protocol == htons(ETH_P_IP))
4286 		return ip_hdr(skb)->ttl;
4287 	else if (skb->protocol == htons(ETH_P_IPV6))
4288 		return ipv6_hdr(skb)->hop_limit;
4289 	else
4290 		return 0;
4291 }
4292 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4293 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4294 					       const struct sk_buff *orig_skb,
4295 					       const struct sk_buff *ack_skb)
4296 {
4297 	const struct tcp_sock *tp = tcp_sk(sk);
4298 	struct sk_buff *stats;
4299 	struct tcp_info info;
4300 	unsigned long rate;
4301 	u64 rate64;
4302 
4303 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4304 	if (!stats)
4305 		return NULL;
4306 
4307 	tcp_get_info_chrono_stats(tp, &info);
4308 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4309 			  info.tcpi_busy_time, TCP_NLA_PAD);
4310 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4311 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4312 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4313 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4314 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4315 			  tp->data_segs_out, TCP_NLA_PAD);
4316 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4317 			  tp->total_retrans, TCP_NLA_PAD);
4318 
4319 	rate = READ_ONCE(sk->sk_pacing_rate);
4320 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4321 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4322 
4323 	rate64 = tcp_compute_delivery_rate(tp);
4324 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4325 
4326 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4327 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4328 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4329 
4330 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4331 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4332 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4333 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4334 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4335 
4336 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4337 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4338 
4339 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4340 			  TCP_NLA_PAD);
4341 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4342 			  TCP_NLA_PAD);
4343 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4344 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4345 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4346 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4347 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4348 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4349 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4350 			  TCP_NLA_PAD);
4351 	if (ack_skb)
4352 		nla_put_u8(stats, TCP_NLA_TTL,
4353 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4354 
4355 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4356 	return stats;
4357 }
4358 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4359 int do_tcp_getsockopt(struct sock *sk, int level,
4360 		      int optname, sockptr_t optval, sockptr_t optlen)
4361 {
4362 	struct inet_connection_sock *icsk = inet_csk(sk);
4363 	struct tcp_sock *tp = tcp_sk(sk);
4364 	struct net *net = sock_net(sk);
4365 	int val, len;
4366 
4367 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4368 		return -EFAULT;
4369 
4370 	if (len < 0)
4371 		return -EINVAL;
4372 
4373 	len = min_t(unsigned int, len, sizeof(int));
4374 
4375 	switch (optname) {
4376 	case TCP_MAXSEG:
4377 		val = tp->mss_cache;
4378 		if (tp->rx_opt.user_mss &&
4379 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4380 			val = tp->rx_opt.user_mss;
4381 		if (tp->repair)
4382 			val = tp->rx_opt.mss_clamp;
4383 		break;
4384 	case TCP_NODELAY:
4385 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4386 		break;
4387 	case TCP_CORK:
4388 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4389 		break;
4390 	case TCP_KEEPIDLE:
4391 		val = keepalive_time_when(tp) / HZ;
4392 		break;
4393 	case TCP_KEEPINTVL:
4394 		val = keepalive_intvl_when(tp) / HZ;
4395 		break;
4396 	case TCP_KEEPCNT:
4397 		val = keepalive_probes(tp);
4398 		break;
4399 	case TCP_SYNCNT:
4400 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4401 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4402 		break;
4403 	case TCP_LINGER2:
4404 		val = READ_ONCE(tp->linger2);
4405 		if (val >= 0)
4406 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4407 		break;
4408 	case TCP_DEFER_ACCEPT:
4409 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4410 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4411 				      TCP_RTO_MAX / HZ);
4412 		break;
4413 	case TCP_WINDOW_CLAMP:
4414 		val = READ_ONCE(tp->window_clamp);
4415 		break;
4416 	case TCP_INFO: {
4417 		struct tcp_info info;
4418 
4419 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4420 			return -EFAULT;
4421 
4422 		tcp_get_info(sk, &info);
4423 
4424 		len = min_t(unsigned int, len, sizeof(info));
4425 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4426 			return -EFAULT;
4427 		if (copy_to_sockptr(optval, &info, len))
4428 			return -EFAULT;
4429 		return 0;
4430 	}
4431 	case TCP_CC_INFO: {
4432 		const struct tcp_congestion_ops *ca_ops;
4433 		union tcp_cc_info info;
4434 		size_t sz = 0;
4435 		int attr;
4436 
4437 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4438 			return -EFAULT;
4439 
4440 		ca_ops = icsk->icsk_ca_ops;
4441 		if (ca_ops && ca_ops->get_info)
4442 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4443 
4444 		len = min_t(unsigned int, len, sz);
4445 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4446 			return -EFAULT;
4447 		if (copy_to_sockptr(optval, &info, len))
4448 			return -EFAULT;
4449 		return 0;
4450 	}
4451 	case TCP_QUICKACK:
4452 		val = !inet_csk_in_pingpong_mode(sk);
4453 		break;
4454 
4455 	case TCP_CONGESTION:
4456 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4457 			return -EFAULT;
4458 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4459 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4460 			return -EFAULT;
4461 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4462 			return -EFAULT;
4463 		return 0;
4464 
4465 	case TCP_ULP:
4466 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4467 			return -EFAULT;
4468 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4469 		if (!icsk->icsk_ulp_ops) {
4470 			len = 0;
4471 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4472 				return -EFAULT;
4473 			return 0;
4474 		}
4475 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4476 			return -EFAULT;
4477 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4478 			return -EFAULT;
4479 		return 0;
4480 
4481 	case TCP_FASTOPEN_KEY: {
4482 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4483 		unsigned int key_len;
4484 
4485 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4486 			return -EFAULT;
4487 
4488 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4489 				TCP_FASTOPEN_KEY_LENGTH;
4490 		len = min_t(unsigned int, len, key_len);
4491 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4492 			return -EFAULT;
4493 		if (copy_to_sockptr(optval, key, len))
4494 			return -EFAULT;
4495 		return 0;
4496 	}
4497 	case TCP_THIN_LINEAR_TIMEOUTS:
4498 		val = tp->thin_lto;
4499 		break;
4500 
4501 	case TCP_THIN_DUPACK:
4502 		val = 0;
4503 		break;
4504 
4505 	case TCP_REPAIR:
4506 		val = tp->repair;
4507 		break;
4508 
4509 	case TCP_REPAIR_QUEUE:
4510 		if (tp->repair)
4511 			val = tp->repair_queue;
4512 		else
4513 			return -EINVAL;
4514 		break;
4515 
4516 	case TCP_REPAIR_WINDOW: {
4517 		struct tcp_repair_window opt;
4518 
4519 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4520 			return -EFAULT;
4521 
4522 		if (len != sizeof(opt))
4523 			return -EINVAL;
4524 
4525 		if (!tp->repair)
4526 			return -EPERM;
4527 
4528 		opt.snd_wl1	= tp->snd_wl1;
4529 		opt.snd_wnd	= tp->snd_wnd;
4530 		opt.max_window	= tp->max_window;
4531 		opt.rcv_wnd	= tp->rcv_wnd;
4532 		opt.rcv_wup	= tp->rcv_wup;
4533 
4534 		if (copy_to_sockptr(optval, &opt, len))
4535 			return -EFAULT;
4536 		return 0;
4537 	}
4538 	case TCP_QUEUE_SEQ:
4539 		if (tp->repair_queue == TCP_SEND_QUEUE)
4540 			val = tp->write_seq;
4541 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4542 			val = tp->rcv_nxt;
4543 		else
4544 			return -EINVAL;
4545 		break;
4546 
4547 	case TCP_USER_TIMEOUT:
4548 		val = READ_ONCE(icsk->icsk_user_timeout);
4549 		break;
4550 
4551 	case TCP_FASTOPEN:
4552 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4553 		break;
4554 
4555 	case TCP_FASTOPEN_CONNECT:
4556 		val = tp->fastopen_connect;
4557 		break;
4558 
4559 	case TCP_FASTOPEN_NO_COOKIE:
4560 		val = tp->fastopen_no_cookie;
4561 		break;
4562 
4563 	case TCP_TX_DELAY:
4564 		val = READ_ONCE(tp->tcp_tx_delay);
4565 		break;
4566 
4567 	case TCP_TIMESTAMP:
4568 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4569 		if (tp->tcp_usec_ts)
4570 			val |= 1;
4571 		else
4572 			val &= ~1;
4573 		break;
4574 	case TCP_NOTSENT_LOWAT:
4575 		val = READ_ONCE(tp->notsent_lowat);
4576 		break;
4577 	case TCP_INQ:
4578 		val = tp->recvmsg_inq;
4579 		break;
4580 	case TCP_SAVE_SYN:
4581 		val = tp->save_syn;
4582 		break;
4583 	case TCP_SAVED_SYN: {
4584 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4585 			return -EFAULT;
4586 
4587 		sockopt_lock_sock(sk);
4588 		if (tp->saved_syn) {
4589 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4590 				len = tcp_saved_syn_len(tp->saved_syn);
4591 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4592 					sockopt_release_sock(sk);
4593 					return -EFAULT;
4594 				}
4595 				sockopt_release_sock(sk);
4596 				return -EINVAL;
4597 			}
4598 			len = tcp_saved_syn_len(tp->saved_syn);
4599 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4600 				sockopt_release_sock(sk);
4601 				return -EFAULT;
4602 			}
4603 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4604 				sockopt_release_sock(sk);
4605 				return -EFAULT;
4606 			}
4607 			tcp_saved_syn_free(tp);
4608 			sockopt_release_sock(sk);
4609 		} else {
4610 			sockopt_release_sock(sk);
4611 			len = 0;
4612 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4613 				return -EFAULT;
4614 		}
4615 		return 0;
4616 	}
4617 #ifdef CONFIG_MMU
4618 	case TCP_ZEROCOPY_RECEIVE: {
4619 		struct scm_timestamping_internal tss;
4620 		struct tcp_zerocopy_receive zc = {};
4621 		int err;
4622 
4623 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4624 			return -EFAULT;
4625 		if (len < 0 ||
4626 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4627 			return -EINVAL;
4628 		if (unlikely(len > sizeof(zc))) {
4629 			err = check_zeroed_sockptr(optval, sizeof(zc),
4630 						   len - sizeof(zc));
4631 			if (err < 1)
4632 				return err == 0 ? -EINVAL : err;
4633 			len = sizeof(zc);
4634 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4635 				return -EFAULT;
4636 		}
4637 		if (copy_from_sockptr(&zc, optval, len))
4638 			return -EFAULT;
4639 		if (zc.reserved)
4640 			return -EINVAL;
4641 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4642 			return -EINVAL;
4643 		sockopt_lock_sock(sk);
4644 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4645 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4646 							  &zc, &len, err);
4647 		sockopt_release_sock(sk);
4648 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4649 			goto zerocopy_rcv_cmsg;
4650 		switch (len) {
4651 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4652 			goto zerocopy_rcv_cmsg;
4653 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4654 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4655 		case offsetofend(struct tcp_zerocopy_receive, flags):
4656 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4657 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4658 		case offsetofend(struct tcp_zerocopy_receive, err):
4659 			goto zerocopy_rcv_sk_err;
4660 		case offsetofend(struct tcp_zerocopy_receive, inq):
4661 			goto zerocopy_rcv_inq;
4662 		case offsetofend(struct tcp_zerocopy_receive, length):
4663 		default:
4664 			goto zerocopy_rcv_out;
4665 		}
4666 zerocopy_rcv_cmsg:
4667 		if (zc.msg_flags & TCP_CMSG_TS)
4668 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4669 		else
4670 			zc.msg_flags = 0;
4671 zerocopy_rcv_sk_err:
4672 		if (!err)
4673 			zc.err = sock_error(sk);
4674 zerocopy_rcv_inq:
4675 		zc.inq = tcp_inq_hint(sk);
4676 zerocopy_rcv_out:
4677 		if (!err && copy_to_sockptr(optval, &zc, len))
4678 			err = -EFAULT;
4679 		return err;
4680 	}
4681 #endif
4682 	case TCP_AO_REPAIR:
4683 		if (!tcp_can_repair_sock(sk))
4684 			return -EPERM;
4685 		return tcp_ao_get_repair(sk, optval, optlen);
4686 	case TCP_AO_GET_KEYS:
4687 	case TCP_AO_INFO: {
4688 		int err;
4689 
4690 		sockopt_lock_sock(sk);
4691 		if (optname == TCP_AO_GET_KEYS)
4692 			err = tcp_ao_get_mkts(sk, optval, optlen);
4693 		else
4694 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4695 		sockopt_release_sock(sk);
4696 
4697 		return err;
4698 	}
4699 	case TCP_IS_MPTCP:
4700 		val = 0;
4701 		break;
4702 	case TCP_RTO_MAX_MS:
4703 		val = jiffies_to_msecs(tcp_rto_max(sk));
4704 		break;
4705 	case TCP_RTO_MIN_US:
4706 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4707 		break;
4708 	case TCP_DELACK_MAX_US:
4709 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4710 		break;
4711 	default:
4712 		return -ENOPROTOOPT;
4713 	}
4714 
4715 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4716 		return -EFAULT;
4717 	if (copy_to_sockptr(optval, &val, len))
4718 		return -EFAULT;
4719 	return 0;
4720 }
4721 
tcp_bpf_bypass_getsockopt(int level,int optname)4722 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4723 {
4724 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4725 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4726 	 */
4727 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4728 		return true;
4729 
4730 	return false;
4731 }
4732 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4733 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4734 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4735 		   int __user *optlen)
4736 {
4737 	struct inet_connection_sock *icsk = inet_csk(sk);
4738 
4739 	if (level != SOL_TCP)
4740 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4741 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4742 								optval, optlen);
4743 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4744 				 USER_SOCKPTR(optlen));
4745 }
4746 EXPORT_IPV6_MOD(tcp_getsockopt);
4747 
4748 #ifdef CONFIG_TCP_MD5SIG
4749 int tcp_md5_sigpool_id = -1;
4750 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4751 
tcp_md5_alloc_sigpool(void)4752 int tcp_md5_alloc_sigpool(void)
4753 {
4754 	size_t scratch_size;
4755 	int ret;
4756 
4757 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4758 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4759 	if (ret >= 0) {
4760 		/* As long as any md5 sigpool was allocated, the return
4761 		 * id would stay the same. Re-write the id only for the case
4762 		 * when previously all MD5 keys were deleted and this call
4763 		 * allocates the first MD5 key, which may return a different
4764 		 * sigpool id than was used previously.
4765 		 */
4766 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4767 		return 0;
4768 	}
4769 	return ret;
4770 }
4771 
tcp_md5_release_sigpool(void)4772 void tcp_md5_release_sigpool(void)
4773 {
4774 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4775 }
4776 
tcp_md5_add_sigpool(void)4777 void tcp_md5_add_sigpool(void)
4778 {
4779 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4780 }
4781 
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4782 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4783 		     const struct tcp_md5sig_key *key)
4784 {
4785 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4786 	struct scatterlist sg;
4787 
4788 	sg_init_one(&sg, key->key, keylen);
4789 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4790 
4791 	/* We use data_race() because tcp_md5_do_add() might change
4792 	 * key->key under us
4793 	 */
4794 	return data_race(crypto_ahash_update(hp->req));
4795 }
4796 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4797 
4798 /* Called with rcu_read_lock() */
4799 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4800 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4801 		     const void *saddr, const void *daddr,
4802 		     int family, int l3index, const __u8 *hash_location)
4803 {
4804 	/* This gets called for each TCP segment that has TCP-MD5 option.
4805 	 * We have 3 drop cases:
4806 	 * o No MD5 hash and one expected.
4807 	 * o MD5 hash and we're not expecting one.
4808 	 * o MD5 hash and its wrong.
4809 	 */
4810 	const struct tcp_sock *tp = tcp_sk(sk);
4811 	struct tcp_md5sig_key *key;
4812 	u8 newhash[16];
4813 	int genhash;
4814 
4815 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4816 
4817 	if (!key && hash_location) {
4818 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4819 		trace_tcp_hash_md5_unexpected(sk, skb);
4820 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4821 	}
4822 
4823 	/* Check the signature.
4824 	 * To support dual stack listeners, we need to handle
4825 	 * IPv4-mapped case.
4826 	 */
4827 	if (family == AF_INET)
4828 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4829 	else
4830 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4831 							 NULL, skb);
4832 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4833 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4834 		trace_tcp_hash_md5_mismatch(sk, skb);
4835 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4836 	}
4837 	return SKB_NOT_DROPPED_YET;
4838 }
4839 #else
4840 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4841 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4842 		     const void *saddr, const void *daddr,
4843 		     int family, int l3index, const __u8 *hash_location)
4844 {
4845 	return SKB_NOT_DROPPED_YET;
4846 }
4847 
4848 #endif
4849 
4850 /* Called with rcu_read_lock() */
4851 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4852 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4853 		 const struct sk_buff *skb,
4854 		 const void *saddr, const void *daddr,
4855 		 int family, int dif, int sdif)
4856 {
4857 	const struct tcphdr *th = tcp_hdr(skb);
4858 	const struct tcp_ao_hdr *aoh;
4859 	const __u8 *md5_location;
4860 	int l3index;
4861 
4862 	/* Invalid option or two times meet any of auth options */
4863 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4864 		trace_tcp_hash_bad_header(sk, skb);
4865 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4866 	}
4867 
4868 	if (req) {
4869 		if (tcp_rsk_used_ao(req) != !!aoh) {
4870 			u8 keyid, rnext, maclen;
4871 
4872 			if (aoh) {
4873 				keyid = aoh->keyid;
4874 				rnext = aoh->rnext_keyid;
4875 				maclen = tcp_ao_hdr_maclen(aoh);
4876 			} else {
4877 				keyid = rnext = maclen = 0;
4878 			}
4879 
4880 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4881 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4882 			return SKB_DROP_REASON_TCP_AOFAILURE;
4883 		}
4884 	}
4885 
4886 	/* sdif set, means packet ingressed via a device
4887 	 * in an L3 domain and dif is set to the l3mdev
4888 	 */
4889 	l3index = sdif ? dif : 0;
4890 
4891 	/* Fast path: unsigned segments */
4892 	if (likely(!md5_location && !aoh)) {
4893 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4894 		 * for the remote peer. On TCP-AO established connection
4895 		 * the last key is impossible to remove, so there's
4896 		 * always at least one current_key.
4897 		 */
4898 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4899 			trace_tcp_hash_ao_required(sk, skb);
4900 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4901 		}
4902 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4903 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4904 			trace_tcp_hash_md5_required(sk, skb);
4905 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4906 		}
4907 		return SKB_NOT_DROPPED_YET;
4908 	}
4909 
4910 	if (aoh)
4911 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4912 
4913 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4914 				    l3index, md5_location);
4915 }
4916 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4917 
tcp_done(struct sock * sk)4918 void tcp_done(struct sock *sk)
4919 {
4920 	struct request_sock *req;
4921 
4922 	/* We might be called with a new socket, after
4923 	 * inet_csk_prepare_forced_close() has been called
4924 	 * so we can not use lockdep_sock_is_held(sk)
4925 	 */
4926 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4927 
4928 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4929 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4930 
4931 	tcp_set_state(sk, TCP_CLOSE);
4932 	tcp_clear_xmit_timers(sk);
4933 	if (req)
4934 		reqsk_fastopen_remove(sk, req, false);
4935 
4936 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4937 
4938 	if (!sock_flag(sk, SOCK_DEAD))
4939 		sk->sk_state_change(sk);
4940 	else
4941 		inet_csk_destroy_sock(sk);
4942 }
4943 EXPORT_SYMBOL_GPL(tcp_done);
4944 
tcp_abort(struct sock * sk,int err)4945 int tcp_abort(struct sock *sk, int err)
4946 {
4947 	int state = inet_sk_state_load(sk);
4948 
4949 	if (state == TCP_NEW_SYN_RECV) {
4950 		struct request_sock *req = inet_reqsk(sk);
4951 
4952 		local_bh_disable();
4953 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4954 		local_bh_enable();
4955 		return 0;
4956 	}
4957 	if (state == TCP_TIME_WAIT) {
4958 		struct inet_timewait_sock *tw = inet_twsk(sk);
4959 
4960 		refcount_inc(&tw->tw_refcnt);
4961 		local_bh_disable();
4962 		inet_twsk_deschedule_put(tw);
4963 		local_bh_enable();
4964 		return 0;
4965 	}
4966 
4967 	/* BPF context ensures sock locking. */
4968 	if (!has_current_bpf_ctx())
4969 		/* Don't race with userspace socket closes such as tcp_close. */
4970 		lock_sock(sk);
4971 
4972 	/* Avoid closing the same socket twice. */
4973 	if (sk->sk_state == TCP_CLOSE) {
4974 		if (!has_current_bpf_ctx())
4975 			release_sock(sk);
4976 		return -ENOENT;
4977 	}
4978 
4979 	if (sk->sk_state == TCP_LISTEN) {
4980 		tcp_set_state(sk, TCP_CLOSE);
4981 		inet_csk_listen_stop(sk);
4982 	}
4983 
4984 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4985 	local_bh_disable();
4986 	bh_lock_sock(sk);
4987 
4988 	if (tcp_need_reset(sk->sk_state))
4989 		tcp_send_active_reset(sk, GFP_ATOMIC,
4990 				      SK_RST_REASON_TCP_STATE);
4991 	tcp_done_with_error(sk, err);
4992 
4993 	bh_unlock_sock(sk);
4994 	local_bh_enable();
4995 	if (!has_current_bpf_ctx())
4996 		release_sock(sk);
4997 	return 0;
4998 }
4999 EXPORT_SYMBOL_GPL(tcp_abort);
5000 
5001 extern struct tcp_congestion_ops tcp_reno;
5002 
5003 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)5004 static int __init set_thash_entries(char *str)
5005 {
5006 	ssize_t ret;
5007 
5008 	if (!str)
5009 		return 0;
5010 
5011 	ret = kstrtoul(str, 0, &thash_entries);
5012 	if (ret)
5013 		return 0;
5014 
5015 	return 1;
5016 }
5017 __setup("thash_entries=", set_thash_entries);
5018 
tcp_init_mem(void)5019 static void __init tcp_init_mem(void)
5020 {
5021 	unsigned long limit = nr_free_buffer_pages() / 16;
5022 
5023 	limit = max(limit, 128UL);
5024 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5025 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5026 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5027 }
5028 
tcp_struct_check(void)5029 static void __init tcp_struct_check(void)
5030 {
5031 	/* TX read-mostly hotpath cache lines */
5032 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5033 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5034 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5035 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5036 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5037 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5038 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5039 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5040 
5041 	/* TXRX read-mostly hotpath cache lines */
5042 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5050 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5051 
5052 	/* RX read-mostly hotpath cache lines */
5053 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5057 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5058 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5059 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5060 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5061 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5062 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5063 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5065 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5067 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5068 #else
5069 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5070 #endif
5071 
5072 	/* TX read-write hotpath cache lines */
5073 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5074 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5075 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5076 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5077 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5078 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5079 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5080 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5081 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5082 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5083 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5084 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5085 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5086 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5087 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5088 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5089 
5090 	/* TXRX read-write hotpath cache lines */
5091 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5092 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5093 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5094 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5095 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5096 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5097 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5098 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5099 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5100 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5106 
5107 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5108 	 * before tcp_clock_cache.
5109 	 */
5110 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5111 
5112 	/* RX read-write hotpath cache lines */
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5120 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5121 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5122 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5126 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5127 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5128 }
5129 
tcp_init(void)5130 void __init tcp_init(void)
5131 {
5132 	int max_rshare, max_wshare, cnt;
5133 	unsigned long limit;
5134 	unsigned int i;
5135 
5136 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5137 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5138 		     sizeof_field(struct sk_buff, cb));
5139 
5140 	tcp_struct_check();
5141 
5142 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5143 
5144 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5145 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5146 
5147 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5148 			    thash_entries, 21,  /* one slot per 2 MB*/
5149 			    0, 64 * 1024);
5150 	tcp_hashinfo.bind_bucket_cachep =
5151 		kmem_cache_create("tcp_bind_bucket",
5152 				  sizeof(struct inet_bind_bucket), 0,
5153 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5154 				  SLAB_ACCOUNT,
5155 				  NULL);
5156 	tcp_hashinfo.bind2_bucket_cachep =
5157 		kmem_cache_create("tcp_bind2_bucket",
5158 				  sizeof(struct inet_bind2_bucket), 0,
5159 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5160 				  SLAB_ACCOUNT,
5161 				  NULL);
5162 
5163 	/* Size and allocate the main established and bind bucket
5164 	 * hash tables.
5165 	 *
5166 	 * The methodology is similar to that of the buffer cache.
5167 	 */
5168 	tcp_hashinfo.ehash =
5169 		alloc_large_system_hash("TCP established",
5170 					sizeof(struct inet_ehash_bucket),
5171 					thash_entries,
5172 					17, /* one slot per 128 KB of memory */
5173 					0,
5174 					NULL,
5175 					&tcp_hashinfo.ehash_mask,
5176 					0,
5177 					thash_entries ? 0 : 512 * 1024);
5178 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5179 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5180 
5181 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5182 		panic("TCP: failed to alloc ehash_locks");
5183 	tcp_hashinfo.bhash =
5184 		alloc_large_system_hash("TCP bind",
5185 					2 * sizeof(struct inet_bind_hashbucket),
5186 					tcp_hashinfo.ehash_mask + 1,
5187 					17, /* one slot per 128 KB of memory */
5188 					0,
5189 					&tcp_hashinfo.bhash_size,
5190 					NULL,
5191 					0,
5192 					64 * 1024);
5193 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5194 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5195 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5196 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5197 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5198 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5199 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5200 	}
5201 
5202 	tcp_hashinfo.pernet = false;
5203 
5204 	cnt = tcp_hashinfo.ehash_mask + 1;
5205 	sysctl_tcp_max_orphans = cnt / 2;
5206 
5207 	tcp_init_mem();
5208 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5209 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5210 	max_wshare = min(4UL*1024*1024, limit);
5211 	max_rshare = min(6UL*1024*1024, limit);
5212 
5213 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5214 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5215 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5216 
5217 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5218 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5219 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5220 
5221 	pr_info("Hash tables configured (established %u bind %u)\n",
5222 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5223 
5224 	tcp_v4_init();
5225 	tcp_metrics_init();
5226 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5227 	tcp_tasklet_init();
5228 	mptcp_init();
5229 }
5230