xref: /linux/fs/ext4/page-io.c (revision 5c2a430e85994f4873ea5ec42091baa1153bc731)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/sched/mm.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
ext4_init_pageio(void)36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
ext4_exit_pageio(void)50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
ext4_alloc_io_end_vec(ext4_io_end_t * io_end)56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
ext4_free_io_end_vec(ext4_io_end_t * io_end)68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
ext4_last_io_end_vec(ext4_io_end_t * io_end)80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
buffer_io_error(struct buffer_head * bh)93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
ext4_finish_bio(struct bio * bio)100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct folio_iter fi;
103 
104 	bio_for_each_folio_all(fi, bio) {
105 		struct folio *folio = fi.folio;
106 		struct folio *io_folio = NULL;
107 		struct buffer_head *bh, *head;
108 		size_t bio_start = fi.offset;
109 		size_t bio_end = bio_start + fi.length;
110 		unsigned under_io = 0;
111 		unsigned long flags;
112 
113 		if (fscrypt_is_bounce_folio(folio)) {
114 			io_folio = folio;
115 			folio = fscrypt_pagecache_folio(folio);
116 		}
117 
118 		if (bio->bi_status) {
119 			int err = blk_status_to_errno(bio->bi_status);
120 			mapping_set_error(folio->mapping, err);
121 		}
122 		bh = head = folio_buffers(folio);
123 		/*
124 		 * We check all buffers in the folio under b_uptodate_lock
125 		 * to avoid races with other end io clearing async_write flags
126 		 */
127 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
128 		do {
129 			if (bh_offset(bh) < bio_start ||
130 			    bh_offset(bh) + bh->b_size > bio_end) {
131 				if (buffer_async_write(bh))
132 					under_io++;
133 				continue;
134 			}
135 			clear_buffer_async_write(bh);
136 			if (bio->bi_status) {
137 				set_buffer_write_io_error(bh);
138 				buffer_io_error(bh);
139 			}
140 		} while ((bh = bh->b_this_page) != head);
141 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
142 		if (!under_io) {
143 			fscrypt_free_bounce_page(&io_folio->page);
144 			folio_end_writeback(folio);
145 		}
146 	}
147 }
148 
ext4_release_io_end(ext4_io_end_t * io_end)149 static void ext4_release_io_end(ext4_io_end_t *io_end)
150 {
151 	struct bio *bio, *next_bio;
152 
153 	BUG_ON(!list_empty(&io_end->list));
154 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
155 	WARN_ON(io_end->handle);
156 
157 	for (bio = io_end->bio; bio; bio = next_bio) {
158 		next_bio = bio->bi_private;
159 		ext4_finish_bio(bio);
160 		bio_put(bio);
161 	}
162 	ext4_free_io_end_vec(io_end);
163 	kmem_cache_free(io_end_cachep, io_end);
164 }
165 
166 /*
167  * On successful IO, check a range of space and convert unwritten extents to
168  * written. On IO failure, check if journal abort is needed. Note that
169  * we are protected from truncate touching same part of extent tree by the
170  * fact that truncate code waits for all DIO to finish (thus exclusion from
171  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173  * completed (happens from ext4_free_ioend()).
174  */
ext4_end_io_end(ext4_io_end_t * io_end)175 static int ext4_end_io_end(ext4_io_end_t *io_end)
176 {
177 	struct inode *inode = io_end->inode;
178 	handle_t *handle = io_end->handle;
179 	struct super_block *sb = inode->i_sb;
180 	int ret = 0;
181 
182 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
183 		   "list->prev 0x%p\n",
184 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
185 
186 	/*
187 	 * Do not convert the unwritten extents if data writeback fails,
188 	 * or stale data may be exposed.
189 	 */
190 	io_end->handle = NULL;  /* Following call will use up the handle */
191 	if (unlikely(io_end->flag & EXT4_IO_END_FAILED)) {
192 		ret = -EIO;
193 		if (handle)
194 			jbd2_journal_free_reserved(handle);
195 
196 		if (test_opt(sb, DATA_ERR_ABORT))
197 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, ret);
198 	} else {
199 		ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
200 	}
201 	if (ret < 0 && !ext4_emergency_state(sb) &&
202 	    io_end->flag & EXT4_IO_END_UNWRITTEN) {
203 		ext4_msg(sb, KERN_EMERG,
204 			 "failed to convert unwritten extents to written "
205 			 "extents -- potential data loss!  "
206 			 "(inode %lu, error %d)", inode->i_ino, ret);
207 	}
208 
209 	ext4_clear_io_unwritten_flag(io_end);
210 	ext4_release_io_end(io_end);
211 	return ret;
212 }
213 
dump_completed_IO(struct inode * inode,struct list_head * head)214 static void dump_completed_IO(struct inode *inode, struct list_head *head)
215 {
216 #ifdef	EXT4FS_DEBUG
217 	struct list_head *cur, *before, *after;
218 	ext4_io_end_t *io_end, *io_end0, *io_end1;
219 
220 	if (list_empty(head))
221 		return;
222 
223 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
224 	list_for_each_entry(io_end, head, list) {
225 		cur = &io_end->list;
226 		before = cur->prev;
227 		io_end0 = container_of(before, ext4_io_end_t, list);
228 		after = cur->next;
229 		io_end1 = container_of(after, ext4_io_end_t, list);
230 
231 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
232 			    io_end, inode->i_ino, io_end0, io_end1);
233 	}
234 #endif
235 }
236 
ext4_io_end_defer_completion(ext4_io_end_t * io_end)237 static bool ext4_io_end_defer_completion(ext4_io_end_t *io_end)
238 {
239 	if (io_end->flag & EXT4_IO_END_UNWRITTEN)
240 		return true;
241 	if (test_opt(io_end->inode->i_sb, DATA_ERR_ABORT) &&
242 	    io_end->flag & EXT4_IO_END_FAILED)
243 		return true;
244 	return false;
245 }
246 
247 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)248 static void ext4_add_complete_io(ext4_io_end_t *io_end)
249 {
250 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
251 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
252 	struct workqueue_struct *wq;
253 	unsigned long flags;
254 
255 	/* Only reserved conversions or pending IO errors will enter here. */
256 	WARN_ON(!(io_end->flag & EXT4_IO_END_DEFER_COMPLETION));
257 	WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN &&
258 		!io_end->handle && sbi->s_journal);
259 
260 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
261 	wq = sbi->rsv_conversion_wq;
262 	if (list_empty(&ei->i_rsv_conversion_list))
263 		queue_work(wq, &ei->i_rsv_conversion_work);
264 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
265 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
266 }
267 
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)268 static int ext4_do_flush_completed_IO(struct inode *inode,
269 				      struct list_head *head)
270 {
271 	ext4_io_end_t *io_end;
272 	struct list_head unwritten;
273 	unsigned long flags;
274 	struct ext4_inode_info *ei = EXT4_I(inode);
275 	int err, ret = 0;
276 
277 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
278 	dump_completed_IO(inode, head);
279 	list_replace_init(head, &unwritten);
280 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
281 
282 	while (!list_empty(&unwritten)) {
283 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
284 		BUG_ON(!(io_end->flag & EXT4_IO_END_DEFER_COMPLETION));
285 		list_del_init(&io_end->list);
286 
287 		err = ext4_end_io_end(io_end);
288 		if (unlikely(!ret && err))
289 			ret = err;
290 	}
291 	return ret;
292 }
293 
294 /*
295  * Used to convert unwritten extents to written extents upon IO completion,
296  * or used to abort the journal upon IO errors.
297  */
ext4_end_io_rsv_work(struct work_struct * work)298 void ext4_end_io_rsv_work(struct work_struct *work)
299 {
300 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
301 						  i_rsv_conversion_work);
302 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
303 }
304 
ext4_init_io_end(struct inode * inode,gfp_t flags)305 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
306 {
307 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
308 
309 	if (io_end) {
310 		io_end->inode = inode;
311 		INIT_LIST_HEAD(&io_end->list);
312 		INIT_LIST_HEAD(&io_end->list_vec);
313 		refcount_set(&io_end->count, 1);
314 	}
315 	return io_end;
316 }
317 
ext4_put_io_end_defer(ext4_io_end_t * io_end)318 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
319 {
320 	if (refcount_dec_and_test(&io_end->count)) {
321 		if (io_end->flag & EXT4_IO_END_FAILED ||
322 		    (io_end->flag & EXT4_IO_END_UNWRITTEN &&
323 		     !list_empty(&io_end->list_vec))) {
324 			ext4_add_complete_io(io_end);
325 			return;
326 		}
327 		ext4_release_io_end(io_end);
328 	}
329 }
330 
ext4_put_io_end(ext4_io_end_t * io_end)331 int ext4_put_io_end(ext4_io_end_t *io_end)
332 {
333 	if (refcount_dec_and_test(&io_end->count)) {
334 		if (ext4_io_end_defer_completion(io_end))
335 			return ext4_end_io_end(io_end);
336 
337 		ext4_release_io_end(io_end);
338 	}
339 	return 0;
340 }
341 
ext4_get_io_end(ext4_io_end_t * io_end)342 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
343 {
344 	refcount_inc(&io_end->count);
345 	return io_end;
346 }
347 
348 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)349 static void ext4_end_bio(struct bio *bio)
350 {
351 	ext4_io_end_t *io_end = bio->bi_private;
352 	sector_t bi_sector = bio->bi_iter.bi_sector;
353 
354 	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
355 		      bio->bi_bdev,
356 		      (long long) bio->bi_iter.bi_sector,
357 		      (unsigned) bio_sectors(bio),
358 		      bio->bi_status)) {
359 		ext4_finish_bio(bio);
360 		bio_put(bio);
361 		return;
362 	}
363 	bio->bi_end_io = NULL;
364 
365 	if (bio->bi_status) {
366 		struct inode *inode = io_end->inode;
367 
368 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
369 			     "starting block %llu)",
370 			     bio->bi_status, inode->i_ino,
371 			     (unsigned long long)
372 			     bi_sector >> (inode->i_blkbits - 9));
373 		io_end->flag |= EXT4_IO_END_FAILED;
374 		mapping_set_error(inode->i_mapping,
375 				blk_status_to_errno(bio->bi_status));
376 	}
377 
378 	if (ext4_io_end_defer_completion(io_end)) {
379 		/*
380 		 * Link bio into list hanging from io_end. We have to do it
381 		 * atomically as bio completions can be racing against each
382 		 * other.
383 		 */
384 		bio->bi_private = xchg(&io_end->bio, bio);
385 		ext4_put_io_end_defer(io_end);
386 	} else {
387 		/*
388 		 * Drop io_end reference early. Inode can get freed once
389 		 * we finish the bio.
390 		 */
391 		ext4_put_io_end_defer(io_end);
392 		ext4_finish_bio(bio);
393 		bio_put(bio);
394 	}
395 }
396 
ext4_io_submit(struct ext4_io_submit * io)397 void ext4_io_submit(struct ext4_io_submit *io)
398 {
399 	struct bio *bio = io->io_bio;
400 
401 	if (bio) {
402 		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
403 			io->io_bio->bi_opf |= REQ_SYNC;
404 		submit_bio(io->io_bio);
405 	}
406 	io->io_bio = NULL;
407 }
408 
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)409 void ext4_io_submit_init(struct ext4_io_submit *io,
410 			 struct writeback_control *wbc)
411 {
412 	io->io_wbc = wbc;
413 	io->io_bio = NULL;
414 	io->io_end = NULL;
415 }
416 
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)417 static void io_submit_init_bio(struct ext4_io_submit *io,
418 			       struct buffer_head *bh)
419 {
420 	struct bio *bio;
421 
422 	/*
423 	 * bio_alloc will _always_ be able to allocate a bio if
424 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
425 	 */
426 	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
427 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
428 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
429 	bio->bi_end_io = ext4_end_bio;
430 	bio->bi_private = ext4_get_io_end(io->io_end);
431 	io->io_bio = bio;
432 	io->io_next_block = bh->b_blocknr;
433 	wbc_init_bio(io->io_wbc, bio);
434 }
435 
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct folio * folio,struct folio * io_folio,struct buffer_head * bh)436 static void io_submit_add_bh(struct ext4_io_submit *io,
437 			     struct inode *inode,
438 			     struct folio *folio,
439 			     struct folio *io_folio,
440 			     struct buffer_head *bh)
441 {
442 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
443 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
444 submit_and_retry:
445 		ext4_io_submit(io);
446 	}
447 	if (io->io_bio == NULL) {
448 		io_submit_init_bio(io, bh);
449 		io->io_bio->bi_write_hint = inode->i_write_hint;
450 	}
451 	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
452 		goto submit_and_retry;
453 	wbc_account_cgroup_owner(io->io_wbc, folio, bh->b_size);
454 	io->io_next_block++;
455 }
456 
ext4_bio_write_folio(struct ext4_io_submit * io,struct folio * folio,size_t len)457 int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
458 		size_t len)
459 {
460 	struct folio *io_folio = folio;
461 	struct inode *inode = folio->mapping->host;
462 	unsigned block_start;
463 	struct buffer_head *bh, *head;
464 	int ret = 0;
465 	int nr_to_submit = 0;
466 	struct writeback_control *wbc = io->io_wbc;
467 	bool keep_towrite = false;
468 
469 	BUG_ON(!folio_test_locked(folio));
470 	BUG_ON(folio_test_writeback(folio));
471 
472 	/*
473 	 * Comments copied from block_write_full_folio:
474 	 *
475 	 * The folio straddles i_size.  It must be zeroed out on each and every
476 	 * writepage invocation because it may be mmapped.  "A file is mapped
477 	 * in multiples of the page size.  For a file that is not a multiple of
478 	 * the page size, the remaining memory is zeroed when mapped, and
479 	 * writes to that region are not written out to the file."
480 	 */
481 	if (len < folio_size(folio))
482 		folio_zero_segment(folio, len, folio_size(folio));
483 	/*
484 	 * In the first loop we prepare and mark buffers to submit. We have to
485 	 * mark all buffers in the folio before submitting so that
486 	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
487 	 * on the first buffer finishes and we are still working on submitting
488 	 * the second buffer.
489 	 */
490 	bh = head = folio_buffers(folio);
491 	do {
492 		block_start = bh_offset(bh);
493 		if (block_start >= len) {
494 			clear_buffer_dirty(bh);
495 			set_buffer_uptodate(bh);
496 			continue;
497 		}
498 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
499 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
500 			/* A hole? We can safely clear the dirty bit */
501 			if (!buffer_mapped(bh))
502 				clear_buffer_dirty(bh);
503 			/*
504 			 * Keeping dirty some buffer we cannot write? Make sure
505 			 * to redirty the folio and keep TOWRITE tag so that
506 			 * racing WB_SYNC_ALL writeback does not skip the folio.
507 			 * This happens e.g. when doing writeout for
508 			 * transaction commit or when journalled data is not
509 			 * yet committed.
510 			 */
511 			if (buffer_dirty(bh) ||
512 			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
513 				if (!folio_test_dirty(folio))
514 					folio_redirty_for_writepage(wbc, folio);
515 				keep_towrite = true;
516 			}
517 			continue;
518 		}
519 		if (buffer_new(bh))
520 			clear_buffer_new(bh);
521 		set_buffer_async_write(bh);
522 		clear_buffer_dirty(bh);
523 		nr_to_submit++;
524 	} while ((bh = bh->b_this_page) != head);
525 
526 	/* Nothing to submit? Just unlock the folio... */
527 	if (!nr_to_submit)
528 		return 0;
529 
530 	bh = head = folio_buffers(folio);
531 
532 	/*
533 	 * If any blocks are being written to an encrypted file, encrypt them
534 	 * into a bounce page.  For simplicity, just encrypt until the last
535 	 * block which might be needed.  This may cause some unneeded blocks
536 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
537 	 * can't happen in the common case of blocksize == PAGE_SIZE.
538 	 */
539 	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
540 		gfp_t gfp_flags = GFP_NOFS;
541 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
542 		struct page *bounce_page;
543 
544 		/*
545 		 * Since bounce page allocation uses a mempool, we can only use
546 		 * a waiting mask (i.e. request guaranteed allocation) on the
547 		 * first page of the bio.  Otherwise it can deadlock.
548 		 */
549 		if (io->io_bio)
550 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
551 	retry_encrypt:
552 		bounce_page = fscrypt_encrypt_pagecache_blocks(folio,
553 					enc_bytes, 0, gfp_flags);
554 		if (IS_ERR(bounce_page)) {
555 			ret = PTR_ERR(bounce_page);
556 			if (ret == -ENOMEM &&
557 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
558 				gfp_t new_gfp_flags = GFP_NOFS;
559 				if (io->io_bio)
560 					ext4_io_submit(io);
561 				else
562 					new_gfp_flags |= __GFP_NOFAIL;
563 				memalloc_retry_wait(gfp_flags);
564 				gfp_flags = new_gfp_flags;
565 				goto retry_encrypt;
566 			}
567 
568 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
569 			folio_redirty_for_writepage(wbc, folio);
570 			do {
571 				if (buffer_async_write(bh)) {
572 					clear_buffer_async_write(bh);
573 					set_buffer_dirty(bh);
574 				}
575 				bh = bh->b_this_page;
576 			} while (bh != head);
577 
578 			return ret;
579 		}
580 		io_folio = page_folio(bounce_page);
581 	}
582 
583 	__folio_start_writeback(folio, keep_towrite);
584 
585 	/* Now submit buffers to write */
586 	do {
587 		if (!buffer_async_write(bh))
588 			continue;
589 		io_submit_add_bh(io, inode, folio, io_folio, bh);
590 	} while ((bh = bh->b_this_page) != head);
591 
592 	return 0;
593 }
594