1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75
76 #include <trace/events/task.h>
77 #include "internal.h"
78
79 #include <trace/events/sched.h>
80
81 /* For vma exec functions. */
82 #include "../mm/internal.h"
83
84 static int bprm_creds_from_file(struct linux_binprm *bprm);
85
86 int suid_dumpable = 0;
87
88 static LIST_HEAD(formats);
89 static DEFINE_RWLOCK(binfmt_lock);
90
__register_binfmt(struct linux_binfmt * fmt,int insert)91 void __register_binfmt(struct linux_binfmt * fmt, int insert)
92 {
93 write_lock(&binfmt_lock);
94 insert ? list_add(&fmt->lh, &formats) :
95 list_add_tail(&fmt->lh, &formats);
96 write_unlock(&binfmt_lock);
97 }
98
99 EXPORT_SYMBOL(__register_binfmt);
100
unregister_binfmt(struct linux_binfmt * fmt)101 void unregister_binfmt(struct linux_binfmt * fmt)
102 {
103 write_lock(&binfmt_lock);
104 list_del(&fmt->lh);
105 write_unlock(&binfmt_lock);
106 }
107
108 EXPORT_SYMBOL(unregister_binfmt);
109
put_binfmt(struct linux_binfmt * fmt)110 static inline void put_binfmt(struct linux_binfmt * fmt)
111 {
112 module_put(fmt->module);
113 }
114
path_noexec(const struct path * path)115 bool path_noexec(const struct path *path)
116 {
117 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
118 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
119 }
120
121 #ifdef CONFIG_MMU
122 /*
123 * The nascent bprm->mm is not visible until exec_mmap() but it can
124 * use a lot of memory, account these pages in current->mm temporary
125 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
126 * change the counter back via acct_arg_size(0).
127 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)128 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
129 {
130 struct mm_struct *mm = current->mm;
131 long diff = (long)(pages - bprm->vma_pages);
132
133 if (!mm || !diff)
134 return;
135
136 bprm->vma_pages = pages;
137 add_mm_counter(mm, MM_ANONPAGES, diff);
138 }
139
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)140 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
141 int write)
142 {
143 struct page *page;
144 struct vm_area_struct *vma = bprm->vma;
145 struct mm_struct *mm = bprm->mm;
146 int ret;
147
148 /*
149 * Avoid relying on expanding the stack down in GUP (which
150 * does not work for STACK_GROWSUP anyway), and just do it
151 * ahead of time.
152 */
153 if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
154 return NULL;
155
156 /*
157 * We are doing an exec(). 'current' is the process
158 * doing the exec and 'mm' is the new process's mm.
159 */
160 ret = get_user_pages_remote(mm, pos, 1,
161 write ? FOLL_WRITE : 0,
162 &page, NULL);
163 mmap_read_unlock(mm);
164 if (ret <= 0)
165 return NULL;
166
167 if (write)
168 acct_arg_size(bprm, vma_pages(vma));
169
170 return page;
171 }
172
put_arg_page(struct page * page)173 static void put_arg_page(struct page *page)
174 {
175 put_page(page);
176 }
177
free_arg_pages(struct linux_binprm * bprm)178 static void free_arg_pages(struct linux_binprm *bprm)
179 {
180 }
181
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)182 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 struct page *page)
184 {
185 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
186 }
187
valid_arg_len(struct linux_binprm * bprm,long len)188 static bool valid_arg_len(struct linux_binprm *bprm, long len)
189 {
190 return len <= MAX_ARG_STRLEN;
191 }
192
193 #else
194
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)195 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
196 {
197 }
198
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 int write)
201 {
202 struct page *page;
203
204 page = bprm->page[pos / PAGE_SIZE];
205 if (!page && write) {
206 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
207 if (!page)
208 return NULL;
209 bprm->page[pos / PAGE_SIZE] = page;
210 }
211
212 return page;
213 }
214
put_arg_page(struct page * page)215 static void put_arg_page(struct page *page)
216 {
217 }
218
free_arg_page(struct linux_binprm * bprm,int i)219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 if (bprm->page[i]) {
222 __free_page(bprm->page[i]);
223 bprm->page[i] = NULL;
224 }
225 }
226
free_arg_pages(struct linux_binprm * bprm)227 static void free_arg_pages(struct linux_binprm *bprm)
228 {
229 int i;
230
231 for (i = 0; i < MAX_ARG_PAGES; i++)
232 free_arg_page(bprm, i);
233 }
234
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236 struct page *page)
237 {
238 }
239
valid_arg_len(struct linux_binprm * bprm,long len)240 static bool valid_arg_len(struct linux_binprm *bprm, long len)
241 {
242 return len <= bprm->p;
243 }
244
245 #endif /* CONFIG_MMU */
246
247 /*
248 * Create a new mm_struct and populate it with a temporary stack
249 * vm_area_struct. We don't have enough context at this point to set the stack
250 * flags, permissions, and offset, so we use temporary values. We'll update
251 * them later in setup_arg_pages().
252 */
bprm_mm_init(struct linux_binprm * bprm)253 static int bprm_mm_init(struct linux_binprm *bprm)
254 {
255 int err;
256 struct mm_struct *mm = NULL;
257
258 bprm->mm = mm = mm_alloc();
259 err = -ENOMEM;
260 if (!mm)
261 goto err;
262
263 /* Save current stack limit for all calculations made during exec. */
264 task_lock(current->group_leader);
265 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
266 task_unlock(current->group_leader);
267
268 #ifndef CONFIG_MMU
269 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
270 #else
271 err = create_init_stack_vma(bprm->mm, &bprm->vma, &bprm->p);
272 if (err)
273 goto err;
274 #endif
275
276 return 0;
277
278 err:
279 if (mm) {
280 bprm->mm = NULL;
281 mmdrop(mm);
282 }
283
284 return err;
285 }
286
287 struct user_arg_ptr {
288 #ifdef CONFIG_COMPAT
289 bool is_compat;
290 #endif
291 union {
292 const char __user *const __user *native;
293 #ifdef CONFIG_COMPAT
294 const compat_uptr_t __user *compat;
295 #endif
296 } ptr;
297 };
298
get_user_arg_ptr(struct user_arg_ptr argv,int nr)299 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
300 {
301 const char __user *native;
302
303 #ifdef CONFIG_COMPAT
304 if (unlikely(argv.is_compat)) {
305 compat_uptr_t compat;
306
307 if (get_user(compat, argv.ptr.compat + nr))
308 return ERR_PTR(-EFAULT);
309
310 return compat_ptr(compat);
311 }
312 #endif
313
314 if (get_user(native, argv.ptr.native + nr))
315 return ERR_PTR(-EFAULT);
316
317 return native;
318 }
319
320 /*
321 * count() counts the number of strings in array ARGV.
322 */
count(struct user_arg_ptr argv,int max)323 static int count(struct user_arg_ptr argv, int max)
324 {
325 int i = 0;
326
327 if (argv.ptr.native != NULL) {
328 for (;;) {
329 const char __user *p = get_user_arg_ptr(argv, i);
330
331 if (!p)
332 break;
333
334 if (IS_ERR(p))
335 return -EFAULT;
336
337 if (i >= max)
338 return -E2BIG;
339 ++i;
340
341 if (fatal_signal_pending(current))
342 return -ERESTARTNOHAND;
343 cond_resched();
344 }
345 }
346 return i;
347 }
348
count_strings_kernel(const char * const * argv)349 static int count_strings_kernel(const char *const *argv)
350 {
351 int i;
352
353 if (!argv)
354 return 0;
355
356 for (i = 0; argv[i]; ++i) {
357 if (i >= MAX_ARG_STRINGS)
358 return -E2BIG;
359 if (fatal_signal_pending(current))
360 return -ERESTARTNOHAND;
361 cond_resched();
362 }
363 return i;
364 }
365
bprm_set_stack_limit(struct linux_binprm * bprm,unsigned long limit)366 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
367 unsigned long limit)
368 {
369 #ifdef CONFIG_MMU
370 /* Avoid a pathological bprm->p. */
371 if (bprm->p < limit)
372 return -E2BIG;
373 bprm->argmin = bprm->p - limit;
374 #endif
375 return 0;
376 }
bprm_hit_stack_limit(struct linux_binprm * bprm)377 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
378 {
379 #ifdef CONFIG_MMU
380 return bprm->p < bprm->argmin;
381 #else
382 return false;
383 #endif
384 }
385
386 /*
387 * Calculate bprm->argmin from:
388 * - _STK_LIM
389 * - ARG_MAX
390 * - bprm->rlim_stack.rlim_cur
391 * - bprm->argc
392 * - bprm->envc
393 * - bprm->p
394 */
bprm_stack_limits(struct linux_binprm * bprm)395 static int bprm_stack_limits(struct linux_binprm *bprm)
396 {
397 unsigned long limit, ptr_size;
398
399 /*
400 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
401 * (whichever is smaller) for the argv+env strings.
402 * This ensures that:
403 * - the remaining binfmt code will not run out of stack space,
404 * - the program will have a reasonable amount of stack left
405 * to work from.
406 */
407 limit = _STK_LIM / 4 * 3;
408 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
409 /*
410 * We've historically supported up to 32 pages (ARG_MAX)
411 * of argument strings even with small stacks
412 */
413 limit = max_t(unsigned long, limit, ARG_MAX);
414 /* Reject totally pathological counts. */
415 if (bprm->argc < 0 || bprm->envc < 0)
416 return -E2BIG;
417 /*
418 * We must account for the size of all the argv and envp pointers to
419 * the argv and envp strings, since they will also take up space in
420 * the stack. They aren't stored until much later when we can't
421 * signal to the parent that the child has run out of stack space.
422 * Instead, calculate it here so it's possible to fail gracefully.
423 *
424 * In the case of argc = 0, make sure there is space for adding a
425 * empty string (which will bump argc to 1), to ensure confused
426 * userspace programs don't start processing from argv[1], thinking
427 * argc can never be 0, to keep them from walking envp by accident.
428 * See do_execveat_common().
429 */
430 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
431 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
432 return -E2BIG;
433 if (limit <= ptr_size)
434 return -E2BIG;
435 limit -= ptr_size;
436
437 return bprm_set_stack_limit(bprm, limit);
438 }
439
440 /*
441 * 'copy_strings()' copies argument/environment strings from the old
442 * processes's memory to the new process's stack. The call to get_user_pages()
443 * ensures the destination page is created and not swapped out.
444 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)445 static int copy_strings(int argc, struct user_arg_ptr argv,
446 struct linux_binprm *bprm)
447 {
448 struct page *kmapped_page = NULL;
449 char *kaddr = NULL;
450 unsigned long kpos = 0;
451 int ret;
452
453 while (argc-- > 0) {
454 const char __user *str;
455 int len;
456 unsigned long pos;
457
458 ret = -EFAULT;
459 str = get_user_arg_ptr(argv, argc);
460 if (IS_ERR(str))
461 goto out;
462
463 len = strnlen_user(str, MAX_ARG_STRLEN);
464 if (!len)
465 goto out;
466
467 ret = -E2BIG;
468 if (!valid_arg_len(bprm, len))
469 goto out;
470
471 /* We're going to work our way backwards. */
472 pos = bprm->p;
473 str += len;
474 bprm->p -= len;
475 if (bprm_hit_stack_limit(bprm))
476 goto out;
477
478 while (len > 0) {
479 int offset, bytes_to_copy;
480
481 if (fatal_signal_pending(current)) {
482 ret = -ERESTARTNOHAND;
483 goto out;
484 }
485 cond_resched();
486
487 offset = pos % PAGE_SIZE;
488 if (offset == 0)
489 offset = PAGE_SIZE;
490
491 bytes_to_copy = offset;
492 if (bytes_to_copy > len)
493 bytes_to_copy = len;
494
495 offset -= bytes_to_copy;
496 pos -= bytes_to_copy;
497 str -= bytes_to_copy;
498 len -= bytes_to_copy;
499
500 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
501 struct page *page;
502
503 page = get_arg_page(bprm, pos, 1);
504 if (!page) {
505 ret = -E2BIG;
506 goto out;
507 }
508
509 if (kmapped_page) {
510 flush_dcache_page(kmapped_page);
511 kunmap_local(kaddr);
512 put_arg_page(kmapped_page);
513 }
514 kmapped_page = page;
515 kaddr = kmap_local_page(kmapped_page);
516 kpos = pos & PAGE_MASK;
517 flush_arg_page(bprm, kpos, kmapped_page);
518 }
519 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
520 ret = -EFAULT;
521 goto out;
522 }
523 }
524 }
525 ret = 0;
526 out:
527 if (kmapped_page) {
528 flush_dcache_page(kmapped_page);
529 kunmap_local(kaddr);
530 put_arg_page(kmapped_page);
531 }
532 return ret;
533 }
534
535 /*
536 * Copy and argument/environment string from the kernel to the processes stack.
537 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)538 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
539 {
540 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
541 unsigned long pos = bprm->p;
542
543 if (len == 0)
544 return -EFAULT;
545 if (!valid_arg_len(bprm, len))
546 return -E2BIG;
547
548 /* We're going to work our way backwards. */
549 arg += len;
550 bprm->p -= len;
551 if (bprm_hit_stack_limit(bprm))
552 return -E2BIG;
553
554 while (len > 0) {
555 unsigned int bytes_to_copy = min_t(unsigned int, len,
556 min_not_zero(offset_in_page(pos), PAGE_SIZE));
557 struct page *page;
558
559 pos -= bytes_to_copy;
560 arg -= bytes_to_copy;
561 len -= bytes_to_copy;
562
563 page = get_arg_page(bprm, pos, 1);
564 if (!page)
565 return -E2BIG;
566 flush_arg_page(bprm, pos & PAGE_MASK, page);
567 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
568 put_arg_page(page);
569 }
570
571 return 0;
572 }
573 EXPORT_SYMBOL(copy_string_kernel);
574
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)575 static int copy_strings_kernel(int argc, const char *const *argv,
576 struct linux_binprm *bprm)
577 {
578 while (argc-- > 0) {
579 int ret = copy_string_kernel(argv[argc], bprm);
580 if (ret < 0)
581 return ret;
582 if (fatal_signal_pending(current))
583 return -ERESTARTNOHAND;
584 cond_resched();
585 }
586 return 0;
587 }
588
589 #ifdef CONFIG_MMU
590
591 /*
592 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
593 * the stack is optionally relocated, and some extra space is added.
594 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)595 int setup_arg_pages(struct linux_binprm *bprm,
596 unsigned long stack_top,
597 int executable_stack)
598 {
599 unsigned long ret;
600 unsigned long stack_shift;
601 struct mm_struct *mm = current->mm;
602 struct vm_area_struct *vma = bprm->vma;
603 struct vm_area_struct *prev = NULL;
604 unsigned long vm_flags;
605 unsigned long stack_base;
606 unsigned long stack_size;
607 unsigned long stack_expand;
608 unsigned long rlim_stack;
609 struct mmu_gather tlb;
610 struct vma_iterator vmi;
611
612 #ifdef CONFIG_STACK_GROWSUP
613 /* Limit stack size */
614 stack_base = bprm->rlim_stack.rlim_max;
615
616 stack_base = calc_max_stack_size(stack_base);
617
618 /* Add space for stack randomization. */
619 if (current->flags & PF_RANDOMIZE)
620 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
621
622 /* Make sure we didn't let the argument array grow too large. */
623 if (vma->vm_end - vma->vm_start > stack_base)
624 return -ENOMEM;
625
626 stack_base = PAGE_ALIGN(stack_top - stack_base);
627
628 stack_shift = vma->vm_start - stack_base;
629 mm->arg_start = bprm->p - stack_shift;
630 bprm->p = vma->vm_end - stack_shift;
631 #else
632 stack_top = arch_align_stack(stack_top);
633 stack_top = PAGE_ALIGN(stack_top);
634
635 if (unlikely(stack_top < mmap_min_addr) ||
636 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
637 return -ENOMEM;
638
639 stack_shift = vma->vm_end - stack_top;
640
641 bprm->p -= stack_shift;
642 mm->arg_start = bprm->p;
643 #endif
644
645 bprm->exec -= stack_shift;
646
647 if (mmap_write_lock_killable(mm))
648 return -EINTR;
649
650 vm_flags = VM_STACK_FLAGS;
651
652 /*
653 * Adjust stack execute permissions; explicitly enable for
654 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
655 * (arch default) otherwise.
656 */
657 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
658 vm_flags |= VM_EXEC;
659 else if (executable_stack == EXSTACK_DISABLE_X)
660 vm_flags &= ~VM_EXEC;
661 vm_flags |= mm->def_flags;
662 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
663
664 vma_iter_init(&vmi, mm, vma->vm_start);
665
666 tlb_gather_mmu(&tlb, mm);
667 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
668 vm_flags);
669 tlb_finish_mmu(&tlb);
670
671 if (ret)
672 goto out_unlock;
673 BUG_ON(prev != vma);
674
675 if (unlikely(vm_flags & VM_EXEC)) {
676 pr_warn_once("process '%pD4' started with executable stack\n",
677 bprm->file);
678 }
679
680 /* Move stack pages down in memory. */
681 if (stack_shift) {
682 /*
683 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
684 * the binfmt code determines where the new stack should reside, we shift it to
685 * its final location.
686 */
687 ret = relocate_vma_down(vma, stack_shift);
688 if (ret)
689 goto out_unlock;
690 }
691
692 /* mprotect_fixup is overkill to remove the temporary stack flags */
693 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
694
695 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
696 stack_size = vma->vm_end - vma->vm_start;
697 /*
698 * Align this down to a page boundary as expand_stack
699 * will align it up.
700 */
701 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
702
703 stack_expand = min(rlim_stack, stack_size + stack_expand);
704
705 #ifdef CONFIG_STACK_GROWSUP
706 stack_base = vma->vm_start + stack_expand;
707 #else
708 stack_base = vma->vm_end - stack_expand;
709 #endif
710 current->mm->start_stack = bprm->p;
711 ret = expand_stack_locked(vma, stack_base);
712 if (ret)
713 ret = -EFAULT;
714
715 out_unlock:
716 mmap_write_unlock(mm);
717 return ret;
718 }
719 EXPORT_SYMBOL(setup_arg_pages);
720
721 #else
722
723 /*
724 * Transfer the program arguments and environment from the holding pages
725 * onto the stack. The provided stack pointer is adjusted accordingly.
726 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)727 int transfer_args_to_stack(struct linux_binprm *bprm,
728 unsigned long *sp_location)
729 {
730 unsigned long index, stop, sp;
731 int ret = 0;
732
733 stop = bprm->p >> PAGE_SHIFT;
734 sp = *sp_location;
735
736 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
737 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
738 char *src = kmap_local_page(bprm->page[index]) + offset;
739 sp -= PAGE_SIZE - offset;
740 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
741 ret = -EFAULT;
742 kunmap_local(src);
743 if (ret)
744 goto out;
745 }
746
747 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
748 *sp_location = sp;
749
750 out:
751 return ret;
752 }
753 EXPORT_SYMBOL(transfer_args_to_stack);
754
755 #endif /* CONFIG_MMU */
756
757 /*
758 * On success, caller must call do_close_execat() on the returned
759 * struct file to close it.
760 */
do_open_execat(int fd,struct filename * name,int flags)761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763 int err;
764 struct file *file __free(fput) = NULL;
765 struct open_flags open_exec_flags = {
766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 .acc_mode = MAY_EXEC,
768 .intent = LOOKUP_OPEN,
769 .lookup_flags = LOOKUP_FOLLOW,
770 };
771
772 if ((flags &
773 ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
774 return ERR_PTR(-EINVAL);
775 if (flags & AT_SYMLINK_NOFOLLOW)
776 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
777 if (flags & AT_EMPTY_PATH)
778 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
779
780 file = do_filp_open(fd, name, &open_exec_flags);
781 if (IS_ERR(file))
782 return file;
783
784 /*
785 * In the past the regular type check was here. It moved to may_open() in
786 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
787 * an invariant that all non-regular files error out before we get here.
788 */
789 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
790 path_noexec(&file->f_path))
791 return ERR_PTR(-EACCES);
792
793 err = exe_file_deny_write_access(file);
794 if (err)
795 return ERR_PTR(err);
796
797 return no_free_ptr(file);
798 }
799
800 /**
801 * open_exec - Open a path name for execution
802 *
803 * @name: path name to open with the intent of executing it.
804 *
805 * Returns ERR_PTR on failure or allocated struct file on success.
806 *
807 * As this is a wrapper for the internal do_open_execat(), callers
808 * must call exe_file_allow_write_access() before fput() on release. Also see
809 * do_close_execat().
810 */
open_exec(const char * name)811 struct file *open_exec(const char *name)
812 {
813 struct filename *filename = getname_kernel(name);
814 struct file *f = ERR_CAST(filename);
815
816 if (!IS_ERR(filename)) {
817 f = do_open_execat(AT_FDCWD, filename, 0);
818 putname(filename);
819 }
820 return f;
821 }
822 EXPORT_SYMBOL(open_exec);
823
824 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
826 {
827 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
828 if (res > 0)
829 flush_icache_user_range(addr, addr + len);
830 return res;
831 }
832 EXPORT_SYMBOL(read_code);
833 #endif
834
835 /*
836 * Maps the mm_struct mm into the current task struct.
837 * On success, this function returns with exec_update_lock
838 * held for writing.
839 */
exec_mmap(struct mm_struct * mm)840 static int exec_mmap(struct mm_struct *mm)
841 {
842 struct task_struct *tsk;
843 struct mm_struct *old_mm, *active_mm;
844 int ret;
845
846 /* Notify parent that we're no longer interested in the old VM */
847 tsk = current;
848 old_mm = current->mm;
849 exec_mm_release(tsk, old_mm);
850
851 ret = down_write_killable(&tsk->signal->exec_update_lock);
852 if (ret)
853 return ret;
854
855 if (old_mm) {
856 /*
857 * If there is a pending fatal signal perhaps a signal
858 * whose default action is to create a coredump get
859 * out and die instead of going through with the exec.
860 */
861 ret = mmap_read_lock_killable(old_mm);
862 if (ret) {
863 up_write(&tsk->signal->exec_update_lock);
864 return ret;
865 }
866 }
867
868 task_lock(tsk);
869 membarrier_exec_mmap(mm);
870
871 local_irq_disable();
872 active_mm = tsk->active_mm;
873 tsk->active_mm = mm;
874 tsk->mm = mm;
875 mm_init_cid(mm, tsk);
876 /*
877 * This prevents preemption while active_mm is being loaded and
878 * it and mm are being updated, which could cause problems for
879 * lazy tlb mm refcounting when these are updated by context
880 * switches. Not all architectures can handle irqs off over
881 * activate_mm yet.
882 */
883 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
884 local_irq_enable();
885 activate_mm(active_mm, mm);
886 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
887 local_irq_enable();
888 lru_gen_add_mm(mm);
889 task_unlock(tsk);
890 lru_gen_use_mm(mm);
891 if (old_mm) {
892 mmap_read_unlock(old_mm);
893 BUG_ON(active_mm != old_mm);
894 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
895 mm_update_next_owner(old_mm);
896 mmput(old_mm);
897 return 0;
898 }
899 mmdrop_lazy_tlb(active_mm);
900 return 0;
901 }
902
de_thread(struct task_struct * tsk)903 static int de_thread(struct task_struct *tsk)
904 {
905 struct signal_struct *sig = tsk->signal;
906 struct sighand_struct *oldsighand = tsk->sighand;
907 spinlock_t *lock = &oldsighand->siglock;
908
909 if (thread_group_empty(tsk))
910 goto no_thread_group;
911
912 /*
913 * Kill all other threads in the thread group.
914 */
915 spin_lock_irq(lock);
916 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
917 /*
918 * Another group action in progress, just
919 * return so that the signal is processed.
920 */
921 spin_unlock_irq(lock);
922 return -EAGAIN;
923 }
924
925 sig->group_exec_task = tsk;
926 sig->notify_count = zap_other_threads(tsk);
927 if (!thread_group_leader(tsk))
928 sig->notify_count--;
929
930 while (sig->notify_count) {
931 __set_current_state(TASK_KILLABLE);
932 spin_unlock_irq(lock);
933 schedule();
934 if (__fatal_signal_pending(tsk))
935 goto killed;
936 spin_lock_irq(lock);
937 }
938 spin_unlock_irq(lock);
939
940 /*
941 * At this point all other threads have exited, all we have to
942 * do is to wait for the thread group leader to become inactive,
943 * and to assume its PID:
944 */
945 if (!thread_group_leader(tsk)) {
946 struct task_struct *leader = tsk->group_leader;
947
948 for (;;) {
949 cgroup_threadgroup_change_begin(tsk);
950 write_lock_irq(&tasklist_lock);
951 /*
952 * Do this under tasklist_lock to ensure that
953 * exit_notify() can't miss ->group_exec_task
954 */
955 sig->notify_count = -1;
956 if (likely(leader->exit_state))
957 break;
958 __set_current_state(TASK_KILLABLE);
959 write_unlock_irq(&tasklist_lock);
960 cgroup_threadgroup_change_end(tsk);
961 schedule();
962 if (__fatal_signal_pending(tsk))
963 goto killed;
964 }
965
966 /*
967 * The only record we have of the real-time age of a
968 * process, regardless of execs it's done, is start_time.
969 * All the past CPU time is accumulated in signal_struct
970 * from sister threads now dead. But in this non-leader
971 * exec, nothing survives from the original leader thread,
972 * whose birth marks the true age of this process now.
973 * When we take on its identity by switching to its PID, we
974 * also take its birthdate (always earlier than our own).
975 */
976 tsk->start_time = leader->start_time;
977 tsk->start_boottime = leader->start_boottime;
978
979 BUG_ON(!same_thread_group(leader, tsk));
980 /*
981 * An exec() starts a new thread group with the
982 * TGID of the previous thread group. Rehash the
983 * two threads with a switched PID, and release
984 * the former thread group leader:
985 */
986
987 /* Become a process group leader with the old leader's pid.
988 * The old leader becomes a thread of the this thread group.
989 */
990 exchange_tids(tsk, leader);
991 transfer_pid(leader, tsk, PIDTYPE_TGID);
992 transfer_pid(leader, tsk, PIDTYPE_PGID);
993 transfer_pid(leader, tsk, PIDTYPE_SID);
994
995 list_replace_rcu(&leader->tasks, &tsk->tasks);
996 list_replace_init(&leader->sibling, &tsk->sibling);
997
998 tsk->group_leader = tsk;
999 leader->group_leader = tsk;
1000
1001 tsk->exit_signal = SIGCHLD;
1002 leader->exit_signal = -1;
1003
1004 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1005 leader->exit_state = EXIT_DEAD;
1006 /*
1007 * We are going to release_task()->ptrace_unlink() silently,
1008 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1009 * the tracer won't block again waiting for this thread.
1010 */
1011 if (unlikely(leader->ptrace))
1012 __wake_up_parent(leader, leader->parent);
1013 write_unlock_irq(&tasklist_lock);
1014 cgroup_threadgroup_change_end(tsk);
1015
1016 release_task(leader);
1017 }
1018
1019 sig->group_exec_task = NULL;
1020 sig->notify_count = 0;
1021
1022 no_thread_group:
1023 /* we have changed execution domain */
1024 tsk->exit_signal = SIGCHLD;
1025
1026 BUG_ON(!thread_group_leader(tsk));
1027 return 0;
1028
1029 killed:
1030 /* protects against exit_notify() and __exit_signal() */
1031 read_lock(&tasklist_lock);
1032 sig->group_exec_task = NULL;
1033 sig->notify_count = 0;
1034 read_unlock(&tasklist_lock);
1035 return -EAGAIN;
1036 }
1037
1038
1039 /*
1040 * This function makes sure the current process has its own signal table,
1041 * so that flush_signal_handlers can later reset the handlers without
1042 * disturbing other processes. (Other processes might share the signal
1043 * table via the CLONE_SIGHAND option to clone().)
1044 */
unshare_sighand(struct task_struct * me)1045 static int unshare_sighand(struct task_struct *me)
1046 {
1047 struct sighand_struct *oldsighand = me->sighand;
1048
1049 if (refcount_read(&oldsighand->count) != 1) {
1050 struct sighand_struct *newsighand;
1051 /*
1052 * This ->sighand is shared with the CLONE_SIGHAND
1053 * but not CLONE_THREAD task, switch to the new one.
1054 */
1055 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1056 if (!newsighand)
1057 return -ENOMEM;
1058
1059 refcount_set(&newsighand->count, 1);
1060
1061 write_lock_irq(&tasklist_lock);
1062 spin_lock(&oldsighand->siglock);
1063 memcpy(newsighand->action, oldsighand->action,
1064 sizeof(newsighand->action));
1065 rcu_assign_pointer(me->sighand, newsighand);
1066 spin_unlock(&oldsighand->siglock);
1067 write_unlock_irq(&tasklist_lock);
1068
1069 __cleanup_sighand(oldsighand);
1070 }
1071 return 0;
1072 }
1073
1074 /*
1075 * This is unlocked -- the string will always be NUL-terminated, but
1076 * may show overlapping contents if racing concurrent reads.
1077 */
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1078 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1079 {
1080 size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1081
1082 trace_task_rename(tsk, buf);
1083 memcpy(tsk->comm, buf, len);
1084 memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1085 perf_event_comm(tsk, exec);
1086 }
1087
1088 /*
1089 * Calling this is the point of no return. None of the failures will be
1090 * seen by userspace since either the process is already taking a fatal
1091 * signal (via de_thread() or coredump), or will have SEGV raised
1092 * (after exec_mmap()) by search_binary_handler (see below).
1093 */
begin_new_exec(struct linux_binprm * bprm)1094 int begin_new_exec(struct linux_binprm * bprm)
1095 {
1096 struct task_struct *me = current;
1097 int retval;
1098
1099 /* Once we are committed compute the creds */
1100 retval = bprm_creds_from_file(bprm);
1101 if (retval)
1102 return retval;
1103
1104 /*
1105 * This tracepoint marks the point before flushing the old exec where
1106 * the current task is still unchanged, but errors are fatal (point of
1107 * no return). The later "sched_process_exec" tracepoint is called after
1108 * the current task has successfully switched to the new exec.
1109 */
1110 trace_sched_prepare_exec(current, bprm);
1111
1112 /*
1113 * Ensure all future errors are fatal.
1114 */
1115 bprm->point_of_no_return = true;
1116
1117 /* Make this the only thread in the thread group */
1118 retval = de_thread(me);
1119 if (retval)
1120 goto out;
1121 /* see the comment in check_unsafe_exec() */
1122 current->fs->in_exec = 0;
1123 /*
1124 * Cancel any io_uring activity across execve
1125 */
1126 io_uring_task_cancel();
1127
1128 /* Ensure the files table is not shared. */
1129 retval = unshare_files();
1130 if (retval)
1131 goto out;
1132
1133 /*
1134 * Must be called _before_ exec_mmap() as bprm->mm is
1135 * not visible until then. Doing it here also ensures
1136 * we don't race against replace_mm_exe_file().
1137 */
1138 retval = set_mm_exe_file(bprm->mm, bprm->file);
1139 if (retval)
1140 goto out;
1141
1142 /* If the binary is not readable then enforce mm->dumpable=0 */
1143 would_dump(bprm, bprm->file);
1144 if (bprm->have_execfd)
1145 would_dump(bprm, bprm->executable);
1146
1147 /*
1148 * Release all of the old mmap stuff
1149 */
1150 acct_arg_size(bprm, 0);
1151 retval = exec_mmap(bprm->mm);
1152 if (retval)
1153 goto out;
1154
1155 bprm->mm = NULL;
1156
1157 retval = exec_task_namespaces();
1158 if (retval)
1159 goto out_unlock;
1160
1161 #ifdef CONFIG_POSIX_TIMERS
1162 spin_lock_irq(&me->sighand->siglock);
1163 posix_cpu_timers_exit(me);
1164 spin_unlock_irq(&me->sighand->siglock);
1165 exit_itimers(me);
1166 flush_itimer_signals();
1167 #endif
1168
1169 /*
1170 * Make the signal table private.
1171 */
1172 retval = unshare_sighand(me);
1173 if (retval)
1174 goto out_unlock;
1175
1176 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1177 PF_NOFREEZE | PF_NO_SETAFFINITY);
1178 flush_thread();
1179 me->personality &= ~bprm->per_clear;
1180
1181 clear_syscall_work_syscall_user_dispatch(me);
1182
1183 /*
1184 * We have to apply CLOEXEC before we change whether the process is
1185 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1186 * trying to access the should-be-closed file descriptors of a process
1187 * undergoing exec(2).
1188 */
1189 do_close_on_exec(me->files);
1190
1191 if (bprm->secureexec) {
1192 /* Make sure parent cannot signal privileged process. */
1193 me->pdeath_signal = 0;
1194
1195 /*
1196 * For secureexec, reset the stack limit to sane default to
1197 * avoid bad behavior from the prior rlimits. This has to
1198 * happen before arch_pick_mmap_layout(), which examines
1199 * RLIMIT_STACK, but after the point of no return to avoid
1200 * needing to clean up the change on failure.
1201 */
1202 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1203 bprm->rlim_stack.rlim_cur = _STK_LIM;
1204 }
1205
1206 me->sas_ss_sp = me->sas_ss_size = 0;
1207
1208 /*
1209 * Figure out dumpability. Note that this checking only of current
1210 * is wrong, but userspace depends on it. This should be testing
1211 * bprm->secureexec instead.
1212 */
1213 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1214 !(uid_eq(current_euid(), current_uid()) &&
1215 gid_eq(current_egid(), current_gid())))
1216 set_dumpable(current->mm, suid_dumpable);
1217 else
1218 set_dumpable(current->mm, SUID_DUMP_USER);
1219
1220 perf_event_exec();
1221
1222 /*
1223 * If the original filename was empty, alloc_bprm() made up a path
1224 * that will probably not be useful to admins running ps or similar.
1225 * Let's fix it up to be something reasonable.
1226 */
1227 if (bprm->comm_from_dentry) {
1228 /*
1229 * Hold RCU lock to keep the name from being freed behind our back.
1230 * Use acquire semantics to make sure the terminating NUL from
1231 * __d_alloc() is seen.
1232 *
1233 * Note, we're deliberately sloppy here. We don't need to care about
1234 * detecting a concurrent rename and just want a terminated name.
1235 */
1236 rcu_read_lock();
1237 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1238 true);
1239 rcu_read_unlock();
1240 } else {
1241 __set_task_comm(me, kbasename(bprm->filename), true);
1242 }
1243
1244 /* An exec changes our domain. We are no longer part of the thread
1245 group */
1246 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1247 flush_signal_handlers(me, 0);
1248
1249 retval = set_cred_ucounts(bprm->cred);
1250 if (retval < 0)
1251 goto out_unlock;
1252
1253 /*
1254 * install the new credentials for this executable
1255 */
1256 security_bprm_committing_creds(bprm);
1257
1258 commit_creds(bprm->cred);
1259 bprm->cred = NULL;
1260
1261 /*
1262 * Disable monitoring for regular users
1263 * when executing setuid binaries. Must
1264 * wait until new credentials are committed
1265 * by commit_creds() above
1266 */
1267 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1268 perf_event_exit_task(me);
1269 /*
1270 * cred_guard_mutex must be held at least to this point to prevent
1271 * ptrace_attach() from altering our determination of the task's
1272 * credentials; any time after this it may be unlocked.
1273 */
1274 security_bprm_committed_creds(bprm);
1275
1276 /* Pass the opened binary to the interpreter. */
1277 if (bprm->have_execfd) {
1278 retval = get_unused_fd_flags(0);
1279 if (retval < 0)
1280 goto out_unlock;
1281 fd_install(retval, bprm->executable);
1282 bprm->executable = NULL;
1283 bprm->execfd = retval;
1284 }
1285 return 0;
1286
1287 out_unlock:
1288 up_write(&me->signal->exec_update_lock);
1289 if (!bprm->cred)
1290 mutex_unlock(&me->signal->cred_guard_mutex);
1291
1292 out:
1293 return retval;
1294 }
1295 EXPORT_SYMBOL(begin_new_exec);
1296
would_dump(struct linux_binprm * bprm,struct file * file)1297 void would_dump(struct linux_binprm *bprm, struct file *file)
1298 {
1299 struct inode *inode = file_inode(file);
1300 struct mnt_idmap *idmap = file_mnt_idmap(file);
1301 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1302 struct user_namespace *old, *user_ns;
1303 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1304
1305 /* Ensure mm->user_ns contains the executable */
1306 user_ns = old = bprm->mm->user_ns;
1307 while ((user_ns != &init_user_ns) &&
1308 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1309 user_ns = user_ns->parent;
1310
1311 if (old != user_ns) {
1312 bprm->mm->user_ns = get_user_ns(user_ns);
1313 put_user_ns(old);
1314 }
1315 }
1316 }
1317 EXPORT_SYMBOL(would_dump);
1318
setup_new_exec(struct linux_binprm * bprm)1319 void setup_new_exec(struct linux_binprm * bprm)
1320 {
1321 /* Setup things that can depend upon the personality */
1322 struct task_struct *me = current;
1323
1324 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1325
1326 arch_setup_new_exec();
1327
1328 /* Set the new mm task size. We have to do that late because it may
1329 * depend on TIF_32BIT which is only updated in flush_thread() on
1330 * some architectures like powerpc
1331 */
1332 me->mm->task_size = TASK_SIZE;
1333 up_write(&me->signal->exec_update_lock);
1334 mutex_unlock(&me->signal->cred_guard_mutex);
1335 }
1336 EXPORT_SYMBOL(setup_new_exec);
1337
1338 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1339 void finalize_exec(struct linux_binprm *bprm)
1340 {
1341 /* Store any stack rlimit changes before starting thread. */
1342 task_lock(current->group_leader);
1343 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1344 task_unlock(current->group_leader);
1345 }
1346 EXPORT_SYMBOL(finalize_exec);
1347
1348 /*
1349 * Prepare credentials and lock ->cred_guard_mutex.
1350 * setup_new_exec() commits the new creds and drops the lock.
1351 * Or, if exec fails before, free_bprm() should release ->cred
1352 * and unlock.
1353 */
prepare_bprm_creds(struct linux_binprm * bprm)1354 static int prepare_bprm_creds(struct linux_binprm *bprm)
1355 {
1356 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1357 return -ERESTARTNOINTR;
1358
1359 bprm->cred = prepare_exec_creds();
1360 if (likely(bprm->cred))
1361 return 0;
1362
1363 mutex_unlock(¤t->signal->cred_guard_mutex);
1364 return -ENOMEM;
1365 }
1366
1367 /* Matches do_open_execat() */
do_close_execat(struct file * file)1368 static void do_close_execat(struct file *file)
1369 {
1370 if (!file)
1371 return;
1372 exe_file_allow_write_access(file);
1373 fput(file);
1374 }
1375
free_bprm(struct linux_binprm * bprm)1376 static void free_bprm(struct linux_binprm *bprm)
1377 {
1378 if (bprm->mm) {
1379 acct_arg_size(bprm, 0);
1380 mmput(bprm->mm);
1381 }
1382 free_arg_pages(bprm);
1383 if (bprm->cred) {
1384 /* in case exec fails before de_thread() succeeds */
1385 current->fs->in_exec = 0;
1386 mutex_unlock(¤t->signal->cred_guard_mutex);
1387 abort_creds(bprm->cred);
1388 }
1389 do_close_execat(bprm->file);
1390 if (bprm->executable)
1391 fput(bprm->executable);
1392 /* If a binfmt changed the interp, free it. */
1393 if (bprm->interp != bprm->filename)
1394 kfree(bprm->interp);
1395 kfree(bprm->fdpath);
1396 kfree(bprm);
1397 }
1398
alloc_bprm(int fd,struct filename * filename,int flags)1399 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1400 {
1401 struct linux_binprm *bprm;
1402 struct file *file;
1403 int retval = -ENOMEM;
1404
1405 file = do_open_execat(fd, filename, flags);
1406 if (IS_ERR(file))
1407 return ERR_CAST(file);
1408
1409 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1410 if (!bprm) {
1411 do_close_execat(file);
1412 return ERR_PTR(-ENOMEM);
1413 }
1414
1415 bprm->file = file;
1416
1417 if (fd == AT_FDCWD || filename->name[0] == '/') {
1418 bprm->filename = filename->name;
1419 } else {
1420 if (filename->name[0] == '\0') {
1421 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1422 bprm->comm_from_dentry = 1;
1423 } else {
1424 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1425 fd, filename->name);
1426 }
1427 if (!bprm->fdpath)
1428 goto out_free;
1429
1430 /*
1431 * Record that a name derived from an O_CLOEXEC fd will be
1432 * inaccessible after exec. This allows the code in exec to
1433 * choose to fail when the executable is not mmaped into the
1434 * interpreter and an open file descriptor is not passed to
1435 * the interpreter. This makes for a better user experience
1436 * than having the interpreter start and then immediately fail
1437 * when it finds the executable is inaccessible.
1438 */
1439 if (get_close_on_exec(fd))
1440 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1441
1442 bprm->filename = bprm->fdpath;
1443 }
1444 bprm->interp = bprm->filename;
1445
1446 /*
1447 * At this point, security_file_open() has already been called (with
1448 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1449 * stop just after the security_bprm_creds_for_exec() call in
1450 * bprm_execve(). Indeed, the kernel should not try to parse the
1451 * content of the file with exec_binprm() nor change the calling
1452 * thread, which means that the following security functions will not
1453 * be called:
1454 * - security_bprm_check()
1455 * - security_bprm_creds_from_file()
1456 * - security_bprm_committing_creds()
1457 * - security_bprm_committed_creds()
1458 */
1459 bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1460
1461 retval = bprm_mm_init(bprm);
1462 if (!retval)
1463 return bprm;
1464
1465 out_free:
1466 free_bprm(bprm);
1467 return ERR_PTR(retval);
1468 }
1469
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1470 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1471 {
1472 /* If a binfmt changed the interp, free it first. */
1473 if (bprm->interp != bprm->filename)
1474 kfree(bprm->interp);
1475 bprm->interp = kstrdup(interp, GFP_KERNEL);
1476 if (!bprm->interp)
1477 return -ENOMEM;
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(bprm_change_interp);
1481
1482 /*
1483 * determine how safe it is to execute the proposed program
1484 * - the caller must hold ->cred_guard_mutex to protect against
1485 * PTRACE_ATTACH or seccomp thread-sync
1486 */
check_unsafe_exec(struct linux_binprm * bprm)1487 static void check_unsafe_exec(struct linux_binprm *bprm)
1488 {
1489 struct task_struct *p = current, *t;
1490 unsigned n_fs;
1491
1492 if (p->ptrace)
1493 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1494
1495 /*
1496 * This isn't strictly necessary, but it makes it harder for LSMs to
1497 * mess up.
1498 */
1499 if (task_no_new_privs(current))
1500 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1501
1502 /*
1503 * If another task is sharing our fs, we cannot safely
1504 * suid exec because the differently privileged task
1505 * will be able to manipulate the current directory, etc.
1506 * It would be nice to force an unshare instead...
1507 *
1508 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1509 * from another sub-thread until de_thread() succeeds, this
1510 * state is protected by cred_guard_mutex we hold.
1511 */
1512 n_fs = 1;
1513 spin_lock(&p->fs->lock);
1514 rcu_read_lock();
1515 for_other_threads(p, t) {
1516 if (t->fs == p->fs)
1517 n_fs++;
1518 }
1519 rcu_read_unlock();
1520
1521 /* "users" and "in_exec" locked for copy_fs() */
1522 if (p->fs->users > n_fs)
1523 bprm->unsafe |= LSM_UNSAFE_SHARE;
1524 else
1525 p->fs->in_exec = 1;
1526 spin_unlock(&p->fs->lock);
1527 }
1528
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1529 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1530 {
1531 /* Handle suid and sgid on files */
1532 struct mnt_idmap *idmap;
1533 struct inode *inode = file_inode(file);
1534 unsigned int mode;
1535 vfsuid_t vfsuid;
1536 vfsgid_t vfsgid;
1537 int err;
1538
1539 if (!mnt_may_suid(file->f_path.mnt))
1540 return;
1541
1542 if (task_no_new_privs(current))
1543 return;
1544
1545 mode = READ_ONCE(inode->i_mode);
1546 if (!(mode & (S_ISUID|S_ISGID)))
1547 return;
1548
1549 idmap = file_mnt_idmap(file);
1550
1551 /* Be careful if suid/sgid is set */
1552 inode_lock(inode);
1553
1554 /* Atomically reload and check mode/uid/gid now that lock held. */
1555 mode = inode->i_mode;
1556 vfsuid = i_uid_into_vfsuid(idmap, inode);
1557 vfsgid = i_gid_into_vfsgid(idmap, inode);
1558 err = inode_permission(idmap, inode, MAY_EXEC);
1559 inode_unlock(inode);
1560
1561 /* Did the exec bit vanish out from under us? Give up. */
1562 if (err)
1563 return;
1564
1565 /* We ignore suid/sgid if there are no mappings for them in the ns */
1566 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1567 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1568 return;
1569
1570 if (mode & S_ISUID) {
1571 bprm->per_clear |= PER_CLEAR_ON_SETID;
1572 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1573 }
1574
1575 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1576 bprm->per_clear |= PER_CLEAR_ON_SETID;
1577 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1578 }
1579 }
1580
1581 /*
1582 * Compute brpm->cred based upon the final binary.
1583 */
bprm_creds_from_file(struct linux_binprm * bprm)1584 static int bprm_creds_from_file(struct linux_binprm *bprm)
1585 {
1586 /* Compute creds based on which file? */
1587 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1588
1589 bprm_fill_uid(bprm, file);
1590 return security_bprm_creds_from_file(bprm, file);
1591 }
1592
1593 /*
1594 * Fill the binprm structure from the inode.
1595 * Read the first BINPRM_BUF_SIZE bytes
1596 *
1597 * This may be called multiple times for binary chains (scripts for example).
1598 */
prepare_binprm(struct linux_binprm * bprm)1599 static int prepare_binprm(struct linux_binprm *bprm)
1600 {
1601 loff_t pos = 0;
1602
1603 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1604 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1605 }
1606
1607 /*
1608 * Arguments are '\0' separated strings found at the location bprm->p
1609 * points to; chop off the first by relocating brpm->p to right after
1610 * the first '\0' encountered.
1611 */
remove_arg_zero(struct linux_binprm * bprm)1612 int remove_arg_zero(struct linux_binprm *bprm)
1613 {
1614 unsigned long offset;
1615 char *kaddr;
1616 struct page *page;
1617
1618 if (!bprm->argc)
1619 return 0;
1620
1621 do {
1622 offset = bprm->p & ~PAGE_MASK;
1623 page = get_arg_page(bprm, bprm->p, 0);
1624 if (!page)
1625 return -EFAULT;
1626 kaddr = kmap_local_page(page);
1627
1628 for (; offset < PAGE_SIZE && kaddr[offset];
1629 offset++, bprm->p++)
1630 ;
1631
1632 kunmap_local(kaddr);
1633 put_arg_page(page);
1634 } while (offset == PAGE_SIZE);
1635
1636 bprm->p++;
1637 bprm->argc--;
1638
1639 return 0;
1640 }
1641 EXPORT_SYMBOL(remove_arg_zero);
1642
1643 /*
1644 * cycle the list of binary formats handler, until one recognizes the image
1645 */
search_binary_handler(struct linux_binprm * bprm)1646 static int search_binary_handler(struct linux_binprm *bprm)
1647 {
1648 struct linux_binfmt *fmt;
1649 int retval;
1650
1651 retval = prepare_binprm(bprm);
1652 if (retval < 0)
1653 return retval;
1654
1655 retval = security_bprm_check(bprm);
1656 if (retval)
1657 return retval;
1658
1659 read_lock(&binfmt_lock);
1660 list_for_each_entry(fmt, &formats, lh) {
1661 if (!try_module_get(fmt->module))
1662 continue;
1663 read_unlock(&binfmt_lock);
1664
1665 retval = fmt->load_binary(bprm);
1666
1667 read_lock(&binfmt_lock);
1668 put_binfmt(fmt);
1669 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1670 read_unlock(&binfmt_lock);
1671 return retval;
1672 }
1673 }
1674 read_unlock(&binfmt_lock);
1675
1676 return -ENOEXEC;
1677 }
1678
1679 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1680 static int exec_binprm(struct linux_binprm *bprm)
1681 {
1682 pid_t old_pid, old_vpid;
1683 int ret, depth;
1684
1685 /* Need to fetch pid before load_binary changes it */
1686 old_pid = current->pid;
1687 rcu_read_lock();
1688 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1689 rcu_read_unlock();
1690
1691 /* This allows 4 levels of binfmt rewrites before failing hard. */
1692 for (depth = 0;; depth++) {
1693 struct file *exec;
1694 if (depth > 5)
1695 return -ELOOP;
1696
1697 ret = search_binary_handler(bprm);
1698 if (ret < 0)
1699 return ret;
1700 if (!bprm->interpreter)
1701 break;
1702
1703 exec = bprm->file;
1704 bprm->file = bprm->interpreter;
1705 bprm->interpreter = NULL;
1706
1707 exe_file_allow_write_access(exec);
1708 if (unlikely(bprm->have_execfd)) {
1709 if (bprm->executable) {
1710 fput(exec);
1711 return -ENOEXEC;
1712 }
1713 bprm->executable = exec;
1714 } else
1715 fput(exec);
1716 }
1717
1718 audit_bprm(bprm);
1719 trace_sched_process_exec(current, old_pid, bprm);
1720 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1721 proc_exec_connector(current);
1722 return 0;
1723 }
1724
bprm_execve(struct linux_binprm * bprm)1725 static int bprm_execve(struct linux_binprm *bprm)
1726 {
1727 int retval;
1728
1729 retval = prepare_bprm_creds(bprm);
1730 if (retval)
1731 return retval;
1732
1733 /*
1734 * Check for unsafe execution states before exec_binprm(), which
1735 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1736 * where setuid-ness is evaluated.
1737 */
1738 check_unsafe_exec(bprm);
1739 current->in_execve = 1;
1740 sched_mm_cid_before_execve(current);
1741
1742 sched_exec();
1743
1744 /* Set the unchanging part of bprm->cred */
1745 retval = security_bprm_creds_for_exec(bprm);
1746 if (retval || bprm->is_check)
1747 goto out;
1748
1749 retval = exec_binprm(bprm);
1750 if (retval < 0)
1751 goto out;
1752
1753 sched_mm_cid_after_execve(current);
1754 rseq_execve(current);
1755 /* execve succeeded */
1756 current->in_execve = 0;
1757 user_events_execve(current);
1758 acct_update_integrals(current);
1759 task_numa_free(current, false);
1760 return retval;
1761
1762 out:
1763 /*
1764 * If past the point of no return ensure the code never
1765 * returns to the userspace process. Use an existing fatal
1766 * signal if present otherwise terminate the process with
1767 * SIGSEGV.
1768 */
1769 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1770 force_fatal_sig(SIGSEGV);
1771
1772 sched_mm_cid_after_execve(current);
1773 rseq_set_notify_resume(current);
1774 current->in_execve = 0;
1775
1776 return retval;
1777 }
1778
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1779 static int do_execveat_common(int fd, struct filename *filename,
1780 struct user_arg_ptr argv,
1781 struct user_arg_ptr envp,
1782 int flags)
1783 {
1784 struct linux_binprm *bprm;
1785 int retval;
1786
1787 if (IS_ERR(filename))
1788 return PTR_ERR(filename);
1789
1790 /*
1791 * We move the actual failure in case of RLIMIT_NPROC excess from
1792 * set*uid() to execve() because too many poorly written programs
1793 * don't check setuid() return code. Here we additionally recheck
1794 * whether NPROC limit is still exceeded.
1795 */
1796 if ((current->flags & PF_NPROC_EXCEEDED) &&
1797 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1798 retval = -EAGAIN;
1799 goto out_ret;
1800 }
1801
1802 /* We're below the limit (still or again), so we don't want to make
1803 * further execve() calls fail. */
1804 current->flags &= ~PF_NPROC_EXCEEDED;
1805
1806 bprm = alloc_bprm(fd, filename, flags);
1807 if (IS_ERR(bprm)) {
1808 retval = PTR_ERR(bprm);
1809 goto out_ret;
1810 }
1811
1812 retval = count(argv, MAX_ARG_STRINGS);
1813 if (retval < 0)
1814 goto out_free;
1815 bprm->argc = retval;
1816
1817 retval = count(envp, MAX_ARG_STRINGS);
1818 if (retval < 0)
1819 goto out_free;
1820 bprm->envc = retval;
1821
1822 retval = bprm_stack_limits(bprm);
1823 if (retval < 0)
1824 goto out_free;
1825
1826 retval = copy_string_kernel(bprm->filename, bprm);
1827 if (retval < 0)
1828 goto out_free;
1829 bprm->exec = bprm->p;
1830
1831 retval = copy_strings(bprm->envc, envp, bprm);
1832 if (retval < 0)
1833 goto out_free;
1834
1835 retval = copy_strings(bprm->argc, argv, bprm);
1836 if (retval < 0)
1837 goto out_free;
1838
1839 /*
1840 * When argv is empty, add an empty string ("") as argv[0] to
1841 * ensure confused userspace programs that start processing
1842 * from argv[1] won't end up walking envp. See also
1843 * bprm_stack_limits().
1844 */
1845 if (bprm->argc == 0) {
1846 retval = copy_string_kernel("", bprm);
1847 if (retval < 0)
1848 goto out_free;
1849 bprm->argc = 1;
1850
1851 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1852 current->comm, bprm->filename);
1853 }
1854
1855 retval = bprm_execve(bprm);
1856 out_free:
1857 free_bprm(bprm);
1858
1859 out_ret:
1860 putname(filename);
1861 return retval;
1862 }
1863
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1864 int kernel_execve(const char *kernel_filename,
1865 const char *const *argv, const char *const *envp)
1866 {
1867 struct filename *filename;
1868 struct linux_binprm *bprm;
1869 int fd = AT_FDCWD;
1870 int retval;
1871
1872 /* It is non-sense for kernel threads to call execve */
1873 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1874 return -EINVAL;
1875
1876 filename = getname_kernel(kernel_filename);
1877 if (IS_ERR(filename))
1878 return PTR_ERR(filename);
1879
1880 bprm = alloc_bprm(fd, filename, 0);
1881 if (IS_ERR(bprm)) {
1882 retval = PTR_ERR(bprm);
1883 goto out_ret;
1884 }
1885
1886 retval = count_strings_kernel(argv);
1887 if (WARN_ON_ONCE(retval == 0))
1888 retval = -EINVAL;
1889 if (retval < 0)
1890 goto out_free;
1891 bprm->argc = retval;
1892
1893 retval = count_strings_kernel(envp);
1894 if (retval < 0)
1895 goto out_free;
1896 bprm->envc = retval;
1897
1898 retval = bprm_stack_limits(bprm);
1899 if (retval < 0)
1900 goto out_free;
1901
1902 retval = copy_string_kernel(bprm->filename, bprm);
1903 if (retval < 0)
1904 goto out_free;
1905 bprm->exec = bprm->p;
1906
1907 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1908 if (retval < 0)
1909 goto out_free;
1910
1911 retval = copy_strings_kernel(bprm->argc, argv, bprm);
1912 if (retval < 0)
1913 goto out_free;
1914
1915 retval = bprm_execve(bprm);
1916 out_free:
1917 free_bprm(bprm);
1918 out_ret:
1919 putname(filename);
1920 return retval;
1921 }
1922
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1923 static int do_execve(struct filename *filename,
1924 const char __user *const __user *__argv,
1925 const char __user *const __user *__envp)
1926 {
1927 struct user_arg_ptr argv = { .ptr.native = __argv };
1928 struct user_arg_ptr envp = { .ptr.native = __envp };
1929 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1930 }
1931
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1932 static int do_execveat(int fd, struct filename *filename,
1933 const char __user *const __user *__argv,
1934 const char __user *const __user *__envp,
1935 int flags)
1936 {
1937 struct user_arg_ptr argv = { .ptr.native = __argv };
1938 struct user_arg_ptr envp = { .ptr.native = __envp };
1939
1940 return do_execveat_common(fd, filename, argv, envp, flags);
1941 }
1942
1943 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1944 static int compat_do_execve(struct filename *filename,
1945 const compat_uptr_t __user *__argv,
1946 const compat_uptr_t __user *__envp)
1947 {
1948 struct user_arg_ptr argv = {
1949 .is_compat = true,
1950 .ptr.compat = __argv,
1951 };
1952 struct user_arg_ptr envp = {
1953 .is_compat = true,
1954 .ptr.compat = __envp,
1955 };
1956 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1957 }
1958
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1959 static int compat_do_execveat(int fd, struct filename *filename,
1960 const compat_uptr_t __user *__argv,
1961 const compat_uptr_t __user *__envp,
1962 int flags)
1963 {
1964 struct user_arg_ptr argv = {
1965 .is_compat = true,
1966 .ptr.compat = __argv,
1967 };
1968 struct user_arg_ptr envp = {
1969 .is_compat = true,
1970 .ptr.compat = __envp,
1971 };
1972 return do_execveat_common(fd, filename, argv, envp, flags);
1973 }
1974 #endif
1975
set_binfmt(struct linux_binfmt * new)1976 void set_binfmt(struct linux_binfmt *new)
1977 {
1978 struct mm_struct *mm = current->mm;
1979
1980 if (mm->binfmt)
1981 module_put(mm->binfmt->module);
1982
1983 mm->binfmt = new;
1984 if (new)
1985 __module_get(new->module);
1986 }
1987 EXPORT_SYMBOL(set_binfmt);
1988
1989 /*
1990 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1991 */
set_dumpable(struct mm_struct * mm,int value)1992 void set_dumpable(struct mm_struct *mm, int value)
1993 {
1994 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1995 return;
1996
1997 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1998 }
1999
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2000 SYSCALL_DEFINE3(execve,
2001 const char __user *, filename,
2002 const char __user *const __user *, argv,
2003 const char __user *const __user *, envp)
2004 {
2005 return do_execve(getname(filename), argv, envp);
2006 }
2007
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2008 SYSCALL_DEFINE5(execveat,
2009 int, fd, const char __user *, filename,
2010 const char __user *const __user *, argv,
2011 const char __user *const __user *, envp,
2012 int, flags)
2013 {
2014 return do_execveat(fd,
2015 getname_uflags(filename, flags),
2016 argv, envp, flags);
2017 }
2018
2019 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2020 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2021 const compat_uptr_t __user *, argv,
2022 const compat_uptr_t __user *, envp)
2023 {
2024 return compat_do_execve(getname(filename), argv, envp);
2025 }
2026
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2027 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2028 const char __user *, filename,
2029 const compat_uptr_t __user *, argv,
2030 const compat_uptr_t __user *, envp,
2031 int, flags)
2032 {
2033 return compat_do_execveat(fd,
2034 getname_uflags(filename, flags),
2035 argv, envp, flags);
2036 }
2037 #endif
2038
2039 #ifdef CONFIG_SYSCTL
2040
proc_dointvec_minmax_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2041 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2042 void *buffer, size_t *lenp, loff_t *ppos)
2043 {
2044 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2045
2046 if (!error)
2047 validate_coredump_safety();
2048 return error;
2049 }
2050
2051 static const struct ctl_table fs_exec_sysctls[] = {
2052 {
2053 .procname = "suid_dumpable",
2054 .data = &suid_dumpable,
2055 .maxlen = sizeof(int),
2056 .mode = 0644,
2057 .proc_handler = proc_dointvec_minmax_coredump,
2058 .extra1 = SYSCTL_ZERO,
2059 .extra2 = SYSCTL_TWO,
2060 },
2061 };
2062
init_fs_exec_sysctls(void)2063 static int __init init_fs_exec_sysctls(void)
2064 {
2065 register_sysctl_init("fs", fs_exec_sysctls);
2066 return 0;
2067 }
2068
2069 fs_initcall(init_fs_exec_sysctls);
2070 #endif /* CONFIG_SYSCTL */
2071
2072 #ifdef CONFIG_EXEC_KUNIT_TEST
2073 #include "tests/exec_kunit.c"
2074 #endif
2075