1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14 };
15
16 struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38 };
39
40 struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = true;
87 return true;
88 }
89
90 delta_ns = time - sg_policy->last_freq_update_time;
91
92 return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
97 {
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 else if (sg_policy->next_freq == next_freq)
101 return false;
102
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
105
106 return true;
107 }
108
sugov_deferred_update(struct sugov_policy * sg_policy)109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
114 }
115 }
116
117 /**
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
122 *
123 * Return: the reference CPU frequency to compute a capacity.
124 */
125 static __always_inline
get_capacity_ref_freq(struct cpufreq_policy * policy)126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128 unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130 if (freq)
131 return freq;
132
133 if (arch_scale_freq_invariant())
134 return policy->cpuinfo.max_freq;
135
136 /*
137 * Apply a 25% margin so that we select a higher frequency than
138 * the current one before the CPU is fully busy:
139 */
140 return policy->cur + (policy->cur >> 2);
141 }
142
143 /**
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
148 *
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
151 *
152 * next_freq = C * max_freq * util / max
153 *
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
156 *
157 * next_freq = C * curr_freq * util_raw / max
158 *
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160 *
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
164 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)165 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 unsigned long util, unsigned long max)
167 {
168 struct cpufreq_policy *policy = sg_policy->policy;
169 unsigned int freq;
170
171 freq = get_capacity_ref_freq(policy);
172 freq = map_util_freq(util, freq, max);
173
174 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 return sg_policy->next_freq;
176
177 sg_policy->cached_raw_freq = freq;
178 return cpufreq_driver_resolve_freq(policy, freq);
179 }
180
sugov_effective_cpu_perf(int cpu,unsigned long actual,unsigned long min,unsigned long max)181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 unsigned long min,
183 unsigned long max)
184 {
185 /* Add dvfs headroom to actual utilization */
186 actual = map_util_perf(actual);
187 /* Actually we don't need to target the max performance */
188 if (actual < max)
189 max = actual;
190
191 /*
192 * Ensure at least minimum performance while providing more compute
193 * capacity when possible.
194 */
195 return max(min, max);
196 }
197
sugov_get_util(struct sugov_cpu * sg_cpu,unsigned long boost)198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199 {
200 unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
201
202 if (!scx_switched_all())
203 util += cpu_util_cfs_boost(sg_cpu->cpu);
204 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
205 util = max(util, boost);
206 sg_cpu->bw_min = min;
207 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
208 }
209
210 /**
211 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212 * @sg_cpu: the sugov data for the CPU to boost
213 * @time: the update time from the caller
214 * @set_iowait_boost: true if an IO boost has been requested
215 *
216 * The IO wait boost of a task is disabled after a tick since the last update
217 * of a CPU. If a new IO wait boost is requested after more then a tick, then
218 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219 * efficiency by ignoring sporadic wakeups from IO.
220 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)221 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
222 bool set_iowait_boost)
223 {
224 s64 delta_ns = time - sg_cpu->last_update;
225
226 /* Reset boost only if a tick has elapsed since last request */
227 if (delta_ns <= TICK_NSEC)
228 return false;
229
230 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
231 sg_cpu->iowait_boost_pending = set_iowait_boost;
232
233 return true;
234 }
235
236 /**
237 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238 * @sg_cpu: the sugov data for the CPU to boost
239 * @time: the update time from the caller
240 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
241 *
242 * Each time a task wakes up after an IO operation, the CPU utilization can be
243 * boosted to a certain utilization which doubles at each "frequent and
244 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245 * of the maximum OPP.
246 *
247 * To keep doubling, an IO boost has to be requested at least once per tick,
248 * otherwise we restart from the utilization of the minimum OPP.
249 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)250 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
251 unsigned int flags)
252 {
253 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
254
255 /* Reset boost if the CPU appears to have been idle enough */
256 if (sg_cpu->iowait_boost &&
257 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
258 return;
259
260 /* Boost only tasks waking up after IO */
261 if (!set_iowait_boost)
262 return;
263
264 /* Ensure boost doubles only one time at each request */
265 if (sg_cpu->iowait_boost_pending)
266 return;
267 sg_cpu->iowait_boost_pending = true;
268
269 /* Double the boost at each request */
270 if (sg_cpu->iowait_boost) {
271 sg_cpu->iowait_boost =
272 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
273 return;
274 }
275
276 /* First wakeup after IO: start with minimum boost */
277 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
278 }
279
280 /**
281 * sugov_iowait_apply() - Apply the IO boost to a CPU.
282 * @sg_cpu: the sugov data for the cpu to boost
283 * @time: the update time from the caller
284 * @max_cap: the max CPU capacity
285 *
286 * A CPU running a task which woken up after an IO operation can have its
287 * utilization boosted to speed up the completion of those IO operations.
288 * The IO boost value is increased each time a task wakes up from IO, in
289 * sugov_iowait_apply(), and it's instead decreased by this function,
290 * each time an increase has not been requested (!iowait_boost_pending).
291 *
292 * A CPU which also appears to have been idle for at least one tick has also
293 * its IO boost utilization reset.
294 *
295 * This mechanism is designed to boost high frequently IO waiting tasks, while
296 * being more conservative on tasks which does sporadic IO operations.
297 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap)298 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
299 unsigned long max_cap)
300 {
301 /* No boost currently required */
302 if (!sg_cpu->iowait_boost)
303 return 0;
304
305 /* Reset boost if the CPU appears to have been idle enough */
306 if (sugov_iowait_reset(sg_cpu, time, false))
307 return 0;
308
309 if (!sg_cpu->iowait_boost_pending) {
310 /*
311 * No boost pending; reduce the boost value.
312 */
313 sg_cpu->iowait_boost >>= 1;
314 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
315 sg_cpu->iowait_boost = 0;
316 return 0;
317 }
318 }
319
320 sg_cpu->iowait_boost_pending = false;
321
322 /*
323 * sg_cpu->util is already in capacity scale; convert iowait_boost
324 * into the same scale so we can compare.
325 */
326 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
327 }
328
329 #ifdef CONFIG_NO_HZ_COMMON
sugov_hold_freq(struct sugov_cpu * sg_cpu)330 static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
331 {
332 unsigned long idle_calls;
333 bool ret;
334
335 /*
336 * The heuristics in this function is for the fair class. For SCX, the
337 * performance target comes directly from the BPF scheduler. Let's just
338 * follow it.
339 */
340 if (scx_switched_all())
341 return false;
342
343 /* if capped by uclamp_max, always update to be in compliance */
344 if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
345 return false;
346
347 /*
348 * Maintain the frequency if the CPU has not been idle recently, as
349 * reduction is likely to be premature.
350 */
351 idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
352 ret = idle_calls == sg_cpu->saved_idle_calls;
353
354 sg_cpu->saved_idle_calls = idle_calls;
355 return ret;
356 }
357 #else
sugov_hold_freq(struct sugov_cpu * sg_cpu)358 static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
359 #endif /* CONFIG_NO_HZ_COMMON */
360
361 /*
362 * Make sugov_should_update_freq() ignore the rate limit when DL
363 * has increased the utilization.
364 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu)365 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
366 {
367 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
368 sg_cpu->sg_policy->limits_changed = true;
369 }
370
sugov_update_single_common(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap,unsigned int flags)371 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
372 u64 time, unsigned long max_cap,
373 unsigned int flags)
374 {
375 unsigned long boost;
376
377 sugov_iowait_boost(sg_cpu, time, flags);
378 sg_cpu->last_update = time;
379
380 ignore_dl_rate_limit(sg_cpu);
381
382 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
383 return false;
384
385 boost = sugov_iowait_apply(sg_cpu, time, max_cap);
386 sugov_get_util(sg_cpu, boost);
387
388 return true;
389 }
390
sugov_update_single_freq(struct update_util_data * hook,u64 time,unsigned int flags)391 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
392 unsigned int flags)
393 {
394 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
395 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
396 unsigned int cached_freq = sg_policy->cached_raw_freq;
397 unsigned long max_cap;
398 unsigned int next_f;
399
400 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
401
402 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
403 return;
404
405 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
406
407 if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
408 !sg_policy->need_freq_update) {
409 next_f = sg_policy->next_freq;
410
411 /* Restore cached freq as next_freq has changed */
412 sg_policy->cached_raw_freq = cached_freq;
413 }
414
415 if (!sugov_update_next_freq(sg_policy, time, next_f))
416 return;
417
418 /*
419 * This code runs under rq->lock for the target CPU, so it won't run
420 * concurrently on two different CPUs for the same target and it is not
421 * necessary to acquire the lock in the fast switch case.
422 */
423 if (sg_policy->policy->fast_switch_enabled) {
424 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
425 } else {
426 raw_spin_lock(&sg_policy->update_lock);
427 sugov_deferred_update(sg_policy);
428 raw_spin_unlock(&sg_policy->update_lock);
429 }
430 }
431
sugov_update_single_perf(struct update_util_data * hook,u64 time,unsigned int flags)432 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
433 unsigned int flags)
434 {
435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436 unsigned long prev_util = sg_cpu->util;
437 unsigned long max_cap;
438
439 /*
440 * Fall back to the "frequency" path if frequency invariance is not
441 * supported, because the direct mapping between the utilization and
442 * the performance levels depends on the frequency invariance.
443 */
444 if (!arch_scale_freq_invariant()) {
445 sugov_update_single_freq(hook, time, flags);
446 return;
447 }
448
449 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
450
451 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
452 return;
453
454 if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
455 sg_cpu->util = prev_util;
456
457 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
458 sg_cpu->util, max_cap);
459
460 sg_cpu->sg_policy->last_freq_update_time = time;
461 }
462
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)463 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
464 {
465 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466 struct cpufreq_policy *policy = sg_policy->policy;
467 unsigned long util = 0, max_cap;
468 unsigned int j;
469
470 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
471
472 for_each_cpu(j, policy->cpus) {
473 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
474 unsigned long boost;
475
476 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
477 sugov_get_util(j_sg_cpu, boost);
478
479 util = max(j_sg_cpu->util, util);
480 }
481
482 return get_next_freq(sg_policy, util, max_cap);
483 }
484
485 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)486 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
487 {
488 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
489 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
490 unsigned int next_f;
491
492 raw_spin_lock(&sg_policy->update_lock);
493
494 sugov_iowait_boost(sg_cpu, time, flags);
495 sg_cpu->last_update = time;
496
497 ignore_dl_rate_limit(sg_cpu);
498
499 if (sugov_should_update_freq(sg_policy, time)) {
500 next_f = sugov_next_freq_shared(sg_cpu, time);
501
502 if (!sugov_update_next_freq(sg_policy, time, next_f))
503 goto unlock;
504
505 if (sg_policy->policy->fast_switch_enabled)
506 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
507 else
508 sugov_deferred_update(sg_policy);
509 }
510 unlock:
511 raw_spin_unlock(&sg_policy->update_lock);
512 }
513
sugov_work(struct kthread_work * work)514 static void sugov_work(struct kthread_work *work)
515 {
516 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
517 unsigned int freq;
518 unsigned long flags;
519
520 /*
521 * Hold sg_policy->update_lock shortly to handle the case where:
522 * in case sg_policy->next_freq is read here, and then updated by
523 * sugov_deferred_update() just before work_in_progress is set to false
524 * here, we may miss queueing the new update.
525 *
526 * Note: If a work was queued after the update_lock is released,
527 * sugov_work() will just be called again by kthread_work code; and the
528 * request will be proceed before the sugov thread sleeps.
529 */
530 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
531 freq = sg_policy->next_freq;
532 sg_policy->work_in_progress = false;
533 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
534
535 mutex_lock(&sg_policy->work_lock);
536 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
537 mutex_unlock(&sg_policy->work_lock);
538 }
539
sugov_irq_work(struct irq_work * irq_work)540 static void sugov_irq_work(struct irq_work *irq_work)
541 {
542 struct sugov_policy *sg_policy;
543
544 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
545
546 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
547 }
548
549 /************************** sysfs interface ************************/
550
551 static struct sugov_tunables *global_tunables;
552 static DEFINE_MUTEX(global_tunables_lock);
553
to_sugov_tunables(struct gov_attr_set * attr_set)554 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
555 {
556 return container_of(attr_set, struct sugov_tunables, attr_set);
557 }
558
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)559 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
560 {
561 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562
563 return sprintf(buf, "%u\n", tunables->rate_limit_us);
564 }
565
566 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)567 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
568 {
569 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
570 struct sugov_policy *sg_policy;
571 unsigned int rate_limit_us;
572
573 if (kstrtouint(buf, 10, &rate_limit_us))
574 return -EINVAL;
575
576 tunables->rate_limit_us = rate_limit_us;
577
578 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
579 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
580
581 return count;
582 }
583
584 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
585
586 static struct attribute *sugov_attrs[] = {
587 &rate_limit_us.attr,
588 NULL
589 };
590 ATTRIBUTE_GROUPS(sugov);
591
sugov_tunables_free(struct kobject * kobj)592 static void sugov_tunables_free(struct kobject *kobj)
593 {
594 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
595
596 kfree(to_sugov_tunables(attr_set));
597 }
598
599 static const struct kobj_type sugov_tunables_ktype = {
600 .default_groups = sugov_groups,
601 .sysfs_ops = &governor_sysfs_ops,
602 .release = &sugov_tunables_free,
603 };
604
605 /********************** cpufreq governor interface *********************/
606
607 #ifdef CONFIG_ENERGY_MODEL
rebuild_sd_workfn(struct work_struct * work)608 static void rebuild_sd_workfn(struct work_struct *work)
609 {
610 rebuild_sched_domains_energy();
611 }
612
613 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
614
615 /*
616 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
617 * on governor changes to make sure the scheduler knows about it.
618 */
sugov_eas_rebuild_sd(void)619 static void sugov_eas_rebuild_sd(void)
620 {
621 /*
622 * When called from the cpufreq_register_driver() path, the
623 * cpu_hotplug_lock is already held, so use a work item to
624 * avoid nested locking in rebuild_sched_domains().
625 */
626 schedule_work(&rebuild_sd_work);
627 }
628 #else
sugov_eas_rebuild_sd(void)629 static inline void sugov_eas_rebuild_sd(void) { };
630 #endif
631
632 struct cpufreq_governor schedutil_gov;
633
sugov_policy_alloc(struct cpufreq_policy * policy)634 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
635 {
636 struct sugov_policy *sg_policy;
637
638 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
639 if (!sg_policy)
640 return NULL;
641
642 sg_policy->policy = policy;
643 raw_spin_lock_init(&sg_policy->update_lock);
644 return sg_policy;
645 }
646
sugov_policy_free(struct sugov_policy * sg_policy)647 static void sugov_policy_free(struct sugov_policy *sg_policy)
648 {
649 kfree(sg_policy);
650 }
651
sugov_kthread_create(struct sugov_policy * sg_policy)652 static int sugov_kthread_create(struct sugov_policy *sg_policy)
653 {
654 struct task_struct *thread;
655 struct sched_attr attr = {
656 .size = sizeof(struct sched_attr),
657 .sched_policy = SCHED_DEADLINE,
658 .sched_flags = SCHED_FLAG_SUGOV,
659 .sched_nice = 0,
660 .sched_priority = 0,
661 /*
662 * Fake (unused) bandwidth; workaround to "fix"
663 * priority inheritance.
664 */
665 .sched_runtime = NSEC_PER_MSEC,
666 .sched_deadline = 10 * NSEC_PER_MSEC,
667 .sched_period = 10 * NSEC_PER_MSEC,
668 };
669 struct cpufreq_policy *policy = sg_policy->policy;
670 int ret;
671
672 /* kthread only required for slow path */
673 if (policy->fast_switch_enabled)
674 return 0;
675
676 kthread_init_work(&sg_policy->work, sugov_work);
677 kthread_init_worker(&sg_policy->worker);
678 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
679 "sugov:%d",
680 cpumask_first(policy->related_cpus));
681 if (IS_ERR(thread)) {
682 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
683 return PTR_ERR(thread);
684 }
685
686 ret = sched_setattr_nocheck(thread, &attr);
687 if (ret) {
688 kthread_stop(thread);
689 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
690 return ret;
691 }
692
693 sg_policy->thread = thread;
694 kthread_bind_mask(thread, policy->related_cpus);
695 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
696 mutex_init(&sg_policy->work_lock);
697
698 wake_up_process(thread);
699
700 return 0;
701 }
702
sugov_kthread_stop(struct sugov_policy * sg_policy)703 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
704 {
705 /* kthread only required for slow path */
706 if (sg_policy->policy->fast_switch_enabled)
707 return;
708
709 kthread_flush_worker(&sg_policy->worker);
710 kthread_stop(sg_policy->thread);
711 mutex_destroy(&sg_policy->work_lock);
712 }
713
sugov_tunables_alloc(struct sugov_policy * sg_policy)714 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
715 {
716 struct sugov_tunables *tunables;
717
718 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
719 if (tunables) {
720 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
721 if (!have_governor_per_policy())
722 global_tunables = tunables;
723 }
724 return tunables;
725 }
726
sugov_clear_global_tunables(void)727 static void sugov_clear_global_tunables(void)
728 {
729 if (!have_governor_per_policy())
730 global_tunables = NULL;
731 }
732
sugov_init(struct cpufreq_policy * policy)733 static int sugov_init(struct cpufreq_policy *policy)
734 {
735 struct sugov_policy *sg_policy;
736 struct sugov_tunables *tunables;
737 int ret = 0;
738
739 /* State should be equivalent to EXIT */
740 if (policy->governor_data)
741 return -EBUSY;
742
743 cpufreq_enable_fast_switch(policy);
744
745 sg_policy = sugov_policy_alloc(policy);
746 if (!sg_policy) {
747 ret = -ENOMEM;
748 goto disable_fast_switch;
749 }
750
751 ret = sugov_kthread_create(sg_policy);
752 if (ret)
753 goto free_sg_policy;
754
755 mutex_lock(&global_tunables_lock);
756
757 if (global_tunables) {
758 if (WARN_ON(have_governor_per_policy())) {
759 ret = -EINVAL;
760 goto stop_kthread;
761 }
762 policy->governor_data = sg_policy;
763 sg_policy->tunables = global_tunables;
764
765 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
766 goto out;
767 }
768
769 tunables = sugov_tunables_alloc(sg_policy);
770 if (!tunables) {
771 ret = -ENOMEM;
772 goto stop_kthread;
773 }
774
775 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
776
777 policy->governor_data = sg_policy;
778 sg_policy->tunables = tunables;
779
780 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
781 get_governor_parent_kobj(policy), "%s",
782 schedutil_gov.name);
783 if (ret)
784 goto fail;
785
786 out:
787 sugov_eas_rebuild_sd();
788 mutex_unlock(&global_tunables_lock);
789 return 0;
790
791 fail:
792 kobject_put(&tunables->attr_set.kobj);
793 policy->governor_data = NULL;
794 sugov_clear_global_tunables();
795
796 stop_kthread:
797 sugov_kthread_stop(sg_policy);
798 mutex_unlock(&global_tunables_lock);
799
800 free_sg_policy:
801 sugov_policy_free(sg_policy);
802
803 disable_fast_switch:
804 cpufreq_disable_fast_switch(policy);
805
806 pr_err("initialization failed (error %d)\n", ret);
807 return ret;
808 }
809
sugov_exit(struct cpufreq_policy * policy)810 static void sugov_exit(struct cpufreq_policy *policy)
811 {
812 struct sugov_policy *sg_policy = policy->governor_data;
813 struct sugov_tunables *tunables = sg_policy->tunables;
814 unsigned int count;
815
816 mutex_lock(&global_tunables_lock);
817
818 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
819 policy->governor_data = NULL;
820 if (!count)
821 sugov_clear_global_tunables();
822
823 mutex_unlock(&global_tunables_lock);
824
825 sugov_kthread_stop(sg_policy);
826 sugov_policy_free(sg_policy);
827 cpufreq_disable_fast_switch(policy);
828
829 sugov_eas_rebuild_sd();
830 }
831
sugov_start(struct cpufreq_policy * policy)832 static int sugov_start(struct cpufreq_policy *policy)
833 {
834 struct sugov_policy *sg_policy = policy->governor_data;
835 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
836 unsigned int cpu;
837
838 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839 sg_policy->last_freq_update_time = 0;
840 sg_policy->next_freq = 0;
841 sg_policy->work_in_progress = false;
842 sg_policy->limits_changed = false;
843 sg_policy->cached_raw_freq = 0;
844
845 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
846
847 if (policy_is_shared(policy))
848 uu = sugov_update_shared;
849 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
850 uu = sugov_update_single_perf;
851 else
852 uu = sugov_update_single_freq;
853
854 for_each_cpu(cpu, policy->cpus) {
855 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
856
857 memset(sg_cpu, 0, sizeof(*sg_cpu));
858 sg_cpu->cpu = cpu;
859 sg_cpu->sg_policy = sg_policy;
860 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
861 }
862 return 0;
863 }
864
sugov_stop(struct cpufreq_policy * policy)865 static void sugov_stop(struct cpufreq_policy *policy)
866 {
867 struct sugov_policy *sg_policy = policy->governor_data;
868 unsigned int cpu;
869
870 for_each_cpu(cpu, policy->cpus)
871 cpufreq_remove_update_util_hook(cpu);
872
873 synchronize_rcu();
874
875 if (!policy->fast_switch_enabled) {
876 irq_work_sync(&sg_policy->irq_work);
877 kthread_cancel_work_sync(&sg_policy->work);
878 }
879 }
880
sugov_limits(struct cpufreq_policy * policy)881 static void sugov_limits(struct cpufreq_policy *policy)
882 {
883 struct sugov_policy *sg_policy = policy->governor_data;
884
885 if (!policy->fast_switch_enabled) {
886 mutex_lock(&sg_policy->work_lock);
887 cpufreq_policy_apply_limits(policy);
888 mutex_unlock(&sg_policy->work_lock);
889 }
890
891 sg_policy->limits_changed = true;
892 }
893
894 struct cpufreq_governor schedutil_gov = {
895 .name = "schedutil",
896 .owner = THIS_MODULE,
897 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
898 .init = sugov_init,
899 .exit = sugov_exit,
900 .start = sugov_start,
901 .stop = sugov_stop,
902 .limits = sugov_limits,
903 };
904
905 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)906 struct cpufreq_governor *cpufreq_default_governor(void)
907 {
908 return &schedutil_gov;
909 }
910 #endif
911
912 cpufreq_governor_init(schedutil_gov);
913