xref: /linux/kernel/relay.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * fault() vm_op implementation for relay file mapping.
32  */
relay_buf_fault(struct vm_fault * vmf)33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35 	struct page *page;
36 	struct rchan_buf *buf = vmf->vma->vm_private_data;
37 	pgoff_t pgoff = vmf->pgoff;
38 
39 	if (!buf)
40 		return VM_FAULT_OOM;
41 
42 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43 	if (!page)
44 		return VM_FAULT_SIGBUS;
45 	get_page(page);
46 	vmf->page = page;
47 
48 	return 0;
49 }
50 
51 /*
52  * vm_ops for relay file mappings.
53  */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55 	.fault = relay_buf_fault,
56 };
57 
58 /*
59  * allocate an array of pointers of struct page
60  */
relay_alloc_page_array(unsigned int n_pages)61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63 	return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65 
66 /*
67  * free an array of pointers of struct page
68  */
relay_free_page_array(struct page ** array)69 static void relay_free_page_array(struct page **array)
70 {
71 	kvfree(array);
72 }
73 
74 /**
75  *	relay_mmap_prepare_buf: - mmap channel buffer to process address space
76  *	@buf: the relay channel buffer
77  *	@desc: describing what to map
78  *
79  *	Returns 0 if ok, negative on error
80  *
81  *	Caller should already have grabbed mmap_lock.
82  */
relay_mmap_prepare_buf(struct rchan_buf * buf,struct vm_area_desc * desc)83 static int relay_mmap_prepare_buf(struct rchan_buf *buf,
84 				  struct vm_area_desc *desc)
85 {
86 	unsigned long length = vma_desc_size(desc);
87 
88 	if (!buf)
89 		return -EBADF;
90 
91 	if (length != (unsigned long)buf->chan->alloc_size)
92 		return -EINVAL;
93 
94 	desc->vm_ops = &relay_file_mmap_ops;
95 	desc->vm_flags |= VM_DONTEXPAND;
96 	desc->private_data = buf;
97 
98 	return 0;
99 }
100 
101 /**
102  *	relay_alloc_buf - allocate a channel buffer
103  *	@buf: the buffer struct
104  *	@size: total size of the buffer
105  *
106  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107  *	passed in size will get page aligned, if it isn't already.
108  */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 {
111 	void *mem;
112 	unsigned int i, j, n_pages;
113 
114 	*size = PAGE_ALIGN(*size);
115 	n_pages = *size >> PAGE_SHIFT;
116 
117 	buf->page_array = relay_alloc_page_array(n_pages);
118 	if (!buf->page_array)
119 		return NULL;
120 
121 	for (i = 0; i < n_pages; i++) {
122 		buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
123 		if (unlikely(!buf->page_array[i]))
124 			goto depopulate;
125 		set_page_private(buf->page_array[i], (unsigned long)buf);
126 	}
127 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128 	if (!mem)
129 		goto depopulate;
130 
131 	buf->page_count = n_pages;
132 	return mem;
133 
134 depopulate:
135 	for (j = 0; j < i; j++)
136 		__free_page(buf->page_array[j]);
137 	relay_free_page_array(buf->page_array);
138 	return NULL;
139 }
140 
141 /**
142  *	relay_create_buf - allocate and initialize a channel buffer
143  *	@chan: the relay channel
144  *
145  *	Returns channel buffer if successful, %NULL otherwise.
146  */
relay_create_buf(struct rchan * chan)147 static struct rchan_buf *relay_create_buf(struct rchan *chan)
148 {
149 	struct rchan_buf *buf;
150 
151 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152 		return NULL;
153 
154 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155 	if (!buf)
156 		return NULL;
157 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158 				     GFP_KERNEL);
159 	if (!buf->padding)
160 		goto free_buf;
161 
162 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163 	if (!buf->start)
164 		goto free_buf;
165 
166 	buf->chan = chan;
167 	kref_get(&buf->chan->kref);
168 	return buf;
169 
170 free_buf:
171 	kfree(buf->padding);
172 	kfree(buf);
173 	return NULL;
174 }
175 
176 /**
177  *	relay_destroy_channel - free the channel struct
178  *	@kref: target kernel reference that contains the relay channel
179  *
180  *	Should only be called from kref_put().
181  */
relay_destroy_channel(struct kref * kref)182 static void relay_destroy_channel(struct kref *kref)
183 {
184 	struct rchan *chan = container_of(kref, struct rchan, kref);
185 	free_percpu(chan->buf);
186 	kfree(chan);
187 }
188 
189 /**
190  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191  *	@buf: the buffer struct
192  */
relay_destroy_buf(struct rchan_buf * buf)193 static void relay_destroy_buf(struct rchan_buf *buf)
194 {
195 	struct rchan *chan = buf->chan;
196 	unsigned int i;
197 
198 	if (likely(buf->start)) {
199 		vunmap(buf->start);
200 		for (i = 0; i < buf->page_count; i++)
201 			__free_page(buf->page_array[i]);
202 		relay_free_page_array(buf->page_array);
203 	}
204 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205 	kfree(buf->padding);
206 	kfree(buf);
207 	kref_put(&chan->kref, relay_destroy_channel);
208 }
209 
210 /**
211  *	relay_remove_buf - remove a channel buffer
212  *	@kref: target kernel reference that contains the relay buffer
213  *
214  *	Removes the file from the filesystem, which also frees the
215  *	rchan_buf_struct and the channel buffer.  Should only be called from
216  *	kref_put().
217  */
relay_remove_buf(struct kref * kref)218 static void relay_remove_buf(struct kref *kref)
219 {
220 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221 	relay_destroy_buf(buf);
222 }
223 
224 /**
225  *	relay_buf_empty - boolean, is the channel buffer empty?
226  *	@buf: channel buffer
227  *
228  *	Returns 1 if the buffer is empty, 0 otherwise.
229  */
relay_buf_empty(struct rchan_buf * buf)230 static int relay_buf_empty(struct rchan_buf *buf)
231 {
232 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233 }
234 
235 /**
236  *	relay_buf_full - boolean, is the channel buffer full?
237  *	@buf: channel buffer
238  *
239  *	Returns 1 if the buffer is full, 0 otherwise.
240  */
relay_buf_full(struct rchan_buf * buf)241 int relay_buf_full(struct rchan_buf *buf)
242 {
243 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245 }
246 EXPORT_SYMBOL_GPL(relay_buf_full);
247 
248 /*
249  * High-level relay kernel API and associated functions.
250  */
251 
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf)252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253 			      void *prev_subbuf)
254 {
255 	int full = relay_buf_full(buf);
256 
257 	if (full)
258 		buf->stats.full_count++;
259 
260 	if (!buf->chan->cb->subbuf_start)
261 		return !full;
262 
263 	return buf->chan->cb->subbuf_start(buf, subbuf,
264 					   prev_subbuf);
265 }
266 
267 /**
268  *	wakeup_readers - wake up readers waiting on a channel
269  *	@work: contains the channel buffer
270  *
271  *	This is the function used to defer reader waking
272  */
wakeup_readers(struct irq_work * work)273 static void wakeup_readers(struct irq_work *work)
274 {
275 	struct rchan_buf *buf;
276 
277 	buf = container_of(work, struct rchan_buf, wakeup_work);
278 	wake_up_interruptible(&buf->read_wait);
279 }
280 
281 /**
282  *	__relay_reset - reset a channel buffer
283  *	@buf: the channel buffer
284  *	@init: 1 if this is a first-time initialization
285  *
286  *	See relay_reset() for description of effect.
287  */
__relay_reset(struct rchan_buf * buf,unsigned int init)288 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
289 {
290 	size_t i;
291 
292 	if (init) {
293 		init_waitqueue_head(&buf->read_wait);
294 		kref_init(&buf->kref);
295 		init_irq_work(&buf->wakeup_work, wakeup_readers);
296 	} else {
297 		irq_work_sync(&buf->wakeup_work);
298 	}
299 
300 	buf->subbufs_produced = 0;
301 	buf->subbufs_consumed = 0;
302 	buf->bytes_consumed = 0;
303 	buf->finalized = 0;
304 	buf->data = buf->start;
305 	buf->offset = 0;
306 	buf->stats.full_count = 0;
307 	buf->stats.big_count = 0;
308 
309 	for (i = 0; i < buf->chan->n_subbufs; i++)
310 		buf->padding[i] = 0;
311 
312 	relay_subbuf_start(buf, buf->data, NULL);
313 }
314 
315 /**
316  *	relay_reset - reset the channel
317  *	@chan: the channel
318  *
319  *	This has the effect of erasing all data from all channel buffers
320  *	and restarting the channel in its initial state.  The buffers
321  *	are not freed, so any mappings are still in effect.
322  *
323  *	NOTE. Care should be taken that the channel isn't actually
324  *	being used by anything when this call is made.
325  */
relay_reset(struct rchan * chan)326 void relay_reset(struct rchan *chan)
327 {
328 	struct rchan_buf *buf;
329 	unsigned int i;
330 
331 	if (!chan)
332 		return;
333 
334 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
335 		__relay_reset(buf, 0);
336 		return;
337 	}
338 
339 	mutex_lock(&relay_channels_mutex);
340 	for_each_possible_cpu(i)
341 		if ((buf = *per_cpu_ptr(chan->buf, i)))
342 			__relay_reset(buf, 0);
343 	mutex_unlock(&relay_channels_mutex);
344 }
345 EXPORT_SYMBOL_GPL(relay_reset);
346 
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)347 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
348 					struct dentry *dentry)
349 {
350 	buf->dentry = dentry;
351 	d_inode(buf->dentry)->i_size = buf->early_bytes;
352 }
353 
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)354 static struct dentry *relay_create_buf_file(struct rchan *chan,
355 					    struct rchan_buf *buf,
356 					    unsigned int cpu)
357 {
358 	struct dentry *dentry;
359 	char *tmpname;
360 
361 	tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu);
362 	if (!tmpname)
363 		return NULL;
364 
365 	/* Create file in fs */
366 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
367 					   S_IRUSR, buf,
368 					   &chan->is_global);
369 	if (IS_ERR(dentry))
370 		dentry = NULL;
371 
372 	kfree(tmpname);
373 
374 	return dentry;
375 }
376 
377 /*
378  *	relay_open_buf - create a new relay channel buffer
379  *
380  *	used by relay_open() and CPU hotplug.
381  */
relay_open_buf(struct rchan * chan,unsigned int cpu)382 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
383 {
384 	struct rchan_buf *buf;
385 	struct dentry *dentry;
386 
387  	if (chan->is_global)
388 		return *per_cpu_ptr(chan->buf, 0);
389 
390 	buf = relay_create_buf(chan);
391 	if (!buf)
392 		return NULL;
393 
394 	if (chan->has_base_filename) {
395 		dentry = relay_create_buf_file(chan, buf, cpu);
396 		if (!dentry)
397 			goto free_buf;
398 		relay_set_buf_dentry(buf, dentry);
399 	} else {
400 		/* Only retrieve global info, nothing more, nothing less */
401 		dentry = chan->cb->create_buf_file(NULL, NULL,
402 						   S_IRUSR, buf,
403 						   &chan->is_global);
404 		if (IS_ERR_OR_NULL(dentry))
405 			goto free_buf;
406 	}
407 
408  	buf->cpu = cpu;
409  	__relay_reset(buf, 1);
410 
411  	if(chan->is_global) {
412 		*per_cpu_ptr(chan->buf, 0) = buf;
413  		buf->cpu = 0;
414   	}
415 
416 	return buf;
417 
418 free_buf:
419  	relay_destroy_buf(buf);
420 	return NULL;
421 }
422 
423 /**
424  *	relay_close_buf - close a channel buffer
425  *	@buf: channel buffer
426  *
427  *	Marks the buffer finalized and restores the default callbacks.
428  *	The channel buffer and channel buffer data structure are then freed
429  *	automatically when the last reference is given up.
430  */
relay_close_buf(struct rchan_buf * buf)431 static void relay_close_buf(struct rchan_buf *buf)
432 {
433 	buf->finalized = 1;
434 	irq_work_sync(&buf->wakeup_work);
435 	buf->chan->cb->remove_buf_file(buf->dentry);
436 	kref_put(&buf->kref, relay_remove_buf);
437 }
438 
relay_prepare_cpu(unsigned int cpu)439 int relay_prepare_cpu(unsigned int cpu)
440 {
441 	struct rchan *chan;
442 	struct rchan_buf *buf;
443 
444 	mutex_lock(&relay_channels_mutex);
445 	list_for_each_entry(chan, &relay_channels, list) {
446 		if (*per_cpu_ptr(chan->buf, cpu))
447 			continue;
448 		buf = relay_open_buf(chan, cpu);
449 		if (!buf) {
450 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
451 			mutex_unlock(&relay_channels_mutex);
452 			return -ENOMEM;
453 		}
454 		*per_cpu_ptr(chan->buf, cpu) = buf;
455 	}
456 	mutex_unlock(&relay_channels_mutex);
457 	return 0;
458 }
459 
460 /**
461  *	relay_open - create a new relay channel
462  *	@base_filename: base name of files to create
463  *	@parent: dentry of parent directory, %NULL for root directory or buffer
464  *	@subbuf_size: size of sub-buffers
465  *	@n_subbufs: number of sub-buffers
466  *	@cb: client callback functions
467  *	@private_data: user-defined data
468  *
469  *	Returns channel pointer if successful, %NULL otherwise.
470  *
471  *	Creates a channel buffer for each cpu using the sizes and
472  *	attributes specified.  The created channel buffer files
473  *	will be named base_filename0...base_filenameN-1.  File
474  *	permissions will be %S_IRUSR.
475  */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)476 struct rchan *relay_open(const char *base_filename,
477 			 struct dentry *parent,
478 			 size_t subbuf_size,
479 			 size_t n_subbufs,
480 			 const struct rchan_callbacks *cb,
481 			 void *private_data)
482 {
483 	unsigned int i;
484 	struct rchan *chan;
485 	struct rchan_buf *buf;
486 
487 	if (!(subbuf_size && n_subbufs))
488 		return NULL;
489 	if (subbuf_size > UINT_MAX / n_subbufs)
490 		return NULL;
491 	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
492 		return NULL;
493 
494 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
495 	if (!chan)
496 		return NULL;
497 
498 	chan->buf = alloc_percpu(struct rchan_buf *);
499 	if (!chan->buf) {
500 		kfree(chan);
501 		return NULL;
502 	}
503 
504 	chan->version = RELAYFS_CHANNEL_VERSION;
505 	chan->n_subbufs = n_subbufs;
506 	chan->subbuf_size = subbuf_size;
507 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
508 	chan->parent = parent;
509 	chan->private_data = private_data;
510 	if (base_filename) {
511 		chan->has_base_filename = 1;
512 		strscpy(chan->base_filename, base_filename, NAME_MAX);
513 	}
514 	chan->cb = cb;
515 	kref_init(&chan->kref);
516 
517 	mutex_lock(&relay_channels_mutex);
518 	for_each_online_cpu(i) {
519 		buf = relay_open_buf(chan, i);
520 		if (!buf)
521 			goto free_bufs;
522 		*per_cpu_ptr(chan->buf, i) = buf;
523 	}
524 	list_add(&chan->list, &relay_channels);
525 	mutex_unlock(&relay_channels_mutex);
526 
527 	return chan;
528 
529 free_bufs:
530 	for_each_possible_cpu(i) {
531 		if ((buf = *per_cpu_ptr(chan->buf, i)))
532 			relay_close_buf(buf);
533 	}
534 
535 	kref_put(&chan->kref, relay_destroy_channel);
536 	mutex_unlock(&relay_channels_mutex);
537 	return NULL;
538 }
539 EXPORT_SYMBOL_GPL(relay_open);
540 
541 struct rchan_percpu_buf_dispatcher {
542 	struct rchan_buf *buf;
543 	struct dentry *dentry;
544 };
545 
546 /**
547  *	relay_switch_subbuf - switch to a new sub-buffer
548  *	@buf: channel buffer
549  *	@length: size of current event
550  *
551  *	Returns either the length passed in or 0 if full.
552  *
553  *	Performs sub-buffer-switch tasks such as invoking callbacks,
554  *	updating padding counts, waking up readers, etc.
555  */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)556 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
557 {
558 	void *old, *new;
559 	size_t old_subbuf, new_subbuf;
560 
561 	if (unlikely(length > buf->chan->subbuf_size))
562 		goto toobig;
563 
564 	if (buf->offset != buf->chan->subbuf_size + 1) {
565 		size_t prev_padding;
566 
567 		prev_padding = buf->chan->subbuf_size - buf->offset;
568 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
569 		buf->padding[old_subbuf] = prev_padding;
570 		buf->subbufs_produced++;
571 		if (buf->dentry)
572 			d_inode(buf->dentry)->i_size +=
573 				buf->chan->subbuf_size -
574 				buf->padding[old_subbuf];
575 		else
576 			buf->early_bytes += buf->chan->subbuf_size -
577 					    buf->padding[old_subbuf];
578 		smp_mb();
579 		if (waitqueue_active(&buf->read_wait)) {
580 			/*
581 			 * Calling wake_up_interruptible() from here
582 			 * will deadlock if we happen to be logging
583 			 * from the scheduler (trying to re-grab
584 			 * rq->lock), so defer it.
585 			 */
586 			irq_work_queue(&buf->wakeup_work);
587 		}
588 	}
589 
590 	old = buf->data;
591 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
592 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
593 	buf->offset = 0;
594 	if (!relay_subbuf_start(buf, new, old)) {
595 		buf->offset = buf->chan->subbuf_size + 1;
596 		return 0;
597 	}
598 	buf->data = new;
599 	buf->padding[new_subbuf] = 0;
600 
601 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
602 		goto toobig;
603 
604 	return length;
605 
606 toobig:
607 	buf->stats.big_count++;
608 	return 0;
609 }
610 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
611 
612 /**
613  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
614  *	@chan: the channel
615  *	@cpu: the cpu associated with the channel buffer to update
616  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
617  *
618  *	Adds to the channel buffer's consumed sub-buffer count.
619  *	subbufs_consumed should be the number of sub-buffers newly consumed,
620  *	not the total consumed.
621  *
622  *	NOTE. Kernel clients don't need to call this function if the channel
623  *	mode is 'overwrite'.
624  */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)625 void relay_subbufs_consumed(struct rchan *chan,
626 			    unsigned int cpu,
627 			    size_t subbufs_consumed)
628 {
629 	struct rchan_buf *buf;
630 
631 	if (!chan || cpu >= NR_CPUS)
632 		return;
633 
634 	buf = *per_cpu_ptr(chan->buf, cpu);
635 	if (!buf || subbufs_consumed > chan->n_subbufs)
636 		return;
637 
638 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
639 		buf->subbufs_consumed = buf->subbufs_produced;
640 	else
641 		buf->subbufs_consumed += subbufs_consumed;
642 }
643 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
644 
645 /**
646  *	relay_close - close the channel
647  *	@chan: the channel
648  *
649  *	Closes all channel buffers and frees the channel.
650  */
relay_close(struct rchan * chan)651 void relay_close(struct rchan *chan)
652 {
653 	struct rchan_buf *buf;
654 	unsigned int i;
655 
656 	if (!chan)
657 		return;
658 
659 	mutex_lock(&relay_channels_mutex);
660 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
661 		relay_close_buf(buf);
662 	else
663 		for_each_possible_cpu(i)
664 			if ((buf = *per_cpu_ptr(chan->buf, i)))
665 				relay_close_buf(buf);
666 
667 	list_del(&chan->list);
668 	kref_put(&chan->kref, relay_destroy_channel);
669 	mutex_unlock(&relay_channels_mutex);
670 }
671 EXPORT_SYMBOL_GPL(relay_close);
672 
673 /**
674  *	relay_flush - close the channel
675  *	@chan: the channel
676  *
677  *	Flushes all channel buffers, i.e. forces buffer switch.
678  */
relay_flush(struct rchan * chan)679 void relay_flush(struct rchan *chan)
680 {
681 	struct rchan_buf *buf;
682 	unsigned int i;
683 
684 	if (!chan)
685 		return;
686 
687 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
688 		relay_switch_subbuf(buf, 0);
689 		return;
690 	}
691 
692 	mutex_lock(&relay_channels_mutex);
693 	for_each_possible_cpu(i)
694 		if ((buf = *per_cpu_ptr(chan->buf, i)))
695 			relay_switch_subbuf(buf, 0);
696 	mutex_unlock(&relay_channels_mutex);
697 }
698 EXPORT_SYMBOL_GPL(relay_flush);
699 
700 /**
701  *	relay_stats - get channel buffer statistics
702  *	@chan: the channel
703  *	@flags: select particular information to get
704  *
705  *	Returns the count of certain field that caller specifies.
706  */
relay_stats(struct rchan * chan,int flags)707 size_t relay_stats(struct rchan *chan, int flags)
708 {
709 	unsigned int i, count = 0;
710 	struct rchan_buf *rbuf;
711 
712 	if (!chan || flags > RELAY_STATS_LAST)
713 		return 0;
714 
715 	if (chan->is_global) {
716 		rbuf = *per_cpu_ptr(chan->buf, 0);
717 		if (flags & RELAY_STATS_BUF_FULL)
718 			count = rbuf->stats.full_count;
719 		else if (flags & RELAY_STATS_WRT_BIG)
720 			count = rbuf->stats.big_count;
721 	} else {
722 		for_each_online_cpu(i) {
723 			rbuf = *per_cpu_ptr(chan->buf, i);
724 			if (rbuf) {
725 				if (flags & RELAY_STATS_BUF_FULL)
726 					count += rbuf->stats.full_count;
727 				else if (flags & RELAY_STATS_WRT_BIG)
728 					count += rbuf->stats.big_count;
729 			}
730 		}
731 	}
732 
733 	return count;
734 }
735 
736 /**
737  *	relay_file_open - open file op for relay files
738  *	@inode: the inode
739  *	@filp: the file
740  *
741  *	Increments the channel buffer refcount.
742  */
relay_file_open(struct inode * inode,struct file * filp)743 static int relay_file_open(struct inode *inode, struct file *filp)
744 {
745 	struct rchan_buf *buf = inode->i_private;
746 	kref_get(&buf->kref);
747 	filp->private_data = buf;
748 
749 	return nonseekable_open(inode, filp);
750 }
751 
752 /**
753  *	relay_file_mmap_prepare - mmap file op for relay files
754  *	@desc: describing what to map
755  *
756  *	Calls upon relay_mmap_prepare_buf() to map the file into user space.
757  */
relay_file_mmap_prepare(struct vm_area_desc * desc)758 static int relay_file_mmap_prepare(struct vm_area_desc *desc)
759 {
760 	struct rchan_buf *buf = desc->file->private_data;
761 
762 	return relay_mmap_prepare_buf(buf, desc);
763 }
764 
765 /**
766  *	relay_file_poll - poll file op for relay files
767  *	@filp: the file
768  *	@wait: poll table
769  *
770  *	Poll implemention.
771  */
relay_file_poll(struct file * filp,poll_table * wait)772 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
773 {
774 	__poll_t mask = 0;
775 	struct rchan_buf *buf = filp->private_data;
776 
777 	if (buf->finalized)
778 		return EPOLLERR;
779 
780 	if (filp->f_mode & FMODE_READ) {
781 		poll_wait(filp, &buf->read_wait, wait);
782 		if (!relay_buf_empty(buf))
783 			mask |= EPOLLIN | EPOLLRDNORM;
784 	}
785 
786 	return mask;
787 }
788 
789 /**
790  *	relay_file_release - release file op for relay files
791  *	@inode: the inode
792  *	@filp: the file
793  *
794  *	Decrements the channel refcount, as the filesystem is
795  *	no longer using it.
796  */
relay_file_release(struct inode * inode,struct file * filp)797 static int relay_file_release(struct inode *inode, struct file *filp)
798 {
799 	struct rchan_buf *buf = filp->private_data;
800 	kref_put(&buf->kref, relay_remove_buf);
801 
802 	return 0;
803 }
804 
805 /*
806  *	relay_file_read_consume - update the consumed count for the buffer
807  */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)808 static void relay_file_read_consume(struct rchan_buf *buf,
809 				    size_t read_pos,
810 				    size_t bytes_consumed)
811 {
812 	size_t subbuf_size = buf->chan->subbuf_size;
813 	size_t n_subbufs = buf->chan->n_subbufs;
814 	size_t read_subbuf;
815 
816 	if (buf->subbufs_produced == buf->subbufs_consumed &&
817 	    buf->offset == buf->bytes_consumed)
818 		return;
819 
820 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
821 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
822 		buf->bytes_consumed = 0;
823 	}
824 
825 	buf->bytes_consumed += bytes_consumed;
826 	if (!read_pos)
827 		read_subbuf = buf->subbufs_consumed % n_subbufs;
828 	else
829 		read_subbuf = read_pos / buf->chan->subbuf_size;
830 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
831 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
832 		    (buf->offset == subbuf_size))
833 			return;
834 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
835 		buf->bytes_consumed = 0;
836 	}
837 }
838 
839 /*
840  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
841  */
relay_file_read_avail(struct rchan_buf * buf)842 static int relay_file_read_avail(struct rchan_buf *buf)
843 {
844 	size_t subbuf_size = buf->chan->subbuf_size;
845 	size_t n_subbufs = buf->chan->n_subbufs;
846 	size_t produced = buf->subbufs_produced;
847 	size_t consumed;
848 
849 	relay_file_read_consume(buf, 0, 0);
850 
851 	consumed = buf->subbufs_consumed;
852 
853 	if (unlikely(buf->offset > subbuf_size)) {
854 		if (produced == consumed)
855 			return 0;
856 		return 1;
857 	}
858 
859 	if (unlikely(produced - consumed >= n_subbufs)) {
860 		consumed = produced - n_subbufs + 1;
861 		buf->subbufs_consumed = consumed;
862 		buf->bytes_consumed = 0;
863 	}
864 
865 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
866 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
867 
868 	if (consumed > produced)
869 		produced += n_subbufs * subbuf_size;
870 
871 	if (consumed == produced) {
872 		if (buf->offset == subbuf_size &&
873 		    buf->subbufs_produced > buf->subbufs_consumed)
874 			return 1;
875 		return 0;
876 	}
877 
878 	return 1;
879 }
880 
881 /**
882  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
883  *	@read_pos: file read position
884  *	@buf: relay channel buffer
885  */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)886 static size_t relay_file_read_subbuf_avail(size_t read_pos,
887 					   struct rchan_buf *buf)
888 {
889 	size_t padding, avail = 0;
890 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
891 	size_t subbuf_size = buf->chan->subbuf_size;
892 
893 	write_subbuf = (buf->data - buf->start) / subbuf_size;
894 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
895 	read_subbuf = read_pos / subbuf_size;
896 	read_offset = read_pos % subbuf_size;
897 	padding = buf->padding[read_subbuf];
898 
899 	if (read_subbuf == write_subbuf) {
900 		if (read_offset + padding < write_offset)
901 			avail = write_offset - (read_offset + padding);
902 	} else
903 		avail = (subbuf_size - padding) - read_offset;
904 
905 	return avail;
906 }
907 
908 /**
909  *	relay_file_read_start_pos - find the first available byte to read
910  *	@buf: relay channel buffer
911  *
912  *	If the read_pos is in the middle of padding, return the
913  *	position of the first actually available byte, otherwise
914  *	return the original value.
915  */
relay_file_read_start_pos(struct rchan_buf * buf)916 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
917 {
918 	size_t read_subbuf, padding, padding_start, padding_end;
919 	size_t subbuf_size = buf->chan->subbuf_size;
920 	size_t n_subbufs = buf->chan->n_subbufs;
921 	size_t consumed = buf->subbufs_consumed % n_subbufs;
922 	size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
923 			% (n_subbufs * subbuf_size);
924 
925 	read_subbuf = read_pos / subbuf_size;
926 	padding = buf->padding[read_subbuf];
927 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
928 	padding_end = (read_subbuf + 1) * subbuf_size;
929 	if (read_pos >= padding_start && read_pos < padding_end) {
930 		read_subbuf = (read_subbuf + 1) % n_subbufs;
931 		read_pos = read_subbuf * subbuf_size;
932 	}
933 
934 	return read_pos;
935 }
936 
937 /**
938  *	relay_file_read_end_pos - return the new read position
939  *	@read_pos: file read position
940  *	@buf: relay channel buffer
941  *	@count: number of bytes to be read
942  */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)943 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
944 				      size_t read_pos,
945 				      size_t count)
946 {
947 	size_t read_subbuf, padding, end_pos;
948 	size_t subbuf_size = buf->chan->subbuf_size;
949 	size_t n_subbufs = buf->chan->n_subbufs;
950 
951 	read_subbuf = read_pos / subbuf_size;
952 	padding = buf->padding[read_subbuf];
953 	if (read_pos % subbuf_size + count + padding == subbuf_size)
954 		end_pos = (read_subbuf + 1) * subbuf_size;
955 	else
956 		end_pos = read_pos + count;
957 	if (end_pos >= subbuf_size * n_subbufs)
958 		end_pos = 0;
959 
960 	return end_pos;
961 }
962 
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)963 static ssize_t relay_file_read(struct file *filp,
964 			       char __user *buffer,
965 			       size_t count,
966 			       loff_t *ppos)
967 {
968 	struct rchan_buf *buf = filp->private_data;
969 	size_t read_start, avail;
970 	size_t written = 0;
971 	int ret;
972 
973 	if (!count)
974 		return 0;
975 
976 	inode_lock(file_inode(filp));
977 	do {
978 		void *from;
979 
980 		if (!relay_file_read_avail(buf))
981 			break;
982 
983 		read_start = relay_file_read_start_pos(buf);
984 		avail = relay_file_read_subbuf_avail(read_start, buf);
985 		if (!avail)
986 			break;
987 
988 		avail = min(count, avail);
989 		from = buf->start + read_start;
990 		ret = avail;
991 		if (copy_to_user(buffer, from, avail))
992 			break;
993 
994 		buffer += ret;
995 		written += ret;
996 		count -= ret;
997 
998 		relay_file_read_consume(buf, read_start, ret);
999 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1000 	} while (count);
1001 	inode_unlock(file_inode(filp));
1002 
1003 	return written;
1004 }
1005 
1006 
1007 const struct file_operations relay_file_operations = {
1008 	.open		= relay_file_open,
1009 	.poll		= relay_file_poll,
1010 	.mmap_prepare	= relay_file_mmap_prepare,
1011 	.read		= relay_file_read,
1012 	.release	= relay_file_release,
1013 };
1014 EXPORT_SYMBOL_GPL(relay_file_operations);
1015