1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.rst for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * fault() vm_op implementation for relay file mapping.
32 */
relay_buf_fault(struct vm_fault * vmf)33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35 struct page *page;
36 struct rchan_buf *buf = vmf->vma->vm_private_data;
37 pgoff_t pgoff = vmf->pgoff;
38
39 if (!buf)
40 return VM_FAULT_OOM;
41
42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43 if (!page)
44 return VM_FAULT_SIGBUS;
45 get_page(page);
46 vmf->page = page;
47
48 return 0;
49 }
50
51 /*
52 * vm_ops for relay file mappings.
53 */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55 .fault = relay_buf_fault,
56 };
57
58 /*
59 * allocate an array of pointers of struct page
60 */
relay_alloc_page_array(unsigned int n_pages)61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63 return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
64 }
65
66 /*
67 * free an array of pointers of struct page
68 */
relay_free_page_array(struct page ** array)69 static void relay_free_page_array(struct page **array)
70 {
71 kvfree(array);
72 }
73
74 /**
75 * relay_mmap_prepare_buf: - mmap channel buffer to process address space
76 * @buf: the relay channel buffer
77 * @desc: describing what to map
78 *
79 * Returns 0 if ok, negative on error
80 *
81 * Caller should already have grabbed mmap_lock.
82 */
relay_mmap_prepare_buf(struct rchan_buf * buf,struct vm_area_desc * desc)83 static int relay_mmap_prepare_buf(struct rchan_buf *buf,
84 struct vm_area_desc *desc)
85 {
86 unsigned long length = vma_desc_size(desc);
87
88 if (!buf)
89 return -EBADF;
90
91 if (length != (unsigned long)buf->chan->alloc_size)
92 return -EINVAL;
93
94 desc->vm_ops = &relay_file_mmap_ops;
95 desc->vm_flags |= VM_DONTEXPAND;
96 desc->private_data = buf;
97
98 return 0;
99 }
100
101 /**
102 * relay_alloc_buf - allocate a channel buffer
103 * @buf: the buffer struct
104 * @size: total size of the buffer
105 *
106 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107 * passed in size will get page aligned, if it isn't already.
108 */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 {
111 void *mem;
112 unsigned int i, j, n_pages;
113
114 *size = PAGE_ALIGN(*size);
115 n_pages = *size >> PAGE_SHIFT;
116
117 buf->page_array = relay_alloc_page_array(n_pages);
118 if (!buf->page_array)
119 return NULL;
120
121 for (i = 0; i < n_pages; i++) {
122 buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
123 if (unlikely(!buf->page_array[i]))
124 goto depopulate;
125 set_page_private(buf->page_array[i], (unsigned long)buf);
126 }
127 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128 if (!mem)
129 goto depopulate;
130
131 buf->page_count = n_pages;
132 return mem;
133
134 depopulate:
135 for (j = 0; j < i; j++)
136 __free_page(buf->page_array[j]);
137 relay_free_page_array(buf->page_array);
138 return NULL;
139 }
140
141 /**
142 * relay_create_buf - allocate and initialize a channel buffer
143 * @chan: the relay channel
144 *
145 * Returns channel buffer if successful, %NULL otherwise.
146 */
relay_create_buf(struct rchan * chan)147 static struct rchan_buf *relay_create_buf(struct rchan *chan)
148 {
149 struct rchan_buf *buf;
150
151 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t))
152 return NULL;
153
154 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
155 if (!buf)
156 return NULL;
157 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t),
158 GFP_KERNEL);
159 if (!buf->padding)
160 goto free_buf;
161
162 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
163 if (!buf->start)
164 goto free_buf;
165
166 buf->chan = chan;
167 kref_get(&buf->chan->kref);
168 return buf;
169
170 free_buf:
171 kfree(buf->padding);
172 kfree(buf);
173 return NULL;
174 }
175
176 /**
177 * relay_destroy_channel - free the channel struct
178 * @kref: target kernel reference that contains the relay channel
179 *
180 * Should only be called from kref_put().
181 */
relay_destroy_channel(struct kref * kref)182 static void relay_destroy_channel(struct kref *kref)
183 {
184 struct rchan *chan = container_of(kref, struct rchan, kref);
185 free_percpu(chan->buf);
186 kfree(chan);
187 }
188
189 /**
190 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
191 * @buf: the buffer struct
192 */
relay_destroy_buf(struct rchan_buf * buf)193 static void relay_destroy_buf(struct rchan_buf *buf)
194 {
195 struct rchan *chan = buf->chan;
196 unsigned int i;
197
198 if (likely(buf->start)) {
199 vunmap(buf->start);
200 for (i = 0; i < buf->page_count; i++)
201 __free_page(buf->page_array[i]);
202 relay_free_page_array(buf->page_array);
203 }
204 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
205 kfree(buf->padding);
206 kfree(buf);
207 kref_put(&chan->kref, relay_destroy_channel);
208 }
209
210 /**
211 * relay_remove_buf - remove a channel buffer
212 * @kref: target kernel reference that contains the relay buffer
213 *
214 * Removes the file from the filesystem, which also frees the
215 * rchan_buf_struct and the channel buffer. Should only be called from
216 * kref_put().
217 */
relay_remove_buf(struct kref * kref)218 static void relay_remove_buf(struct kref *kref)
219 {
220 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
221 relay_destroy_buf(buf);
222 }
223
224 /**
225 * relay_buf_empty - boolean, is the channel buffer empty?
226 * @buf: channel buffer
227 *
228 * Returns 1 if the buffer is empty, 0 otherwise.
229 */
relay_buf_empty(struct rchan_buf * buf)230 static int relay_buf_empty(struct rchan_buf *buf)
231 {
232 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
233 }
234
235 /**
236 * relay_buf_full - boolean, is the channel buffer full?
237 * @buf: channel buffer
238 *
239 * Returns 1 if the buffer is full, 0 otherwise.
240 */
relay_buf_full(struct rchan_buf * buf)241 int relay_buf_full(struct rchan_buf *buf)
242 {
243 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
244 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
245 }
246 EXPORT_SYMBOL_GPL(relay_buf_full);
247
248 /*
249 * High-level relay kernel API and associated functions.
250 */
251
relay_subbuf_start(struct rchan_buf * buf,void * subbuf,void * prev_subbuf)252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
253 void *prev_subbuf)
254 {
255 int full = relay_buf_full(buf);
256
257 if (full)
258 buf->stats.full_count++;
259
260 if (!buf->chan->cb->subbuf_start)
261 return !full;
262
263 return buf->chan->cb->subbuf_start(buf, subbuf,
264 prev_subbuf);
265 }
266
267 /**
268 * wakeup_readers - wake up readers waiting on a channel
269 * @work: contains the channel buffer
270 *
271 * This is the function used to defer reader waking
272 */
wakeup_readers(struct irq_work * work)273 static void wakeup_readers(struct irq_work *work)
274 {
275 struct rchan_buf *buf;
276
277 buf = container_of(work, struct rchan_buf, wakeup_work);
278 wake_up_interruptible(&buf->read_wait);
279 }
280
281 /**
282 * __relay_reset - reset a channel buffer
283 * @buf: the channel buffer
284 * @init: 1 if this is a first-time initialization
285 *
286 * See relay_reset() for description of effect.
287 */
__relay_reset(struct rchan_buf * buf,unsigned int init)288 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
289 {
290 size_t i;
291
292 if (init) {
293 init_waitqueue_head(&buf->read_wait);
294 kref_init(&buf->kref);
295 init_irq_work(&buf->wakeup_work, wakeup_readers);
296 } else {
297 irq_work_sync(&buf->wakeup_work);
298 }
299
300 buf->subbufs_produced = 0;
301 buf->subbufs_consumed = 0;
302 buf->bytes_consumed = 0;
303 buf->finalized = 0;
304 buf->data = buf->start;
305 buf->offset = 0;
306 buf->stats.full_count = 0;
307 buf->stats.big_count = 0;
308
309 for (i = 0; i < buf->chan->n_subbufs; i++)
310 buf->padding[i] = 0;
311
312 relay_subbuf_start(buf, buf->data, NULL);
313 }
314
315 /**
316 * relay_reset - reset the channel
317 * @chan: the channel
318 *
319 * This has the effect of erasing all data from all channel buffers
320 * and restarting the channel in its initial state. The buffers
321 * are not freed, so any mappings are still in effect.
322 *
323 * NOTE. Care should be taken that the channel isn't actually
324 * being used by anything when this call is made.
325 */
relay_reset(struct rchan * chan)326 void relay_reset(struct rchan *chan)
327 {
328 struct rchan_buf *buf;
329 unsigned int i;
330
331 if (!chan)
332 return;
333
334 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
335 __relay_reset(buf, 0);
336 return;
337 }
338
339 mutex_lock(&relay_channels_mutex);
340 for_each_possible_cpu(i)
341 if ((buf = *per_cpu_ptr(chan->buf, i)))
342 __relay_reset(buf, 0);
343 mutex_unlock(&relay_channels_mutex);
344 }
345 EXPORT_SYMBOL_GPL(relay_reset);
346
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)347 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
348 struct dentry *dentry)
349 {
350 buf->dentry = dentry;
351 d_inode(buf->dentry)->i_size = buf->early_bytes;
352 }
353
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)354 static struct dentry *relay_create_buf_file(struct rchan *chan,
355 struct rchan_buf *buf,
356 unsigned int cpu)
357 {
358 struct dentry *dentry;
359 char *tmpname;
360
361 tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu);
362 if (!tmpname)
363 return NULL;
364
365 /* Create file in fs */
366 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
367 S_IRUSR, buf,
368 &chan->is_global);
369 if (IS_ERR(dentry))
370 dentry = NULL;
371
372 kfree(tmpname);
373
374 return dentry;
375 }
376
377 /*
378 * relay_open_buf - create a new relay channel buffer
379 *
380 * used by relay_open() and CPU hotplug.
381 */
relay_open_buf(struct rchan * chan,unsigned int cpu)382 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
383 {
384 struct rchan_buf *buf;
385 struct dentry *dentry;
386
387 if (chan->is_global)
388 return *per_cpu_ptr(chan->buf, 0);
389
390 buf = relay_create_buf(chan);
391 if (!buf)
392 return NULL;
393
394 if (chan->has_base_filename) {
395 dentry = relay_create_buf_file(chan, buf, cpu);
396 if (!dentry)
397 goto free_buf;
398 relay_set_buf_dentry(buf, dentry);
399 } else {
400 /* Only retrieve global info, nothing more, nothing less */
401 dentry = chan->cb->create_buf_file(NULL, NULL,
402 S_IRUSR, buf,
403 &chan->is_global);
404 if (IS_ERR_OR_NULL(dentry))
405 goto free_buf;
406 }
407
408 buf->cpu = cpu;
409 __relay_reset(buf, 1);
410
411 if(chan->is_global) {
412 *per_cpu_ptr(chan->buf, 0) = buf;
413 buf->cpu = 0;
414 }
415
416 return buf;
417
418 free_buf:
419 relay_destroy_buf(buf);
420 return NULL;
421 }
422
423 /**
424 * relay_close_buf - close a channel buffer
425 * @buf: channel buffer
426 *
427 * Marks the buffer finalized and restores the default callbacks.
428 * The channel buffer and channel buffer data structure are then freed
429 * automatically when the last reference is given up.
430 */
relay_close_buf(struct rchan_buf * buf)431 static void relay_close_buf(struct rchan_buf *buf)
432 {
433 buf->finalized = 1;
434 irq_work_sync(&buf->wakeup_work);
435 buf->chan->cb->remove_buf_file(buf->dentry);
436 kref_put(&buf->kref, relay_remove_buf);
437 }
438
relay_prepare_cpu(unsigned int cpu)439 int relay_prepare_cpu(unsigned int cpu)
440 {
441 struct rchan *chan;
442 struct rchan_buf *buf;
443
444 mutex_lock(&relay_channels_mutex);
445 list_for_each_entry(chan, &relay_channels, list) {
446 if (*per_cpu_ptr(chan->buf, cpu))
447 continue;
448 buf = relay_open_buf(chan, cpu);
449 if (!buf) {
450 pr_err("relay: cpu %d buffer creation failed\n", cpu);
451 mutex_unlock(&relay_channels_mutex);
452 return -ENOMEM;
453 }
454 *per_cpu_ptr(chan->buf, cpu) = buf;
455 }
456 mutex_unlock(&relay_channels_mutex);
457 return 0;
458 }
459
460 /**
461 * relay_open - create a new relay channel
462 * @base_filename: base name of files to create
463 * @parent: dentry of parent directory, %NULL for root directory or buffer
464 * @subbuf_size: size of sub-buffers
465 * @n_subbufs: number of sub-buffers
466 * @cb: client callback functions
467 * @private_data: user-defined data
468 *
469 * Returns channel pointer if successful, %NULL otherwise.
470 *
471 * Creates a channel buffer for each cpu using the sizes and
472 * attributes specified. The created channel buffer files
473 * will be named base_filename0...base_filenameN-1. File
474 * permissions will be %S_IRUSR.
475 */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,const struct rchan_callbacks * cb,void * private_data)476 struct rchan *relay_open(const char *base_filename,
477 struct dentry *parent,
478 size_t subbuf_size,
479 size_t n_subbufs,
480 const struct rchan_callbacks *cb,
481 void *private_data)
482 {
483 unsigned int i;
484 struct rchan *chan;
485 struct rchan_buf *buf;
486
487 if (!(subbuf_size && n_subbufs))
488 return NULL;
489 if (subbuf_size > UINT_MAX / n_subbufs)
490 return NULL;
491 if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
492 return NULL;
493
494 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
495 if (!chan)
496 return NULL;
497
498 chan->buf = alloc_percpu(struct rchan_buf *);
499 if (!chan->buf) {
500 kfree(chan);
501 return NULL;
502 }
503
504 chan->version = RELAYFS_CHANNEL_VERSION;
505 chan->n_subbufs = n_subbufs;
506 chan->subbuf_size = subbuf_size;
507 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
508 chan->parent = parent;
509 chan->private_data = private_data;
510 if (base_filename) {
511 chan->has_base_filename = 1;
512 strscpy(chan->base_filename, base_filename, NAME_MAX);
513 }
514 chan->cb = cb;
515 kref_init(&chan->kref);
516
517 mutex_lock(&relay_channels_mutex);
518 for_each_online_cpu(i) {
519 buf = relay_open_buf(chan, i);
520 if (!buf)
521 goto free_bufs;
522 *per_cpu_ptr(chan->buf, i) = buf;
523 }
524 list_add(&chan->list, &relay_channels);
525 mutex_unlock(&relay_channels_mutex);
526
527 return chan;
528
529 free_bufs:
530 for_each_possible_cpu(i) {
531 if ((buf = *per_cpu_ptr(chan->buf, i)))
532 relay_close_buf(buf);
533 }
534
535 kref_put(&chan->kref, relay_destroy_channel);
536 mutex_unlock(&relay_channels_mutex);
537 return NULL;
538 }
539 EXPORT_SYMBOL_GPL(relay_open);
540
541 struct rchan_percpu_buf_dispatcher {
542 struct rchan_buf *buf;
543 struct dentry *dentry;
544 };
545
546 /**
547 * relay_switch_subbuf - switch to a new sub-buffer
548 * @buf: channel buffer
549 * @length: size of current event
550 *
551 * Returns either the length passed in or 0 if full.
552 *
553 * Performs sub-buffer-switch tasks such as invoking callbacks,
554 * updating padding counts, waking up readers, etc.
555 */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)556 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
557 {
558 void *old, *new;
559 size_t old_subbuf, new_subbuf;
560
561 if (unlikely(length > buf->chan->subbuf_size))
562 goto toobig;
563
564 if (buf->offset != buf->chan->subbuf_size + 1) {
565 size_t prev_padding;
566
567 prev_padding = buf->chan->subbuf_size - buf->offset;
568 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
569 buf->padding[old_subbuf] = prev_padding;
570 buf->subbufs_produced++;
571 if (buf->dentry)
572 d_inode(buf->dentry)->i_size +=
573 buf->chan->subbuf_size -
574 buf->padding[old_subbuf];
575 else
576 buf->early_bytes += buf->chan->subbuf_size -
577 buf->padding[old_subbuf];
578 smp_mb();
579 if (waitqueue_active(&buf->read_wait)) {
580 /*
581 * Calling wake_up_interruptible() from here
582 * will deadlock if we happen to be logging
583 * from the scheduler (trying to re-grab
584 * rq->lock), so defer it.
585 */
586 irq_work_queue(&buf->wakeup_work);
587 }
588 }
589
590 old = buf->data;
591 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
592 new = buf->start + new_subbuf * buf->chan->subbuf_size;
593 buf->offset = 0;
594 if (!relay_subbuf_start(buf, new, old)) {
595 buf->offset = buf->chan->subbuf_size + 1;
596 return 0;
597 }
598 buf->data = new;
599 buf->padding[new_subbuf] = 0;
600
601 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
602 goto toobig;
603
604 return length;
605
606 toobig:
607 buf->stats.big_count++;
608 return 0;
609 }
610 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
611
612 /**
613 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
614 * @chan: the channel
615 * @cpu: the cpu associated with the channel buffer to update
616 * @subbufs_consumed: number of sub-buffers to add to current buf's count
617 *
618 * Adds to the channel buffer's consumed sub-buffer count.
619 * subbufs_consumed should be the number of sub-buffers newly consumed,
620 * not the total consumed.
621 *
622 * NOTE. Kernel clients don't need to call this function if the channel
623 * mode is 'overwrite'.
624 */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)625 void relay_subbufs_consumed(struct rchan *chan,
626 unsigned int cpu,
627 size_t subbufs_consumed)
628 {
629 struct rchan_buf *buf;
630
631 if (!chan || cpu >= NR_CPUS)
632 return;
633
634 buf = *per_cpu_ptr(chan->buf, cpu);
635 if (!buf || subbufs_consumed > chan->n_subbufs)
636 return;
637
638 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
639 buf->subbufs_consumed = buf->subbufs_produced;
640 else
641 buf->subbufs_consumed += subbufs_consumed;
642 }
643 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
644
645 /**
646 * relay_close - close the channel
647 * @chan: the channel
648 *
649 * Closes all channel buffers and frees the channel.
650 */
relay_close(struct rchan * chan)651 void relay_close(struct rchan *chan)
652 {
653 struct rchan_buf *buf;
654 unsigned int i;
655
656 if (!chan)
657 return;
658
659 mutex_lock(&relay_channels_mutex);
660 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
661 relay_close_buf(buf);
662 else
663 for_each_possible_cpu(i)
664 if ((buf = *per_cpu_ptr(chan->buf, i)))
665 relay_close_buf(buf);
666
667 list_del(&chan->list);
668 kref_put(&chan->kref, relay_destroy_channel);
669 mutex_unlock(&relay_channels_mutex);
670 }
671 EXPORT_SYMBOL_GPL(relay_close);
672
673 /**
674 * relay_flush - close the channel
675 * @chan: the channel
676 *
677 * Flushes all channel buffers, i.e. forces buffer switch.
678 */
relay_flush(struct rchan * chan)679 void relay_flush(struct rchan *chan)
680 {
681 struct rchan_buf *buf;
682 unsigned int i;
683
684 if (!chan)
685 return;
686
687 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
688 relay_switch_subbuf(buf, 0);
689 return;
690 }
691
692 mutex_lock(&relay_channels_mutex);
693 for_each_possible_cpu(i)
694 if ((buf = *per_cpu_ptr(chan->buf, i)))
695 relay_switch_subbuf(buf, 0);
696 mutex_unlock(&relay_channels_mutex);
697 }
698 EXPORT_SYMBOL_GPL(relay_flush);
699
700 /**
701 * relay_stats - get channel buffer statistics
702 * @chan: the channel
703 * @flags: select particular information to get
704 *
705 * Returns the count of certain field that caller specifies.
706 */
relay_stats(struct rchan * chan,int flags)707 size_t relay_stats(struct rchan *chan, int flags)
708 {
709 unsigned int i, count = 0;
710 struct rchan_buf *rbuf;
711
712 if (!chan || flags > RELAY_STATS_LAST)
713 return 0;
714
715 if (chan->is_global) {
716 rbuf = *per_cpu_ptr(chan->buf, 0);
717 if (flags & RELAY_STATS_BUF_FULL)
718 count = rbuf->stats.full_count;
719 else if (flags & RELAY_STATS_WRT_BIG)
720 count = rbuf->stats.big_count;
721 } else {
722 for_each_online_cpu(i) {
723 rbuf = *per_cpu_ptr(chan->buf, i);
724 if (rbuf) {
725 if (flags & RELAY_STATS_BUF_FULL)
726 count += rbuf->stats.full_count;
727 else if (flags & RELAY_STATS_WRT_BIG)
728 count += rbuf->stats.big_count;
729 }
730 }
731 }
732
733 return count;
734 }
735
736 /**
737 * relay_file_open - open file op for relay files
738 * @inode: the inode
739 * @filp: the file
740 *
741 * Increments the channel buffer refcount.
742 */
relay_file_open(struct inode * inode,struct file * filp)743 static int relay_file_open(struct inode *inode, struct file *filp)
744 {
745 struct rchan_buf *buf = inode->i_private;
746 kref_get(&buf->kref);
747 filp->private_data = buf;
748
749 return nonseekable_open(inode, filp);
750 }
751
752 /**
753 * relay_file_mmap_prepare - mmap file op for relay files
754 * @desc: describing what to map
755 *
756 * Calls upon relay_mmap_prepare_buf() to map the file into user space.
757 */
relay_file_mmap_prepare(struct vm_area_desc * desc)758 static int relay_file_mmap_prepare(struct vm_area_desc *desc)
759 {
760 struct rchan_buf *buf = desc->file->private_data;
761
762 return relay_mmap_prepare_buf(buf, desc);
763 }
764
765 /**
766 * relay_file_poll - poll file op for relay files
767 * @filp: the file
768 * @wait: poll table
769 *
770 * Poll implemention.
771 */
relay_file_poll(struct file * filp,poll_table * wait)772 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
773 {
774 __poll_t mask = 0;
775 struct rchan_buf *buf = filp->private_data;
776
777 if (buf->finalized)
778 return EPOLLERR;
779
780 if (filp->f_mode & FMODE_READ) {
781 poll_wait(filp, &buf->read_wait, wait);
782 if (!relay_buf_empty(buf))
783 mask |= EPOLLIN | EPOLLRDNORM;
784 }
785
786 return mask;
787 }
788
789 /**
790 * relay_file_release - release file op for relay files
791 * @inode: the inode
792 * @filp: the file
793 *
794 * Decrements the channel refcount, as the filesystem is
795 * no longer using it.
796 */
relay_file_release(struct inode * inode,struct file * filp)797 static int relay_file_release(struct inode *inode, struct file *filp)
798 {
799 struct rchan_buf *buf = filp->private_data;
800 kref_put(&buf->kref, relay_remove_buf);
801
802 return 0;
803 }
804
805 /*
806 * relay_file_read_consume - update the consumed count for the buffer
807 */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)808 static void relay_file_read_consume(struct rchan_buf *buf,
809 size_t read_pos,
810 size_t bytes_consumed)
811 {
812 size_t subbuf_size = buf->chan->subbuf_size;
813 size_t n_subbufs = buf->chan->n_subbufs;
814 size_t read_subbuf;
815
816 if (buf->subbufs_produced == buf->subbufs_consumed &&
817 buf->offset == buf->bytes_consumed)
818 return;
819
820 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
821 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
822 buf->bytes_consumed = 0;
823 }
824
825 buf->bytes_consumed += bytes_consumed;
826 if (!read_pos)
827 read_subbuf = buf->subbufs_consumed % n_subbufs;
828 else
829 read_subbuf = read_pos / buf->chan->subbuf_size;
830 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
831 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
832 (buf->offset == subbuf_size))
833 return;
834 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
835 buf->bytes_consumed = 0;
836 }
837 }
838
839 /*
840 * relay_file_read_avail - boolean, are there unconsumed bytes available?
841 */
relay_file_read_avail(struct rchan_buf * buf)842 static int relay_file_read_avail(struct rchan_buf *buf)
843 {
844 size_t subbuf_size = buf->chan->subbuf_size;
845 size_t n_subbufs = buf->chan->n_subbufs;
846 size_t produced = buf->subbufs_produced;
847 size_t consumed;
848
849 relay_file_read_consume(buf, 0, 0);
850
851 consumed = buf->subbufs_consumed;
852
853 if (unlikely(buf->offset > subbuf_size)) {
854 if (produced == consumed)
855 return 0;
856 return 1;
857 }
858
859 if (unlikely(produced - consumed >= n_subbufs)) {
860 consumed = produced - n_subbufs + 1;
861 buf->subbufs_consumed = consumed;
862 buf->bytes_consumed = 0;
863 }
864
865 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
866 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
867
868 if (consumed > produced)
869 produced += n_subbufs * subbuf_size;
870
871 if (consumed == produced) {
872 if (buf->offset == subbuf_size &&
873 buf->subbufs_produced > buf->subbufs_consumed)
874 return 1;
875 return 0;
876 }
877
878 return 1;
879 }
880
881 /**
882 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
883 * @read_pos: file read position
884 * @buf: relay channel buffer
885 */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)886 static size_t relay_file_read_subbuf_avail(size_t read_pos,
887 struct rchan_buf *buf)
888 {
889 size_t padding, avail = 0;
890 size_t read_subbuf, read_offset, write_subbuf, write_offset;
891 size_t subbuf_size = buf->chan->subbuf_size;
892
893 write_subbuf = (buf->data - buf->start) / subbuf_size;
894 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
895 read_subbuf = read_pos / subbuf_size;
896 read_offset = read_pos % subbuf_size;
897 padding = buf->padding[read_subbuf];
898
899 if (read_subbuf == write_subbuf) {
900 if (read_offset + padding < write_offset)
901 avail = write_offset - (read_offset + padding);
902 } else
903 avail = (subbuf_size - padding) - read_offset;
904
905 return avail;
906 }
907
908 /**
909 * relay_file_read_start_pos - find the first available byte to read
910 * @buf: relay channel buffer
911 *
912 * If the read_pos is in the middle of padding, return the
913 * position of the first actually available byte, otherwise
914 * return the original value.
915 */
relay_file_read_start_pos(struct rchan_buf * buf)916 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
917 {
918 size_t read_subbuf, padding, padding_start, padding_end;
919 size_t subbuf_size = buf->chan->subbuf_size;
920 size_t n_subbufs = buf->chan->n_subbufs;
921 size_t consumed = buf->subbufs_consumed % n_subbufs;
922 size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed)
923 % (n_subbufs * subbuf_size);
924
925 read_subbuf = read_pos / subbuf_size;
926 padding = buf->padding[read_subbuf];
927 padding_start = (read_subbuf + 1) * subbuf_size - padding;
928 padding_end = (read_subbuf + 1) * subbuf_size;
929 if (read_pos >= padding_start && read_pos < padding_end) {
930 read_subbuf = (read_subbuf + 1) % n_subbufs;
931 read_pos = read_subbuf * subbuf_size;
932 }
933
934 return read_pos;
935 }
936
937 /**
938 * relay_file_read_end_pos - return the new read position
939 * @read_pos: file read position
940 * @buf: relay channel buffer
941 * @count: number of bytes to be read
942 */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)943 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
944 size_t read_pos,
945 size_t count)
946 {
947 size_t read_subbuf, padding, end_pos;
948 size_t subbuf_size = buf->chan->subbuf_size;
949 size_t n_subbufs = buf->chan->n_subbufs;
950
951 read_subbuf = read_pos / subbuf_size;
952 padding = buf->padding[read_subbuf];
953 if (read_pos % subbuf_size + count + padding == subbuf_size)
954 end_pos = (read_subbuf + 1) * subbuf_size;
955 else
956 end_pos = read_pos + count;
957 if (end_pos >= subbuf_size * n_subbufs)
958 end_pos = 0;
959
960 return end_pos;
961 }
962
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)963 static ssize_t relay_file_read(struct file *filp,
964 char __user *buffer,
965 size_t count,
966 loff_t *ppos)
967 {
968 struct rchan_buf *buf = filp->private_data;
969 size_t read_start, avail;
970 size_t written = 0;
971 int ret;
972
973 if (!count)
974 return 0;
975
976 inode_lock(file_inode(filp));
977 do {
978 void *from;
979
980 if (!relay_file_read_avail(buf))
981 break;
982
983 read_start = relay_file_read_start_pos(buf);
984 avail = relay_file_read_subbuf_avail(read_start, buf);
985 if (!avail)
986 break;
987
988 avail = min(count, avail);
989 from = buf->start + read_start;
990 ret = avail;
991 if (copy_to_user(buffer, from, avail))
992 break;
993
994 buffer += ret;
995 written += ret;
996 count -= ret;
997
998 relay_file_read_consume(buf, read_start, ret);
999 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1000 } while (count);
1001 inode_unlock(file_inode(filp));
1002
1003 return written;
1004 }
1005
1006
1007 const struct file_operations relay_file_operations = {
1008 .open = relay_file_open,
1009 .poll = relay_file_poll,
1010 .mmap_prepare = relay_file_mmap_prepare,
1011 .read = relay_file_read,
1012 .release = relay_file_release,
1013 };
1014 EXPORT_SYMBOL_GPL(relay_file_operations);
1015