xref: /linux/kernel/futex/waitwake.c (revision b3570b00dc3062c5a5e8d9602b923618d679636a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/plist.h>
4 #include <linux/sched/task.h>
5 #include <linux/sched/signal.h>
6 #include <linux/freezer.h>
7 
8 #include "futex.h"
9 
10 /*
11  * READ this before attempting to hack on futexes!
12  *
13  * Basic futex operation and ordering guarantees
14  * =============================================
15  *
16  * The waiter reads the futex value in user space and calls
17  * futex_wait(). This function computes the hash bucket and acquires
18  * the hash bucket lock. After that it reads the futex user space value
19  * again and verifies that the data has not changed. If it has not changed
20  * it enqueues itself into the hash bucket, releases the hash bucket lock
21  * and schedules.
22  *
23  * The waker side modifies the user space value of the futex and calls
24  * futex_wake(). This function computes the hash bucket and acquires the
25  * hash bucket lock. Then it looks for waiters on that futex in the hash
26  * bucket and wakes them.
27  *
28  * In futex wake up scenarios where no tasks are blocked on a futex, taking
29  * the hb spinlock can be avoided and simply return. In order for this
30  * optimization to work, ordering guarantees must exist so that the waiter
31  * being added to the list is acknowledged when the list is concurrently being
32  * checked by the waker, avoiding scenarios like the following:
33  *
34  * CPU 0                               CPU 1
35  * val = *futex;
36  * sys_futex(WAIT, futex, val);
37  *   futex_wait(futex, val);
38  *   uval = *futex;
39  *                                     *futex = newval;
40  *                                     sys_futex(WAKE, futex);
41  *                                       futex_wake(futex);
42  *                                       if (queue_empty())
43  *                                         return;
44  *   if (uval == val)
45  *      lock(hash_bucket(futex));
46  *      queue();
47  *     unlock(hash_bucket(futex));
48  *     schedule();
49  *
50  * This would cause the waiter on CPU 0 to wait forever because it
51  * missed the transition of the user space value from val to newval
52  * and the waker did not find the waiter in the hash bucket queue.
53  *
54  * The correct serialization ensures that a waiter either observes
55  * the changed user space value before blocking or is woken by a
56  * concurrent waker:
57  *
58  * CPU 0                                 CPU 1
59  * val = *futex;
60  * sys_futex(WAIT, futex, val);
61  *   futex_wait(futex, val);
62  *
63  *   waiters++; (a)
64  *   smp_mb(); (A) <-- paired with -.
65  *                                  |
66  *   lock(hash_bucket(futex));      |
67  *                                  |
68  *   uval = *futex;                 |
69  *                                  |        *futex = newval;
70  *                                  |        sys_futex(WAKE, futex);
71  *                                  |          futex_wake(futex);
72  *                                  |
73  *                                  `--------> smp_mb(); (B)
74  *   if (uval == val)
75  *     queue();
76  *     unlock(hash_bucket(futex));
77  *     schedule();                         if (waiters)
78  *                                           lock(hash_bucket(futex));
79  *   else                                    wake_waiters(futex);
80  *     waiters--; (b)                        unlock(hash_bucket(futex));
81  *
82  * Where (A) orders the waiters increment and the futex value read through
83  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
84  * to futex and the waiters read (see futex_hb_waiters_pending()).
85  *
86  * This yields the following case (where X:=waiters, Y:=futex):
87  *
88  *	X = Y = 0
89  *
90  *	w[X]=1		w[Y]=1
91  *	MB		MB
92  *	r[Y]=y		r[X]=x
93  *
94  * Which guarantees that x==0 && y==0 is impossible; which translates back into
95  * the guarantee that we cannot both miss the futex variable change and the
96  * enqueue.
97  *
98  * Note that a new waiter is accounted for in (a) even when it is possible that
99  * the wait call can return error, in which case we backtrack from it in (b).
100  * Refer to the comment in futex_q_lock().
101  *
102  * Similarly, in order to account for waiters being requeued on another
103  * address we always increment the waiters for the destination bucket before
104  * acquiring the lock. It then decrements them again  after releasing it -
105  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
106  * will do the additional required waiter count housekeeping. This is done for
107  * double_lock_hb() and double_unlock_hb(), respectively.
108  */
109 
110 bool __futex_wake_mark(struct futex_q *q)
111 {
112 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
113 		return false;
114 
115 	__futex_unqueue(q);
116 	/*
117 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
118 	 * is written, without taking any locks. This is possible in the event
119 	 * of a spurious wakeup, for example. A memory barrier is required here
120 	 * to prevent the following store to lock_ptr from getting ahead of the
121 	 * plist_del in __futex_unqueue().
122 	 */
123 	smp_store_release(&q->lock_ptr, NULL);
124 
125 	return true;
126 }
127 
128 /*
129  * The hash bucket lock must be held when this is called.
130  * Afterwards, the futex_q must not be accessed. Callers
131  * must ensure to later call wake_up_q() for the actual
132  * wakeups to occur.
133  */
134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
135 {
136 	struct task_struct *p = q->task;
137 
138 	get_task_struct(p);
139 
140 	if (!__futex_wake_mark(q)) {
141 		put_task_struct(p);
142 		return;
143 	}
144 
145 	/*
146 	 * Queue the task for later wakeup for after we've released
147 	 * the hb->lock.
148 	 */
149 	wake_q_add_safe(wake_q, p);
150 }
151 
152 /*
153  * Wake up waiters matching bitset queued on this futex (uaddr).
154  */
155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
156 {
157 	struct futex_q *this, *next;
158 	union futex_key key = FUTEX_KEY_INIT;
159 	DEFINE_WAKE_Q(wake_q);
160 	int ret;
161 
162 	if (!bitset)
163 		return -EINVAL;
164 
165 	ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
166 	if (unlikely(ret != 0))
167 		return ret;
168 
169 	if ((flags & FLAGS_STRICT) && !nr_wake)
170 		return 0;
171 
172 	CLASS(hb, hb)(&key);
173 
174 	/* Make sure we really have tasks to wakeup */
175 	if (!futex_hb_waiters_pending(hb))
176 		return ret;
177 
178 	spin_lock(&hb->lock);
179 
180 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
181 		if (futex_match (&this->key, &key)) {
182 			if (this->pi_state || this->rt_waiter) {
183 				ret = -EINVAL;
184 				break;
185 			}
186 
187 			/* Check if one of the bits is set in both bitsets */
188 			if (!(this->bitset & bitset))
189 				continue;
190 
191 			this->wake(&wake_q, this);
192 			if (++ret >= nr_wake)
193 				break;
194 		}
195 	}
196 
197 	spin_unlock(&hb->lock);
198 	wake_up_q(&wake_q);
199 	return ret;
200 }
201 
202 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
203 {
204 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
205 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
206 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
207 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
208 	int oldval, ret;
209 
210 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
211 		if (oparg < 0 || oparg > 31) {
212 			/*
213 			 * kill this print and return -EINVAL when userspace
214 			 * is sane again
215 			 */
216 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
217 					    current->comm, oparg);
218 			oparg &= 31;
219 		}
220 		oparg = 1 << oparg;
221 	}
222 
223 	pagefault_disable();
224 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
225 	pagefault_enable();
226 	if (ret)
227 		return ret;
228 
229 	switch (cmp) {
230 	case FUTEX_OP_CMP_EQ:
231 		return oldval == cmparg;
232 	case FUTEX_OP_CMP_NE:
233 		return oldval != cmparg;
234 	case FUTEX_OP_CMP_LT:
235 		return oldval < cmparg;
236 	case FUTEX_OP_CMP_GE:
237 		return oldval >= cmparg;
238 	case FUTEX_OP_CMP_LE:
239 		return oldval <= cmparg;
240 	case FUTEX_OP_CMP_GT:
241 		return oldval > cmparg;
242 	default:
243 		return -ENOSYS;
244 	}
245 }
246 
247 /*
248  * Wake up all waiters hashed on the physical page that is mapped
249  * to this virtual address:
250  */
251 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
252 		  int nr_wake, int nr_wake2, int op)
253 {
254 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
255 	struct futex_q *this, *next;
256 	int ret, op_ret;
257 	DEFINE_WAKE_Q(wake_q);
258 
259 retry:
260 	ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
261 	if (unlikely(ret != 0))
262 		return ret;
263 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
264 	if (unlikely(ret != 0))
265 		return ret;
266 
267 retry_private:
268 	if (1) {
269 		CLASS(hb, hb1)(&key1);
270 		CLASS(hb, hb2)(&key2);
271 
272 		double_lock_hb(hb1, hb2);
273 		op_ret = futex_atomic_op_inuser(op, uaddr2);
274 		if (unlikely(op_ret < 0)) {
275 			double_unlock_hb(hb1, hb2);
276 
277 			if (!IS_ENABLED(CONFIG_MMU) ||
278 			    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
279 				/*
280 				 * we don't get EFAULT from MMU faults if we don't have
281 				 * an MMU, but we might get them from range checking
282 				 */
283 				ret = op_ret;
284 				return ret;
285 			}
286 
287 			if (op_ret == -EFAULT) {
288 				ret = fault_in_user_writeable(uaddr2);
289 				if (ret)
290 					return ret;
291 			}
292 
293 			cond_resched();
294 			if (!(flags & FLAGS_SHARED))
295 				goto retry_private;
296 			goto retry;
297 		}
298 
299 		plist_for_each_entry_safe(this, next, &hb1->chain, list) {
300 			if (futex_match(&this->key, &key1)) {
301 				if (this->pi_state || this->rt_waiter) {
302 					ret = -EINVAL;
303 					goto out_unlock;
304 				}
305 				this->wake(&wake_q, this);
306 				if (++ret >= nr_wake)
307 					break;
308 			}
309 		}
310 
311 		if (op_ret > 0) {
312 			op_ret = 0;
313 			plist_for_each_entry_safe(this, next, &hb2->chain, list) {
314 				if (futex_match(&this->key, &key2)) {
315 					if (this->pi_state || this->rt_waiter) {
316 						ret = -EINVAL;
317 						goto out_unlock;
318 					}
319 					this->wake(&wake_q, this);
320 					if (++op_ret >= nr_wake2)
321 						break;
322 				}
323 			}
324 			ret += op_ret;
325 		}
326 
327 out_unlock:
328 		double_unlock_hb(hb1, hb2);
329 	}
330 	wake_up_q(&wake_q);
331 	return ret;
332 }
333 
334 static long futex_wait_restart(struct restart_block *restart);
335 
336 /**
337  * futex_do_wait() - wait for wakeup, timeout, or signal
338  * @q:		the futex_q to queue up on
339  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
340  */
341 void futex_do_wait(struct futex_q *q, struct hrtimer_sleeper *timeout)
342 {
343 	/* Arm the timer */
344 	if (timeout)
345 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
346 
347 	/*
348 	 * If we have been removed from the hash list, then another task
349 	 * has tried to wake us, and we can skip the call to schedule().
350 	 */
351 	if (likely(!plist_node_empty(&q->list))) {
352 		/*
353 		 * If the timer has already expired, current will already be
354 		 * flagged for rescheduling. Only call schedule if there
355 		 * is no timeout, or if it has yet to expire.
356 		 */
357 		if (!timeout || timeout->task)
358 			schedule();
359 	}
360 	__set_current_state(TASK_RUNNING);
361 }
362 
363 /**
364  * futex_unqueue_multiple - Remove various futexes from their hash bucket
365  * @v:	   The list of futexes to unqueue
366  * @count: Number of futexes in the list
367  *
368  * Helper to unqueue a list of futexes. This can't fail.
369  *
370  * Return:
371  *  - >=0 - Index of the last futex that was awoken;
372  *  - -1  - No futex was awoken
373  */
374 int futex_unqueue_multiple(struct futex_vector *v, int count)
375 {
376 	int ret = -1, i;
377 
378 	for (i = 0; i < count; i++) {
379 		if (!futex_unqueue(&v[i].q))
380 			ret = i;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
388  * @vs:		The futex list to wait on
389  * @count:	The size of the list
390  * @woken:	Index of the last woken futex, if any. Used to notify the
391  *		caller that it can return this index to userspace (return parameter)
392  *
393  * Prepare multiple futexes in a single step and enqueue them. This may fail if
394  * the futex list is invalid or if any futex was already awoken. On success the
395  * task is ready to interruptible sleep.
396  *
397  * Return:
398  *  -  1 - One of the futexes was woken by another thread
399  *  -  0 - Success
400  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
401  */
402 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
403 {
404 	bool retry = false;
405 	int ret, i;
406 	u32 uval;
407 
408 	/*
409 	 * Make sure to have a reference on the private_hash such that we
410 	 * don't block on rehash after changing the task state below.
411 	 */
412 	guard(private_hash)();
413 
414 	/*
415 	 * Enqueuing multiple futexes is tricky, because we need to enqueue
416 	 * each futex on the list before dealing with the next one to avoid
417 	 * deadlocking on the hash bucket. But, before enqueuing, we need to
418 	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
419 	 * lose any wake events, which cannot be done before the get_futex_key
420 	 * of the next key, because it calls get_user_pages, which can sleep.
421 	 * Thus, we fetch the list of futexes keys in two steps, by first
422 	 * pinning all the memory keys in the futex key, and only then we read
423 	 * each key and queue the corresponding futex.
424 	 *
425 	 * Private futexes doesn't need to recalculate hash in retry, so skip
426 	 * get_futex_key() when retrying.
427 	 */
428 retry:
429 	for (i = 0; i < count; i++) {
430 		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
431 			continue;
432 
433 		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
434 				    vs[i].w.flags,
435 				    &vs[i].q.key, FUTEX_READ);
436 
437 		if (unlikely(ret))
438 			return ret;
439 	}
440 
441 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
442 
443 	for (i = 0; i < count; i++) {
444 		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
445 		struct futex_q *q = &vs[i].q;
446 		u32 val = vs[i].w.val;
447 
448 		if (1) {
449 			CLASS(hb, hb)(&q->key);
450 
451 			futex_q_lock(q, hb);
452 			ret = futex_get_value_locked(&uval, uaddr);
453 
454 			if (!ret && uval == val) {
455 				/*
456 				 * The bucket lock can't be held while dealing with the
457 				 * next futex. Queue each futex at this moment so hb can
458 				 * be unlocked.
459 				 */
460 				futex_queue(q, hb, current);
461 				continue;
462 			}
463 
464 			futex_q_unlock(hb);
465 		}
466 		__set_current_state(TASK_RUNNING);
467 
468 		/*
469 		 * Even if something went wrong, if we find out that a futex
470 		 * was woken, we don't return error and return this index to
471 		 * userspace
472 		 */
473 		*woken = futex_unqueue_multiple(vs, i);
474 		if (*woken >= 0)
475 			return 1;
476 
477 		if (ret) {
478 			/*
479 			 * If we need to handle a page fault, we need to do so
480 			 * without any lock and any enqueued futex (otherwise
481 			 * we could lose some wakeup). So we do it here, after
482 			 * undoing all the work done so far. In success, we
483 			 * retry all the work.
484 			 */
485 			if (get_user(uval, uaddr))
486 				return -EFAULT;
487 
488 			retry = true;
489 			goto retry;
490 		}
491 
492 		if (uval != val)
493 			return -EWOULDBLOCK;
494 	}
495 
496 	return 0;
497 }
498 
499 /**
500  * futex_sleep_multiple - Check sleeping conditions and sleep
501  * @vs:    List of futexes to wait for
502  * @count: Length of vs
503  * @to:    Timeout
504  *
505  * Sleep if and only if the timeout hasn't expired and no futex on the list has
506  * been woken up.
507  */
508 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
509 				 struct hrtimer_sleeper *to)
510 {
511 	if (to && !to->task)
512 		return;
513 
514 	for (; count; count--, vs++) {
515 		if (!READ_ONCE(vs->q.lock_ptr))
516 			return;
517 	}
518 
519 	schedule();
520 }
521 
522 /**
523  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
524  * @vs:		The list of futexes to wait on
525  * @count:	The number of objects
526  * @to:		Timeout before giving up and returning to userspace
527  *
528  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
529  * sleeps on a group of futexes and returns on the first futex that is
530  * wake, or after the timeout has elapsed.
531  *
532  * Return:
533  *  - >=0 - Hint to the futex that was awoken
534  *  - <0  - On error
535  */
536 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
537 			struct hrtimer_sleeper *to)
538 {
539 	int ret, hint = 0;
540 
541 	if (to)
542 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
543 
544 	while (1) {
545 		ret = futex_wait_multiple_setup(vs, count, &hint);
546 		if (ret) {
547 			if (ret > 0) {
548 				/* A futex was woken during setup */
549 				ret = hint;
550 			}
551 			return ret;
552 		}
553 
554 		futex_sleep_multiple(vs, count, to);
555 
556 		__set_current_state(TASK_RUNNING);
557 
558 		ret = futex_unqueue_multiple(vs, count);
559 		if (ret >= 0)
560 			return ret;
561 
562 		if (to && !to->task)
563 			return -ETIMEDOUT;
564 		else if (signal_pending(current))
565 			return -ERESTARTSYS;
566 		/*
567 		 * The final case is a spurious wakeup, for
568 		 * which just retry.
569 		 */
570 	}
571 }
572 
573 /**
574  * futex_wait_setup() - Prepare to wait on a futex
575  * @uaddr:	the futex userspace address
576  * @val:	the expected value
577  * @flags:	futex flags (FLAGS_SHARED, etc.)
578  * @q:		the associated futex_q
579  * @key2:	the second futex_key if used for requeue PI
580  * @task:	Task queueing this futex
581  *
582  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
583  * compare it with the expected value.  Handle atomic faults internally.
584  * Return with the hb lock held on success, and unlocked on failure.
585  *
586  * Return:
587  *  -  0 - uaddr contains val and hb has been locked;
588  *  - <0 - On error and the hb is unlocked. A possible reason: the uaddr can not
589  *	   be read, does not contain the expected value or is not properly aligned.
590  */
591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
592 		     struct futex_q *q, union futex_key *key2,
593 		     struct task_struct *task)
594 {
595 	u32 uval;
596 	int ret;
597 
598 	/*
599 	 * Access the page AFTER the hash-bucket is locked.
600 	 * Order is important:
601 	 *
602 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
603 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
604 	 *
605 	 * The basic logical guarantee of a futex is that it blocks ONLY
606 	 * if cond(var) is known to be true at the time of blocking, for
607 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
608 	 * would open a race condition where we could block indefinitely with
609 	 * cond(var) false, which would violate the guarantee.
610 	 *
611 	 * On the other hand, we insert q and release the hash-bucket only
612 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
613 	 * absorb a wakeup if *uaddr does not match the desired values
614 	 * while the syscall executes.
615 	 */
616 retry:
617 	ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
618 	if (unlikely(ret != 0))
619 		return ret;
620 
621 retry_private:
622 	if (1) {
623 		CLASS(hb, hb)(&q->key);
624 
625 		futex_q_lock(q, hb);
626 
627 		ret = futex_get_value_locked(&uval, uaddr);
628 
629 		if (ret) {
630 			futex_q_unlock(hb);
631 
632 			ret = get_user(uval, uaddr);
633 			if (ret)
634 				return ret;
635 
636 			if (!(flags & FLAGS_SHARED))
637 				goto retry_private;
638 
639 			goto retry;
640 		}
641 
642 		if (uval != val) {
643 			futex_q_unlock(hb);
644 			return -EWOULDBLOCK;
645 		}
646 
647 		if (key2 && futex_match(&q->key, key2)) {
648 			futex_q_unlock(hb);
649 			return -EINVAL;
650 		}
651 
652 		/*
653 		 * The task state is guaranteed to be set before another task can
654 		 * wake it. set_current_state() is implemented using smp_store_mb() and
655 		 * futex_queue() calls spin_unlock() upon completion, both serializing
656 		 * access to the hash list and forcing another memory barrier.
657 		 */
658 		if (task == current)
659 			set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
660 		futex_queue(q, hb, task);
661 	}
662 
663 	return ret;
664 }
665 
666 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
667 		 struct hrtimer_sleeper *to, u32 bitset)
668 {
669 	struct futex_q q = futex_q_init;
670 	int ret;
671 
672 	if (!bitset)
673 		return -EINVAL;
674 
675 	q.bitset = bitset;
676 
677 retry:
678 	/*
679 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
680 	 * is initialized.
681 	 */
682 	ret = futex_wait_setup(uaddr, val, flags, &q, NULL, current);
683 	if (ret)
684 		return ret;
685 
686 	/* futex_queue and wait for wakeup, timeout, or a signal. */
687 	futex_do_wait(&q, to);
688 
689 	/* If we were woken (and unqueued), we succeeded, whatever. */
690 	if (!futex_unqueue(&q))
691 		return 0;
692 
693 	if (to && !to->task)
694 		return -ETIMEDOUT;
695 
696 	/*
697 	 * We expect signal_pending(current), but we might be the
698 	 * victim of a spurious wakeup as well.
699 	 */
700 	if (!signal_pending(current))
701 		goto retry;
702 
703 	return -ERESTARTSYS;
704 }
705 
706 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
707 {
708 	struct hrtimer_sleeper timeout, *to;
709 	struct restart_block *restart;
710 	int ret;
711 
712 	to = futex_setup_timer(abs_time, &timeout, flags,
713 			       current->timer_slack_ns);
714 
715 	ret = __futex_wait(uaddr, flags, val, to, bitset);
716 
717 	/* No timeout, nothing to clean up. */
718 	if (!to)
719 		return ret;
720 
721 	hrtimer_cancel(&to->timer);
722 	destroy_hrtimer_on_stack(&to->timer);
723 
724 	if (ret == -ERESTARTSYS) {
725 		restart = &current->restart_block;
726 		restart->futex.uaddr = uaddr;
727 		restart->futex.val = val;
728 		restart->futex.time = *abs_time;
729 		restart->futex.bitset = bitset;
730 		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
731 
732 		return set_restart_fn(restart, futex_wait_restart);
733 	}
734 
735 	return ret;
736 }
737 
738 static long futex_wait_restart(struct restart_block *restart)
739 {
740 	u32 __user *uaddr = restart->futex.uaddr;
741 	ktime_t t, *tp = NULL;
742 
743 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
744 		t = restart->futex.time;
745 		tp = &t;
746 	}
747 	restart->fn = do_no_restart_syscall;
748 
749 	return (long)futex_wait(uaddr, restart->futex.flags,
750 				restart->futex.val, tp, restart->futex.bitset);
751 }
752 
753