1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/plist.h> 4 #include <linux/sched/task.h> 5 #include <linux/sched/signal.h> 6 #include <linux/freezer.h> 7 8 #include "futex.h" 9 10 /* 11 * READ this before attempting to hack on futexes! 12 * 13 * Basic futex operation and ordering guarantees 14 * ============================================= 15 * 16 * The waiter reads the futex value in user space and calls 17 * futex_wait(). This function computes the hash bucket and acquires 18 * the hash bucket lock. After that it reads the futex user space value 19 * again and verifies that the data has not changed. If it has not changed 20 * it enqueues itself into the hash bucket, releases the hash bucket lock 21 * and schedules. 22 * 23 * The waker side modifies the user space value of the futex and calls 24 * futex_wake(). This function computes the hash bucket and acquires the 25 * hash bucket lock. Then it looks for waiters on that futex in the hash 26 * bucket and wakes them. 27 * 28 * In futex wake up scenarios where no tasks are blocked on a futex, taking 29 * the hb spinlock can be avoided and simply return. In order for this 30 * optimization to work, ordering guarantees must exist so that the waiter 31 * being added to the list is acknowledged when the list is concurrently being 32 * checked by the waker, avoiding scenarios like the following: 33 * 34 * CPU 0 CPU 1 35 * val = *futex; 36 * sys_futex(WAIT, futex, val); 37 * futex_wait(futex, val); 38 * uval = *futex; 39 * *futex = newval; 40 * sys_futex(WAKE, futex); 41 * futex_wake(futex); 42 * if (queue_empty()) 43 * return; 44 * if (uval == val) 45 * lock(hash_bucket(futex)); 46 * queue(); 47 * unlock(hash_bucket(futex)); 48 * schedule(); 49 * 50 * This would cause the waiter on CPU 0 to wait forever because it 51 * missed the transition of the user space value from val to newval 52 * and the waker did not find the waiter in the hash bucket queue. 53 * 54 * The correct serialization ensures that a waiter either observes 55 * the changed user space value before blocking or is woken by a 56 * concurrent waker: 57 * 58 * CPU 0 CPU 1 59 * val = *futex; 60 * sys_futex(WAIT, futex, val); 61 * futex_wait(futex, val); 62 * 63 * waiters++; (a) 64 * smp_mb(); (A) <-- paired with -. 65 * | 66 * lock(hash_bucket(futex)); | 67 * | 68 * uval = *futex; | 69 * | *futex = newval; 70 * | sys_futex(WAKE, futex); 71 * | futex_wake(futex); 72 * | 73 * `--------> smp_mb(); (B) 74 * if (uval == val) 75 * queue(); 76 * unlock(hash_bucket(futex)); 77 * schedule(); if (waiters) 78 * lock(hash_bucket(futex)); 79 * else wake_waiters(futex); 80 * waiters--; (b) unlock(hash_bucket(futex)); 81 * 82 * Where (A) orders the waiters increment and the futex value read through 83 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write 84 * to futex and the waiters read (see futex_hb_waiters_pending()). 85 * 86 * This yields the following case (where X:=waiters, Y:=futex): 87 * 88 * X = Y = 0 89 * 90 * w[X]=1 w[Y]=1 91 * MB MB 92 * r[Y]=y r[X]=x 93 * 94 * Which guarantees that x==0 && y==0 is impossible; which translates back into 95 * the guarantee that we cannot both miss the futex variable change and the 96 * enqueue. 97 * 98 * Note that a new waiter is accounted for in (a) even when it is possible that 99 * the wait call can return error, in which case we backtrack from it in (b). 100 * Refer to the comment in futex_q_lock(). 101 * 102 * Similarly, in order to account for waiters being requeued on another 103 * address we always increment the waiters for the destination bucket before 104 * acquiring the lock. It then decrements them again after releasing it - 105 * the code that actually moves the futex(es) between hash buckets (requeue_futex) 106 * will do the additional required waiter count housekeeping. This is done for 107 * double_lock_hb() and double_unlock_hb(), respectively. 108 */ 109 110 bool __futex_wake_mark(struct futex_q *q) 111 { 112 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) 113 return false; 114 115 __futex_unqueue(q); 116 /* 117 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL 118 * is written, without taking any locks. This is possible in the event 119 * of a spurious wakeup, for example. A memory barrier is required here 120 * to prevent the following store to lock_ptr from getting ahead of the 121 * plist_del in __futex_unqueue(). 122 */ 123 smp_store_release(&q->lock_ptr, NULL); 124 125 return true; 126 } 127 128 /* 129 * The hash bucket lock must be held when this is called. 130 * Afterwards, the futex_q must not be accessed. Callers 131 * must ensure to later call wake_up_q() for the actual 132 * wakeups to occur. 133 */ 134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) 135 { 136 struct task_struct *p = q->task; 137 138 get_task_struct(p); 139 140 if (!__futex_wake_mark(q)) { 141 put_task_struct(p); 142 return; 143 } 144 145 /* 146 * Queue the task for later wakeup for after we've released 147 * the hb->lock. 148 */ 149 wake_q_add_safe(wake_q, p); 150 } 151 152 /* 153 * Wake up waiters matching bitset queued on this futex (uaddr). 154 */ 155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) 156 { 157 struct futex_q *this, *next; 158 union futex_key key = FUTEX_KEY_INIT; 159 DEFINE_WAKE_Q(wake_q); 160 int ret; 161 162 if (!bitset) 163 return -EINVAL; 164 165 ret = get_futex_key(uaddr, flags, &key, FUTEX_READ); 166 if (unlikely(ret != 0)) 167 return ret; 168 169 if ((flags & FLAGS_STRICT) && !nr_wake) 170 return 0; 171 172 CLASS(hb, hb)(&key); 173 174 /* Make sure we really have tasks to wakeup */ 175 if (!futex_hb_waiters_pending(hb)) 176 return ret; 177 178 spin_lock(&hb->lock); 179 180 plist_for_each_entry_safe(this, next, &hb->chain, list) { 181 if (futex_match (&this->key, &key)) { 182 if (this->pi_state || this->rt_waiter) { 183 ret = -EINVAL; 184 break; 185 } 186 187 /* Check if one of the bits is set in both bitsets */ 188 if (!(this->bitset & bitset)) 189 continue; 190 191 this->wake(&wake_q, this); 192 if (++ret >= nr_wake) 193 break; 194 } 195 } 196 197 spin_unlock(&hb->lock); 198 wake_up_q(&wake_q); 199 return ret; 200 } 201 202 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) 203 { 204 unsigned int op = (encoded_op & 0x70000000) >> 28; 205 unsigned int cmp = (encoded_op & 0x0f000000) >> 24; 206 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); 207 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); 208 int oldval, ret; 209 210 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { 211 if (oparg < 0 || oparg > 31) { 212 /* 213 * kill this print and return -EINVAL when userspace 214 * is sane again 215 */ 216 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", 217 current->comm, oparg); 218 oparg &= 31; 219 } 220 oparg = 1 << oparg; 221 } 222 223 pagefault_disable(); 224 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); 225 pagefault_enable(); 226 if (ret) 227 return ret; 228 229 switch (cmp) { 230 case FUTEX_OP_CMP_EQ: 231 return oldval == cmparg; 232 case FUTEX_OP_CMP_NE: 233 return oldval != cmparg; 234 case FUTEX_OP_CMP_LT: 235 return oldval < cmparg; 236 case FUTEX_OP_CMP_GE: 237 return oldval >= cmparg; 238 case FUTEX_OP_CMP_LE: 239 return oldval <= cmparg; 240 case FUTEX_OP_CMP_GT: 241 return oldval > cmparg; 242 default: 243 return -ENOSYS; 244 } 245 } 246 247 /* 248 * Wake up all waiters hashed on the physical page that is mapped 249 * to this virtual address: 250 */ 251 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, 252 int nr_wake, int nr_wake2, int op) 253 { 254 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 255 struct futex_q *this, *next; 256 int ret, op_ret; 257 DEFINE_WAKE_Q(wake_q); 258 259 retry: 260 ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ); 261 if (unlikely(ret != 0)) 262 return ret; 263 ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE); 264 if (unlikely(ret != 0)) 265 return ret; 266 267 retry_private: 268 if (1) { 269 CLASS(hb, hb1)(&key1); 270 CLASS(hb, hb2)(&key2); 271 272 double_lock_hb(hb1, hb2); 273 op_ret = futex_atomic_op_inuser(op, uaddr2); 274 if (unlikely(op_ret < 0)) { 275 double_unlock_hb(hb1, hb2); 276 277 if (!IS_ENABLED(CONFIG_MMU) || 278 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { 279 /* 280 * we don't get EFAULT from MMU faults if we don't have 281 * an MMU, but we might get them from range checking 282 */ 283 ret = op_ret; 284 return ret; 285 } 286 287 if (op_ret == -EFAULT) { 288 ret = fault_in_user_writeable(uaddr2); 289 if (ret) 290 return ret; 291 } 292 293 cond_resched(); 294 if (!(flags & FLAGS_SHARED)) 295 goto retry_private; 296 goto retry; 297 } 298 299 plist_for_each_entry_safe(this, next, &hb1->chain, list) { 300 if (futex_match(&this->key, &key1)) { 301 if (this->pi_state || this->rt_waiter) { 302 ret = -EINVAL; 303 goto out_unlock; 304 } 305 this->wake(&wake_q, this); 306 if (++ret >= nr_wake) 307 break; 308 } 309 } 310 311 if (op_ret > 0) { 312 op_ret = 0; 313 plist_for_each_entry_safe(this, next, &hb2->chain, list) { 314 if (futex_match(&this->key, &key2)) { 315 if (this->pi_state || this->rt_waiter) { 316 ret = -EINVAL; 317 goto out_unlock; 318 } 319 this->wake(&wake_q, this); 320 if (++op_ret >= nr_wake2) 321 break; 322 } 323 } 324 ret += op_ret; 325 } 326 327 out_unlock: 328 double_unlock_hb(hb1, hb2); 329 } 330 wake_up_q(&wake_q); 331 return ret; 332 } 333 334 static long futex_wait_restart(struct restart_block *restart); 335 336 /** 337 * futex_do_wait() - wait for wakeup, timeout, or signal 338 * @q: the futex_q to queue up on 339 * @timeout: the prepared hrtimer_sleeper, or null for no timeout 340 */ 341 void futex_do_wait(struct futex_q *q, struct hrtimer_sleeper *timeout) 342 { 343 /* Arm the timer */ 344 if (timeout) 345 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); 346 347 /* 348 * If we have been removed from the hash list, then another task 349 * has tried to wake us, and we can skip the call to schedule(). 350 */ 351 if (likely(!plist_node_empty(&q->list))) { 352 /* 353 * If the timer has already expired, current will already be 354 * flagged for rescheduling. Only call schedule if there 355 * is no timeout, or if it has yet to expire. 356 */ 357 if (!timeout || timeout->task) 358 schedule(); 359 } 360 __set_current_state(TASK_RUNNING); 361 } 362 363 /** 364 * futex_unqueue_multiple - Remove various futexes from their hash bucket 365 * @v: The list of futexes to unqueue 366 * @count: Number of futexes in the list 367 * 368 * Helper to unqueue a list of futexes. This can't fail. 369 * 370 * Return: 371 * - >=0 - Index of the last futex that was awoken; 372 * - -1 - No futex was awoken 373 */ 374 int futex_unqueue_multiple(struct futex_vector *v, int count) 375 { 376 int ret = -1, i; 377 378 for (i = 0; i < count; i++) { 379 if (!futex_unqueue(&v[i].q)) 380 ret = i; 381 } 382 383 return ret; 384 } 385 386 /** 387 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes 388 * @vs: The futex list to wait on 389 * @count: The size of the list 390 * @woken: Index of the last woken futex, if any. Used to notify the 391 * caller that it can return this index to userspace (return parameter) 392 * 393 * Prepare multiple futexes in a single step and enqueue them. This may fail if 394 * the futex list is invalid or if any futex was already awoken. On success the 395 * task is ready to interruptible sleep. 396 * 397 * Return: 398 * - 1 - One of the futexes was woken by another thread 399 * - 0 - Success 400 * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL 401 */ 402 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken) 403 { 404 bool retry = false; 405 int ret, i; 406 u32 uval; 407 408 /* 409 * Make sure to have a reference on the private_hash such that we 410 * don't block on rehash after changing the task state below. 411 */ 412 guard(private_hash)(); 413 414 /* 415 * Enqueuing multiple futexes is tricky, because we need to enqueue 416 * each futex on the list before dealing with the next one to avoid 417 * deadlocking on the hash bucket. But, before enqueuing, we need to 418 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't 419 * lose any wake events, which cannot be done before the get_futex_key 420 * of the next key, because it calls get_user_pages, which can sleep. 421 * Thus, we fetch the list of futexes keys in two steps, by first 422 * pinning all the memory keys in the futex key, and only then we read 423 * each key and queue the corresponding futex. 424 * 425 * Private futexes doesn't need to recalculate hash in retry, so skip 426 * get_futex_key() when retrying. 427 */ 428 retry: 429 for (i = 0; i < count; i++) { 430 if (!(vs[i].w.flags & FLAGS_SHARED) && retry) 431 continue; 432 433 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr), 434 vs[i].w.flags, 435 &vs[i].q.key, FUTEX_READ); 436 437 if (unlikely(ret)) 438 return ret; 439 } 440 441 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 442 443 for (i = 0; i < count; i++) { 444 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr; 445 struct futex_q *q = &vs[i].q; 446 u32 val = vs[i].w.val; 447 448 if (1) { 449 CLASS(hb, hb)(&q->key); 450 451 futex_q_lock(q, hb); 452 ret = futex_get_value_locked(&uval, uaddr); 453 454 if (!ret && uval == val) { 455 /* 456 * The bucket lock can't be held while dealing with the 457 * next futex. Queue each futex at this moment so hb can 458 * be unlocked. 459 */ 460 futex_queue(q, hb, current); 461 continue; 462 } 463 464 futex_q_unlock(hb); 465 } 466 __set_current_state(TASK_RUNNING); 467 468 /* 469 * Even if something went wrong, if we find out that a futex 470 * was woken, we don't return error and return this index to 471 * userspace 472 */ 473 *woken = futex_unqueue_multiple(vs, i); 474 if (*woken >= 0) 475 return 1; 476 477 if (ret) { 478 /* 479 * If we need to handle a page fault, we need to do so 480 * without any lock and any enqueued futex (otherwise 481 * we could lose some wakeup). So we do it here, after 482 * undoing all the work done so far. In success, we 483 * retry all the work. 484 */ 485 if (get_user(uval, uaddr)) 486 return -EFAULT; 487 488 retry = true; 489 goto retry; 490 } 491 492 if (uval != val) 493 return -EWOULDBLOCK; 494 } 495 496 return 0; 497 } 498 499 /** 500 * futex_sleep_multiple - Check sleeping conditions and sleep 501 * @vs: List of futexes to wait for 502 * @count: Length of vs 503 * @to: Timeout 504 * 505 * Sleep if and only if the timeout hasn't expired and no futex on the list has 506 * been woken up. 507 */ 508 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count, 509 struct hrtimer_sleeper *to) 510 { 511 if (to && !to->task) 512 return; 513 514 for (; count; count--, vs++) { 515 if (!READ_ONCE(vs->q.lock_ptr)) 516 return; 517 } 518 519 schedule(); 520 } 521 522 /** 523 * futex_wait_multiple - Prepare to wait on and enqueue several futexes 524 * @vs: The list of futexes to wait on 525 * @count: The number of objects 526 * @to: Timeout before giving up and returning to userspace 527 * 528 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function 529 * sleeps on a group of futexes and returns on the first futex that is 530 * wake, or after the timeout has elapsed. 531 * 532 * Return: 533 * - >=0 - Hint to the futex that was awoken 534 * - <0 - On error 535 */ 536 int futex_wait_multiple(struct futex_vector *vs, unsigned int count, 537 struct hrtimer_sleeper *to) 538 { 539 int ret, hint = 0; 540 541 if (to) 542 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); 543 544 while (1) { 545 ret = futex_wait_multiple_setup(vs, count, &hint); 546 if (ret) { 547 if (ret > 0) { 548 /* A futex was woken during setup */ 549 ret = hint; 550 } 551 return ret; 552 } 553 554 futex_sleep_multiple(vs, count, to); 555 556 __set_current_state(TASK_RUNNING); 557 558 ret = futex_unqueue_multiple(vs, count); 559 if (ret >= 0) 560 return ret; 561 562 if (to && !to->task) 563 return -ETIMEDOUT; 564 else if (signal_pending(current)) 565 return -ERESTARTSYS; 566 /* 567 * The final case is a spurious wakeup, for 568 * which just retry. 569 */ 570 } 571 } 572 573 /** 574 * futex_wait_setup() - Prepare to wait on a futex 575 * @uaddr: the futex userspace address 576 * @val: the expected value 577 * @flags: futex flags (FLAGS_SHARED, etc.) 578 * @q: the associated futex_q 579 * @key2: the second futex_key if used for requeue PI 580 * @task: Task queueing this futex 581 * 582 * Setup the futex_q and locate the hash_bucket. Get the futex value and 583 * compare it with the expected value. Handle atomic faults internally. 584 * Return with the hb lock held on success, and unlocked on failure. 585 * 586 * Return: 587 * - 0 - uaddr contains val and hb has been locked; 588 * - <0 - On error and the hb is unlocked. A possible reason: the uaddr can not 589 * be read, does not contain the expected value or is not properly aligned. 590 */ 591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, 592 struct futex_q *q, union futex_key *key2, 593 struct task_struct *task) 594 { 595 u32 uval; 596 int ret; 597 598 /* 599 * Access the page AFTER the hash-bucket is locked. 600 * Order is important: 601 * 602 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); 603 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } 604 * 605 * The basic logical guarantee of a futex is that it blocks ONLY 606 * if cond(var) is known to be true at the time of blocking, for 607 * any cond. If we locked the hash-bucket after testing *uaddr, that 608 * would open a race condition where we could block indefinitely with 609 * cond(var) false, which would violate the guarantee. 610 * 611 * On the other hand, we insert q and release the hash-bucket only 612 * after testing *uaddr. This guarantees that futex_wait() will NOT 613 * absorb a wakeup if *uaddr does not match the desired values 614 * while the syscall executes. 615 */ 616 retry: 617 ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ); 618 if (unlikely(ret != 0)) 619 return ret; 620 621 retry_private: 622 if (1) { 623 CLASS(hb, hb)(&q->key); 624 625 futex_q_lock(q, hb); 626 627 ret = futex_get_value_locked(&uval, uaddr); 628 629 if (ret) { 630 futex_q_unlock(hb); 631 632 ret = get_user(uval, uaddr); 633 if (ret) 634 return ret; 635 636 if (!(flags & FLAGS_SHARED)) 637 goto retry_private; 638 639 goto retry; 640 } 641 642 if (uval != val) { 643 futex_q_unlock(hb); 644 return -EWOULDBLOCK; 645 } 646 647 if (key2 && futex_match(&q->key, key2)) { 648 futex_q_unlock(hb); 649 return -EINVAL; 650 } 651 652 /* 653 * The task state is guaranteed to be set before another task can 654 * wake it. set_current_state() is implemented using smp_store_mb() and 655 * futex_queue() calls spin_unlock() upon completion, both serializing 656 * access to the hash list and forcing another memory barrier. 657 */ 658 if (task == current) 659 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 660 futex_queue(q, hb, task); 661 } 662 663 return ret; 664 } 665 666 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, 667 struct hrtimer_sleeper *to, u32 bitset) 668 { 669 struct futex_q q = futex_q_init; 670 int ret; 671 672 if (!bitset) 673 return -EINVAL; 674 675 q.bitset = bitset; 676 677 retry: 678 /* 679 * Prepare to wait on uaddr. On success, it holds hb->lock and q 680 * is initialized. 681 */ 682 ret = futex_wait_setup(uaddr, val, flags, &q, NULL, current); 683 if (ret) 684 return ret; 685 686 /* futex_queue and wait for wakeup, timeout, or a signal. */ 687 futex_do_wait(&q, to); 688 689 /* If we were woken (and unqueued), we succeeded, whatever. */ 690 if (!futex_unqueue(&q)) 691 return 0; 692 693 if (to && !to->task) 694 return -ETIMEDOUT; 695 696 /* 697 * We expect signal_pending(current), but we might be the 698 * victim of a spurious wakeup as well. 699 */ 700 if (!signal_pending(current)) 701 goto retry; 702 703 return -ERESTARTSYS; 704 } 705 706 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) 707 { 708 struct hrtimer_sleeper timeout, *to; 709 struct restart_block *restart; 710 int ret; 711 712 to = futex_setup_timer(abs_time, &timeout, flags, 713 current->timer_slack_ns); 714 715 ret = __futex_wait(uaddr, flags, val, to, bitset); 716 717 /* No timeout, nothing to clean up. */ 718 if (!to) 719 return ret; 720 721 hrtimer_cancel(&to->timer); 722 destroy_hrtimer_on_stack(&to->timer); 723 724 if (ret == -ERESTARTSYS) { 725 restart = ¤t->restart_block; 726 restart->futex.uaddr = uaddr; 727 restart->futex.val = val; 728 restart->futex.time = *abs_time; 729 restart->futex.bitset = bitset; 730 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; 731 732 return set_restart_fn(restart, futex_wait_restart); 733 } 734 735 return ret; 736 } 737 738 static long futex_wait_restart(struct restart_block *restart) 739 { 740 u32 __user *uaddr = restart->futex.uaddr; 741 ktime_t t, *tp = NULL; 742 743 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { 744 t = restart->futex.time; 745 tp = &t; 746 } 747 restart->fn = do_no_restart_syscall; 748 749 return (long)futex_wait(uaddr, restart->futex.flags, 750 restart->futex.val, tp, restart->futex.bitset); 751 } 752 753