xref: /linux/kernel/futex/requeue.c (revision b3570b00dc3062c5a5e8d9602b923618d679636a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/plist.h>
4 #include <linux/sched/signal.h>
5 
6 #include "futex.h"
7 #include "../locking/rtmutex_common.h"
8 
9 /*
10  * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
11  * underlying rtmutex. The task which is about to be requeued could have
12  * just woken up (timeout, signal). After the wake up the task has to
13  * acquire hash bucket lock, which is held by the requeue code.  As a task
14  * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
15  * and the hash bucket lock blocking would collide and corrupt state.
16  *
17  * On !PREEMPT_RT this is not a problem and everything could be serialized
18  * on hash bucket lock, but aside of having the benefit of common code,
19  * this allows to avoid doing the requeue when the task is already on the
20  * way out and taking the hash bucket lock of the original uaddr1 when the
21  * requeue has been completed.
22  *
23  * The following state transitions are valid:
24  *
25  * On the waiter side:
26  *   Q_REQUEUE_PI_NONE		-> Q_REQUEUE_PI_IGNORE
27  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_WAIT
28  *
29  * On the requeue side:
30  *   Q_REQUEUE_PI_NONE		-> Q_REQUEUE_PI_INPROGRESS
31  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_DONE/LOCKED
32  *   Q_REQUEUE_PI_IN_PROGRESS	-> Q_REQUEUE_PI_NONE (requeue failed)
33  *   Q_REQUEUE_PI_WAIT		-> Q_REQUEUE_PI_DONE/LOCKED
34  *   Q_REQUEUE_PI_WAIT		-> Q_REQUEUE_PI_IGNORE (requeue failed)
35  *
36  * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
37  * signals that the waiter is already on the way out. It also means that
38  * the waiter is still on the 'wait' futex, i.e. uaddr1.
39  *
40  * The waiter side signals early wakeup to the requeue side either through
41  * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
42  * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
43  * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
44  * which means the wakeup is interleaving with a requeue in progress it has
45  * to wait for the requeue side to change the state. Either to DONE/LOCKED
46  * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
47  * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
48  * the requeue side when the requeue attempt failed via deadlock detection
49  * and therefore the waiter q is still on the uaddr1 futex.
50  */
51 enum {
52 	Q_REQUEUE_PI_NONE		=  0,
53 	Q_REQUEUE_PI_IGNORE,
54 	Q_REQUEUE_PI_IN_PROGRESS,
55 	Q_REQUEUE_PI_WAIT,
56 	Q_REQUEUE_PI_DONE,
57 	Q_REQUEUE_PI_LOCKED,
58 };
59 
60 const struct futex_q futex_q_init = {
61 	/* list gets initialized in futex_queue()*/
62 	.wake		= futex_wake_mark,
63 	.key		= FUTEX_KEY_INIT,
64 	.bitset		= FUTEX_BITSET_MATCH_ANY,
65 	.requeue_state	= ATOMIC_INIT(Q_REQUEUE_PI_NONE),
66 };
67 
68 /**
69  * requeue_futex() - Requeue a futex_q from one hb to another
70  * @q:		the futex_q to requeue
71  * @hb1:	the source hash_bucket
72  * @hb2:	the target hash_bucket
73  * @key2:	the new key for the requeued futex_q
74  */
75 static inline
76 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
77 		   struct futex_hash_bucket *hb2, union futex_key *key2)
78 {
79 
80 	/*
81 	 * If key1 and key2 hash to the same bucket, no need to
82 	 * requeue.
83 	 */
84 	if (likely(&hb1->chain != &hb2->chain)) {
85 		plist_del(&q->list, &hb1->chain);
86 		futex_hb_waiters_dec(hb1);
87 		futex_hb_waiters_inc(hb2);
88 		plist_add(&q->list, &hb2->chain);
89 		q->lock_ptr = &hb2->lock;
90 		/*
91 		 * hb1 and hb2 belong to the same futex_hash_bucket_private
92 		 * because if we managed get a reference on hb1 then it can't be
93 		 * replaced. Therefore we avoid put(hb1)+get(hb2) here.
94 		 */
95 	}
96 	q->key = *key2;
97 }
98 
99 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
100 					    struct futex_pi_state *pi_state)
101 {
102 	int old, new;
103 
104 	/*
105 	 * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
106 	 * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
107 	 * ignore the waiter.
108 	 */
109 	old = atomic_read_acquire(&q->requeue_state);
110 	do {
111 		if (old == Q_REQUEUE_PI_IGNORE)
112 			return false;
113 
114 		/*
115 		 * futex_proxy_trylock_atomic() might have set it to
116 		 * IN_PROGRESS and a interleaved early wake to WAIT.
117 		 *
118 		 * It was considered to have an extra state for that
119 		 * trylock, but that would just add more conditionals
120 		 * all over the place for a dubious value.
121 		 */
122 		if (old != Q_REQUEUE_PI_NONE)
123 			break;
124 
125 		new = Q_REQUEUE_PI_IN_PROGRESS;
126 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
127 
128 	q->pi_state = pi_state;
129 	return true;
130 }
131 
132 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
133 {
134 	int old, new;
135 
136 	old = atomic_read_acquire(&q->requeue_state);
137 	do {
138 		if (old == Q_REQUEUE_PI_IGNORE)
139 			return;
140 
141 		if (locked >= 0) {
142 			/* Requeue succeeded. Set DONE or LOCKED */
143 			WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
144 				     old != Q_REQUEUE_PI_WAIT);
145 			new = Q_REQUEUE_PI_DONE + locked;
146 		} else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
147 			/* Deadlock, no early wakeup interleave */
148 			new = Q_REQUEUE_PI_NONE;
149 		} else {
150 			/* Deadlock, early wakeup interleave. */
151 			WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
152 			new = Q_REQUEUE_PI_IGNORE;
153 		}
154 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
155 
156 #ifdef CONFIG_PREEMPT_RT
157 	/* If the waiter interleaved with the requeue let it know */
158 	if (unlikely(old == Q_REQUEUE_PI_WAIT))
159 		rcuwait_wake_up(&q->requeue_wait);
160 #endif
161 }
162 
163 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
164 {
165 	int old, new;
166 
167 	old = atomic_read_acquire(&q->requeue_state);
168 	do {
169 		/* Is requeue done already? */
170 		if (old >= Q_REQUEUE_PI_DONE)
171 			return old;
172 
173 		/*
174 		 * If not done, then tell the requeue code to either ignore
175 		 * the waiter or to wake it up once the requeue is done.
176 		 */
177 		new = Q_REQUEUE_PI_WAIT;
178 		if (old == Q_REQUEUE_PI_NONE)
179 			new = Q_REQUEUE_PI_IGNORE;
180 	} while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
181 
182 	/* If the requeue was in progress, wait for it to complete */
183 	if (old == Q_REQUEUE_PI_IN_PROGRESS) {
184 #ifdef CONFIG_PREEMPT_RT
185 		rcuwait_wait_event(&q->requeue_wait,
186 				   atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
187 				   TASK_UNINTERRUPTIBLE);
188 #else
189 		(void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
190 #endif
191 	}
192 
193 	/*
194 	 * Requeue is now either prohibited or complete. Reread state
195 	 * because during the wait above it might have changed. Nothing
196 	 * will modify q->requeue_state after this point.
197 	 */
198 	return atomic_read(&q->requeue_state);
199 }
200 
201 /**
202  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
203  * @q:		the futex_q
204  * @key:	the key of the requeue target futex
205  * @hb:		the hash_bucket of the requeue target futex
206  *
207  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
208  * target futex if it is uncontended or via a lock steal.
209  *
210  * 1) Set @q::key to the requeue target futex key so the waiter can detect
211  *    the wakeup on the right futex.
212  *
213  * 2) Dequeue @q from the hash bucket.
214  *
215  * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
216  *    acquisition.
217  *
218  * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
219  *    the waiter has to fixup the pi state.
220  *
221  * 5) Complete the requeue state so the waiter can make progress. After
222  *    this point the waiter task can return from the syscall immediately in
223  *    case that the pi state does not have to be fixed up.
224  *
225  * 6) Wake the waiter task.
226  *
227  * Must be called with both q->lock_ptr and hb->lock held.
228  */
229 static inline
230 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
231 			   struct futex_hash_bucket *hb)
232 {
233 	q->key = *key;
234 
235 	__futex_unqueue(q);
236 
237 	WARN_ON(!q->rt_waiter);
238 	q->rt_waiter = NULL;
239 	/*
240 	 * Acquire a reference for the waiter to ensure valid
241 	 * futex_q::lock_ptr.
242 	 */
243 	futex_hash_get(hb);
244 	q->drop_hb_ref = true;
245 	q->lock_ptr = &hb->lock;
246 
247 	/* Signal locked state to the waiter */
248 	futex_requeue_pi_complete(q, 1);
249 	wake_up_state(q->task, TASK_NORMAL);
250 }
251 
252 /**
253  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
254  * @pifutex:		the user address of the to futex
255  * @hb1:		the from futex hash bucket, must be locked by the caller
256  * @hb2:		the to futex hash bucket, must be locked by the caller
257  * @key1:		the from futex key
258  * @key2:		the to futex key
259  * @ps:			address to store the pi_state pointer
260  * @exiting:		Pointer to store the task pointer of the owner task
261  *			which is in the middle of exiting
262  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
263  *
264  * Try and get the lock on behalf of the top waiter if we can do it atomically.
265  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
266  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
267  * hb1 and hb2 must be held by the caller.
268  *
269  * @exiting is only set when the return value is -EBUSY. If so, this holds
270  * a refcount on the exiting task on return and the caller needs to drop it
271  * after waiting for the exit to complete.
272  *
273  * Return:
274  *  -  0 - failed to acquire the lock atomically;
275  *  - >0 - acquired the lock, return value is vpid of the top_waiter
276  *  - <0 - error
277  */
278 static int
279 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
280 			   struct futex_hash_bucket *hb2, union futex_key *key1,
281 			   union futex_key *key2, struct futex_pi_state **ps,
282 			   struct task_struct **exiting, int set_waiters)
283 {
284 	struct futex_q *top_waiter;
285 	u32 curval;
286 	int ret;
287 
288 	if (futex_get_value_locked(&curval, pifutex))
289 		return -EFAULT;
290 
291 	if (unlikely(should_fail_futex(true)))
292 		return -EFAULT;
293 
294 	/*
295 	 * Find the top_waiter and determine if there are additional waiters.
296 	 * If the caller intends to requeue more than 1 waiter to pifutex,
297 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
298 	 * as we have means to handle the possible fault.  If not, don't set
299 	 * the bit unnecessarily as it will force the subsequent unlock to enter
300 	 * the kernel.
301 	 */
302 	top_waiter = futex_top_waiter(hb1, key1);
303 
304 	/* There are no waiters, nothing for us to do. */
305 	if (!top_waiter)
306 		return 0;
307 
308 	/*
309 	 * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
310 	 * and waiting on the 'waitqueue' futex which is always !PI.
311 	 */
312 	if (!top_waiter->rt_waiter || top_waiter->pi_state)
313 		return -EINVAL;
314 
315 	/* Ensure we requeue to the expected futex. */
316 	if (!futex_match(top_waiter->requeue_pi_key, key2))
317 		return -EINVAL;
318 
319 	/* Ensure that this does not race against an early wakeup */
320 	if (!futex_requeue_pi_prepare(top_waiter, NULL))
321 		return -EAGAIN;
322 
323 	/*
324 	 * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
325 	 * in the contended case or if @set_waiters is true.
326 	 *
327 	 * In the contended case PI state is attached to the lock owner. If
328 	 * the user space lock can be acquired then PI state is attached to
329 	 * the new owner (@top_waiter->task) when @set_waiters is true.
330 	 */
331 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
332 				   exiting, set_waiters);
333 	if (ret == 1) {
334 		/*
335 		 * Lock was acquired in user space and PI state was
336 		 * attached to @top_waiter->task. That means state is fully
337 		 * consistent and the waiter can return to user space
338 		 * immediately after the wakeup.
339 		 */
340 		requeue_pi_wake_futex(top_waiter, key2, hb2);
341 	} else if (ret < 0) {
342 		/* Rewind top_waiter::requeue_state */
343 		futex_requeue_pi_complete(top_waiter, ret);
344 	} else {
345 		/*
346 		 * futex_lock_pi_atomic() did not acquire the user space
347 		 * futex, but managed to establish the proxy lock and pi
348 		 * state. top_waiter::requeue_state cannot be fixed up here
349 		 * because the waiter is not enqueued on the rtmutex
350 		 * yet. This is handled at the callsite depending on the
351 		 * result of rt_mutex_start_proxy_lock() which is
352 		 * guaranteed to be reached with this function returning 0.
353 		 */
354 	}
355 	return ret;
356 }
357 
358 /**
359  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
360  * @uaddr1:	source futex user address
361  * @flags1:	futex flags (FLAGS_SHARED, etc.)
362  * @uaddr2:	target futex user address
363  * @flags2:	futex flags (FLAGS_SHARED, etc.)
364  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
365  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
366  * @cmpval:	@uaddr1 expected value (or %NULL)
367  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
368  *		pi futex (pi to pi requeue is not supported)
369  *
370  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
371  * uaddr2 atomically on behalf of the top waiter.
372  *
373  * Return:
374  *  - >=0 - on success, the number of tasks requeued or woken;
375  *  -  <0 - on error
376  */
377 int futex_requeue(u32 __user *uaddr1, unsigned int flags1,
378 		  u32 __user *uaddr2, unsigned int flags2,
379 		  int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi)
380 {
381 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
382 	int task_count = 0, ret;
383 	struct futex_pi_state *pi_state = NULL;
384 	struct futex_q *this, *next;
385 	DEFINE_WAKE_Q(wake_q);
386 
387 	if (nr_wake < 0 || nr_requeue < 0)
388 		return -EINVAL;
389 
390 	/*
391 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
392 	 * consequently the compiler knows requeue_pi is always false past
393 	 * this point which will optimize away all the conditional code
394 	 * further down.
395 	 */
396 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
397 		return -ENOSYS;
398 
399 	if (requeue_pi) {
400 		/*
401 		 * Requeue PI only works on two distinct uaddrs. This
402 		 * check is only valid for private futexes. See below.
403 		 */
404 		if (uaddr1 == uaddr2)
405 			return -EINVAL;
406 
407 		/*
408 		 * futex_requeue() allows the caller to define the number
409 		 * of waiters to wake up via the @nr_wake argument. With
410 		 * REQUEUE_PI, waking up more than one waiter is creating
411 		 * more problems than it solves. Waking up a waiter makes
412 		 * only sense if the PI futex @uaddr2 is uncontended as
413 		 * this allows the requeue code to acquire the futex
414 		 * @uaddr2 before waking the waiter. The waiter can then
415 		 * return to user space without further action. A secondary
416 		 * wakeup would just make the futex_wait_requeue_pi()
417 		 * handling more complex, because that code would have to
418 		 * look up pi_state and do more or less all the handling
419 		 * which the requeue code has to do for the to be requeued
420 		 * waiters. So restrict the number of waiters to wake to
421 		 * one, and only wake it up when the PI futex is
422 		 * uncontended. Otherwise requeue it and let the unlock of
423 		 * the PI futex handle the wakeup.
424 		 *
425 		 * All REQUEUE_PI users, e.g. pthread_cond_signal() and
426 		 * pthread_cond_broadcast() must use nr_wake=1.
427 		 */
428 		if (nr_wake != 1)
429 			return -EINVAL;
430 
431 		/*
432 		 * requeue_pi requires a pi_state, try to allocate it now
433 		 * without any locks in case it fails.
434 		 */
435 		if (refill_pi_state_cache())
436 			return -ENOMEM;
437 	}
438 
439 retry:
440 	ret = get_futex_key(uaddr1, flags1, &key1, FUTEX_READ);
441 	if (unlikely(ret != 0))
442 		return ret;
443 	ret = get_futex_key(uaddr2, flags2, &key2,
444 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
445 	if (unlikely(ret != 0))
446 		return ret;
447 
448 	/*
449 	 * The check above which compares uaddrs is not sufficient for
450 	 * shared futexes. We need to compare the keys:
451 	 */
452 	if (requeue_pi && futex_match(&key1, &key2))
453 		return -EINVAL;
454 
455 retry_private:
456 	if (1) {
457 		CLASS(hb, hb1)(&key1);
458 		CLASS(hb, hb2)(&key2);
459 
460 		futex_hb_waiters_inc(hb2);
461 		double_lock_hb(hb1, hb2);
462 
463 		if (likely(cmpval != NULL)) {
464 			u32 curval;
465 
466 			ret = futex_get_value_locked(&curval, uaddr1);
467 
468 			if (unlikely(ret)) {
469 				futex_hb_waiters_dec(hb2);
470 				double_unlock_hb(hb1, hb2);
471 
472 				ret = get_user(curval, uaddr1);
473 				if (ret)
474 					return ret;
475 
476 				if (!(flags1 & FLAGS_SHARED))
477 					goto retry_private;
478 
479 				goto retry;
480 			}
481 			if (curval != *cmpval) {
482 				ret = -EAGAIN;
483 				goto out_unlock;
484 			}
485 		}
486 
487 		if (requeue_pi) {
488 			struct task_struct *exiting = NULL;
489 
490 			/*
491 			 * Attempt to acquire uaddr2 and wake the top waiter. If we
492 			 * intend to requeue waiters, force setting the FUTEX_WAITERS
493 			 * bit.  We force this here where we are able to easily handle
494 			 * faults rather in the requeue loop below.
495 			 *
496 			 * Updates topwaiter::requeue_state if a top waiter exists.
497 			 */
498 			ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
499 							 &key2, &pi_state,
500 							 &exiting, nr_requeue);
501 
502 			/*
503 			 * At this point the top_waiter has either taken uaddr2 or
504 			 * is waiting on it. In both cases pi_state has been
505 			 * established and an initial refcount on it. In case of an
506 			 * error there's nothing.
507 			 *
508 			 * The top waiter's requeue_state is up to date:
509 			 *
510 			 *  - If the lock was acquired atomically (ret == 1), then
511 			 *    the state is Q_REQUEUE_PI_LOCKED.
512 			 *
513 			 *    The top waiter has been dequeued and woken up and can
514 			 *    return to user space immediately. The kernel/user
515 			 *    space state is consistent. In case that there must be
516 			 *    more waiters requeued the WAITERS bit in the user
517 			 *    space futex is set so the top waiter task has to go
518 			 *    into the syscall slowpath to unlock the futex. This
519 			 *    will block until this requeue operation has been
520 			 *    completed and the hash bucket locks have been
521 			 *    dropped.
522 			 *
523 			 *  - If the trylock failed with an error (ret < 0) then
524 			 *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
525 			 *    happened", or Q_REQUEUE_PI_IGNORE when there was an
526 			 *    interleaved early wakeup.
527 			 *
528 			 *  - If the trylock did not succeed (ret == 0) then the
529 			 *    state is either Q_REQUEUE_PI_IN_PROGRESS or
530 			 *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
531 			 *    This will be cleaned up in the loop below, which
532 			 *    cannot fail because futex_proxy_trylock_atomic() did
533 			 *    the same sanity checks for requeue_pi as the loop
534 			 *    below does.
535 			 */
536 			switch (ret) {
537 			case 0:
538 				/* We hold a reference on the pi state. */
539 				break;
540 
541 			case 1:
542 				/*
543 				 * futex_proxy_trylock_atomic() acquired the user space
544 				 * futex. Adjust task_count.
545 				 */
546 				task_count++;
547 				ret = 0;
548 				break;
549 
550 				/*
551 				 * If the above failed, then pi_state is NULL and
552 				 * waiter::requeue_state is correct.
553 				 */
554 			case -EFAULT:
555 				futex_hb_waiters_dec(hb2);
556 				double_unlock_hb(hb1, hb2);
557 				ret = fault_in_user_writeable(uaddr2);
558 				if (!ret)
559 					goto retry;
560 				return ret;
561 			case -EBUSY:
562 			case -EAGAIN:
563 				/*
564 				 * Two reasons for this:
565 				 * - EBUSY: Owner is exiting and we just wait for the
566 				 *   exit to complete.
567 				 * - EAGAIN: The user space value changed.
568 				 */
569 				futex_hb_waiters_dec(hb2);
570 				double_unlock_hb(hb1, hb2);
571 				/*
572 				 * Handle the case where the owner is in the middle of
573 				 * exiting. Wait for the exit to complete otherwise
574 				 * this task might loop forever, aka. live lock.
575 				 */
576 				wait_for_owner_exiting(ret, exiting);
577 				cond_resched();
578 				goto retry;
579 			default:
580 				goto out_unlock;
581 			}
582 		}
583 
584 		plist_for_each_entry_safe(this, next, &hb1->chain, list) {
585 			if (task_count - nr_wake >= nr_requeue)
586 				break;
587 
588 			if (!futex_match(&this->key, &key1))
589 				continue;
590 
591 			/*
592 			 * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
593 			 * be paired with each other and no other futex ops.
594 			 *
595 			 * We should never be requeueing a futex_q with a pi_state,
596 			 * which is awaiting a futex_unlock_pi().
597 			 */
598 			if ((requeue_pi && !this->rt_waiter) ||
599 			    (!requeue_pi && this->rt_waiter) ||
600 			    this->pi_state) {
601 				ret = -EINVAL;
602 				break;
603 			}
604 
605 			/* Plain futexes just wake or requeue and are done */
606 			if (!requeue_pi) {
607 				if (++task_count <= nr_wake)
608 					this->wake(&wake_q, this);
609 				else
610 					requeue_futex(this, hb1, hb2, &key2);
611 				continue;
612 			}
613 
614 			/* Ensure we requeue to the expected futex for requeue_pi. */
615 			if (!futex_match(this->requeue_pi_key, &key2)) {
616 				ret = -EINVAL;
617 				break;
618 			}
619 
620 			/*
621 			 * Requeue nr_requeue waiters and possibly one more in the case
622 			 * of requeue_pi if we couldn't acquire the lock atomically.
623 			 *
624 			 * Prepare the waiter to take the rt_mutex. Take a refcount
625 			 * on the pi_state and store the pointer in the futex_q
626 			 * object of the waiter.
627 			 */
628 			get_pi_state(pi_state);
629 
630 			/* Don't requeue when the waiter is already on the way out. */
631 			if (!futex_requeue_pi_prepare(this, pi_state)) {
632 				/*
633 				 * Early woken waiter signaled that it is on the
634 				 * way out. Drop the pi_state reference and try the
635 				 * next waiter. @this->pi_state is still NULL.
636 				 */
637 				put_pi_state(pi_state);
638 				continue;
639 			}
640 
641 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
642 							this->rt_waiter,
643 							this->task);
644 
645 			if (ret == 1) {
646 				/*
647 				 * We got the lock. We do neither drop the refcount
648 				 * on pi_state nor clear this->pi_state because the
649 				 * waiter needs the pi_state for cleaning up the
650 				 * user space value. It will drop the refcount
651 				 * after doing so. this::requeue_state is updated
652 				 * in the wakeup as well.
653 				 */
654 				requeue_pi_wake_futex(this, &key2, hb2);
655 				task_count++;
656 			} else if (!ret) {
657 				/* Waiter is queued, move it to hb2 */
658 				requeue_futex(this, hb1, hb2, &key2);
659 				futex_requeue_pi_complete(this, 0);
660 				task_count++;
661 			} else {
662 				/*
663 				 * rt_mutex_start_proxy_lock() detected a potential
664 				 * deadlock when we tried to queue that waiter.
665 				 * Drop the pi_state reference which we took above
666 				 * and remove the pointer to the state from the
667 				 * waiters futex_q object.
668 				 */
669 				this->pi_state = NULL;
670 				put_pi_state(pi_state);
671 				futex_requeue_pi_complete(this, ret);
672 				/*
673 				 * We stop queueing more waiters and let user space
674 				 * deal with the mess.
675 				 */
676 				break;
677 			}
678 		}
679 
680 		/*
681 		 * We took an extra initial reference to the pi_state in
682 		 * futex_proxy_trylock_atomic(). We need to drop it here again.
683 		 */
684 		put_pi_state(pi_state);
685 
686 out_unlock:
687 		futex_hb_waiters_dec(hb2);
688 		double_unlock_hb(hb1, hb2);
689 	}
690 	wake_up_q(&wake_q);
691 	return ret ? ret : task_count;
692 }
693 
694 /**
695  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
696  * @hb:		the hash_bucket futex_q was original enqueued on
697  * @q:		the futex_q woken while waiting to be requeued
698  * @timeout:	the timeout associated with the wait (NULL if none)
699  *
700  * Determine the cause for the early wakeup.
701  *
702  * Return:
703  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
704  */
705 static inline
706 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
707 				   struct futex_q *q,
708 				   struct hrtimer_sleeper *timeout)
709 {
710 	int ret;
711 
712 	/*
713 	 * With the hb lock held, we avoid races while we process the wakeup.
714 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
715 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
716 	 * It can't be requeued from uaddr2 to something else since we don't
717 	 * support a PI aware source futex for requeue.
718 	 */
719 	WARN_ON_ONCE(&hb->lock != q->lock_ptr);
720 
721 	/*
722 	 * We were woken prior to requeue by a timeout or a signal.
723 	 * Unqueue the futex_q and determine which it was.
724 	 */
725 	plist_del(&q->list, &hb->chain);
726 	futex_hb_waiters_dec(hb);
727 
728 	/* Handle spurious wakeups gracefully */
729 	ret = -EWOULDBLOCK;
730 	if (timeout && !timeout->task)
731 		ret = -ETIMEDOUT;
732 	else if (signal_pending(current))
733 		ret = -ERESTARTNOINTR;
734 	return ret;
735 }
736 
737 /**
738  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
739  * @uaddr:	the futex we initially wait on (non-pi)
740  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
741  *		the same type, no requeueing from private to shared, etc.
742  * @val:	the expected value of uaddr
743  * @abs_time:	absolute timeout
744  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
745  * @uaddr2:	the pi futex we will take prior to returning to user-space
746  *
747  * The caller will wait on uaddr and will be requeued by futex_requeue() to
748  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
749  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
750  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
751  * without one, the pi logic would not know which task to boost/deboost, if
752  * there was a need to.
753  *
754  * We call schedule in futex_wait_queue() when we enqueue and return there
755  * via the following--
756  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
757  * 2) wakeup on uaddr2 after a requeue
758  * 3) signal
759  * 4) timeout
760  *
761  * If 3, cleanup and return -ERESTARTNOINTR.
762  *
763  * If 2, we may then block on trying to take the rt_mutex and return via:
764  * 5) successful lock
765  * 6) signal
766  * 7) timeout
767  * 8) other lock acquisition failure
768  *
769  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
770  *
771  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
772  *
773  * Return:
774  *  -  0 - On success;
775  *  - <0 - On error
776  */
777 int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
778 			  u32 val, ktime_t *abs_time, u32 bitset,
779 			  u32 __user *uaddr2)
780 {
781 	struct hrtimer_sleeper timeout, *to;
782 	struct rt_mutex_waiter rt_waiter;
783 	union futex_key key2 = FUTEX_KEY_INIT;
784 	struct futex_q q = futex_q_init;
785 	struct rt_mutex_base *pi_mutex;
786 	int res, ret;
787 
788 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
789 		return -ENOSYS;
790 
791 	if (uaddr == uaddr2)
792 		return -EINVAL;
793 
794 	if (!bitset)
795 		return -EINVAL;
796 
797 	to = futex_setup_timer(abs_time, &timeout, flags,
798 			       current->timer_slack_ns);
799 
800 	/*
801 	 * The waiter is allocated on our stack, manipulated by the requeue
802 	 * code while we sleep on uaddr.
803 	 */
804 	rt_mutex_init_waiter(&rt_waiter);
805 
806 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
807 	if (unlikely(ret != 0))
808 		goto out;
809 
810 	q.bitset = bitset;
811 	q.rt_waiter = &rt_waiter;
812 	q.requeue_pi_key = &key2;
813 
814 	/*
815 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
816 	 * is initialized.
817 	 */
818 	ret = futex_wait_setup(uaddr, val, flags, &q, &key2, current);
819 	if (ret)
820 		goto out;
821 
822 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
823 	futex_do_wait(&q, to);
824 
825 	switch (futex_requeue_pi_wakeup_sync(&q)) {
826 	case Q_REQUEUE_PI_IGNORE:
827 		{
828 			CLASS(hb, hb)(&q.key);
829 			/* The waiter is still on uaddr1 */
830 			spin_lock(&hb->lock);
831 			ret = handle_early_requeue_pi_wakeup(hb, &q, to);
832 			spin_unlock(&hb->lock);
833 		}
834 		break;
835 
836 	case Q_REQUEUE_PI_LOCKED:
837 		/* The requeue acquired the lock */
838 		if (q.pi_state && (q.pi_state->owner != current)) {
839 			futex_q_lockptr_lock(&q);
840 			ret = fixup_pi_owner(uaddr2, &q, true);
841 			/*
842 			 * Drop the reference to the pi state which the
843 			 * requeue_pi() code acquired for us.
844 			 */
845 			put_pi_state(q.pi_state);
846 			spin_unlock(q.lock_ptr);
847 			/*
848 			 * Adjust the return value. It's either -EFAULT or
849 			 * success (1) but the caller expects 0 for success.
850 			 */
851 			ret = ret < 0 ? ret : 0;
852 		}
853 		break;
854 
855 	case Q_REQUEUE_PI_DONE:
856 		/* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
857 		pi_mutex = &q.pi_state->pi_mutex;
858 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
859 
860 		/*
861 		 * See futex_unlock_pi()'s cleanup: comment.
862 		 */
863 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
864 			ret = 0;
865 
866 		futex_q_lockptr_lock(&q);
867 		debug_rt_mutex_free_waiter(&rt_waiter);
868 		/*
869 		 * Fixup the pi_state owner and possibly acquire the lock if we
870 		 * haven't already.
871 		 */
872 		res = fixup_pi_owner(uaddr2, &q, !ret);
873 		/*
874 		 * If fixup_pi_owner() returned an error, propagate that.  If it
875 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
876 		 */
877 		if (res)
878 			ret = (res < 0) ? res : 0;
879 
880 		futex_unqueue_pi(&q);
881 		spin_unlock(q.lock_ptr);
882 
883 		if (ret == -EINTR) {
884 			/*
885 			 * We've already been requeued, but cannot restart
886 			 * by calling futex_lock_pi() directly. We could
887 			 * restart this syscall, but it would detect that
888 			 * the user space "val" changed and return
889 			 * -EWOULDBLOCK.  Save the overhead of the restart
890 			 * and return -EWOULDBLOCK directly.
891 			 */
892 			ret = -EWOULDBLOCK;
893 		}
894 		break;
895 	default:
896 		BUG();
897 	}
898 	if (q.drop_hb_ref) {
899 		CLASS(hb, hb)(&q.key);
900 		/* Additional reference from requeue_pi_wake_futex() */
901 		futex_hash_put(hb);
902 	}
903 
904 out:
905 	if (to) {
906 		hrtimer_cancel(&to->timer);
907 		destroy_hrtimer_on_stack(&to->timer);
908 	}
909 	return ret;
910 }
911 
912