1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/iommu-dma.h> 14 #include <linux/kmsan.h> 15 #include <linux/of_device.h> 16 #include <linux/slab.h> 17 #include <linux/vmalloc.h> 18 #include "debug.h" 19 #include "direct.h" 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/dma.h> 23 24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT); 28 #endif 29 30 /* 31 * Managed DMA API 32 */ 33 struct dma_devres { 34 size_t size; 35 void *vaddr; 36 dma_addr_t dma_handle; 37 unsigned long attrs; 38 }; 39 40 static void dmam_release(struct device *dev, void *res) 41 { 42 struct dma_devres *this = res; 43 44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 45 this->attrs); 46 } 47 48 static int dmam_match(struct device *dev, void *res, void *match_data) 49 { 50 struct dma_devres *this = res, *match = match_data; 51 52 if (this->vaddr == match->vaddr) { 53 WARN_ON(this->size != match->size || 54 this->dma_handle != match->dma_handle); 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * dmam_free_coherent - Managed dma_free_coherent() 62 * @dev: Device to free coherent memory for 63 * @size: Size of allocation 64 * @vaddr: Virtual address of the memory to free 65 * @dma_handle: DMA handle of the memory to free 66 * 67 * Managed dma_free_coherent(). 68 */ 69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 70 dma_addr_t dma_handle) 71 { 72 struct dma_devres match_data = { size, vaddr, dma_handle }; 73 74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 75 dma_free_coherent(dev, size, vaddr, dma_handle); 76 } 77 EXPORT_SYMBOL(dmam_free_coherent); 78 79 /** 80 * dmam_alloc_attrs - Managed dma_alloc_attrs() 81 * @dev: Device to allocate non_coherent memory for 82 * @size: Size of allocation 83 * @dma_handle: Out argument for allocated DMA handle 84 * @gfp: Allocation flags 85 * @attrs: Flags in the DMA_ATTR_* namespace. 86 * 87 * Managed dma_alloc_attrs(). Memory allocated using this function will be 88 * automatically released on driver detach. 89 * 90 * RETURNS: 91 * Pointer to allocated memory on success, NULL on failure. 92 */ 93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 94 gfp_t gfp, unsigned long attrs) 95 { 96 struct dma_devres *dr; 97 void *vaddr; 98 99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 100 if (!dr) 101 return NULL; 102 103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 104 if (!vaddr) { 105 devres_free(dr); 106 return NULL; 107 } 108 109 dr->vaddr = vaddr; 110 dr->dma_handle = *dma_handle; 111 dr->size = size; 112 dr->attrs = attrs; 113 114 devres_add(dev, dr); 115 116 return vaddr; 117 } 118 EXPORT_SYMBOL(dmam_alloc_attrs); 119 120 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 121 const struct dma_map_ops *ops) 122 { 123 if (use_dma_iommu(dev)) 124 return false; 125 126 if (likely(!ops)) 127 return true; 128 129 #ifdef CONFIG_DMA_OPS_BYPASS 130 if (dev->dma_ops_bypass) 131 return min_not_zero(mask, dev->bus_dma_limit) >= 132 dma_direct_get_required_mask(dev); 133 #endif 134 return false; 135 } 136 137 138 /* 139 * Check if the devices uses a direct mapping for streaming DMA operations. 140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 141 * enough. 142 */ 143 static inline bool dma_alloc_direct(struct device *dev, 144 const struct dma_map_ops *ops) 145 { 146 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 147 } 148 149 static inline bool dma_map_direct(struct device *dev, 150 const struct dma_map_ops *ops) 151 { 152 return dma_go_direct(dev, *dev->dma_mask, ops); 153 } 154 155 dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size, 156 enum dma_data_direction dir, unsigned long attrs) 157 { 158 const struct dma_map_ops *ops = get_dma_ops(dev); 159 bool is_mmio = attrs & DMA_ATTR_MMIO; 160 dma_addr_t addr; 161 162 BUG_ON(!valid_dma_direction(dir)); 163 164 if (WARN_ON_ONCE(!dev->dma_mask)) 165 return DMA_MAPPING_ERROR; 166 167 if (dma_map_direct(dev, ops) || 168 (!is_mmio && arch_dma_map_phys_direct(dev, phys + size))) 169 addr = dma_direct_map_phys(dev, phys, size, dir, attrs); 170 else if (use_dma_iommu(dev)) 171 addr = iommu_dma_map_phys(dev, phys, size, dir, attrs); 172 else if (is_mmio) { 173 if (!ops->map_resource) 174 return DMA_MAPPING_ERROR; 175 176 addr = ops->map_resource(dev, phys, size, dir, attrs); 177 } else { 178 struct page *page = phys_to_page(phys); 179 size_t offset = offset_in_page(phys); 180 181 /* 182 * The dma_ops API contract for ops->map_page() requires 183 * kmappable memory, while ops->map_resource() does not. 184 */ 185 addr = ops->map_page(dev, page, offset, size, dir, attrs); 186 } 187 188 if (!is_mmio) 189 kmsan_handle_dma(phys, size, dir); 190 trace_dma_map_phys(dev, phys, addr, size, dir, attrs); 191 debug_dma_map_phys(dev, phys, size, dir, addr, attrs); 192 193 return addr; 194 } 195 EXPORT_SYMBOL_GPL(dma_map_phys); 196 197 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 198 size_t offset, size_t size, enum dma_data_direction dir, 199 unsigned long attrs) 200 { 201 phys_addr_t phys = page_to_phys(page) + offset; 202 203 if (unlikely(attrs & DMA_ATTR_MMIO)) 204 return DMA_MAPPING_ERROR; 205 206 if (IS_ENABLED(CONFIG_DMA_API_DEBUG) && 207 WARN_ON_ONCE(is_zone_device_page(page))) 208 return DMA_MAPPING_ERROR; 209 210 return dma_map_phys(dev, phys, size, dir, attrs); 211 } 212 EXPORT_SYMBOL(dma_map_page_attrs); 213 214 void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size, 215 enum dma_data_direction dir, unsigned long attrs) 216 { 217 const struct dma_map_ops *ops = get_dma_ops(dev); 218 bool is_mmio = attrs & DMA_ATTR_MMIO; 219 220 BUG_ON(!valid_dma_direction(dir)); 221 if (dma_map_direct(dev, ops) || 222 (!is_mmio && arch_dma_unmap_phys_direct(dev, addr + size))) 223 dma_direct_unmap_phys(dev, addr, size, dir, attrs); 224 else if (use_dma_iommu(dev)) 225 iommu_dma_unmap_phys(dev, addr, size, dir, attrs); 226 else if (is_mmio) { 227 if (ops->unmap_resource) 228 ops->unmap_resource(dev, addr, size, dir, attrs); 229 } else 230 ops->unmap_page(dev, addr, size, dir, attrs); 231 trace_dma_unmap_phys(dev, addr, size, dir, attrs); 232 debug_dma_unmap_phys(dev, addr, size, dir); 233 } 234 EXPORT_SYMBOL_GPL(dma_unmap_phys); 235 236 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 237 enum dma_data_direction dir, unsigned long attrs) 238 { 239 if (unlikely(attrs & DMA_ATTR_MMIO)) 240 return; 241 242 dma_unmap_phys(dev, addr, size, dir, attrs); 243 } 244 EXPORT_SYMBOL(dma_unmap_page_attrs); 245 246 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 247 int nents, enum dma_data_direction dir, unsigned long attrs) 248 { 249 const struct dma_map_ops *ops = get_dma_ops(dev); 250 int ents; 251 252 BUG_ON(!valid_dma_direction(dir)); 253 254 if (WARN_ON_ONCE(!dev->dma_mask)) 255 return 0; 256 257 if (dma_map_direct(dev, ops) || 258 arch_dma_map_sg_direct(dev, sg, nents)) 259 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 260 else if (use_dma_iommu(dev)) 261 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs); 262 else 263 ents = ops->map_sg(dev, sg, nents, dir, attrs); 264 265 if (ents > 0) { 266 kmsan_handle_dma_sg(sg, nents, dir); 267 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs); 268 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); 269 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 270 ents != -EIO && ents != -EREMOTEIO)) { 271 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs); 272 return -EIO; 273 } 274 275 return ents; 276 } 277 278 /** 279 * dma_map_sg_attrs - Map the given buffer for DMA 280 * @dev: The device for which to perform the DMA operation 281 * @sg: The sg_table object describing the buffer 282 * @nents: Number of entries to map 283 * @dir: DMA direction 284 * @attrs: Optional DMA attributes for the map operation 285 * 286 * Maps a buffer described by a scatterlist passed in the sg argument with 287 * nents segments for the @dir DMA operation by the @dev device. 288 * 289 * Returns the number of mapped entries (which can be less than nents) 290 * on success. Zero is returned for any error. 291 * 292 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 293 * original sg and original nents (not the value returned by this funciton). 294 */ 295 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 296 int nents, enum dma_data_direction dir, unsigned long attrs) 297 { 298 int ret; 299 300 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 301 if (ret < 0) 302 return 0; 303 return ret; 304 } 305 EXPORT_SYMBOL(dma_map_sg_attrs); 306 307 /** 308 * dma_map_sgtable - Map the given buffer for DMA 309 * @dev: The device for which to perform the DMA operation 310 * @sgt: The sg_table object describing the buffer 311 * @dir: DMA direction 312 * @attrs: Optional DMA attributes for the map operation 313 * 314 * Maps a buffer described by a scatterlist stored in the given sg_table 315 * object for the @dir DMA operation by the @dev device. After success, the 316 * ownership for the buffer is transferred to the DMA domain. One has to 317 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 318 * ownership of the buffer back to the CPU domain before touching the 319 * buffer by the CPU. 320 * 321 * Returns 0 on success or a negative error code on error. The following 322 * error codes are supported with the given meaning: 323 * 324 * -EINVAL An invalid argument, unaligned access or other error 325 * in usage. Will not succeed if retried. 326 * -ENOMEM Insufficient resources (like memory or IOVA space) to 327 * complete the mapping. Should succeed if retried later. 328 * -EIO Legacy error code with an unknown meaning. eg. this is 329 * returned if a lower level call returned 330 * DMA_MAPPING_ERROR. 331 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified 332 * in the sg_table. This will not succeed if retried. 333 */ 334 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 335 enum dma_data_direction dir, unsigned long attrs) 336 { 337 int nents; 338 339 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 340 if (nents < 0) 341 return nents; 342 sgt->nents = nents; 343 return 0; 344 } 345 EXPORT_SYMBOL_GPL(dma_map_sgtable); 346 347 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 348 int nents, enum dma_data_direction dir, 349 unsigned long attrs) 350 { 351 const struct dma_map_ops *ops = get_dma_ops(dev); 352 353 BUG_ON(!valid_dma_direction(dir)); 354 trace_dma_unmap_sg(dev, sg, nents, dir, attrs); 355 debug_dma_unmap_sg(dev, sg, nents, dir); 356 if (dma_map_direct(dev, ops) || 357 arch_dma_unmap_sg_direct(dev, sg, nents)) 358 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 359 else if (use_dma_iommu(dev)) 360 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs); 361 else if (ops->unmap_sg) 362 ops->unmap_sg(dev, sg, nents, dir, attrs); 363 } 364 EXPORT_SYMBOL(dma_unmap_sg_attrs); 365 366 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 367 size_t size, enum dma_data_direction dir, unsigned long attrs) 368 { 369 if (IS_ENABLED(CONFIG_DMA_API_DEBUG) && 370 WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) 371 return DMA_MAPPING_ERROR; 372 373 return dma_map_phys(dev, phys_addr, size, dir, attrs | DMA_ATTR_MMIO); 374 } 375 EXPORT_SYMBOL(dma_map_resource); 376 377 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 378 enum dma_data_direction dir, unsigned long attrs) 379 { 380 dma_unmap_phys(dev, addr, size, dir, attrs | DMA_ATTR_MMIO); 381 } 382 EXPORT_SYMBOL(dma_unmap_resource); 383 384 #ifdef CONFIG_DMA_NEED_SYNC 385 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 386 enum dma_data_direction dir) 387 { 388 const struct dma_map_ops *ops = get_dma_ops(dev); 389 390 BUG_ON(!valid_dma_direction(dir)); 391 if (dma_map_direct(dev, ops)) 392 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 393 else if (use_dma_iommu(dev)) 394 iommu_dma_sync_single_for_cpu(dev, addr, size, dir); 395 else if (ops->sync_single_for_cpu) 396 ops->sync_single_for_cpu(dev, addr, size, dir); 397 trace_dma_sync_single_for_cpu(dev, addr, size, dir); 398 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 399 } 400 EXPORT_SYMBOL(__dma_sync_single_for_cpu); 401 402 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 403 size_t size, enum dma_data_direction dir) 404 { 405 const struct dma_map_ops *ops = get_dma_ops(dev); 406 407 BUG_ON(!valid_dma_direction(dir)); 408 if (dma_map_direct(dev, ops)) 409 dma_direct_sync_single_for_device(dev, addr, size, dir); 410 else if (use_dma_iommu(dev)) 411 iommu_dma_sync_single_for_device(dev, addr, size, dir); 412 else if (ops->sync_single_for_device) 413 ops->sync_single_for_device(dev, addr, size, dir); 414 trace_dma_sync_single_for_device(dev, addr, size, dir); 415 debug_dma_sync_single_for_device(dev, addr, size, dir); 416 } 417 EXPORT_SYMBOL(__dma_sync_single_for_device); 418 419 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 420 int nelems, enum dma_data_direction dir) 421 { 422 const struct dma_map_ops *ops = get_dma_ops(dev); 423 424 BUG_ON(!valid_dma_direction(dir)); 425 if (dma_map_direct(dev, ops)) 426 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 427 else if (use_dma_iommu(dev)) 428 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 429 else if (ops->sync_sg_for_cpu) 430 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 431 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 432 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 433 } 434 EXPORT_SYMBOL(__dma_sync_sg_for_cpu); 435 436 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 437 int nelems, enum dma_data_direction dir) 438 { 439 const struct dma_map_ops *ops = get_dma_ops(dev); 440 441 BUG_ON(!valid_dma_direction(dir)); 442 if (dma_map_direct(dev, ops)) 443 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 444 else if (use_dma_iommu(dev)) 445 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir); 446 else if (ops->sync_sg_for_device) 447 ops->sync_sg_for_device(dev, sg, nelems, dir); 448 trace_dma_sync_sg_for_device(dev, sg, nelems, dir); 449 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 450 } 451 EXPORT_SYMBOL(__dma_sync_sg_for_device); 452 453 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr) 454 { 455 const struct dma_map_ops *ops = get_dma_ops(dev); 456 457 if (dma_map_direct(dev, ops)) 458 /* 459 * dma_skip_sync could've been reset on first SWIOTLB buffer 460 * mapping, but @dma_addr is not necessary an SWIOTLB buffer. 461 * In this case, fall back to more granular check. 462 */ 463 return dma_direct_need_sync(dev, dma_addr); 464 return true; 465 } 466 EXPORT_SYMBOL_GPL(__dma_need_sync); 467 468 /** 469 * dma_need_unmap - does this device need dma_unmap_* operations 470 * @dev: device to check 471 * 472 * If this function returns %false, drivers can skip calling dma_unmap_* after 473 * finishing an I/O. This function must be called after all mappings that might 474 * need to be unmapped have been performed. 475 */ 476 bool dma_need_unmap(struct device *dev) 477 { 478 if (!dma_map_direct(dev, get_dma_ops(dev))) 479 return true; 480 if (!dev->dma_skip_sync) 481 return true; 482 return IS_ENABLED(CONFIG_DMA_API_DEBUG); 483 } 484 EXPORT_SYMBOL_GPL(dma_need_unmap); 485 486 static void dma_setup_need_sync(struct device *dev) 487 { 488 const struct dma_map_ops *ops = get_dma_ops(dev); 489 490 if (dma_map_direct(dev, ops) || use_dma_iommu(dev)) 491 /* 492 * dma_skip_sync will be reset to %false on first SWIOTLB buffer 493 * mapping, if any. During the device initialization, it's 494 * enough to check only for the DMA coherence. 495 */ 496 dev->dma_skip_sync = dev_is_dma_coherent(dev); 497 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu && 498 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu) 499 /* 500 * Synchronization is not possible when none of DMA sync ops 501 * is set. 502 */ 503 dev->dma_skip_sync = true; 504 else 505 dev->dma_skip_sync = false; 506 } 507 #else /* !CONFIG_DMA_NEED_SYNC */ 508 static inline void dma_setup_need_sync(struct device *dev) { } 509 #endif /* !CONFIG_DMA_NEED_SYNC */ 510 511 /* 512 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 513 * that the intention is to allow exporting memory allocated via the 514 * coherent DMA APIs through the dma_buf API, which only accepts a 515 * scattertable. This presents a couple of problems: 516 * 1. Not all memory allocated via the coherent DMA APIs is backed by 517 * a struct page 518 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 519 * as we will try to flush the memory through a different alias to that 520 * actually being used (and the flushes are redundant.) 521 */ 522 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 523 void *cpu_addr, dma_addr_t dma_addr, size_t size, 524 unsigned long attrs) 525 { 526 const struct dma_map_ops *ops = get_dma_ops(dev); 527 528 if (dma_alloc_direct(dev, ops)) 529 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 530 size, attrs); 531 if (use_dma_iommu(dev)) 532 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr, 533 size, attrs); 534 if (!ops->get_sgtable) 535 return -ENXIO; 536 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 537 } 538 EXPORT_SYMBOL(dma_get_sgtable_attrs); 539 540 #ifdef CONFIG_MMU 541 /* 542 * Return the page attributes used for mapping dma_alloc_* memory, either in 543 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 544 */ 545 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 546 { 547 if (dev_is_dma_coherent(dev)) 548 return prot; 549 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 550 if (attrs & DMA_ATTR_WRITE_COMBINE) 551 return pgprot_writecombine(prot); 552 #endif 553 return pgprot_dmacoherent(prot); 554 } 555 #endif /* CONFIG_MMU */ 556 557 /** 558 * dma_can_mmap - check if a given device supports dma_mmap_* 559 * @dev: device to check 560 * 561 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 562 * map DMA allocations to userspace. 563 */ 564 bool dma_can_mmap(struct device *dev) 565 { 566 const struct dma_map_ops *ops = get_dma_ops(dev); 567 568 if (dma_alloc_direct(dev, ops)) 569 return dma_direct_can_mmap(dev); 570 if (use_dma_iommu(dev)) 571 return true; 572 return ops->mmap != NULL; 573 } 574 EXPORT_SYMBOL_GPL(dma_can_mmap); 575 576 /** 577 * dma_mmap_attrs - map a coherent DMA allocation into user space 578 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 579 * @vma: vm_area_struct describing requested user mapping 580 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 581 * @dma_addr: device-view address returned from dma_alloc_attrs 582 * @size: size of memory originally requested in dma_alloc_attrs 583 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 584 * 585 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 586 * space. The coherent DMA buffer must not be freed by the driver until the 587 * user space mapping has been released. 588 */ 589 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 590 void *cpu_addr, dma_addr_t dma_addr, size_t size, 591 unsigned long attrs) 592 { 593 const struct dma_map_ops *ops = get_dma_ops(dev); 594 595 if (dma_alloc_direct(dev, ops)) 596 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 597 attrs); 598 if (use_dma_iommu(dev)) 599 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size, 600 attrs); 601 if (!ops->mmap) 602 return -ENXIO; 603 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 604 } 605 EXPORT_SYMBOL(dma_mmap_attrs); 606 607 u64 dma_get_required_mask(struct device *dev) 608 { 609 const struct dma_map_ops *ops = get_dma_ops(dev); 610 611 if (dma_alloc_direct(dev, ops)) 612 return dma_direct_get_required_mask(dev); 613 614 if (use_dma_iommu(dev)) 615 return DMA_BIT_MASK(32); 616 617 if (ops->get_required_mask) 618 return ops->get_required_mask(dev); 619 620 /* 621 * We require every DMA ops implementation to at least support a 32-bit 622 * DMA mask (and use bounce buffering if that isn't supported in 623 * hardware). As the direct mapping code has its own routine to 624 * actually report an optimal mask we default to 32-bit here as that 625 * is the right thing for most IOMMUs, and at least not actively 626 * harmful in general. 627 */ 628 return DMA_BIT_MASK(32); 629 } 630 EXPORT_SYMBOL_GPL(dma_get_required_mask); 631 632 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 633 gfp_t flag, unsigned long attrs) 634 { 635 const struct dma_map_ops *ops = get_dma_ops(dev); 636 void *cpu_addr; 637 638 WARN_ON_ONCE(!dev->coherent_dma_mask); 639 640 /* 641 * DMA allocations can never be turned back into a page pointer, so 642 * requesting compound pages doesn't make sense (and can't even be 643 * supported at all by various backends). 644 */ 645 if (WARN_ON_ONCE(flag & __GFP_COMP)) 646 return NULL; 647 648 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) { 649 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, 650 DMA_BIDIRECTIONAL, flag, attrs); 651 return cpu_addr; 652 } 653 654 /* let the implementation decide on the zone to allocate from: */ 655 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 656 657 if (dma_alloc_direct(dev, ops)) { 658 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 659 } else if (use_dma_iommu(dev)) { 660 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs); 661 } else if (ops->alloc) { 662 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 663 } else { 664 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag, 665 attrs); 666 return NULL; 667 } 668 669 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL, 670 flag, attrs); 671 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); 672 return cpu_addr; 673 } 674 EXPORT_SYMBOL(dma_alloc_attrs); 675 676 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 677 dma_addr_t dma_handle, unsigned long attrs) 678 { 679 const struct dma_map_ops *ops = get_dma_ops(dev); 680 681 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 682 return; 683 /* 684 * On non-coherent platforms which implement DMA-coherent buffers via 685 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 686 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 687 * sleep on some machines, and b) an indication that the driver is 688 * probably misusing the coherent API anyway. 689 */ 690 WARN_ON(irqs_disabled()); 691 692 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL, 693 attrs); 694 if (!cpu_addr) 695 return; 696 697 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 698 if (dma_alloc_direct(dev, ops)) 699 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 700 else if (use_dma_iommu(dev)) 701 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs); 702 else if (ops->free) 703 ops->free(dev, size, cpu_addr, dma_handle, attrs); 704 } 705 EXPORT_SYMBOL(dma_free_attrs); 706 707 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 708 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 709 { 710 const struct dma_map_ops *ops = get_dma_ops(dev); 711 712 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 713 return NULL; 714 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 715 return NULL; 716 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 717 return NULL; 718 719 size = PAGE_ALIGN(size); 720 if (dma_alloc_direct(dev, ops)) 721 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 722 if (use_dma_iommu(dev)) 723 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp); 724 if (!ops->alloc_pages_op) 725 return NULL; 726 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp); 727 } 728 729 struct page *dma_alloc_pages(struct device *dev, size_t size, 730 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 731 { 732 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 733 734 if (page) { 735 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle, 736 size, dir, gfp, 0); 737 debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0); 738 } else { 739 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0); 740 } 741 return page; 742 } 743 EXPORT_SYMBOL_GPL(dma_alloc_pages); 744 745 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 746 dma_addr_t dma_handle, enum dma_data_direction dir) 747 { 748 const struct dma_map_ops *ops = get_dma_ops(dev); 749 750 size = PAGE_ALIGN(size); 751 if (dma_alloc_direct(dev, ops)) 752 dma_direct_free_pages(dev, size, page, dma_handle, dir); 753 else if (use_dma_iommu(dev)) 754 dma_common_free_pages(dev, size, page, dma_handle, dir); 755 else if (ops->free_pages) 756 ops->free_pages(dev, size, page, dma_handle, dir); 757 } 758 759 void dma_free_pages(struct device *dev, size_t size, struct page *page, 760 dma_addr_t dma_handle, enum dma_data_direction dir) 761 { 762 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0); 763 debug_dma_free_pages(dev, page, size, dir, dma_handle); 764 __dma_free_pages(dev, size, page, dma_handle, dir); 765 } 766 EXPORT_SYMBOL_GPL(dma_free_pages); 767 768 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 769 size_t size, struct page *page) 770 { 771 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 772 773 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 774 return -ENXIO; 775 return remap_pfn_range(vma, vma->vm_start, 776 page_to_pfn(page) + vma->vm_pgoff, 777 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 778 } 779 EXPORT_SYMBOL_GPL(dma_mmap_pages); 780 781 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 782 enum dma_data_direction dir, gfp_t gfp) 783 { 784 struct sg_table *sgt; 785 struct page *page; 786 787 sgt = kmalloc(sizeof(*sgt), gfp); 788 if (!sgt) 789 return NULL; 790 if (sg_alloc_table(sgt, 1, gfp)) 791 goto out_free_sgt; 792 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 793 if (!page) 794 goto out_free_table; 795 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 796 sg_dma_len(sgt->sgl) = sgt->sgl->length; 797 return sgt; 798 out_free_table: 799 sg_free_table(sgt); 800 out_free_sgt: 801 kfree(sgt); 802 return NULL; 803 } 804 805 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 806 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 807 { 808 struct sg_table *sgt; 809 810 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 811 return NULL; 812 if (WARN_ON_ONCE(gfp & __GFP_COMP)) 813 return NULL; 814 815 if (use_dma_iommu(dev)) 816 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs); 817 else 818 sgt = alloc_single_sgt(dev, size, dir, gfp); 819 820 if (sgt) { 821 sgt->nents = 1; 822 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs); 823 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); 824 } else { 825 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs); 826 } 827 return sgt; 828 } 829 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 830 831 static void free_single_sgt(struct device *dev, size_t size, 832 struct sg_table *sgt, enum dma_data_direction dir) 833 { 834 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 835 dir); 836 sg_free_table(sgt); 837 kfree(sgt); 838 } 839 840 void dma_free_noncontiguous(struct device *dev, size_t size, 841 struct sg_table *sgt, enum dma_data_direction dir) 842 { 843 trace_dma_free_sgt(dev, sgt, size, dir); 844 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 845 846 if (use_dma_iommu(dev)) 847 iommu_dma_free_noncontiguous(dev, size, sgt, dir); 848 else 849 free_single_sgt(dev, size, sgt, dir); 850 } 851 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 852 853 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 854 struct sg_table *sgt) 855 { 856 857 if (use_dma_iommu(dev)) 858 return iommu_dma_vmap_noncontiguous(dev, size, sgt); 859 860 return page_address(sg_page(sgt->sgl)); 861 } 862 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 863 864 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 865 { 866 if (use_dma_iommu(dev)) 867 iommu_dma_vunmap_noncontiguous(dev, vaddr); 868 } 869 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 870 871 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 872 size_t size, struct sg_table *sgt) 873 { 874 if (use_dma_iommu(dev)) 875 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt); 876 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 877 } 878 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 879 880 static int dma_supported(struct device *dev, u64 mask) 881 { 882 const struct dma_map_ops *ops = get_dma_ops(dev); 883 884 if (use_dma_iommu(dev)) { 885 if (WARN_ON(ops)) 886 return false; 887 return true; 888 } 889 890 /* 891 * ->dma_supported sets and clears the bypass flag, so ignore it here 892 * and always call into the method if there is one. 893 */ 894 if (ops) { 895 if (!ops->dma_supported) 896 return true; 897 return ops->dma_supported(dev, mask); 898 } 899 900 return dma_direct_supported(dev, mask); 901 } 902 903 bool dma_pci_p2pdma_supported(struct device *dev) 904 { 905 const struct dma_map_ops *ops = get_dma_ops(dev); 906 907 /* 908 * Note: dma_ops_bypass is not checked here because P2PDMA should 909 * not be used with dma mapping ops that do not have support even 910 * if the specific device is bypassing them. 911 */ 912 913 /* if ops is not set, dma direct and default IOMMU support P2PDMA */ 914 return !ops; 915 } 916 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); 917 918 int dma_set_mask(struct device *dev, u64 mask) 919 { 920 /* 921 * Truncate the mask to the actually supported dma_addr_t width to 922 * avoid generating unsupportable addresses. 923 */ 924 mask = (dma_addr_t)mask; 925 926 if (!dev->dma_mask || !dma_supported(dev, mask)) 927 return -EIO; 928 929 arch_dma_set_mask(dev, mask); 930 *dev->dma_mask = mask; 931 dma_setup_need_sync(dev); 932 933 return 0; 934 } 935 EXPORT_SYMBOL(dma_set_mask); 936 937 int dma_set_coherent_mask(struct device *dev, u64 mask) 938 { 939 /* 940 * Truncate the mask to the actually supported dma_addr_t width to 941 * avoid generating unsupportable addresses. 942 */ 943 mask = (dma_addr_t)mask; 944 945 if (!dma_supported(dev, mask)) 946 return -EIO; 947 948 dev->coherent_dma_mask = mask; 949 return 0; 950 } 951 EXPORT_SYMBOL(dma_set_coherent_mask); 952 953 static bool __dma_addressing_limited(struct device *dev) 954 { 955 const struct dma_map_ops *ops = get_dma_ops(dev); 956 957 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < 958 dma_get_required_mask(dev)) 959 return true; 960 961 if (unlikely(ops) || use_dma_iommu(dev)) 962 return false; 963 return !dma_direct_all_ram_mapped(dev); 964 } 965 966 /** 967 * dma_addressing_limited - return if the device is addressing limited 968 * @dev: device to check 969 * 970 * Return %true if the devices DMA mask is too small to address all memory in 971 * the system, else %false. Lack of addressing bits is the prime reason for 972 * bounce buffering, but might not be the only one. 973 */ 974 bool dma_addressing_limited(struct device *dev) 975 { 976 if (!__dma_addressing_limited(dev)) 977 return false; 978 979 dev_dbg(dev, "device is DMA addressing limited\n"); 980 return true; 981 } 982 EXPORT_SYMBOL_GPL(dma_addressing_limited); 983 984 size_t dma_max_mapping_size(struct device *dev) 985 { 986 const struct dma_map_ops *ops = get_dma_ops(dev); 987 size_t size = SIZE_MAX; 988 989 if (dma_map_direct(dev, ops)) 990 size = dma_direct_max_mapping_size(dev); 991 else if (use_dma_iommu(dev)) 992 size = iommu_dma_max_mapping_size(dev); 993 else if (ops && ops->max_mapping_size) 994 size = ops->max_mapping_size(dev); 995 996 return size; 997 } 998 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 999 1000 size_t dma_opt_mapping_size(struct device *dev) 1001 { 1002 const struct dma_map_ops *ops = get_dma_ops(dev); 1003 size_t size = SIZE_MAX; 1004 1005 if (use_dma_iommu(dev)) 1006 size = iommu_dma_opt_mapping_size(); 1007 else if (ops && ops->opt_mapping_size) 1008 size = ops->opt_mapping_size(); 1009 1010 return min(dma_max_mapping_size(dev), size); 1011 } 1012 EXPORT_SYMBOL_GPL(dma_opt_mapping_size); 1013 1014 unsigned long dma_get_merge_boundary(struct device *dev) 1015 { 1016 const struct dma_map_ops *ops = get_dma_ops(dev); 1017 1018 if (use_dma_iommu(dev)) 1019 return iommu_dma_get_merge_boundary(dev); 1020 1021 if (!ops || !ops->get_merge_boundary) 1022 return 0; /* can't merge */ 1023 1024 return ops->get_merge_boundary(dev); 1025 } 1026 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 1027