1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 #include <asm/rqspinlock.h>
15
16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
17
18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
19 #define RINGBUF_PGOFF \
20 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
21 /* consumer page and producer page */
22 #define RINGBUF_POS_PAGES 2
23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
24
25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
26
27 struct bpf_ringbuf {
28 wait_queue_head_t waitq;
29 struct irq_work work;
30 u64 mask;
31 struct page **pages;
32 int nr_pages;
33 rqspinlock_t spinlock ____cacheline_aligned_in_smp;
34 /* For user-space producer ring buffers, an atomic_t busy bit is used
35 * to synchronize access to the ring buffers in the kernel, rather than
36 * the spinlock that is used for kernel-producer ring buffers. This is
37 * done because the ring buffer must hold a lock across a BPF program's
38 * callback:
39 *
40 * __bpf_user_ringbuf_peek() // lock acquired
41 * -> program callback_fn()
42 * -> __bpf_user_ringbuf_sample_release() // lock released
43 *
44 * It is unsafe and incorrect to hold an IRQ spinlock across what could
45 * be a long execution window, so we instead simply disallow concurrent
46 * access to the ring buffer by kernel consumers, and return -EBUSY from
47 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
48 */
49 atomic_t busy ____cacheline_aligned_in_smp;
50 /* Consumer and producer counters are put into separate pages to
51 * allow each position to be mapped with different permissions.
52 * This prevents a user-space application from modifying the
53 * position and ruining in-kernel tracking. The permissions of the
54 * pages depend on who is producing samples: user-space or the
55 * kernel. Note that the pending counter is placed in the same
56 * page as the producer, so that it shares the same cache line.
57 *
58 * Kernel-producer
59 * ---------------
60 * The producer position and data pages are mapped as r/o in
61 * userspace. For this approach, bits in the header of samples are
62 * used to signal to user-space, and to other producers, whether a
63 * sample is currently being written.
64 *
65 * User-space producer
66 * -------------------
67 * Only the page containing the consumer position is mapped r/o in
68 * user-space. User-space producers also use bits of the header to
69 * communicate to the kernel, but the kernel must carefully check and
70 * validate each sample to ensure that they're correctly formatted, and
71 * fully contained within the ring buffer.
72 */
73 unsigned long consumer_pos __aligned(PAGE_SIZE);
74 unsigned long producer_pos __aligned(PAGE_SIZE);
75 unsigned long pending_pos;
76 char data[] __aligned(PAGE_SIZE);
77 };
78
79 struct bpf_ringbuf_map {
80 struct bpf_map map;
81 struct bpf_ringbuf *rb;
82 };
83
84 /* 8-byte ring buffer record header structure */
85 struct bpf_ringbuf_hdr {
86 u32 len;
87 u32 pg_off;
88 };
89
bpf_ringbuf_area_alloc(size_t data_sz,int numa_node)90 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
91 {
92 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
93 __GFP_NOWARN | __GFP_ZERO;
94 int nr_meta_pages = RINGBUF_NR_META_PAGES;
95 int nr_data_pages = data_sz >> PAGE_SHIFT;
96 int nr_pages = nr_meta_pages + nr_data_pages;
97 struct page **pages, *page;
98 struct bpf_ringbuf *rb;
99 size_t array_size;
100 int i;
101
102 /* Each data page is mapped twice to allow "virtual"
103 * continuous read of samples wrapping around the end of ring
104 * buffer area:
105 * ------------------------------------------------------
106 * | meta pages | real data pages | same data pages |
107 * ------------------------------------------------------
108 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
109 * ------------------------------------------------------
110 * | | TA DA | TA DA |
111 * ------------------------------------------------------
112 * ^^^^^^^
113 * |
114 * Here, no need to worry about special handling of wrapped-around
115 * data due to double-mapped data pages. This works both in kernel and
116 * when mmap()'ed in user-space, simplifying both kernel and
117 * user-space implementations significantly.
118 */
119 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
120 pages = bpf_map_area_alloc(array_size, numa_node);
121 if (!pages)
122 return NULL;
123
124 for (i = 0; i < nr_pages; i++) {
125 page = alloc_pages_node(numa_node, flags, 0);
126 if (!page) {
127 nr_pages = i;
128 goto err_free_pages;
129 }
130 pages[i] = page;
131 if (i >= nr_meta_pages)
132 pages[nr_data_pages + i] = page;
133 }
134
135 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
136 VM_MAP | VM_USERMAP, PAGE_KERNEL);
137 if (rb) {
138 kmemleak_not_leak(pages);
139 rb->pages = pages;
140 rb->nr_pages = nr_pages;
141 return rb;
142 }
143
144 err_free_pages:
145 for (i = 0; i < nr_pages; i++)
146 __free_page(pages[i]);
147 bpf_map_area_free(pages);
148 return NULL;
149 }
150
bpf_ringbuf_notify(struct irq_work * work)151 static void bpf_ringbuf_notify(struct irq_work *work)
152 {
153 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
154
155 wake_up_all(&rb->waitq);
156 }
157
158 /* Maximum size of ring buffer area is limited by 32-bit page offset within
159 * record header, counted in pages. Reserve 8 bits for extensibility, and
160 * take into account few extra pages for consumer/producer pages and
161 * non-mmap()'able parts, the current maximum size would be:
162 *
163 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
164 *
165 * This gives 64GB limit, which seems plenty for single ring buffer. Now
166 * considering that the maximum value of data_sz is (4GB - 1), there
167 * will be no overflow, so just note the size limit in the comments.
168 */
bpf_ringbuf_alloc(size_t data_sz,int numa_node)169 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
170 {
171 struct bpf_ringbuf *rb;
172
173 rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
174 if (!rb)
175 return NULL;
176
177 raw_res_spin_lock_init(&rb->spinlock);
178 atomic_set(&rb->busy, 0);
179 init_waitqueue_head(&rb->waitq);
180 init_irq_work(&rb->work, bpf_ringbuf_notify);
181
182 rb->mask = data_sz - 1;
183 rb->consumer_pos = 0;
184 rb->producer_pos = 0;
185 rb->pending_pos = 0;
186
187 return rb;
188 }
189
ringbuf_map_alloc(union bpf_attr * attr)190 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
191 {
192 struct bpf_ringbuf_map *rb_map;
193
194 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
195 return ERR_PTR(-EINVAL);
196
197 if (attr->key_size || attr->value_size ||
198 !is_power_of_2(attr->max_entries) ||
199 !PAGE_ALIGNED(attr->max_entries))
200 return ERR_PTR(-EINVAL);
201
202 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
203 if (!rb_map)
204 return ERR_PTR(-ENOMEM);
205
206 bpf_map_init_from_attr(&rb_map->map, attr);
207
208 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
209 if (!rb_map->rb) {
210 bpf_map_area_free(rb_map);
211 return ERR_PTR(-ENOMEM);
212 }
213
214 return &rb_map->map;
215 }
216
bpf_ringbuf_free(struct bpf_ringbuf * rb)217 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
218 {
219 /* copy pages pointer and nr_pages to local variable, as we are going
220 * to unmap rb itself with vunmap() below
221 */
222 struct page **pages = rb->pages;
223 int i, nr_pages = rb->nr_pages;
224
225 vunmap(rb);
226 for (i = 0; i < nr_pages; i++)
227 __free_page(pages[i]);
228 bpf_map_area_free(pages);
229 }
230
ringbuf_map_free(struct bpf_map * map)231 static void ringbuf_map_free(struct bpf_map *map)
232 {
233 struct bpf_ringbuf_map *rb_map;
234
235 rb_map = container_of(map, struct bpf_ringbuf_map, map);
236 bpf_ringbuf_free(rb_map->rb);
237 bpf_map_area_free(rb_map);
238 }
239
ringbuf_map_lookup_elem(struct bpf_map * map,void * key)240 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
241 {
242 return ERR_PTR(-ENOTSUPP);
243 }
244
ringbuf_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)245 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
246 u64 flags)
247 {
248 return -ENOTSUPP;
249 }
250
ringbuf_map_delete_elem(struct bpf_map * map,void * key)251 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
252 {
253 return -ENOTSUPP;
254 }
255
ringbuf_map_get_next_key(struct bpf_map * map,void * key,void * next_key)256 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
257 void *next_key)
258 {
259 return -ENOTSUPP;
260 }
261
ringbuf_map_mmap_kern(struct bpf_map * map,struct vm_area_struct * vma)262 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
263 {
264 struct bpf_ringbuf_map *rb_map;
265
266 rb_map = container_of(map, struct bpf_ringbuf_map, map);
267
268 if (vma->vm_flags & VM_WRITE) {
269 /* allow writable mapping for the consumer_pos only */
270 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
271 return -EPERM;
272 }
273 /* remap_vmalloc_range() checks size and offset constraints */
274 return remap_vmalloc_range(vma, rb_map->rb,
275 vma->vm_pgoff + RINGBUF_PGOFF);
276 }
277
ringbuf_map_mmap_user(struct bpf_map * map,struct vm_area_struct * vma)278 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
279 {
280 struct bpf_ringbuf_map *rb_map;
281
282 rb_map = container_of(map, struct bpf_ringbuf_map, map);
283
284 if (vma->vm_flags & VM_WRITE) {
285 if (vma->vm_pgoff == 0)
286 /* Disallow writable mappings to the consumer pointer,
287 * and allow writable mappings to both the producer
288 * position, and the ring buffer data itself.
289 */
290 return -EPERM;
291 }
292 /* remap_vmalloc_range() checks size and offset constraints */
293 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294 }
295
ringbuf_avail_data_sz(struct bpf_ringbuf * rb)296 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297 {
298 unsigned long cons_pos, prod_pos;
299
300 cons_pos = smp_load_acquire(&rb->consumer_pos);
301 prod_pos = smp_load_acquire(&rb->producer_pos);
302 return prod_pos - cons_pos;
303 }
304
ringbuf_total_data_sz(const struct bpf_ringbuf * rb)305 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306 {
307 return rb->mask + 1;
308 }
309
ringbuf_map_poll_kern(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)310 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311 struct poll_table_struct *pts)
312 {
313 struct bpf_ringbuf_map *rb_map;
314
315 rb_map = container_of(map, struct bpf_ringbuf_map, map);
316 poll_wait(filp, &rb_map->rb->waitq, pts);
317
318 if (ringbuf_avail_data_sz(rb_map->rb))
319 return EPOLLIN | EPOLLRDNORM;
320 return 0;
321 }
322
ringbuf_map_poll_user(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)323 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324 struct poll_table_struct *pts)
325 {
326 struct bpf_ringbuf_map *rb_map;
327
328 rb_map = container_of(map, struct bpf_ringbuf_map, map);
329 poll_wait(filp, &rb_map->rb->waitq, pts);
330
331 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332 return EPOLLOUT | EPOLLWRNORM;
333 return 0;
334 }
335
ringbuf_map_mem_usage(const struct bpf_map * map)336 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337 {
338 struct bpf_ringbuf *rb;
339 int nr_data_pages;
340 int nr_meta_pages;
341 u64 usage = sizeof(struct bpf_ringbuf_map);
342
343 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344 usage += (u64)rb->nr_pages << PAGE_SHIFT;
345 nr_meta_pages = RINGBUF_NR_META_PAGES;
346 nr_data_pages = map->max_entries >> PAGE_SHIFT;
347 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348 return usage;
349 }
350
351 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352 const struct bpf_map_ops ringbuf_map_ops = {
353 .map_meta_equal = bpf_map_meta_equal,
354 .map_alloc = ringbuf_map_alloc,
355 .map_free = ringbuf_map_free,
356 .map_mmap = ringbuf_map_mmap_kern,
357 .map_poll = ringbuf_map_poll_kern,
358 .map_lookup_elem = ringbuf_map_lookup_elem,
359 .map_update_elem = ringbuf_map_update_elem,
360 .map_delete_elem = ringbuf_map_delete_elem,
361 .map_get_next_key = ringbuf_map_get_next_key,
362 .map_mem_usage = ringbuf_map_mem_usage,
363 .map_btf_id = &ringbuf_map_btf_ids[0],
364 };
365
366 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367 const struct bpf_map_ops user_ringbuf_map_ops = {
368 .map_meta_equal = bpf_map_meta_equal,
369 .map_alloc = ringbuf_map_alloc,
370 .map_free = ringbuf_map_free,
371 .map_mmap = ringbuf_map_mmap_user,
372 .map_poll = ringbuf_map_poll_user,
373 .map_lookup_elem = ringbuf_map_lookup_elem,
374 .map_update_elem = ringbuf_map_update_elem,
375 .map_delete_elem = ringbuf_map_delete_elem,
376 .map_get_next_key = ringbuf_map_get_next_key,
377 .map_mem_usage = ringbuf_map_mem_usage,
378 .map_btf_id = &user_ringbuf_map_btf_ids[0],
379 };
380
381 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382 * calculate offset from record metadata to ring buffer in pages, rounded
383 * down. This page offset is stored as part of record metadata and allows to
384 * restore struct bpf_ringbuf * from record pointer. This page offset is
385 * stored at offset 4 of record metadata header.
386 */
bpf_ringbuf_rec_pg_off(struct bpf_ringbuf * rb,struct bpf_ringbuf_hdr * hdr)387 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388 struct bpf_ringbuf_hdr *hdr)
389 {
390 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391 }
392
393 /* Given pointer to ring buffer record header, restore pointer to struct
394 * bpf_ringbuf itself by using page offset stored at offset 4
395 */
396 static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr * hdr)397 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398 {
399 unsigned long addr = (unsigned long)(void *)hdr;
400 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401
402 return (void*)((addr & PAGE_MASK) - off);
403 }
404
__bpf_ringbuf_reserve(struct bpf_ringbuf * rb,u64 size)405 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406 {
407 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
408 struct bpf_ringbuf_hdr *hdr;
409 u32 len, pg_off, tmp_size, hdr_len;
410
411 if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412 return NULL;
413
414 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415 if (len > ringbuf_total_data_sz(rb))
416 return NULL;
417
418 cons_pos = smp_load_acquire(&rb->consumer_pos);
419
420 if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
421 return NULL;
422
423 pend_pos = rb->pending_pos;
424 prod_pos = rb->producer_pos;
425 new_prod_pos = prod_pos + len;
426
427 while (pend_pos < prod_pos) {
428 hdr = (void *)rb->data + (pend_pos & rb->mask);
429 hdr_len = READ_ONCE(hdr->len);
430 if (hdr_len & BPF_RINGBUF_BUSY_BIT)
431 break;
432 tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
433 tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
434 pend_pos += tmp_size;
435 }
436 rb->pending_pos = pend_pos;
437
438 /* check for out of ringbuf space:
439 * - by ensuring producer position doesn't advance more than
440 * (ringbuf_size - 1) ahead
441 * - by ensuring oldest not yet committed record until newest
442 * record does not span more than (ringbuf_size - 1)
443 */
444 if (new_prod_pos - cons_pos > rb->mask ||
445 new_prod_pos - pend_pos > rb->mask) {
446 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
447 return NULL;
448 }
449
450 hdr = (void *)rb->data + (prod_pos & rb->mask);
451 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
452 hdr->len = size | BPF_RINGBUF_BUSY_BIT;
453 hdr->pg_off = pg_off;
454
455 /* pairs with consumer's smp_load_acquire() */
456 smp_store_release(&rb->producer_pos, new_prod_pos);
457
458 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
459
460 return (void *)hdr + BPF_RINGBUF_HDR_SZ;
461 }
462
BPF_CALL_3(bpf_ringbuf_reserve,struct bpf_map *,map,u64,size,u64,flags)463 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
464 {
465 struct bpf_ringbuf_map *rb_map;
466
467 if (unlikely(flags))
468 return 0;
469
470 rb_map = container_of(map, struct bpf_ringbuf_map, map);
471 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
472 }
473
474 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
475 .func = bpf_ringbuf_reserve,
476 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
477 .arg1_type = ARG_CONST_MAP_PTR,
478 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
479 .arg3_type = ARG_ANYTHING,
480 };
481
bpf_ringbuf_commit(void * sample,u64 flags,bool discard)482 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
483 {
484 unsigned long rec_pos, cons_pos;
485 struct bpf_ringbuf_hdr *hdr;
486 struct bpf_ringbuf *rb;
487 u32 new_len;
488
489 hdr = sample - BPF_RINGBUF_HDR_SZ;
490 rb = bpf_ringbuf_restore_from_rec(hdr);
491 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
492 if (discard)
493 new_len |= BPF_RINGBUF_DISCARD_BIT;
494
495 /* update record header with correct final size prefix */
496 xchg(&hdr->len, new_len);
497
498 /* if consumer caught up and is waiting for our record, notify about
499 * new data availability
500 */
501 rec_pos = (void *)hdr - (void *)rb->data;
502 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
503
504 if (flags & BPF_RB_FORCE_WAKEUP)
505 irq_work_queue(&rb->work);
506 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
507 irq_work_queue(&rb->work);
508 }
509
BPF_CALL_2(bpf_ringbuf_submit,void *,sample,u64,flags)510 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
511 {
512 bpf_ringbuf_commit(sample, flags, false /* discard */);
513 return 0;
514 }
515
516 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
517 .func = bpf_ringbuf_submit,
518 .ret_type = RET_VOID,
519 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
520 .arg2_type = ARG_ANYTHING,
521 };
522
BPF_CALL_2(bpf_ringbuf_discard,void *,sample,u64,flags)523 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
524 {
525 bpf_ringbuf_commit(sample, flags, true /* discard */);
526 return 0;
527 }
528
529 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
530 .func = bpf_ringbuf_discard,
531 .ret_type = RET_VOID,
532 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
533 .arg2_type = ARG_ANYTHING,
534 };
535
BPF_CALL_4(bpf_ringbuf_output,struct bpf_map *,map,void *,data,u64,size,u64,flags)536 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
537 u64, flags)
538 {
539 struct bpf_ringbuf_map *rb_map;
540 void *rec;
541
542 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
543 return -EINVAL;
544
545 rb_map = container_of(map, struct bpf_ringbuf_map, map);
546 rec = __bpf_ringbuf_reserve(rb_map->rb, size);
547 if (!rec)
548 return -EAGAIN;
549
550 memcpy(rec, data, size);
551 bpf_ringbuf_commit(rec, flags, false /* discard */);
552 return 0;
553 }
554
555 const struct bpf_func_proto bpf_ringbuf_output_proto = {
556 .func = bpf_ringbuf_output,
557 .ret_type = RET_INTEGER,
558 .arg1_type = ARG_CONST_MAP_PTR,
559 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
560 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
561 .arg4_type = ARG_ANYTHING,
562 };
563
BPF_CALL_2(bpf_ringbuf_query,struct bpf_map *,map,u64,flags)564 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
565 {
566 struct bpf_ringbuf *rb;
567
568 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
569
570 switch (flags) {
571 case BPF_RB_AVAIL_DATA:
572 return ringbuf_avail_data_sz(rb);
573 case BPF_RB_RING_SIZE:
574 return ringbuf_total_data_sz(rb);
575 case BPF_RB_CONS_POS:
576 return smp_load_acquire(&rb->consumer_pos);
577 case BPF_RB_PROD_POS:
578 return smp_load_acquire(&rb->producer_pos);
579 default:
580 return 0;
581 }
582 }
583
584 const struct bpf_func_proto bpf_ringbuf_query_proto = {
585 .func = bpf_ringbuf_query,
586 .ret_type = RET_INTEGER,
587 .arg1_type = ARG_CONST_MAP_PTR,
588 .arg2_type = ARG_ANYTHING,
589 };
590
BPF_CALL_4(bpf_ringbuf_reserve_dynptr,struct bpf_map *,map,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)591 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
592 struct bpf_dynptr_kern *, ptr)
593 {
594 struct bpf_ringbuf_map *rb_map;
595 void *sample;
596 int err;
597
598 if (unlikely(flags)) {
599 bpf_dynptr_set_null(ptr);
600 return -EINVAL;
601 }
602
603 err = bpf_dynptr_check_size(size);
604 if (err) {
605 bpf_dynptr_set_null(ptr);
606 return err;
607 }
608
609 rb_map = container_of(map, struct bpf_ringbuf_map, map);
610
611 sample = __bpf_ringbuf_reserve(rb_map->rb, size);
612 if (!sample) {
613 bpf_dynptr_set_null(ptr);
614 return -EINVAL;
615 }
616
617 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
618
619 return 0;
620 }
621
622 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
623 .func = bpf_ringbuf_reserve_dynptr,
624 .ret_type = RET_INTEGER,
625 .arg1_type = ARG_CONST_MAP_PTR,
626 .arg2_type = ARG_ANYTHING,
627 .arg3_type = ARG_ANYTHING,
628 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
629 };
630
BPF_CALL_2(bpf_ringbuf_submit_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)631 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
632 {
633 if (!ptr->data)
634 return 0;
635
636 bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
637
638 bpf_dynptr_set_null(ptr);
639
640 return 0;
641 }
642
643 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
644 .func = bpf_ringbuf_submit_dynptr,
645 .ret_type = RET_VOID,
646 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
647 .arg2_type = ARG_ANYTHING,
648 };
649
BPF_CALL_2(bpf_ringbuf_discard_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)650 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
651 {
652 if (!ptr->data)
653 return 0;
654
655 bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
656
657 bpf_dynptr_set_null(ptr);
658
659 return 0;
660 }
661
662 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
663 .func = bpf_ringbuf_discard_dynptr,
664 .ret_type = RET_VOID,
665 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
666 .arg2_type = ARG_ANYTHING,
667 };
668
__bpf_user_ringbuf_peek(struct bpf_ringbuf * rb,void ** sample,u32 * size)669 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
670 {
671 int err;
672 u32 hdr_len, sample_len, total_len, flags, *hdr;
673 u64 cons_pos, prod_pos;
674
675 /* Synchronizes with smp_store_release() in user-space producer. */
676 prod_pos = smp_load_acquire(&rb->producer_pos);
677 if (prod_pos % 8)
678 return -EINVAL;
679
680 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
681 cons_pos = smp_load_acquire(&rb->consumer_pos);
682 if (cons_pos >= prod_pos)
683 return -ENODATA;
684
685 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
686 /* Synchronizes with smp_store_release() in user-space producer. */
687 hdr_len = smp_load_acquire(hdr);
688 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
689 sample_len = hdr_len & ~flags;
690 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
691
692 /* The sample must fit within the region advertised by the producer position. */
693 if (total_len > prod_pos - cons_pos)
694 return -EINVAL;
695
696 /* The sample must fit within the data region of the ring buffer. */
697 if (total_len > ringbuf_total_data_sz(rb))
698 return -E2BIG;
699
700 /* The sample must fit into a struct bpf_dynptr. */
701 err = bpf_dynptr_check_size(sample_len);
702 if (err)
703 return -E2BIG;
704
705 if (flags & BPF_RINGBUF_DISCARD_BIT) {
706 /* If the discard bit is set, the sample should be skipped.
707 *
708 * Update the consumer pos, and return -EAGAIN so the caller
709 * knows to skip this sample and try to read the next one.
710 */
711 smp_store_release(&rb->consumer_pos, cons_pos + total_len);
712 return -EAGAIN;
713 }
714
715 if (flags & BPF_RINGBUF_BUSY_BIT)
716 return -ENODATA;
717
718 *sample = (void *)((uintptr_t)rb->data +
719 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
720 *size = sample_len;
721 return 0;
722 }
723
__bpf_user_ringbuf_sample_release(struct bpf_ringbuf * rb,size_t size,u64 flags)724 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
725 {
726 u64 consumer_pos;
727 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
728
729 /* Using smp_load_acquire() is unnecessary here, as the busy-bit
730 * prevents another task from writing to consumer_pos after it was read
731 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
732 */
733 consumer_pos = rb->consumer_pos;
734 /* Synchronizes with smp_load_acquire() in user-space producer. */
735 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
736 }
737
BPF_CALL_4(bpf_user_ringbuf_drain,struct bpf_map *,map,void *,callback_fn,void *,callback_ctx,u64,flags)738 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
739 void *, callback_fn, void *, callback_ctx, u64, flags)
740 {
741 struct bpf_ringbuf *rb;
742 long samples, discarded_samples = 0, ret = 0;
743 bpf_callback_t callback = (bpf_callback_t)callback_fn;
744 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
745 int busy = 0;
746
747 if (unlikely(flags & ~wakeup_flags))
748 return -EINVAL;
749
750 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
751
752 /* If another consumer is already consuming a sample, wait for them to finish. */
753 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
754 return -EBUSY;
755
756 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
757 int err;
758 u32 size;
759 void *sample;
760 struct bpf_dynptr_kern dynptr;
761
762 err = __bpf_user_ringbuf_peek(rb, &sample, &size);
763 if (err) {
764 if (err == -ENODATA) {
765 break;
766 } else if (err == -EAGAIN) {
767 discarded_samples++;
768 continue;
769 } else {
770 ret = err;
771 goto schedule_work_return;
772 }
773 }
774
775 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
776 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
777 __bpf_user_ringbuf_sample_release(rb, size, flags);
778 }
779 ret = samples - discarded_samples;
780
781 schedule_work_return:
782 /* Prevent the clearing of the busy-bit from being reordered before the
783 * storing of any rb consumer or producer positions.
784 */
785 atomic_set_release(&rb->busy, 0);
786
787 if (flags & BPF_RB_FORCE_WAKEUP)
788 irq_work_queue(&rb->work);
789 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
790 irq_work_queue(&rb->work);
791 return ret;
792 }
793
794 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
795 .func = bpf_user_ringbuf_drain,
796 .ret_type = RET_INTEGER,
797 .arg1_type = ARG_CONST_MAP_PTR,
798 .arg2_type = ARG_PTR_TO_FUNC,
799 .arg3_type = ARG_PTR_TO_STACK_OR_NULL,
800 .arg4_type = ARG_ANYTHING,
801 };
802