1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_SYMBOL(sysctl_tcp_mem);
304
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
306 EXPORT_SYMBOL(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314
315 /*
316 * Current number of TCP sockets.
317 */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_SYMBOL(tcp_sockets_allocated);
320
321 /*
322 * TCP splice context
323 */
324 struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328 };
329
330 /*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
353
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
366
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385 }
386
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402 }
403
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415 }
416
417 /* Address-family independent initialization for a tcp_sock.
418 *
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
421 */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 struct inet_connection_sock *icsk = inet_csk(sk);
425 struct tcp_sock *tp = tcp_sk(sk);
426 int rto_min_us;
427
428 tp->out_of_order_queue = RB_ROOT;
429 sk->tcp_rtx_queue = RB_ROOT;
430 tcp_init_xmit_timers(sk);
431 INIT_LIST_HEAD(&tp->tsq_node);
432 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433
434 icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
436 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
437 icsk->icsk_delack_max = TCP_DELACK_MAX;
438 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
439 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
440
441 /* So many TCP implementations out there (incorrectly) count the
442 * initial SYN frame in their delayed-ACK and congestion control
443 * algorithms that we must have the following bandaid to talk
444 * efficiently to them. -DaveM
445 */
446 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
447
448 /* There's a bubble in the pipe until at least the first ACK. */
449 tp->app_limited = ~0U;
450 tp->rate_app_limited = 1;
451
452 /* See draft-stevens-tcpca-spec-01 for discussion of the
453 * initialization of these values.
454 */
455 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
456 tp->snd_cwnd_clamp = ~0;
457 tp->mss_cache = TCP_MSS_DEFAULT;
458
459 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
460 tcp_assign_congestion_control(sk);
461
462 tp->tsoffset = 0;
463 tp->rack.reo_wnd_steps = 1;
464
465 sk->sk_write_space = sk_stream_write_space;
466 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
467
468 icsk->icsk_sync_mss = tcp_sync_mss;
469
470 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
471 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
472 tcp_scaling_ratio_init(sk);
473
474 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
475 sk_sockets_allocated_inc(sk);
476 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
477 }
478 EXPORT_SYMBOL(tcp_init_sock);
479
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)480 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
481 {
482 struct sk_buff *skb = tcp_write_queue_tail(sk);
483 u32 tsflags = sockc->tsflags;
484
485 if (tsflags && skb) {
486 struct skb_shared_info *shinfo = skb_shinfo(skb);
487 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488
489 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
490 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
491 tcb->txstamp_ack = 1;
492 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
493 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
494 }
495 }
496
tcp_stream_is_readable(struct sock * sk,int target)497 static bool tcp_stream_is_readable(struct sock *sk, int target)
498 {
499 if (tcp_epollin_ready(sk, target))
500 return true;
501 return sk_is_readable(sk);
502 }
503
504 /*
505 * Wait for a TCP event.
506 *
507 * Note that we don't need to lock the socket, as the upper poll layers
508 * take care of normal races (between the test and the event) and we don't
509 * go look at any of the socket buffers directly.
510 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
512 {
513 __poll_t mask;
514 struct sock *sk = sock->sk;
515 const struct tcp_sock *tp = tcp_sk(sk);
516 u8 shutdown;
517 int state;
518
519 sock_poll_wait(file, sock, wait);
520
521 state = inet_sk_state_load(sk);
522 if (state == TCP_LISTEN)
523 return inet_csk_listen_poll(sk);
524
525 /* Socket is not locked. We are protected from async events
526 * by poll logic and correct handling of state changes
527 * made by other threads is impossible in any case.
528 */
529
530 mask = 0;
531
532 /*
533 * EPOLLHUP is certainly not done right. But poll() doesn't
534 * have a notion of HUP in just one direction, and for a
535 * socket the read side is more interesting.
536 *
537 * Some poll() documentation says that EPOLLHUP is incompatible
538 * with the EPOLLOUT/POLLWR flags, so somebody should check this
539 * all. But careful, it tends to be safer to return too many
540 * bits than too few, and you can easily break real applications
541 * if you don't tell them that something has hung up!
542 *
543 * Check-me.
544 *
545 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
546 * our fs/select.c). It means that after we received EOF,
547 * poll always returns immediately, making impossible poll() on write()
548 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
549 * if and only if shutdown has been made in both directions.
550 * Actually, it is interesting to look how Solaris and DUX
551 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
552 * then we could set it on SND_SHUTDOWN. BTW examples given
553 * in Stevens' books assume exactly this behaviour, it explains
554 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
555 *
556 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
557 * blocking on fresh not-connected or disconnected socket. --ANK
558 */
559 shutdown = READ_ONCE(sk->sk_shutdown);
560 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
561 mask |= EPOLLHUP;
562 if (shutdown & RCV_SHUTDOWN)
563 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
564
565 /* Connected or passive Fast Open socket? */
566 if (state != TCP_SYN_SENT &&
567 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
568 int target = sock_rcvlowat(sk, 0, INT_MAX);
569 u16 urg_data = READ_ONCE(tp->urg_data);
570
571 if (unlikely(urg_data) &&
572 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
573 !sock_flag(sk, SOCK_URGINLINE))
574 target++;
575
576 if (tcp_stream_is_readable(sk, target))
577 mask |= EPOLLIN | EPOLLRDNORM;
578
579 if (!(shutdown & SEND_SHUTDOWN)) {
580 if (__sk_stream_is_writeable(sk, 1)) {
581 mask |= EPOLLOUT | EPOLLWRNORM;
582 } else { /* send SIGIO later */
583 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585
586 /* Race breaker. If space is freed after
587 * wspace test but before the flags are set,
588 * IO signal will be lost. Memory barrier
589 * pairs with the input side.
590 */
591 smp_mb__after_atomic();
592 if (__sk_stream_is_writeable(sk, 1))
593 mask |= EPOLLOUT | EPOLLWRNORM;
594 }
595 } else
596 mask |= EPOLLOUT | EPOLLWRNORM;
597
598 if (urg_data & TCP_URG_VALID)
599 mask |= EPOLLPRI;
600 } else if (state == TCP_SYN_SENT &&
601 inet_test_bit(DEFER_CONNECT, sk)) {
602 /* Active TCP fastopen socket with defer_connect
603 * Return EPOLLOUT so application can call write()
604 * in order for kernel to generate SYN+data
605 */
606 mask |= EPOLLOUT | EPOLLWRNORM;
607 }
608 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
609 smp_rmb();
610 if (READ_ONCE(sk->sk_err) ||
611 !skb_queue_empty_lockless(&sk->sk_error_queue))
612 mask |= EPOLLERR;
613
614 return mask;
615 }
616 EXPORT_SYMBOL(tcp_poll);
617
tcp_ioctl(struct sock * sk,int cmd,int * karg)618 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 int answ;
622 bool slow;
623
624 switch (cmd) {
625 case SIOCINQ:
626 if (sk->sk_state == TCP_LISTEN)
627 return -EINVAL;
628
629 slow = lock_sock_fast(sk);
630 answ = tcp_inq(sk);
631 unlock_sock_fast(sk, slow);
632 break;
633 case SIOCATMARK:
634 answ = READ_ONCE(tp->urg_data) &&
635 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
636 break;
637 case SIOCOUTQ:
638 if (sk->sk_state == TCP_LISTEN)
639 return -EINVAL;
640
641 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 answ = 0;
643 else
644 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
645 break;
646 case SIOCOUTQNSD:
647 if (sk->sk_state == TCP_LISTEN)
648 return -EINVAL;
649
650 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
651 answ = 0;
652 else
653 answ = READ_ONCE(tp->write_seq) -
654 READ_ONCE(tp->snd_nxt);
655 break;
656 default:
657 return -ENOIOCTLCMD;
658 }
659
660 *karg = answ;
661 return 0;
662 }
663 EXPORT_SYMBOL(tcp_ioctl);
664
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
666 {
667 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
668 tp->pushed_seq = tp->write_seq;
669 }
670
forced_push(const struct tcp_sock * tp)671 static inline bool forced_push(const struct tcp_sock *tp)
672 {
673 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
674 }
675
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
680
681 tcb->seq = tcb->end_seq = tp->write_seq;
682 tcb->tcp_flags = TCPHDR_ACK;
683 __skb_header_release(skb);
684 tcp_add_write_queue_tail(sk, skb);
685 sk_wmem_queued_add(sk, skb->truesize);
686 sk_mem_charge(sk, skb->truesize);
687 if (tp->nonagle & TCP_NAGLE_PUSH)
688 tp->nonagle &= ~TCP_NAGLE_PUSH;
689
690 tcp_slow_start_after_idle_check(sk);
691 }
692
tcp_mark_urg(struct tcp_sock * tp,int flags)693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
694 {
695 if (flags & MSG_OOB)
696 tp->snd_up = tp->write_seq;
697 }
698
699 /* If a not yet filled skb is pushed, do not send it if
700 * we have data packets in Qdisc or NIC queues :
701 * Because TX completion will happen shortly, it gives a chance
702 * to coalesce future sendmsg() payload into this skb, without
703 * need for a timer, and with no latency trade off.
704 * As packets containing data payload have a bigger truesize
705 * than pure acks (dataless) packets, the last checks prevent
706 * autocorking if we only have an ACK in Qdisc/NIC queues,
707 * or if TX completion was delayed after we processed ACK packet.
708 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
710 int size_goal)
711 {
712 return skb->len < size_goal &&
713 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
714 !tcp_rtx_queue_empty(sk) &&
715 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
716 tcp_skb_can_collapse_to(skb);
717 }
718
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)719 void tcp_push(struct sock *sk, int flags, int mss_now,
720 int nonagle, int size_goal)
721 {
722 struct tcp_sock *tp = tcp_sk(sk);
723 struct sk_buff *skb;
724
725 skb = tcp_write_queue_tail(sk);
726 if (!skb)
727 return;
728 if (!(flags & MSG_MORE) || forced_push(tp))
729 tcp_mark_push(tp, skb);
730
731 tcp_mark_urg(tp, flags);
732
733 if (tcp_should_autocork(sk, skb, size_goal)) {
734
735 /* avoid atomic op if TSQ_THROTTLED bit is already set */
736 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
737 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
738 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
739 smp_mb__after_atomic();
740 }
741 /* It is possible TX completion already happened
742 * before we set TSQ_THROTTLED.
743 */
744 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
745 return;
746 }
747
748 if (flags & MSG_MORE)
749 nonagle = TCP_NAGLE_CORK;
750
751 __tcp_push_pending_frames(sk, mss_now, nonagle);
752 }
753
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
755 unsigned int offset, size_t len)
756 {
757 struct tcp_splice_state *tss = rd_desc->arg.data;
758 int ret;
759
760 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
761 min(rd_desc->count, len), tss->flags);
762 if (ret > 0)
763 rd_desc->count -= ret;
764 return ret;
765 }
766
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
768 {
769 /* Store TCP splice context information in read_descriptor_t. */
770 read_descriptor_t rd_desc = {
771 .arg.data = tss,
772 .count = tss->len,
773 };
774
775 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
776 }
777
778 /**
779 * tcp_splice_read - splice data from TCP socket to a pipe
780 * @sock: socket to splice from
781 * @ppos: position (not valid)
782 * @pipe: pipe to splice to
783 * @len: number of bytes to splice
784 * @flags: splice modifier flags
785 *
786 * Description:
787 * Will read pages from given socket and fill them into a pipe.
788 *
789 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
791 struct pipe_inode_info *pipe, size_t len,
792 unsigned int flags)
793 {
794 struct sock *sk = sock->sk;
795 struct tcp_splice_state tss = {
796 .pipe = pipe,
797 .len = len,
798 .flags = flags,
799 };
800 long timeo;
801 ssize_t spliced;
802 int ret;
803
804 sock_rps_record_flow(sk);
805 /*
806 * We can't seek on a socket input
807 */
808 if (unlikely(*ppos))
809 return -ESPIPE;
810
811 ret = spliced = 0;
812
813 lock_sock(sk);
814
815 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
816 while (tss.len) {
817 ret = __tcp_splice_read(sk, &tss);
818 if (ret < 0)
819 break;
820 else if (!ret) {
821 if (spliced)
822 break;
823 if (sock_flag(sk, SOCK_DONE))
824 break;
825 if (sk->sk_err) {
826 ret = sock_error(sk);
827 break;
828 }
829 if (sk->sk_shutdown & RCV_SHUTDOWN)
830 break;
831 if (sk->sk_state == TCP_CLOSE) {
832 /*
833 * This occurs when user tries to read
834 * from never connected socket.
835 */
836 ret = -ENOTCONN;
837 break;
838 }
839 if (!timeo) {
840 ret = -EAGAIN;
841 break;
842 }
843 /* if __tcp_splice_read() got nothing while we have
844 * an skb in receive queue, we do not want to loop.
845 * This might happen with URG data.
846 */
847 if (!skb_queue_empty(&sk->sk_receive_queue))
848 break;
849 ret = sk_wait_data(sk, &timeo, NULL);
850 if (ret < 0)
851 break;
852 if (signal_pending(current)) {
853 ret = sock_intr_errno(timeo);
854 break;
855 }
856 continue;
857 }
858 tss.len -= ret;
859 spliced += ret;
860
861 if (!tss.len || !timeo)
862 break;
863 release_sock(sk);
864 lock_sock(sk);
865
866 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 signal_pending(current))
869 break;
870 }
871
872 release_sock(sk);
873
874 if (spliced)
875 return spliced;
876
877 return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
882 bool force_schedule)
883 {
884 struct sk_buff *skb;
885
886 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
887 if (likely(skb)) {
888 bool mem_scheduled;
889
890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 if (force_schedule) {
892 mem_scheduled = true;
893 sk_forced_mem_schedule(sk, skb->truesize);
894 } else {
895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
896 }
897 if (likely(mem_scheduled)) {
898 skb_reserve(skb, MAX_TCP_HEADER);
899 skb->ip_summed = CHECKSUM_PARTIAL;
900 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
901 return skb;
902 }
903 __kfree_skb(skb);
904 } else {
905 sk->sk_prot->enter_memory_pressure(sk);
906 sk_stream_moderate_sndbuf(sk);
907 }
908 return NULL;
909 }
910
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
912 int large_allowed)
913 {
914 struct tcp_sock *tp = tcp_sk(sk);
915 u32 new_size_goal, size_goal;
916
917 if (!large_allowed)
918 return mss_now;
919
920 /* Note : tcp_tso_autosize() will eventually split this later */
921 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
922
923 /* We try hard to avoid divides here */
924 size_goal = tp->gso_segs * mss_now;
925 if (unlikely(new_size_goal < size_goal ||
926 new_size_goal >= size_goal + mss_now)) {
927 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
928 sk->sk_gso_max_segs);
929 size_goal = tp->gso_segs * mss_now;
930 }
931
932 return max(size_goal, mss_now);
933 }
934
tcp_send_mss(struct sock * sk,int * size_goal,int flags)935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
936 {
937 int mss_now;
938
939 mss_now = tcp_current_mss(sk);
940 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
941
942 return mss_now;
943 }
944
945 /* In some cases, sendmsg() could have added an skb to the write queue,
946 * but failed adding payload on it. We need to remove it to consume less
947 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
948 * epoll() users. Another reason is that tcp_write_xmit() does not like
949 * finding an empty skb in the write queue.
950 */
tcp_remove_empty_skb(struct sock * sk)951 void tcp_remove_empty_skb(struct sock *sk)
952 {
953 struct sk_buff *skb = tcp_write_queue_tail(sk);
954
955 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 tcp_wmem_free_skb(sk, skb);
960 }
961 }
962
963 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
965 {
966 if (unlikely(skb_zcopy_pure(skb))) {
967 u32 extra = skb->truesize -
968 SKB_TRUESIZE(skb_end_offset(skb));
969
970 if (!sk_wmem_schedule(sk, extra))
971 return -ENOMEM;
972
973 sk_mem_charge(sk, extra);
974 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
975 }
976 return 0;
977 }
978
979
tcp_wmem_schedule(struct sock * sk,int copy)980 int tcp_wmem_schedule(struct sock *sk, int copy)
981 {
982 int left;
983
984 if (likely(sk_wmem_schedule(sk, copy)))
985 return copy;
986
987 /* We could be in trouble if we have nothing queued.
988 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
989 * to guarantee some progress.
990 */
991 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
992 if (left > 0)
993 sk_forced_mem_schedule(sk, min(left, copy));
994 return min(copy, sk->sk_forward_alloc);
995 }
996
tcp_free_fastopen_req(struct tcp_sock * tp)997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 if (tp->fastopen_req) {
1000 kfree(tp->fastopen_req);
1001 tp->fastopen_req = NULL;
1002 }
1003 }
1004
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006 size_t size, struct ubuf_info *uarg)
1007 {
1008 struct tcp_sock *tp = tcp_sk(sk);
1009 struct inet_sock *inet = inet_sk(sk);
1010 struct sockaddr *uaddr = msg->msg_name;
1011 int err, flags;
1012
1013 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014 TFO_CLIENT_ENABLE) ||
1015 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016 uaddr->sa_family == AF_UNSPEC))
1017 return -EOPNOTSUPP;
1018 if (tp->fastopen_req)
1019 return -EALREADY; /* Another Fast Open is in progress */
1020
1021 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022 sk->sk_allocation);
1023 if (unlikely(!tp->fastopen_req))
1024 return -ENOBUFS;
1025 tp->fastopen_req->data = msg;
1026 tp->fastopen_req->size = size;
1027 tp->fastopen_req->uarg = uarg;
1028
1029 if (inet_test_bit(DEFER_CONNECT, sk)) {
1030 err = tcp_connect(sk);
1031 /* Same failure procedure as in tcp_v4/6_connect */
1032 if (err) {
1033 tcp_set_state(sk, TCP_CLOSE);
1034 inet->inet_dport = 0;
1035 sk->sk_route_caps = 0;
1036 }
1037 }
1038 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039 err = __inet_stream_connect(sk->sk_socket, uaddr,
1040 msg->msg_namelen, flags, 1);
1041 /* fastopen_req could already be freed in __inet_stream_connect
1042 * if the connection times out or gets rst
1043 */
1044 if (tp->fastopen_req) {
1045 *copied = tp->fastopen_req->copied;
1046 tcp_free_fastopen_req(tp);
1047 inet_clear_bit(DEFER_CONNECT, sk);
1048 }
1049 return err;
1050 }
1051
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053 {
1054 struct tcp_sock *tp = tcp_sk(sk);
1055 struct ubuf_info *uarg = NULL;
1056 struct sk_buff *skb;
1057 struct sockcm_cookie sockc;
1058 int flags, err, copied = 0;
1059 int mss_now = 0, size_goal, copied_syn = 0;
1060 int process_backlog = 0;
1061 int zc = 0;
1062 long timeo;
1063
1064 flags = msg->msg_flags;
1065
1066 if ((flags & MSG_ZEROCOPY) && size) {
1067 if (msg->msg_ubuf) {
1068 uarg = msg->msg_ubuf;
1069 if (sk->sk_route_caps & NETIF_F_SG)
1070 zc = MSG_ZEROCOPY;
1071 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072 skb = tcp_write_queue_tail(sk);
1073 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074 if (!uarg) {
1075 err = -ENOBUFS;
1076 goto out_err;
1077 }
1078 if (sk->sk_route_caps & NETIF_F_SG)
1079 zc = MSG_ZEROCOPY;
1080 else
1081 uarg_to_msgzc(uarg)->zerocopy = 0;
1082 }
1083 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084 if (sk->sk_route_caps & NETIF_F_SG)
1085 zc = MSG_SPLICE_PAGES;
1086 }
1087
1088 if (unlikely(flags & MSG_FASTOPEN ||
1089 inet_test_bit(DEFER_CONNECT, sk)) &&
1090 !tp->repair) {
1091 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092 if (err == -EINPROGRESS && copied_syn > 0)
1093 goto out;
1094 else if (err)
1095 goto out_err;
1096 }
1097
1098 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099
1100 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1101
1102 /* Wait for a connection to finish. One exception is TCP Fast Open
1103 * (passive side) where data is allowed to be sent before a connection
1104 * is fully established.
1105 */
1106 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107 !tcp_passive_fastopen(sk)) {
1108 err = sk_stream_wait_connect(sk, &timeo);
1109 if (err != 0)
1110 goto do_error;
1111 }
1112
1113 if (unlikely(tp->repair)) {
1114 if (tp->repair_queue == TCP_RECV_QUEUE) {
1115 copied = tcp_send_rcvq(sk, msg, size);
1116 goto out_nopush;
1117 }
1118
1119 err = -EINVAL;
1120 if (tp->repair_queue == TCP_NO_QUEUE)
1121 goto out_err;
1122
1123 /* 'common' sending to sendq */
1124 }
1125
1126 sockcm_init(&sockc, sk);
1127 if (msg->msg_controllen) {
1128 err = sock_cmsg_send(sk, msg, &sockc);
1129 if (unlikely(err)) {
1130 err = -EINVAL;
1131 goto out_err;
1132 }
1133 }
1134
1135 /* This should be in poll */
1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137
1138 /* Ok commence sending. */
1139 copied = 0;
1140
1141 restart:
1142 mss_now = tcp_send_mss(sk, &size_goal, flags);
1143
1144 err = -EPIPE;
1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 goto do_error;
1147
1148 while (msg_data_left(msg)) {
1149 ssize_t copy = 0;
1150
1151 skb = tcp_write_queue_tail(sk);
1152 if (skb)
1153 copy = size_goal - skb->len;
1154
1155 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1156 bool first_skb;
1157
1158 new_segment:
1159 if (!sk_stream_memory_free(sk))
1160 goto wait_for_space;
1161
1162 if (unlikely(process_backlog >= 16)) {
1163 process_backlog = 0;
1164 if (sk_flush_backlog(sk))
1165 goto restart;
1166 }
1167 first_skb = tcp_rtx_and_write_queues_empty(sk);
1168 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1169 first_skb);
1170 if (!skb)
1171 goto wait_for_space;
1172
1173 process_backlog++;
1174
1175 #ifdef CONFIG_SKB_DECRYPTED
1176 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1177 #endif
1178 tcp_skb_entail(sk, skb);
1179 copy = size_goal;
1180
1181 /* All packets are restored as if they have
1182 * already been sent. skb_mstamp_ns isn't set to
1183 * avoid wrong rtt estimation.
1184 */
1185 if (tp->repair)
1186 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187 }
1188
1189 /* Try to append data to the end of skb. */
1190 if (copy > msg_data_left(msg))
1191 copy = msg_data_left(msg);
1192
1193 if (zc == 0) {
1194 bool merge = true;
1195 int i = skb_shinfo(skb)->nr_frags;
1196 struct page_frag *pfrag = sk_page_frag(sk);
1197
1198 if (!sk_page_frag_refill(sk, pfrag))
1199 goto wait_for_space;
1200
1201 if (!skb_can_coalesce(skb, i, pfrag->page,
1202 pfrag->offset)) {
1203 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1204 tcp_mark_push(tp, skb);
1205 goto new_segment;
1206 }
1207 merge = false;
1208 }
1209
1210 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1211
1212 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1213 if (tcp_downgrade_zcopy_pure(sk, skb))
1214 goto wait_for_space;
1215 skb_zcopy_downgrade_managed(skb);
1216 }
1217
1218 copy = tcp_wmem_schedule(sk, copy);
1219 if (!copy)
1220 goto wait_for_space;
1221
1222 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223 pfrag->page,
1224 pfrag->offset,
1225 copy);
1226 if (err)
1227 goto do_error;
1228
1229 /* Update the skb. */
1230 if (merge) {
1231 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232 } else {
1233 skb_fill_page_desc(skb, i, pfrag->page,
1234 pfrag->offset, copy);
1235 page_ref_inc(pfrag->page);
1236 }
1237 pfrag->offset += copy;
1238 } else if (zc == MSG_ZEROCOPY) {
1239 /* First append to a fragless skb builds initial
1240 * pure zerocopy skb
1241 */
1242 if (!skb->len)
1243 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1244
1245 if (!skb_zcopy_pure(skb)) {
1246 copy = tcp_wmem_schedule(sk, copy);
1247 if (!copy)
1248 goto wait_for_space;
1249 }
1250
1251 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1252 if (err == -EMSGSIZE || err == -EEXIST) {
1253 tcp_mark_push(tp, skb);
1254 goto new_segment;
1255 }
1256 if (err < 0)
1257 goto do_error;
1258 copy = err;
1259 } else if (zc == MSG_SPLICE_PAGES) {
1260 /* Splice in data if we can; copy if we can't. */
1261 if (tcp_downgrade_zcopy_pure(sk, skb))
1262 goto wait_for_space;
1263 copy = tcp_wmem_schedule(sk, copy);
1264 if (!copy)
1265 goto wait_for_space;
1266
1267 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1268 sk->sk_allocation);
1269 if (err < 0) {
1270 if (err == -EMSGSIZE) {
1271 tcp_mark_push(tp, skb);
1272 goto new_segment;
1273 }
1274 goto do_error;
1275 }
1276 copy = err;
1277
1278 if (!(flags & MSG_NO_SHARED_FRAGS))
1279 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1280
1281 sk_wmem_queued_add(sk, copy);
1282 sk_mem_charge(sk, copy);
1283 }
1284
1285 if (!copied)
1286 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1287
1288 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1289 TCP_SKB_CB(skb)->end_seq += copy;
1290 tcp_skb_pcount_set(skb, 0);
1291
1292 copied += copy;
1293 if (!msg_data_left(msg)) {
1294 if (unlikely(flags & MSG_EOR))
1295 TCP_SKB_CB(skb)->eor = 1;
1296 goto out;
1297 }
1298
1299 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1300 continue;
1301
1302 if (forced_push(tp)) {
1303 tcp_mark_push(tp, skb);
1304 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1305 } else if (skb == tcp_send_head(sk))
1306 tcp_push_one(sk, mss_now);
1307 continue;
1308
1309 wait_for_space:
1310 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311 tcp_remove_empty_skb(sk);
1312 if (copied)
1313 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1314 TCP_NAGLE_PUSH, size_goal);
1315
1316 err = sk_stream_wait_memory(sk, &timeo);
1317 if (err != 0)
1318 goto do_error;
1319
1320 mss_now = tcp_send_mss(sk, &size_goal, flags);
1321 }
1322
1323 out:
1324 if (copied) {
1325 tcp_tx_timestamp(sk, &sockc);
1326 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1327 }
1328 out_nopush:
1329 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330 if (uarg && !msg->msg_ubuf)
1331 net_zcopy_put(uarg);
1332 return copied + copied_syn;
1333
1334 do_error:
1335 tcp_remove_empty_skb(sk);
1336
1337 if (copied + copied_syn)
1338 goto out;
1339 out_err:
1340 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1341 if (uarg && !msg->msg_ubuf)
1342 net_zcopy_put_abort(uarg, true);
1343 err = sk_stream_error(sk, flags, err);
1344 /* make sure we wake any epoll edge trigger waiter */
1345 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1346 sk->sk_write_space(sk);
1347 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1348 }
1349 return err;
1350 }
1351 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1352
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1354 {
1355 int ret;
1356
1357 lock_sock(sk);
1358 ret = tcp_sendmsg_locked(sk, msg, size);
1359 release_sock(sk);
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(tcp_sendmsg);
1364
tcp_splice_eof(struct socket * sock)1365 void tcp_splice_eof(struct socket *sock)
1366 {
1367 struct sock *sk = sock->sk;
1368 struct tcp_sock *tp = tcp_sk(sk);
1369 int mss_now, size_goal;
1370
1371 if (!tcp_write_queue_tail(sk))
1372 return;
1373
1374 lock_sock(sk);
1375 mss_now = tcp_send_mss(sk, &size_goal, 0);
1376 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1377 release_sock(sk);
1378 }
1379 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1380
1381 /*
1382 * Handle reading urgent data. BSD has very simple semantics for
1383 * this, no blocking and very strange errors 8)
1384 */
1385
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1386 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389
1390 /* No URG data to read. */
1391 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1392 tp->urg_data == TCP_URG_READ)
1393 return -EINVAL; /* Yes this is right ! */
1394
1395 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1396 return -ENOTCONN;
1397
1398 if (tp->urg_data & TCP_URG_VALID) {
1399 int err = 0;
1400 char c = tp->urg_data;
1401
1402 if (!(flags & MSG_PEEK))
1403 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1404
1405 /* Read urgent data. */
1406 msg->msg_flags |= MSG_OOB;
1407
1408 if (len > 0) {
1409 if (!(flags & MSG_TRUNC))
1410 err = memcpy_to_msg(msg, &c, 1);
1411 len = 1;
1412 } else
1413 msg->msg_flags |= MSG_TRUNC;
1414
1415 return err ? -EFAULT : len;
1416 }
1417
1418 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1419 return 0;
1420
1421 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1422 * the available implementations agree in this case:
1423 * this call should never block, independent of the
1424 * blocking state of the socket.
1425 * Mike <pall@rz.uni-karlsruhe.de>
1426 */
1427 return -EAGAIN;
1428 }
1429
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1430 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1431 {
1432 struct sk_buff *skb;
1433 int copied = 0, err = 0;
1434
1435 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1436 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1437 if (err)
1438 return err;
1439 copied += skb->len;
1440 }
1441
1442 skb_queue_walk(&sk->sk_write_queue, skb) {
1443 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1444 if (err)
1445 break;
1446
1447 copied += skb->len;
1448 }
1449
1450 return err ?: copied;
1451 }
1452
1453 /* Clean up the receive buffer for full frames taken by the user,
1454 * then send an ACK if necessary. COPIED is the number of bytes
1455 * tcp_recvmsg has given to the user so far, it speeds up the
1456 * calculation of whether or not we must ACK for the sake of
1457 * a window update.
1458 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1459 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462 bool time_to_ack = false;
1463
1464 if (inet_csk_ack_scheduled(sk)) {
1465 const struct inet_connection_sock *icsk = inet_csk(sk);
1466
1467 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1468 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1469 /*
1470 * If this read emptied read buffer, we send ACK, if
1471 * connection is not bidirectional, user drained
1472 * receive buffer and there was a small segment
1473 * in queue.
1474 */
1475 (copied > 0 &&
1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1477 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1478 !inet_csk_in_pingpong_mode(sk))) &&
1479 !atomic_read(&sk->sk_rmem_alloc)))
1480 time_to_ack = true;
1481 }
1482
1483 /* We send an ACK if we can now advertise a non-zero window
1484 * which has been raised "significantly".
1485 *
1486 * Even if window raised up to infinity, do not send window open ACK
1487 * in states, where we will not receive more. It is useless.
1488 */
1489 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1490 __u32 rcv_window_now = tcp_receive_window(tp);
1491
1492 /* Optimize, __tcp_select_window() is not cheap. */
1493 if (2*rcv_window_now <= tp->window_clamp) {
1494 __u32 new_window = __tcp_select_window(sk);
1495
1496 /* Send ACK now, if this read freed lots of space
1497 * in our buffer. Certainly, new_window is new window.
1498 * We can advertise it now, if it is not less than current one.
1499 * "Lots" means "at least twice" here.
1500 */
1501 if (new_window && new_window >= 2 * rcv_window_now)
1502 time_to_ack = true;
1503 }
1504 }
1505 if (time_to_ack)
1506 tcp_send_ack(sk);
1507 }
1508
tcp_cleanup_rbuf(struct sock * sk,int copied)1509 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1510 {
1511 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1512 struct tcp_sock *tp = tcp_sk(sk);
1513
1514 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1515 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1516 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1517 __tcp_cleanup_rbuf(sk, copied);
1518 }
1519
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1520 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1521 {
1522 __skb_unlink(skb, &sk->sk_receive_queue);
1523 if (likely(skb->destructor == sock_rfree)) {
1524 sock_rfree(skb);
1525 skb->destructor = NULL;
1526 skb->sk = NULL;
1527 return skb_attempt_defer_free(skb);
1528 }
1529 __kfree_skb(skb);
1530 }
1531
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1532 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1533 {
1534 struct sk_buff *skb;
1535 u32 offset;
1536
1537 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1538 offset = seq - TCP_SKB_CB(skb)->seq;
1539 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1540 pr_err_once("%s: found a SYN, please report !\n", __func__);
1541 offset--;
1542 }
1543 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1544 *off = offset;
1545 return skb;
1546 }
1547 /* This looks weird, but this can happen if TCP collapsing
1548 * splitted a fat GRO packet, while we released socket lock
1549 * in skb_splice_bits()
1550 */
1551 tcp_eat_recv_skb(sk, skb);
1552 }
1553 return NULL;
1554 }
1555 EXPORT_SYMBOL(tcp_recv_skb);
1556
1557 /*
1558 * This routine provides an alternative to tcp_recvmsg() for routines
1559 * that would like to handle copying from skbuffs directly in 'sendfile'
1560 * fashion.
1561 * Note:
1562 * - It is assumed that the socket was locked by the caller.
1563 * - The routine does not block.
1564 * - At present, there is no support for reading OOB data
1565 * or for 'peeking' the socket using this routine
1566 * (although both would be easy to implement).
1567 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1568 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1569 sk_read_actor_t recv_actor)
1570 {
1571 struct sk_buff *skb;
1572 struct tcp_sock *tp = tcp_sk(sk);
1573 u32 seq = tp->copied_seq;
1574 u32 offset;
1575 int copied = 0;
1576
1577 if (sk->sk_state == TCP_LISTEN)
1578 return -ENOTCONN;
1579 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1580 if (offset < skb->len) {
1581 int used;
1582 size_t len;
1583
1584 len = skb->len - offset;
1585 /* Stop reading if we hit a patch of urgent data */
1586 if (unlikely(tp->urg_data)) {
1587 u32 urg_offset = tp->urg_seq - seq;
1588 if (urg_offset < len)
1589 len = urg_offset;
1590 if (!len)
1591 break;
1592 }
1593 used = recv_actor(desc, skb, offset, len);
1594 if (used <= 0) {
1595 if (!copied)
1596 copied = used;
1597 break;
1598 }
1599 if (WARN_ON_ONCE(used > len))
1600 used = len;
1601 seq += used;
1602 copied += used;
1603 offset += used;
1604
1605 /* If recv_actor drops the lock (e.g. TCP splice
1606 * receive) the skb pointer might be invalid when
1607 * getting here: tcp_collapse might have deleted it
1608 * while aggregating skbs from the socket queue.
1609 */
1610 skb = tcp_recv_skb(sk, seq - 1, &offset);
1611 if (!skb)
1612 break;
1613 /* TCP coalescing might have appended data to the skb.
1614 * Try to splice more frags
1615 */
1616 if (offset + 1 != skb->len)
1617 continue;
1618 }
1619 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1620 tcp_eat_recv_skb(sk, skb);
1621 ++seq;
1622 break;
1623 }
1624 tcp_eat_recv_skb(sk, skb);
1625 if (!desc->count)
1626 break;
1627 WRITE_ONCE(tp->copied_seq, seq);
1628 }
1629 WRITE_ONCE(tp->copied_seq, seq);
1630
1631 tcp_rcv_space_adjust(sk);
1632
1633 /* Clean up data we have read: This will do ACK frames. */
1634 if (copied > 0) {
1635 tcp_recv_skb(sk, seq, &offset);
1636 tcp_cleanup_rbuf(sk, copied);
1637 }
1638 return copied;
1639 }
1640 EXPORT_SYMBOL(tcp_read_sock);
1641
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1642 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1643 {
1644 struct sk_buff *skb;
1645 int copied = 0;
1646
1647 if (sk->sk_state == TCP_LISTEN)
1648 return -ENOTCONN;
1649
1650 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1651 u8 tcp_flags;
1652 int used;
1653
1654 __skb_unlink(skb, &sk->sk_receive_queue);
1655 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1656 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1657 used = recv_actor(sk, skb);
1658 if (used < 0) {
1659 if (!copied)
1660 copied = used;
1661 break;
1662 }
1663 copied += used;
1664
1665 if (tcp_flags & TCPHDR_FIN)
1666 break;
1667 }
1668 return copied;
1669 }
1670 EXPORT_SYMBOL(tcp_read_skb);
1671
tcp_read_done(struct sock * sk,size_t len)1672 void tcp_read_done(struct sock *sk, size_t len)
1673 {
1674 struct tcp_sock *tp = tcp_sk(sk);
1675 u32 seq = tp->copied_seq;
1676 struct sk_buff *skb;
1677 size_t left;
1678 u32 offset;
1679
1680 if (sk->sk_state == TCP_LISTEN)
1681 return;
1682
1683 left = len;
1684 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1685 int used;
1686
1687 used = min_t(size_t, skb->len - offset, left);
1688 seq += used;
1689 left -= used;
1690
1691 if (skb->len > offset + used)
1692 break;
1693
1694 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1695 tcp_eat_recv_skb(sk, skb);
1696 ++seq;
1697 break;
1698 }
1699 tcp_eat_recv_skb(sk, skb);
1700 }
1701 WRITE_ONCE(tp->copied_seq, seq);
1702
1703 tcp_rcv_space_adjust(sk);
1704
1705 /* Clean up data we have read: This will do ACK frames. */
1706 if (left != len)
1707 tcp_cleanup_rbuf(sk, len - left);
1708 }
1709 EXPORT_SYMBOL(tcp_read_done);
1710
tcp_peek_len(struct socket * sock)1711 int tcp_peek_len(struct socket *sock)
1712 {
1713 return tcp_inq(sock->sk);
1714 }
1715 EXPORT_SYMBOL(tcp_peek_len);
1716
1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1718 int tcp_set_rcvlowat(struct sock *sk, int val)
1719 {
1720 int space, cap;
1721
1722 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 cap = sk->sk_rcvbuf >> 1;
1724 else
1725 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726 val = min(val, cap);
1727 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728
1729 /* Check if we need to signal EPOLLIN right now */
1730 tcp_data_ready(sk);
1731
1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 return 0;
1734
1735 space = tcp_space_from_win(sk, val);
1736 if (space > sk->sk_rcvbuf) {
1737 WRITE_ONCE(sk->sk_rcvbuf, space);
1738 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1739 }
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_set_rcvlowat);
1743
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1744 void tcp_update_recv_tstamps(struct sk_buff *skb,
1745 struct scm_timestamping_internal *tss)
1746 {
1747 if (skb->tstamp)
1748 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749 else
1750 tss->ts[0] = (struct timespec64) {0};
1751
1752 if (skb_hwtstamps(skb)->hwtstamp)
1753 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754 else
1755 tss->ts[2] = (struct timespec64) {0};
1756 }
1757
1758 #ifdef CONFIG_MMU
1759 static const struct vm_operations_struct tcp_vm_ops = {
1760 };
1761
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1762 int tcp_mmap(struct file *file, struct socket *sock,
1763 struct vm_area_struct *vma)
1764 {
1765 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766 return -EPERM;
1767 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1768
1769 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770 vm_flags_set(vma, VM_MIXEDMAP);
1771
1772 vma->vm_ops = &tcp_vm_ops;
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(tcp_mmap);
1776
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778 u32 *offset_frag)
1779 {
1780 skb_frag_t *frag;
1781
1782 if (unlikely(offset_skb >= skb->len))
1783 return NULL;
1784
1785 offset_skb -= skb_headlen(skb);
1786 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787 return NULL;
1788
1789 frag = skb_shinfo(skb)->frags;
1790 while (offset_skb) {
1791 if (skb_frag_size(frag) > offset_skb) {
1792 *offset_frag = offset_skb;
1793 return frag;
1794 }
1795 offset_skb -= skb_frag_size(frag);
1796 ++frag;
1797 }
1798 *offset_frag = 0;
1799 return frag;
1800 }
1801
can_map_frag(const skb_frag_t * frag)1802 static bool can_map_frag(const skb_frag_t *frag)
1803 {
1804 struct page *page;
1805
1806 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807 return false;
1808
1809 page = skb_frag_page(frag);
1810
1811 if (PageCompound(page) || page->mapping)
1812 return false;
1813
1814 return true;
1815 }
1816
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1817 static int find_next_mappable_frag(const skb_frag_t *frag,
1818 int remaining_in_skb)
1819 {
1820 int offset = 0;
1821
1822 if (likely(can_map_frag(frag)))
1823 return 0;
1824
1825 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826 offset += skb_frag_size(frag);
1827 ++frag;
1828 }
1829 return offset;
1830 }
1831
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833 struct tcp_zerocopy_receive *zc,
1834 struct sk_buff *skb, u32 offset)
1835 {
1836 u32 frag_offset, partial_frag_remainder = 0;
1837 int mappable_offset;
1838 skb_frag_t *frag;
1839
1840 /* worst case: skip to next skb. try to improve on this case below */
1841 zc->recv_skip_hint = skb->len - offset;
1842
1843 /* Find the frag containing this offset (and how far into that frag) */
1844 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845 if (!frag)
1846 return;
1847
1848 if (frag_offset) {
1849 struct skb_shared_info *info = skb_shinfo(skb);
1850
1851 /* We read part of the last frag, must recvmsg() rest of skb. */
1852 if (frag == &info->frags[info->nr_frags - 1])
1853 return;
1854
1855 /* Else, we must at least read the remainder in this frag. */
1856 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857 zc->recv_skip_hint -= partial_frag_remainder;
1858 ++frag;
1859 }
1860
1861 /* partial_frag_remainder: If part way through a frag, must read rest.
1862 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863 * in partial_frag_remainder.
1864 */
1865 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867 }
1868
1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870 int flags, struct scm_timestamping_internal *tss,
1871 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1872 static int receive_fallback_to_copy(struct sock *sk,
1873 struct tcp_zerocopy_receive *zc, int inq,
1874 struct scm_timestamping_internal *tss)
1875 {
1876 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1877 struct msghdr msg = {};
1878 int err;
1879
1880 zc->length = 0;
1881 zc->recv_skip_hint = 0;
1882
1883 if (copy_address != zc->copybuf_address)
1884 return -EINVAL;
1885
1886 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1887 &msg.msg_iter);
1888 if (err)
1889 return err;
1890
1891 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1892 tss, &zc->msg_flags);
1893 if (err < 0)
1894 return err;
1895
1896 zc->copybuf_len = err;
1897 if (likely(zc->copybuf_len)) {
1898 struct sk_buff *skb;
1899 u32 offset;
1900
1901 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1902 if (skb)
1903 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1904 }
1905 return 0;
1906 }
1907
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1908 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1909 struct sk_buff *skb, u32 copylen,
1910 u32 *offset, u32 *seq)
1911 {
1912 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1913 struct msghdr msg = {};
1914 int err;
1915
1916 if (copy_address != zc->copybuf_address)
1917 return -EINVAL;
1918
1919 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1920 &msg.msg_iter);
1921 if (err)
1922 return err;
1923 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1924 if (err)
1925 return err;
1926 zc->recv_skip_hint -= copylen;
1927 *offset += copylen;
1928 *seq += copylen;
1929 return (__s32)copylen;
1930 }
1931
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1932 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1933 struct sock *sk,
1934 struct sk_buff *skb,
1935 u32 *seq,
1936 s32 copybuf_len,
1937 struct scm_timestamping_internal *tss)
1938 {
1939 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1940
1941 if (!copylen)
1942 return 0;
1943 /* skb is null if inq < PAGE_SIZE. */
1944 if (skb) {
1945 offset = *seq - TCP_SKB_CB(skb)->seq;
1946 } else {
1947 skb = tcp_recv_skb(sk, *seq, &offset);
1948 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1949 tcp_update_recv_tstamps(skb, tss);
1950 zc->msg_flags |= TCP_CMSG_TS;
1951 }
1952 }
1953
1954 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1955 seq);
1956 return zc->copybuf_len < 0 ? 0 : copylen;
1957 }
1958
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1959 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1960 struct page **pending_pages,
1961 unsigned long pages_remaining,
1962 unsigned long *address,
1963 u32 *length,
1964 u32 *seq,
1965 struct tcp_zerocopy_receive *zc,
1966 u32 total_bytes_to_map,
1967 int err)
1968 {
1969 /* At least one page did not map. Try zapping if we skipped earlier. */
1970 if (err == -EBUSY &&
1971 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1972 u32 maybe_zap_len;
1973
1974 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1975 *length + /* Mapped or pending */
1976 (pages_remaining * PAGE_SIZE); /* Failed map. */
1977 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1978 err = 0;
1979 }
1980
1981 if (!err) {
1982 unsigned long leftover_pages = pages_remaining;
1983 int bytes_mapped;
1984
1985 /* We called zap_page_range_single, try to reinsert. */
1986 err = vm_insert_pages(vma, *address,
1987 pending_pages,
1988 &pages_remaining);
1989 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1990 *seq += bytes_mapped;
1991 *address += bytes_mapped;
1992 }
1993 if (err) {
1994 /* Either we were unable to zap, OR we zapped, retried an
1995 * insert, and still had an issue. Either ways, pages_remaining
1996 * is the number of pages we were unable to map, and we unroll
1997 * some state we speculatively touched before.
1998 */
1999 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2000
2001 *length -= bytes_not_mapped;
2002 zc->recv_skip_hint += bytes_not_mapped;
2003 }
2004 return err;
2005 }
2006
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2007 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2008 struct page **pages,
2009 unsigned int pages_to_map,
2010 unsigned long *address,
2011 u32 *length,
2012 u32 *seq,
2013 struct tcp_zerocopy_receive *zc,
2014 u32 total_bytes_to_map)
2015 {
2016 unsigned long pages_remaining = pages_to_map;
2017 unsigned int pages_mapped;
2018 unsigned int bytes_mapped;
2019 int err;
2020
2021 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2022 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2023 bytes_mapped = PAGE_SIZE * pages_mapped;
2024 /* Even if vm_insert_pages fails, it may have partially succeeded in
2025 * mapping (some but not all of the pages).
2026 */
2027 *seq += bytes_mapped;
2028 *address += bytes_mapped;
2029
2030 if (likely(!err))
2031 return 0;
2032
2033 /* Error: maybe zap and retry + rollback state for failed inserts. */
2034 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2035 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2036 err);
2037 }
2038
2039 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2040 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2041 struct tcp_zerocopy_receive *zc,
2042 struct scm_timestamping_internal *tss)
2043 {
2044 unsigned long msg_control_addr;
2045 struct msghdr cmsg_dummy;
2046
2047 msg_control_addr = (unsigned long)zc->msg_control;
2048 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2049 cmsg_dummy.msg_controllen =
2050 (__kernel_size_t)zc->msg_controllen;
2051 cmsg_dummy.msg_flags = in_compat_syscall()
2052 ? MSG_CMSG_COMPAT : 0;
2053 cmsg_dummy.msg_control_is_user = true;
2054 zc->msg_flags = 0;
2055 if (zc->msg_control == msg_control_addr &&
2056 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2057 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2058 zc->msg_control = (__u64)
2059 ((uintptr_t)cmsg_dummy.msg_control_user);
2060 zc->msg_controllen =
2061 (__u64)cmsg_dummy.msg_controllen;
2062 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2063 }
2064 }
2065
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2066 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2067 unsigned long address,
2068 bool *mmap_locked)
2069 {
2070 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2071
2072 if (vma) {
2073 if (vma->vm_ops != &tcp_vm_ops) {
2074 vma_end_read(vma);
2075 return NULL;
2076 }
2077 *mmap_locked = false;
2078 return vma;
2079 }
2080
2081 mmap_read_lock(mm);
2082 vma = vma_lookup(mm, address);
2083 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2084 mmap_read_unlock(mm);
2085 return NULL;
2086 }
2087 *mmap_locked = true;
2088 return vma;
2089 }
2090
2091 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2092 static int tcp_zerocopy_receive(struct sock *sk,
2093 struct tcp_zerocopy_receive *zc,
2094 struct scm_timestamping_internal *tss)
2095 {
2096 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2097 unsigned long address = (unsigned long)zc->address;
2098 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2099 s32 copybuf_len = zc->copybuf_len;
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 const skb_frag_t *frags = NULL;
2102 unsigned int pages_to_map = 0;
2103 struct vm_area_struct *vma;
2104 struct sk_buff *skb = NULL;
2105 u32 seq = tp->copied_seq;
2106 u32 total_bytes_to_map;
2107 int inq = tcp_inq(sk);
2108 bool mmap_locked;
2109 int ret;
2110
2111 zc->copybuf_len = 0;
2112 zc->msg_flags = 0;
2113
2114 if (address & (PAGE_SIZE - 1) || address != zc->address)
2115 return -EINVAL;
2116
2117 if (sk->sk_state == TCP_LISTEN)
2118 return -ENOTCONN;
2119
2120 sock_rps_record_flow(sk);
2121
2122 if (inq && inq <= copybuf_len)
2123 return receive_fallback_to_copy(sk, zc, inq, tss);
2124
2125 if (inq < PAGE_SIZE) {
2126 zc->length = 0;
2127 zc->recv_skip_hint = inq;
2128 if (!inq && sock_flag(sk, SOCK_DONE))
2129 return -EIO;
2130 return 0;
2131 }
2132
2133 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2134 if (!vma)
2135 return -EINVAL;
2136
2137 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2138 avail_len = min_t(u32, vma_len, inq);
2139 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2140 if (total_bytes_to_map) {
2141 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2142 zap_page_range_single(vma, address, total_bytes_to_map,
2143 NULL);
2144 zc->length = total_bytes_to_map;
2145 zc->recv_skip_hint = 0;
2146 } else {
2147 zc->length = avail_len;
2148 zc->recv_skip_hint = avail_len;
2149 }
2150 ret = 0;
2151 while (length + PAGE_SIZE <= zc->length) {
2152 int mappable_offset;
2153 struct page *page;
2154
2155 if (zc->recv_skip_hint < PAGE_SIZE) {
2156 u32 offset_frag;
2157
2158 if (skb) {
2159 if (zc->recv_skip_hint > 0)
2160 break;
2161 skb = skb->next;
2162 offset = seq - TCP_SKB_CB(skb)->seq;
2163 } else {
2164 skb = tcp_recv_skb(sk, seq, &offset);
2165 }
2166
2167 if (!skb_frags_readable(skb))
2168 break;
2169
2170 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2171 tcp_update_recv_tstamps(skb, tss);
2172 zc->msg_flags |= TCP_CMSG_TS;
2173 }
2174 zc->recv_skip_hint = skb->len - offset;
2175 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2176 if (!frags || offset_frag)
2177 break;
2178 }
2179
2180 mappable_offset = find_next_mappable_frag(frags,
2181 zc->recv_skip_hint);
2182 if (mappable_offset) {
2183 zc->recv_skip_hint = mappable_offset;
2184 break;
2185 }
2186 page = skb_frag_page(frags);
2187 if (WARN_ON_ONCE(!page))
2188 break;
2189
2190 prefetchw(page);
2191 pages[pages_to_map++] = page;
2192 length += PAGE_SIZE;
2193 zc->recv_skip_hint -= PAGE_SIZE;
2194 frags++;
2195 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2196 zc->recv_skip_hint < PAGE_SIZE) {
2197 /* Either full batch, or we're about to go to next skb
2198 * (and we cannot unroll failed ops across skbs).
2199 */
2200 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2201 pages_to_map,
2202 &address, &length,
2203 &seq, zc,
2204 total_bytes_to_map);
2205 if (ret)
2206 goto out;
2207 pages_to_map = 0;
2208 }
2209 }
2210 if (pages_to_map) {
2211 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2212 &address, &length, &seq,
2213 zc, total_bytes_to_map);
2214 }
2215 out:
2216 if (mmap_locked)
2217 mmap_read_unlock(current->mm);
2218 else
2219 vma_end_read(vma);
2220 /* Try to copy straggler data. */
2221 if (!ret)
2222 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2223
2224 if (length + copylen) {
2225 WRITE_ONCE(tp->copied_seq, seq);
2226 tcp_rcv_space_adjust(sk);
2227
2228 /* Clean up data we have read: This will do ACK frames. */
2229 tcp_recv_skb(sk, seq, &offset);
2230 tcp_cleanup_rbuf(sk, length + copylen);
2231 ret = 0;
2232 if (length == zc->length)
2233 zc->recv_skip_hint = 0;
2234 } else {
2235 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2236 ret = -EIO;
2237 }
2238 zc->length = length;
2239 return ret;
2240 }
2241 #endif
2242
2243 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2244 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2245 struct scm_timestamping_internal *tss)
2246 {
2247 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2248 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2249 bool has_timestamping = false;
2250
2251 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2252 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2253 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2254 if (new_tstamp) {
2255 struct __kernel_timespec kts = {
2256 .tv_sec = tss->ts[0].tv_sec,
2257 .tv_nsec = tss->ts[0].tv_nsec,
2258 };
2259 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2260 sizeof(kts), &kts);
2261 } else {
2262 struct __kernel_old_timespec ts_old = {
2263 .tv_sec = tss->ts[0].tv_sec,
2264 .tv_nsec = tss->ts[0].tv_nsec,
2265 };
2266 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2267 sizeof(ts_old), &ts_old);
2268 }
2269 } else {
2270 if (new_tstamp) {
2271 struct __kernel_sock_timeval stv = {
2272 .tv_sec = tss->ts[0].tv_sec,
2273 .tv_usec = tss->ts[0].tv_nsec / 1000,
2274 };
2275 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2276 sizeof(stv), &stv);
2277 } else {
2278 struct __kernel_old_timeval tv = {
2279 .tv_sec = tss->ts[0].tv_sec,
2280 .tv_usec = tss->ts[0].tv_nsec / 1000,
2281 };
2282 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2283 sizeof(tv), &tv);
2284 }
2285 }
2286 }
2287
2288 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2289 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2290 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2291 has_timestamping = true;
2292 else
2293 tss->ts[0] = (struct timespec64) {0};
2294 }
2295
2296 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2298 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2299 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2300 has_timestamping = true;
2301 else
2302 tss->ts[2] = (struct timespec64) {0};
2303 }
2304
2305 if (has_timestamping) {
2306 tss->ts[1] = (struct timespec64) {0};
2307 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2308 put_cmsg_scm_timestamping64(msg, tss);
2309 else
2310 put_cmsg_scm_timestamping(msg, tss);
2311 }
2312 }
2313
tcp_inq_hint(struct sock * sk)2314 static int tcp_inq_hint(struct sock *sk)
2315 {
2316 const struct tcp_sock *tp = tcp_sk(sk);
2317 u32 copied_seq = READ_ONCE(tp->copied_seq);
2318 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2319 int inq;
2320
2321 inq = rcv_nxt - copied_seq;
2322 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2323 lock_sock(sk);
2324 inq = tp->rcv_nxt - tp->copied_seq;
2325 release_sock(sk);
2326 }
2327 /* After receiving a FIN, tell the user-space to continue reading
2328 * by returning a non-zero inq.
2329 */
2330 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2331 inq = 1;
2332 return inq;
2333 }
2334
2335 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2336 struct tcp_xa_pool {
2337 u8 max; /* max <= MAX_SKB_FRAGS */
2338 u8 idx; /* idx <= max */
2339 __u32 tokens[MAX_SKB_FRAGS];
2340 netmem_ref netmems[MAX_SKB_FRAGS];
2341 };
2342
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2343 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2344 {
2345 int i;
2346
2347 /* Commit part that has been copied to user space. */
2348 for (i = 0; i < p->idx; i++)
2349 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2350 (__force void *)p->netmems[i], GFP_KERNEL);
2351 /* Rollback what has been pre-allocated and is no longer needed. */
2352 for (; i < p->max; i++)
2353 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2354
2355 p->max = 0;
2356 p->idx = 0;
2357 }
2358
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2359 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2360 {
2361 if (!p->max)
2362 return;
2363
2364 xa_lock_bh(&sk->sk_user_frags);
2365
2366 tcp_xa_pool_commit_locked(sk, p);
2367
2368 xa_unlock_bh(&sk->sk_user_frags);
2369 }
2370
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2371 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2372 unsigned int max_frags)
2373 {
2374 int err, k;
2375
2376 if (p->idx < p->max)
2377 return 0;
2378
2379 xa_lock_bh(&sk->sk_user_frags);
2380
2381 tcp_xa_pool_commit_locked(sk, p);
2382
2383 for (k = 0; k < max_frags; k++) {
2384 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2385 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2386 if (err)
2387 break;
2388 }
2389
2390 xa_unlock_bh(&sk->sk_user_frags);
2391
2392 p->max = k;
2393 p->idx = 0;
2394 return k ? 0 : err;
2395 }
2396
2397 /* On error, returns the -errno. On success, returns number of bytes sent to the
2398 * user. May not consume all of @remaining_len.
2399 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2400 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2401 unsigned int offset, struct msghdr *msg,
2402 int remaining_len)
2403 {
2404 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2405 struct tcp_xa_pool tcp_xa_pool;
2406 unsigned int start;
2407 int i, copy, n;
2408 int sent = 0;
2409 int err = 0;
2410
2411 tcp_xa_pool.max = 0;
2412 tcp_xa_pool.idx = 0;
2413 do {
2414 start = skb_headlen(skb);
2415
2416 if (skb_frags_readable(skb)) {
2417 err = -ENODEV;
2418 goto out;
2419 }
2420
2421 /* Copy header. */
2422 copy = start - offset;
2423 if (copy > 0) {
2424 copy = min(copy, remaining_len);
2425
2426 n = copy_to_iter(skb->data + offset, copy,
2427 &msg->msg_iter);
2428 if (n != copy) {
2429 err = -EFAULT;
2430 goto out;
2431 }
2432
2433 offset += copy;
2434 remaining_len -= copy;
2435
2436 /* First a dmabuf_cmsg for # bytes copied to user
2437 * buffer.
2438 */
2439 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2440 dmabuf_cmsg.frag_size = copy;
2441 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR,
2442 sizeof(dmabuf_cmsg), &dmabuf_cmsg);
2443 if (err || msg->msg_flags & MSG_CTRUNC) {
2444 msg->msg_flags &= ~MSG_CTRUNC;
2445 if (!err)
2446 err = -ETOOSMALL;
2447 goto out;
2448 }
2449
2450 sent += copy;
2451
2452 if (remaining_len == 0)
2453 goto out;
2454 }
2455
2456 /* after that, send information of dmabuf pages through a
2457 * sequence of cmsg
2458 */
2459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 struct net_iov *niov;
2462 u64 frag_offset;
2463 int end;
2464
2465 /* !skb_frags_readable() should indicate that ALL the
2466 * frags in this skb are dmabuf net_iovs. We're checking
2467 * for that flag above, but also check individual frags
2468 * here. If the tcp stack is not setting
2469 * skb_frags_readable() correctly, we still don't want
2470 * to crash here.
2471 */
2472 if (!skb_frag_net_iov(frag)) {
2473 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2474 err = -ENODEV;
2475 goto out;
2476 }
2477
2478 niov = skb_frag_net_iov(frag);
2479 end = start + skb_frag_size(frag);
2480 copy = end - offset;
2481
2482 if (copy > 0) {
2483 copy = min(copy, remaining_len);
2484
2485 frag_offset = net_iov_virtual_addr(niov) +
2486 skb_frag_off(frag) + offset -
2487 start;
2488 dmabuf_cmsg.frag_offset = frag_offset;
2489 dmabuf_cmsg.frag_size = copy;
2490 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2491 skb_shinfo(skb)->nr_frags - i);
2492 if (err)
2493 goto out;
2494
2495 /* Will perform the exchange later */
2496 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2497 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2498
2499 offset += copy;
2500 remaining_len -= copy;
2501
2502 err = put_cmsg(msg, SOL_SOCKET,
2503 SO_DEVMEM_DMABUF,
2504 sizeof(dmabuf_cmsg),
2505 &dmabuf_cmsg);
2506 if (err || msg->msg_flags & MSG_CTRUNC) {
2507 msg->msg_flags &= ~MSG_CTRUNC;
2508 if (!err)
2509 err = -ETOOSMALL;
2510 goto out;
2511 }
2512
2513 atomic_long_inc(&niov->pp_ref_count);
2514 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2515
2516 sent += copy;
2517
2518 if (remaining_len == 0)
2519 goto out;
2520 }
2521 start = end;
2522 }
2523
2524 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2525 if (!remaining_len)
2526 goto out;
2527
2528 /* if remaining_len is not satisfied yet, we need to go to the
2529 * next frag in the frag_list to satisfy remaining_len.
2530 */
2531 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2532
2533 offset = offset - start;
2534 } while (skb);
2535
2536 if (remaining_len) {
2537 err = -EFAULT;
2538 goto out;
2539 }
2540
2541 out:
2542 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2543 if (!sent)
2544 sent = err;
2545
2546 return sent;
2547 }
2548
2549 /*
2550 * This routine copies from a sock struct into the user buffer.
2551 *
2552 * Technical note: in 2.3 we work on _locked_ socket, so that
2553 * tricks with *seq access order and skb->users are not required.
2554 * Probably, code can be easily improved even more.
2555 */
2556
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2557 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2558 int flags, struct scm_timestamping_internal *tss,
2559 int *cmsg_flags)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 int last_copied_dmabuf = -1; /* uninitialized */
2563 int copied = 0;
2564 u32 peek_seq;
2565 u32 *seq;
2566 unsigned long used;
2567 int err;
2568 int target; /* Read at least this many bytes */
2569 long timeo;
2570 struct sk_buff *skb, *last;
2571 u32 peek_offset = 0;
2572 u32 urg_hole = 0;
2573
2574 err = -ENOTCONN;
2575 if (sk->sk_state == TCP_LISTEN)
2576 goto out;
2577
2578 if (tp->recvmsg_inq) {
2579 *cmsg_flags = TCP_CMSG_INQ;
2580 msg->msg_get_inq = 1;
2581 }
2582 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2583
2584 /* Urgent data needs to be handled specially. */
2585 if (flags & MSG_OOB)
2586 goto recv_urg;
2587
2588 if (unlikely(tp->repair)) {
2589 err = -EPERM;
2590 if (!(flags & MSG_PEEK))
2591 goto out;
2592
2593 if (tp->repair_queue == TCP_SEND_QUEUE)
2594 goto recv_sndq;
2595
2596 err = -EINVAL;
2597 if (tp->repair_queue == TCP_NO_QUEUE)
2598 goto out;
2599
2600 /* 'common' recv queue MSG_PEEK-ing */
2601 }
2602
2603 seq = &tp->copied_seq;
2604 if (flags & MSG_PEEK) {
2605 peek_offset = max(sk_peek_offset(sk, flags), 0);
2606 peek_seq = tp->copied_seq + peek_offset;
2607 seq = &peek_seq;
2608 }
2609
2610 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2611
2612 do {
2613 u32 offset;
2614
2615 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2616 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2617 if (copied)
2618 break;
2619 if (signal_pending(current)) {
2620 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2621 break;
2622 }
2623 }
2624
2625 /* Next get a buffer. */
2626
2627 last = skb_peek_tail(&sk->sk_receive_queue);
2628 skb_queue_walk(&sk->sk_receive_queue, skb) {
2629 last = skb;
2630 /* Now that we have two receive queues this
2631 * shouldn't happen.
2632 */
2633 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2634 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2635 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2636 flags))
2637 break;
2638
2639 offset = *seq - TCP_SKB_CB(skb)->seq;
2640 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2641 pr_err_once("%s: found a SYN, please report !\n", __func__);
2642 offset--;
2643 }
2644 if (offset < skb->len)
2645 goto found_ok_skb;
2646 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2647 goto found_fin_ok;
2648 WARN(!(flags & MSG_PEEK),
2649 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2650 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2651 }
2652
2653 /* Well, if we have backlog, try to process it now yet. */
2654
2655 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2656 break;
2657
2658 if (copied) {
2659 if (!timeo ||
2660 sk->sk_err ||
2661 sk->sk_state == TCP_CLOSE ||
2662 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2663 signal_pending(current))
2664 break;
2665 } else {
2666 if (sock_flag(sk, SOCK_DONE))
2667 break;
2668
2669 if (sk->sk_err) {
2670 copied = sock_error(sk);
2671 break;
2672 }
2673
2674 if (sk->sk_shutdown & RCV_SHUTDOWN)
2675 break;
2676
2677 if (sk->sk_state == TCP_CLOSE) {
2678 /* This occurs when user tries to read
2679 * from never connected socket.
2680 */
2681 copied = -ENOTCONN;
2682 break;
2683 }
2684
2685 if (!timeo) {
2686 copied = -EAGAIN;
2687 break;
2688 }
2689
2690 if (signal_pending(current)) {
2691 copied = sock_intr_errno(timeo);
2692 break;
2693 }
2694 }
2695
2696 if (copied >= target) {
2697 /* Do not sleep, just process backlog. */
2698 __sk_flush_backlog(sk);
2699 } else {
2700 tcp_cleanup_rbuf(sk, copied);
2701 err = sk_wait_data(sk, &timeo, last);
2702 if (err < 0) {
2703 err = copied ? : err;
2704 goto out;
2705 }
2706 }
2707
2708 if ((flags & MSG_PEEK) &&
2709 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2710 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2711 current->comm,
2712 task_pid_nr(current));
2713 peek_seq = tp->copied_seq + peek_offset;
2714 }
2715 continue;
2716
2717 found_ok_skb:
2718 /* Ok so how much can we use? */
2719 used = skb->len - offset;
2720 if (len < used)
2721 used = len;
2722
2723 /* Do we have urgent data here? */
2724 if (unlikely(tp->urg_data)) {
2725 u32 urg_offset = tp->urg_seq - *seq;
2726 if (urg_offset < used) {
2727 if (!urg_offset) {
2728 if (!sock_flag(sk, SOCK_URGINLINE)) {
2729 WRITE_ONCE(*seq, *seq + 1);
2730 urg_hole++;
2731 offset++;
2732 used--;
2733 if (!used)
2734 goto skip_copy;
2735 }
2736 } else
2737 used = urg_offset;
2738 }
2739 }
2740
2741 if (!(flags & MSG_TRUNC)) {
2742 if (last_copied_dmabuf != -1 &&
2743 last_copied_dmabuf != !skb_frags_readable(skb))
2744 break;
2745
2746 if (skb_frags_readable(skb)) {
2747 err = skb_copy_datagram_msg(skb, offset, msg,
2748 used);
2749 if (err) {
2750 /* Exception. Bailout! */
2751 if (!copied)
2752 copied = -EFAULT;
2753 break;
2754 }
2755 } else {
2756 if (!(flags & MSG_SOCK_DEVMEM)) {
2757 /* dmabuf skbs can only be received
2758 * with the MSG_SOCK_DEVMEM flag.
2759 */
2760 if (!copied)
2761 copied = -EFAULT;
2762
2763 break;
2764 }
2765
2766 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2767 used);
2768 if (err <= 0) {
2769 if (!copied)
2770 copied = -EFAULT;
2771
2772 break;
2773 }
2774 used = err;
2775 }
2776 }
2777
2778 last_copied_dmabuf = !skb_frags_readable(skb);
2779
2780 WRITE_ONCE(*seq, *seq + used);
2781 copied += used;
2782 len -= used;
2783 if (flags & MSG_PEEK)
2784 sk_peek_offset_fwd(sk, used);
2785 else
2786 sk_peek_offset_bwd(sk, used);
2787 tcp_rcv_space_adjust(sk);
2788
2789 skip_copy:
2790 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2791 WRITE_ONCE(tp->urg_data, 0);
2792 tcp_fast_path_check(sk);
2793 }
2794
2795 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2796 tcp_update_recv_tstamps(skb, tss);
2797 *cmsg_flags |= TCP_CMSG_TS;
2798 }
2799
2800 if (used + offset < skb->len)
2801 continue;
2802
2803 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2804 goto found_fin_ok;
2805 if (!(flags & MSG_PEEK))
2806 tcp_eat_recv_skb(sk, skb);
2807 continue;
2808
2809 found_fin_ok:
2810 /* Process the FIN. */
2811 WRITE_ONCE(*seq, *seq + 1);
2812 if (!(flags & MSG_PEEK))
2813 tcp_eat_recv_skb(sk, skb);
2814 break;
2815 } while (len > 0);
2816
2817 /* According to UNIX98, msg_name/msg_namelen are ignored
2818 * on connected socket. I was just happy when found this 8) --ANK
2819 */
2820
2821 /* Clean up data we have read: This will do ACK frames. */
2822 tcp_cleanup_rbuf(sk, copied);
2823 return copied;
2824
2825 out:
2826 return err;
2827
2828 recv_urg:
2829 err = tcp_recv_urg(sk, msg, len, flags);
2830 goto out;
2831
2832 recv_sndq:
2833 err = tcp_peek_sndq(sk, msg, len);
2834 goto out;
2835 }
2836
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2837 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2838 int *addr_len)
2839 {
2840 int cmsg_flags = 0, ret;
2841 struct scm_timestamping_internal tss;
2842
2843 if (unlikely(flags & MSG_ERRQUEUE))
2844 return inet_recv_error(sk, msg, len, addr_len);
2845
2846 if (sk_can_busy_loop(sk) &&
2847 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2848 sk->sk_state == TCP_ESTABLISHED)
2849 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2850
2851 lock_sock(sk);
2852 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2853 release_sock(sk);
2854
2855 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2856 if (cmsg_flags & TCP_CMSG_TS)
2857 tcp_recv_timestamp(msg, sk, &tss);
2858 if (msg->msg_get_inq) {
2859 msg->msg_inq = tcp_inq_hint(sk);
2860 if (cmsg_flags & TCP_CMSG_INQ)
2861 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2862 sizeof(msg->msg_inq), &msg->msg_inq);
2863 }
2864 }
2865 return ret;
2866 }
2867 EXPORT_SYMBOL(tcp_recvmsg);
2868
tcp_set_state(struct sock * sk,int state)2869 void tcp_set_state(struct sock *sk, int state)
2870 {
2871 int oldstate = sk->sk_state;
2872
2873 /* We defined a new enum for TCP states that are exported in BPF
2874 * so as not force the internal TCP states to be frozen. The
2875 * following checks will detect if an internal state value ever
2876 * differs from the BPF value. If this ever happens, then we will
2877 * need to remap the internal value to the BPF value before calling
2878 * tcp_call_bpf_2arg.
2879 */
2880 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2881 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2882 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2883 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2884 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2885 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2886 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2887 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2888 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2889 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2890 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2891 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2892 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2893 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2894
2895 /* bpf uapi header bpf.h defines an anonymous enum with values
2896 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2897 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2898 * But clang built vmlinux does not have this enum in DWARF
2899 * since clang removes the above code before generating IR/debuginfo.
2900 * Let us explicitly emit the type debuginfo to ensure the
2901 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2902 * regardless of which compiler is used.
2903 */
2904 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2905
2906 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2907 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2908
2909 switch (state) {
2910 case TCP_ESTABLISHED:
2911 if (oldstate != TCP_ESTABLISHED)
2912 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2913 break;
2914 case TCP_CLOSE_WAIT:
2915 if (oldstate == TCP_SYN_RECV)
2916 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2917 break;
2918
2919 case TCP_CLOSE:
2920 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2921 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2922
2923 sk->sk_prot->unhash(sk);
2924 if (inet_csk(sk)->icsk_bind_hash &&
2925 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2926 inet_put_port(sk);
2927 fallthrough;
2928 default:
2929 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2930 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2931 }
2932
2933 /* Change state AFTER socket is unhashed to avoid closed
2934 * socket sitting in hash tables.
2935 */
2936 inet_sk_state_store(sk, state);
2937 }
2938 EXPORT_SYMBOL_GPL(tcp_set_state);
2939
2940 /*
2941 * State processing on a close. This implements the state shift for
2942 * sending our FIN frame. Note that we only send a FIN for some
2943 * states. A shutdown() may have already sent the FIN, or we may be
2944 * closed.
2945 */
2946
2947 static const unsigned char new_state[16] = {
2948 /* current state: new state: action: */
2949 [0 /* (Invalid) */] = TCP_CLOSE,
2950 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2951 [TCP_SYN_SENT] = TCP_CLOSE,
2952 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2953 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2954 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2955 [TCP_TIME_WAIT] = TCP_CLOSE,
2956 [TCP_CLOSE] = TCP_CLOSE,
2957 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2958 [TCP_LAST_ACK] = TCP_LAST_ACK,
2959 [TCP_LISTEN] = TCP_CLOSE,
2960 [TCP_CLOSING] = TCP_CLOSING,
2961 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2962 };
2963
tcp_close_state(struct sock * sk)2964 static int tcp_close_state(struct sock *sk)
2965 {
2966 int next = (int)new_state[sk->sk_state];
2967 int ns = next & TCP_STATE_MASK;
2968
2969 tcp_set_state(sk, ns);
2970
2971 return next & TCP_ACTION_FIN;
2972 }
2973
2974 /*
2975 * Shutdown the sending side of a connection. Much like close except
2976 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2977 */
2978
tcp_shutdown(struct sock * sk,int how)2979 void tcp_shutdown(struct sock *sk, int how)
2980 {
2981 /* We need to grab some memory, and put together a FIN,
2982 * and then put it into the queue to be sent.
2983 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2984 */
2985 if (!(how & SEND_SHUTDOWN))
2986 return;
2987
2988 /* If we've already sent a FIN, or it's a closed state, skip this. */
2989 if ((1 << sk->sk_state) &
2990 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2991 TCPF_CLOSE_WAIT)) {
2992 /* Clear out any half completed packets. FIN if needed. */
2993 if (tcp_close_state(sk))
2994 tcp_send_fin(sk);
2995 }
2996 }
2997 EXPORT_SYMBOL(tcp_shutdown);
2998
tcp_orphan_count_sum(void)2999 int tcp_orphan_count_sum(void)
3000 {
3001 int i, total = 0;
3002
3003 for_each_possible_cpu(i)
3004 total += per_cpu(tcp_orphan_count, i);
3005
3006 return max(total, 0);
3007 }
3008
3009 static int tcp_orphan_cache;
3010 static struct timer_list tcp_orphan_timer;
3011 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3012
tcp_orphan_update(struct timer_list * unused)3013 static void tcp_orphan_update(struct timer_list *unused)
3014 {
3015 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3016 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3017 }
3018
tcp_too_many_orphans(int shift)3019 static bool tcp_too_many_orphans(int shift)
3020 {
3021 return READ_ONCE(tcp_orphan_cache) << shift >
3022 READ_ONCE(sysctl_tcp_max_orphans);
3023 }
3024
tcp_out_of_memory(const struct sock * sk)3025 static bool tcp_out_of_memory(const struct sock *sk)
3026 {
3027 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3028 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3029 return true;
3030 return false;
3031 }
3032
tcp_check_oom(const struct sock * sk,int shift)3033 bool tcp_check_oom(const struct sock *sk, int shift)
3034 {
3035 bool too_many_orphans, out_of_socket_memory;
3036
3037 too_many_orphans = tcp_too_many_orphans(shift);
3038 out_of_socket_memory = tcp_out_of_memory(sk);
3039
3040 if (too_many_orphans)
3041 net_info_ratelimited("too many orphaned sockets\n");
3042 if (out_of_socket_memory)
3043 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3044 return too_many_orphans || out_of_socket_memory;
3045 }
3046
__tcp_close(struct sock * sk,long timeout)3047 void __tcp_close(struct sock *sk, long timeout)
3048 {
3049 struct sk_buff *skb;
3050 int data_was_unread = 0;
3051 int state;
3052
3053 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3054
3055 if (sk->sk_state == TCP_LISTEN) {
3056 tcp_set_state(sk, TCP_CLOSE);
3057
3058 /* Special case. */
3059 inet_csk_listen_stop(sk);
3060
3061 goto adjudge_to_death;
3062 }
3063
3064 /* We need to flush the recv. buffs. We do this only on the
3065 * descriptor close, not protocol-sourced closes, because the
3066 * reader process may not have drained the data yet!
3067 */
3068 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3069 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3070
3071 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3072 len--;
3073 data_was_unread += len;
3074 __kfree_skb(skb);
3075 }
3076
3077 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3078 if (sk->sk_state == TCP_CLOSE)
3079 goto adjudge_to_death;
3080
3081 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3082 * data was lost. To witness the awful effects of the old behavior of
3083 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3084 * GET in an FTP client, suspend the process, wait for the client to
3085 * advertise a zero window, then kill -9 the FTP client, wheee...
3086 * Note: timeout is always zero in such a case.
3087 */
3088 if (unlikely(tcp_sk(sk)->repair)) {
3089 sk->sk_prot->disconnect(sk, 0);
3090 } else if (data_was_unread) {
3091 /* Unread data was tossed, zap the connection. */
3092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3093 tcp_set_state(sk, TCP_CLOSE);
3094 tcp_send_active_reset(sk, sk->sk_allocation,
3095 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3096 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3097 /* Check zero linger _after_ checking for unread data. */
3098 sk->sk_prot->disconnect(sk, 0);
3099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3100 } else if (tcp_close_state(sk)) {
3101 /* We FIN if the application ate all the data before
3102 * zapping the connection.
3103 */
3104
3105 /* RED-PEN. Formally speaking, we have broken TCP state
3106 * machine. State transitions:
3107 *
3108 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3109 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3110 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3111 *
3112 * are legal only when FIN has been sent (i.e. in window),
3113 * rather than queued out of window. Purists blame.
3114 *
3115 * F.e. "RFC state" is ESTABLISHED,
3116 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3117 *
3118 * The visible declinations are that sometimes
3119 * we enter time-wait state, when it is not required really
3120 * (harmless), do not send active resets, when they are
3121 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3122 * they look as CLOSING or LAST_ACK for Linux)
3123 * Probably, I missed some more holelets.
3124 * --ANK
3125 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3126 * in a single packet! (May consider it later but will
3127 * probably need API support or TCP_CORK SYN-ACK until
3128 * data is written and socket is closed.)
3129 */
3130 tcp_send_fin(sk);
3131 }
3132
3133 sk_stream_wait_close(sk, timeout);
3134
3135 adjudge_to_death:
3136 state = sk->sk_state;
3137 sock_hold(sk);
3138 sock_orphan(sk);
3139
3140 local_bh_disable();
3141 bh_lock_sock(sk);
3142 /* remove backlog if any, without releasing ownership. */
3143 __release_sock(sk);
3144
3145 this_cpu_inc(tcp_orphan_count);
3146
3147 /* Have we already been destroyed by a softirq or backlog? */
3148 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3149 goto out;
3150
3151 /* This is a (useful) BSD violating of the RFC. There is a
3152 * problem with TCP as specified in that the other end could
3153 * keep a socket open forever with no application left this end.
3154 * We use a 1 minute timeout (about the same as BSD) then kill
3155 * our end. If they send after that then tough - BUT: long enough
3156 * that we won't make the old 4*rto = almost no time - whoops
3157 * reset mistake.
3158 *
3159 * Nope, it was not mistake. It is really desired behaviour
3160 * f.e. on http servers, when such sockets are useless, but
3161 * consume significant resources. Let's do it with special
3162 * linger2 option. --ANK
3163 */
3164
3165 if (sk->sk_state == TCP_FIN_WAIT2) {
3166 struct tcp_sock *tp = tcp_sk(sk);
3167 if (READ_ONCE(tp->linger2) < 0) {
3168 tcp_set_state(sk, TCP_CLOSE);
3169 tcp_send_active_reset(sk, GFP_ATOMIC,
3170 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3171 __NET_INC_STATS(sock_net(sk),
3172 LINUX_MIB_TCPABORTONLINGER);
3173 } else {
3174 const int tmo = tcp_fin_time(sk);
3175
3176 if (tmo > TCP_TIMEWAIT_LEN) {
3177 inet_csk_reset_keepalive_timer(sk,
3178 tmo - TCP_TIMEWAIT_LEN);
3179 } else {
3180 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3181 goto out;
3182 }
3183 }
3184 }
3185 if (sk->sk_state != TCP_CLOSE) {
3186 if (tcp_check_oom(sk, 0)) {
3187 tcp_set_state(sk, TCP_CLOSE);
3188 tcp_send_active_reset(sk, GFP_ATOMIC,
3189 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3190 __NET_INC_STATS(sock_net(sk),
3191 LINUX_MIB_TCPABORTONMEMORY);
3192 } else if (!check_net(sock_net(sk))) {
3193 /* Not possible to send reset; just close */
3194 tcp_set_state(sk, TCP_CLOSE);
3195 }
3196 }
3197
3198 if (sk->sk_state == TCP_CLOSE) {
3199 struct request_sock *req;
3200
3201 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3202 lockdep_sock_is_held(sk));
3203 /* We could get here with a non-NULL req if the socket is
3204 * aborted (e.g., closed with unread data) before 3WHS
3205 * finishes.
3206 */
3207 if (req)
3208 reqsk_fastopen_remove(sk, req, false);
3209 inet_csk_destroy_sock(sk);
3210 }
3211 /* Otherwise, socket is reprieved until protocol close. */
3212
3213 out:
3214 bh_unlock_sock(sk);
3215 local_bh_enable();
3216 }
3217
tcp_close(struct sock * sk,long timeout)3218 void tcp_close(struct sock *sk, long timeout)
3219 {
3220 lock_sock(sk);
3221 __tcp_close(sk, timeout);
3222 release_sock(sk);
3223 if (!sk->sk_net_refcnt)
3224 inet_csk_clear_xmit_timers_sync(sk);
3225 sock_put(sk);
3226 }
3227 EXPORT_SYMBOL(tcp_close);
3228
3229 /* These states need RST on ABORT according to RFC793 */
3230
tcp_need_reset(int state)3231 static inline bool tcp_need_reset(int state)
3232 {
3233 return (1 << state) &
3234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3235 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3236 }
3237
tcp_rtx_queue_purge(struct sock * sk)3238 static void tcp_rtx_queue_purge(struct sock *sk)
3239 {
3240 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3241
3242 tcp_sk(sk)->highest_sack = NULL;
3243 while (p) {
3244 struct sk_buff *skb = rb_to_skb(p);
3245
3246 p = rb_next(p);
3247 /* Since we are deleting whole queue, no need to
3248 * list_del(&skb->tcp_tsorted_anchor)
3249 */
3250 tcp_rtx_queue_unlink(skb, sk);
3251 tcp_wmem_free_skb(sk, skb);
3252 }
3253 }
3254
tcp_write_queue_purge(struct sock * sk)3255 void tcp_write_queue_purge(struct sock *sk)
3256 {
3257 struct sk_buff *skb;
3258
3259 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3260 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3261 tcp_skb_tsorted_anchor_cleanup(skb);
3262 tcp_wmem_free_skb(sk, skb);
3263 }
3264 tcp_rtx_queue_purge(sk);
3265 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3266 tcp_clear_all_retrans_hints(tcp_sk(sk));
3267 tcp_sk(sk)->packets_out = 0;
3268 inet_csk(sk)->icsk_backoff = 0;
3269 }
3270
tcp_disconnect(struct sock * sk,int flags)3271 int tcp_disconnect(struct sock *sk, int flags)
3272 {
3273 struct inet_sock *inet = inet_sk(sk);
3274 struct inet_connection_sock *icsk = inet_csk(sk);
3275 struct tcp_sock *tp = tcp_sk(sk);
3276 int old_state = sk->sk_state;
3277 u32 seq;
3278
3279 if (old_state != TCP_CLOSE)
3280 tcp_set_state(sk, TCP_CLOSE);
3281
3282 /* ABORT function of RFC793 */
3283 if (old_state == TCP_LISTEN) {
3284 inet_csk_listen_stop(sk);
3285 } else if (unlikely(tp->repair)) {
3286 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3287 } else if (tcp_need_reset(old_state)) {
3288 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3289 WRITE_ONCE(sk->sk_err, ECONNRESET);
3290 } else if (tp->snd_nxt != tp->write_seq &&
3291 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3292 /* The last check adjusts for discrepancy of Linux wrt. RFC
3293 * states
3294 */
3295 tcp_send_active_reset(sk, gfp_any(),
3296 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3297 WRITE_ONCE(sk->sk_err, ECONNRESET);
3298 } else if (old_state == TCP_SYN_SENT)
3299 WRITE_ONCE(sk->sk_err, ECONNRESET);
3300
3301 tcp_clear_xmit_timers(sk);
3302 __skb_queue_purge(&sk->sk_receive_queue);
3303 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3304 WRITE_ONCE(tp->urg_data, 0);
3305 sk_set_peek_off(sk, -1);
3306 tcp_write_queue_purge(sk);
3307 tcp_fastopen_active_disable_ofo_check(sk);
3308 skb_rbtree_purge(&tp->out_of_order_queue);
3309
3310 inet->inet_dport = 0;
3311
3312 inet_bhash2_reset_saddr(sk);
3313
3314 WRITE_ONCE(sk->sk_shutdown, 0);
3315 sock_reset_flag(sk, SOCK_DONE);
3316 tp->srtt_us = 0;
3317 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3318 tp->rcv_rtt_last_tsecr = 0;
3319
3320 seq = tp->write_seq + tp->max_window + 2;
3321 if (!seq)
3322 seq = 1;
3323 WRITE_ONCE(tp->write_seq, seq);
3324
3325 icsk->icsk_backoff = 0;
3326 icsk->icsk_probes_out = 0;
3327 icsk->icsk_probes_tstamp = 0;
3328 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3329 icsk->icsk_rto_min = TCP_RTO_MIN;
3330 icsk->icsk_delack_max = TCP_DELACK_MAX;
3331 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3332 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3333 tp->snd_cwnd_cnt = 0;
3334 tp->is_cwnd_limited = 0;
3335 tp->max_packets_out = 0;
3336 tp->window_clamp = 0;
3337 tp->delivered = 0;
3338 tp->delivered_ce = 0;
3339 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3340 icsk->icsk_ca_ops->release(sk);
3341 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3342 icsk->icsk_ca_initialized = 0;
3343 tcp_set_ca_state(sk, TCP_CA_Open);
3344 tp->is_sack_reneg = 0;
3345 tcp_clear_retrans(tp);
3346 tp->total_retrans = 0;
3347 inet_csk_delack_init(sk);
3348 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3349 * issue in __tcp_select_window()
3350 */
3351 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3352 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3353 __sk_dst_reset(sk);
3354 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3355 tcp_saved_syn_free(tp);
3356 tp->compressed_ack = 0;
3357 tp->segs_in = 0;
3358 tp->segs_out = 0;
3359 tp->bytes_sent = 0;
3360 tp->bytes_acked = 0;
3361 tp->bytes_received = 0;
3362 tp->bytes_retrans = 0;
3363 tp->data_segs_in = 0;
3364 tp->data_segs_out = 0;
3365 tp->duplicate_sack[0].start_seq = 0;
3366 tp->duplicate_sack[0].end_seq = 0;
3367 tp->dsack_dups = 0;
3368 tp->reord_seen = 0;
3369 tp->retrans_out = 0;
3370 tp->sacked_out = 0;
3371 tp->tlp_high_seq = 0;
3372 tp->last_oow_ack_time = 0;
3373 tp->plb_rehash = 0;
3374 /* There's a bubble in the pipe until at least the first ACK. */
3375 tp->app_limited = ~0U;
3376 tp->rate_app_limited = 1;
3377 tp->rack.mstamp = 0;
3378 tp->rack.advanced = 0;
3379 tp->rack.reo_wnd_steps = 1;
3380 tp->rack.last_delivered = 0;
3381 tp->rack.reo_wnd_persist = 0;
3382 tp->rack.dsack_seen = 0;
3383 tp->syn_data_acked = 0;
3384 tp->rx_opt.saw_tstamp = 0;
3385 tp->rx_opt.dsack = 0;
3386 tp->rx_opt.num_sacks = 0;
3387 tp->rcv_ooopack = 0;
3388
3389
3390 /* Clean up fastopen related fields */
3391 tcp_free_fastopen_req(tp);
3392 inet_clear_bit(DEFER_CONNECT, sk);
3393 tp->fastopen_client_fail = 0;
3394
3395 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3396
3397 if (sk->sk_frag.page) {
3398 put_page(sk->sk_frag.page);
3399 sk->sk_frag.page = NULL;
3400 sk->sk_frag.offset = 0;
3401 }
3402 sk_error_report(sk);
3403 return 0;
3404 }
3405 EXPORT_SYMBOL(tcp_disconnect);
3406
tcp_can_repair_sock(const struct sock * sk)3407 static inline bool tcp_can_repair_sock(const struct sock *sk)
3408 {
3409 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3410 (sk->sk_state != TCP_LISTEN);
3411 }
3412
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3413 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3414 {
3415 struct tcp_repair_window opt;
3416
3417 if (!tp->repair)
3418 return -EPERM;
3419
3420 if (len != sizeof(opt))
3421 return -EINVAL;
3422
3423 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3424 return -EFAULT;
3425
3426 if (opt.max_window < opt.snd_wnd)
3427 return -EINVAL;
3428
3429 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3430 return -EINVAL;
3431
3432 if (after(opt.rcv_wup, tp->rcv_nxt))
3433 return -EINVAL;
3434
3435 tp->snd_wl1 = opt.snd_wl1;
3436 tp->snd_wnd = opt.snd_wnd;
3437 tp->max_window = opt.max_window;
3438
3439 tp->rcv_wnd = opt.rcv_wnd;
3440 tp->rcv_wup = opt.rcv_wup;
3441
3442 return 0;
3443 }
3444
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3445 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3446 unsigned int len)
3447 {
3448 struct tcp_sock *tp = tcp_sk(sk);
3449 struct tcp_repair_opt opt;
3450 size_t offset = 0;
3451
3452 while (len >= sizeof(opt)) {
3453 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3454 return -EFAULT;
3455
3456 offset += sizeof(opt);
3457 len -= sizeof(opt);
3458
3459 switch (opt.opt_code) {
3460 case TCPOPT_MSS:
3461 tp->rx_opt.mss_clamp = opt.opt_val;
3462 tcp_mtup_init(sk);
3463 break;
3464 case TCPOPT_WINDOW:
3465 {
3466 u16 snd_wscale = opt.opt_val & 0xFFFF;
3467 u16 rcv_wscale = opt.opt_val >> 16;
3468
3469 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3470 return -EFBIG;
3471
3472 tp->rx_opt.snd_wscale = snd_wscale;
3473 tp->rx_opt.rcv_wscale = rcv_wscale;
3474 tp->rx_opt.wscale_ok = 1;
3475 }
3476 break;
3477 case TCPOPT_SACK_PERM:
3478 if (opt.opt_val != 0)
3479 return -EINVAL;
3480
3481 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3482 break;
3483 case TCPOPT_TIMESTAMP:
3484 if (opt.opt_val != 0)
3485 return -EINVAL;
3486
3487 tp->rx_opt.tstamp_ok = 1;
3488 break;
3489 }
3490 }
3491
3492 return 0;
3493 }
3494
3495 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3496 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3497
tcp_enable_tx_delay(void)3498 static void tcp_enable_tx_delay(void)
3499 {
3500 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3501 static int __tcp_tx_delay_enabled = 0;
3502
3503 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3504 static_branch_enable(&tcp_tx_delay_enabled);
3505 pr_info("TCP_TX_DELAY enabled\n");
3506 }
3507 }
3508 }
3509
3510 /* When set indicates to always queue non-full frames. Later the user clears
3511 * this option and we transmit any pending partial frames in the queue. This is
3512 * meant to be used alongside sendfile() to get properly filled frames when the
3513 * user (for example) must write out headers with a write() call first and then
3514 * use sendfile to send out the data parts.
3515 *
3516 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3517 * TCP_NODELAY.
3518 */
__tcp_sock_set_cork(struct sock * sk,bool on)3519 void __tcp_sock_set_cork(struct sock *sk, bool on)
3520 {
3521 struct tcp_sock *tp = tcp_sk(sk);
3522
3523 if (on) {
3524 tp->nonagle |= TCP_NAGLE_CORK;
3525 } else {
3526 tp->nonagle &= ~TCP_NAGLE_CORK;
3527 if (tp->nonagle & TCP_NAGLE_OFF)
3528 tp->nonagle |= TCP_NAGLE_PUSH;
3529 tcp_push_pending_frames(sk);
3530 }
3531 }
3532
tcp_sock_set_cork(struct sock * sk,bool on)3533 void tcp_sock_set_cork(struct sock *sk, bool on)
3534 {
3535 lock_sock(sk);
3536 __tcp_sock_set_cork(sk, on);
3537 release_sock(sk);
3538 }
3539 EXPORT_SYMBOL(tcp_sock_set_cork);
3540
3541 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3542 * remembered, but it is not activated until cork is cleared.
3543 *
3544 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3545 * even TCP_CORK for currently queued segments.
3546 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3547 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3548 {
3549 if (on) {
3550 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3551 tcp_push_pending_frames(sk);
3552 } else {
3553 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3554 }
3555 }
3556
tcp_sock_set_nodelay(struct sock * sk)3557 void tcp_sock_set_nodelay(struct sock *sk)
3558 {
3559 lock_sock(sk);
3560 __tcp_sock_set_nodelay(sk, true);
3561 release_sock(sk);
3562 }
3563 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3564
__tcp_sock_set_quickack(struct sock * sk,int val)3565 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3566 {
3567 if (!val) {
3568 inet_csk_enter_pingpong_mode(sk);
3569 return;
3570 }
3571
3572 inet_csk_exit_pingpong_mode(sk);
3573 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3574 inet_csk_ack_scheduled(sk)) {
3575 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3576 tcp_cleanup_rbuf(sk, 1);
3577 if (!(val & 1))
3578 inet_csk_enter_pingpong_mode(sk);
3579 }
3580 }
3581
tcp_sock_set_quickack(struct sock * sk,int val)3582 void tcp_sock_set_quickack(struct sock *sk, int val)
3583 {
3584 lock_sock(sk);
3585 __tcp_sock_set_quickack(sk, val);
3586 release_sock(sk);
3587 }
3588 EXPORT_SYMBOL(tcp_sock_set_quickack);
3589
tcp_sock_set_syncnt(struct sock * sk,int val)3590 int tcp_sock_set_syncnt(struct sock *sk, int val)
3591 {
3592 if (val < 1 || val > MAX_TCP_SYNCNT)
3593 return -EINVAL;
3594
3595 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3596 return 0;
3597 }
3598 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3599
tcp_sock_set_user_timeout(struct sock * sk,int val)3600 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3601 {
3602 /* Cap the max time in ms TCP will retry or probe the window
3603 * before giving up and aborting (ETIMEDOUT) a connection.
3604 */
3605 if (val < 0)
3606 return -EINVAL;
3607
3608 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3609 return 0;
3610 }
3611 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3612
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3613 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3614 {
3615 struct tcp_sock *tp = tcp_sk(sk);
3616
3617 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3618 return -EINVAL;
3619
3620 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3621 WRITE_ONCE(tp->keepalive_time, val * HZ);
3622 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3623 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3624 u32 elapsed = keepalive_time_elapsed(tp);
3625
3626 if (tp->keepalive_time > elapsed)
3627 elapsed = tp->keepalive_time - elapsed;
3628 else
3629 elapsed = 0;
3630 inet_csk_reset_keepalive_timer(sk, elapsed);
3631 }
3632
3633 return 0;
3634 }
3635
tcp_sock_set_keepidle(struct sock * sk,int val)3636 int tcp_sock_set_keepidle(struct sock *sk, int val)
3637 {
3638 int err;
3639
3640 lock_sock(sk);
3641 err = tcp_sock_set_keepidle_locked(sk, val);
3642 release_sock(sk);
3643 return err;
3644 }
3645 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3646
tcp_sock_set_keepintvl(struct sock * sk,int val)3647 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3648 {
3649 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3650 return -EINVAL;
3651
3652 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3653 return 0;
3654 }
3655 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3656
tcp_sock_set_keepcnt(struct sock * sk,int val)3657 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3658 {
3659 if (val < 1 || val > MAX_TCP_KEEPCNT)
3660 return -EINVAL;
3661
3662 /* Paired with READ_ONCE() in keepalive_probes() */
3663 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3664 return 0;
3665 }
3666 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3667
tcp_set_window_clamp(struct sock * sk,int val)3668 int tcp_set_window_clamp(struct sock *sk, int val)
3669 {
3670 struct tcp_sock *tp = tcp_sk(sk);
3671
3672 if (!val) {
3673 if (sk->sk_state != TCP_CLOSE)
3674 return -EINVAL;
3675 WRITE_ONCE(tp->window_clamp, 0);
3676 } else {
3677 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3678 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3679 SOCK_MIN_RCVBUF / 2 : val;
3680
3681 if (new_window_clamp == old_window_clamp)
3682 return 0;
3683
3684 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3685 if (new_window_clamp < old_window_clamp) {
3686 /* need to apply the reserved mem provisioning only
3687 * when shrinking the window clamp
3688 */
3689 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3690
3691 } else {
3692 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3693 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3694 tp->rcv_ssthresh);
3695 }
3696 }
3697 return 0;
3698 }
3699
3700 /*
3701 * Socket option code for TCP.
3702 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3703 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3704 sockptr_t optval, unsigned int optlen)
3705 {
3706 struct tcp_sock *tp = tcp_sk(sk);
3707 struct inet_connection_sock *icsk = inet_csk(sk);
3708 struct net *net = sock_net(sk);
3709 int val;
3710 int err = 0;
3711
3712 /* These are data/string values, all the others are ints */
3713 switch (optname) {
3714 case TCP_CONGESTION: {
3715 char name[TCP_CA_NAME_MAX];
3716
3717 if (optlen < 1)
3718 return -EINVAL;
3719
3720 val = strncpy_from_sockptr(name, optval,
3721 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3722 if (val < 0)
3723 return -EFAULT;
3724 name[val] = 0;
3725
3726 sockopt_lock_sock(sk);
3727 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3728 sockopt_ns_capable(sock_net(sk)->user_ns,
3729 CAP_NET_ADMIN));
3730 sockopt_release_sock(sk);
3731 return err;
3732 }
3733 case TCP_ULP: {
3734 char name[TCP_ULP_NAME_MAX];
3735
3736 if (optlen < 1)
3737 return -EINVAL;
3738
3739 val = strncpy_from_sockptr(name, optval,
3740 min_t(long, TCP_ULP_NAME_MAX - 1,
3741 optlen));
3742 if (val < 0)
3743 return -EFAULT;
3744 name[val] = 0;
3745
3746 sockopt_lock_sock(sk);
3747 err = tcp_set_ulp(sk, name);
3748 sockopt_release_sock(sk);
3749 return err;
3750 }
3751 case TCP_FASTOPEN_KEY: {
3752 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3753 __u8 *backup_key = NULL;
3754
3755 /* Allow a backup key as well to facilitate key rotation
3756 * First key is the active one.
3757 */
3758 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3759 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3760 return -EINVAL;
3761
3762 if (copy_from_sockptr(key, optval, optlen))
3763 return -EFAULT;
3764
3765 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3766 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3767
3768 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3769 }
3770 default:
3771 /* fallthru */
3772 break;
3773 }
3774
3775 if (optlen < sizeof(int))
3776 return -EINVAL;
3777
3778 if (copy_from_sockptr(&val, optval, sizeof(val)))
3779 return -EFAULT;
3780
3781 /* Handle options that can be set without locking the socket. */
3782 switch (optname) {
3783 case TCP_SYNCNT:
3784 return tcp_sock_set_syncnt(sk, val);
3785 case TCP_USER_TIMEOUT:
3786 return tcp_sock_set_user_timeout(sk, val);
3787 case TCP_KEEPINTVL:
3788 return tcp_sock_set_keepintvl(sk, val);
3789 case TCP_KEEPCNT:
3790 return tcp_sock_set_keepcnt(sk, val);
3791 case TCP_LINGER2:
3792 if (val < 0)
3793 WRITE_ONCE(tp->linger2, -1);
3794 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3795 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3796 else
3797 WRITE_ONCE(tp->linger2, val * HZ);
3798 return 0;
3799 case TCP_DEFER_ACCEPT:
3800 /* Translate value in seconds to number of retransmits */
3801 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3802 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3803 TCP_RTO_MAX / HZ));
3804 return 0;
3805 }
3806
3807 sockopt_lock_sock(sk);
3808
3809 switch (optname) {
3810 case TCP_MAXSEG:
3811 /* Values greater than interface MTU won't take effect. However
3812 * at the point when this call is done we typically don't yet
3813 * know which interface is going to be used
3814 */
3815 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3816 err = -EINVAL;
3817 break;
3818 }
3819 tp->rx_opt.user_mss = val;
3820 break;
3821
3822 case TCP_NODELAY:
3823 __tcp_sock_set_nodelay(sk, val);
3824 break;
3825
3826 case TCP_THIN_LINEAR_TIMEOUTS:
3827 if (val < 0 || val > 1)
3828 err = -EINVAL;
3829 else
3830 tp->thin_lto = val;
3831 break;
3832
3833 case TCP_THIN_DUPACK:
3834 if (val < 0 || val > 1)
3835 err = -EINVAL;
3836 break;
3837
3838 case TCP_REPAIR:
3839 if (!tcp_can_repair_sock(sk))
3840 err = -EPERM;
3841 else if (val == TCP_REPAIR_ON) {
3842 tp->repair = 1;
3843 sk->sk_reuse = SK_FORCE_REUSE;
3844 tp->repair_queue = TCP_NO_QUEUE;
3845 } else if (val == TCP_REPAIR_OFF) {
3846 tp->repair = 0;
3847 sk->sk_reuse = SK_NO_REUSE;
3848 tcp_send_window_probe(sk);
3849 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3850 tp->repair = 0;
3851 sk->sk_reuse = SK_NO_REUSE;
3852 } else
3853 err = -EINVAL;
3854
3855 break;
3856
3857 case TCP_REPAIR_QUEUE:
3858 if (!tp->repair)
3859 err = -EPERM;
3860 else if ((unsigned int)val < TCP_QUEUES_NR)
3861 tp->repair_queue = val;
3862 else
3863 err = -EINVAL;
3864 break;
3865
3866 case TCP_QUEUE_SEQ:
3867 if (sk->sk_state != TCP_CLOSE) {
3868 err = -EPERM;
3869 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3870 if (!tcp_rtx_queue_empty(sk))
3871 err = -EPERM;
3872 else
3873 WRITE_ONCE(tp->write_seq, val);
3874 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3875 if (tp->rcv_nxt != tp->copied_seq) {
3876 err = -EPERM;
3877 } else {
3878 WRITE_ONCE(tp->rcv_nxt, val);
3879 WRITE_ONCE(tp->copied_seq, val);
3880 }
3881 } else {
3882 err = -EINVAL;
3883 }
3884 break;
3885
3886 case TCP_REPAIR_OPTIONS:
3887 if (!tp->repair)
3888 err = -EINVAL;
3889 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3890 err = tcp_repair_options_est(sk, optval, optlen);
3891 else
3892 err = -EPERM;
3893 break;
3894
3895 case TCP_CORK:
3896 __tcp_sock_set_cork(sk, val);
3897 break;
3898
3899 case TCP_KEEPIDLE:
3900 err = tcp_sock_set_keepidle_locked(sk, val);
3901 break;
3902 case TCP_SAVE_SYN:
3903 /* 0: disable, 1: enable, 2: start from ether_header */
3904 if (val < 0 || val > 2)
3905 err = -EINVAL;
3906 else
3907 tp->save_syn = val;
3908 break;
3909
3910 case TCP_WINDOW_CLAMP:
3911 err = tcp_set_window_clamp(sk, val);
3912 break;
3913
3914 case TCP_QUICKACK:
3915 __tcp_sock_set_quickack(sk, val);
3916 break;
3917
3918 case TCP_AO_REPAIR:
3919 if (!tcp_can_repair_sock(sk)) {
3920 err = -EPERM;
3921 break;
3922 }
3923 err = tcp_ao_set_repair(sk, optval, optlen);
3924 break;
3925 #ifdef CONFIG_TCP_AO
3926 case TCP_AO_ADD_KEY:
3927 case TCP_AO_DEL_KEY:
3928 case TCP_AO_INFO: {
3929 /* If this is the first TCP-AO setsockopt() on the socket,
3930 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3931 * in any state.
3932 */
3933 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3934 goto ao_parse;
3935 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3936 lockdep_sock_is_held(sk)))
3937 goto ao_parse;
3938 if (tp->repair)
3939 goto ao_parse;
3940 err = -EISCONN;
3941 break;
3942 ao_parse:
3943 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3944 break;
3945 }
3946 #endif
3947 #ifdef CONFIG_TCP_MD5SIG
3948 case TCP_MD5SIG:
3949 case TCP_MD5SIG_EXT:
3950 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3951 break;
3952 #endif
3953 case TCP_FASTOPEN:
3954 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3955 TCPF_LISTEN))) {
3956 tcp_fastopen_init_key_once(net);
3957
3958 fastopen_queue_tune(sk, val);
3959 } else {
3960 err = -EINVAL;
3961 }
3962 break;
3963 case TCP_FASTOPEN_CONNECT:
3964 if (val > 1 || val < 0) {
3965 err = -EINVAL;
3966 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3967 TFO_CLIENT_ENABLE) {
3968 if (sk->sk_state == TCP_CLOSE)
3969 tp->fastopen_connect = val;
3970 else
3971 err = -EINVAL;
3972 } else {
3973 err = -EOPNOTSUPP;
3974 }
3975 break;
3976 case TCP_FASTOPEN_NO_COOKIE:
3977 if (val > 1 || val < 0)
3978 err = -EINVAL;
3979 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3980 err = -EINVAL;
3981 else
3982 tp->fastopen_no_cookie = val;
3983 break;
3984 case TCP_TIMESTAMP:
3985 if (!tp->repair) {
3986 err = -EPERM;
3987 break;
3988 }
3989 /* val is an opaque field,
3990 * and low order bit contains usec_ts enable bit.
3991 * Its a best effort, and we do not care if user makes an error.
3992 */
3993 tp->tcp_usec_ts = val & 1;
3994 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3995 break;
3996 case TCP_REPAIR_WINDOW:
3997 err = tcp_repair_set_window(tp, optval, optlen);
3998 break;
3999 case TCP_NOTSENT_LOWAT:
4000 WRITE_ONCE(tp->notsent_lowat, val);
4001 sk->sk_write_space(sk);
4002 break;
4003 case TCP_INQ:
4004 if (val > 1 || val < 0)
4005 err = -EINVAL;
4006 else
4007 tp->recvmsg_inq = val;
4008 break;
4009 case TCP_TX_DELAY:
4010 if (val)
4011 tcp_enable_tx_delay();
4012 WRITE_ONCE(tp->tcp_tx_delay, val);
4013 break;
4014 default:
4015 err = -ENOPROTOOPT;
4016 break;
4017 }
4018
4019 sockopt_release_sock(sk);
4020 return err;
4021 }
4022
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4023 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4024 unsigned int optlen)
4025 {
4026 const struct inet_connection_sock *icsk = inet_csk(sk);
4027
4028 if (level != SOL_TCP)
4029 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4030 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4031 optval, optlen);
4032 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4033 }
4034 EXPORT_SYMBOL(tcp_setsockopt);
4035
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4036 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4037 struct tcp_info *info)
4038 {
4039 u64 stats[__TCP_CHRONO_MAX], total = 0;
4040 enum tcp_chrono i;
4041
4042 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4043 stats[i] = tp->chrono_stat[i - 1];
4044 if (i == tp->chrono_type)
4045 stats[i] += tcp_jiffies32 - tp->chrono_start;
4046 stats[i] *= USEC_PER_SEC / HZ;
4047 total += stats[i];
4048 }
4049
4050 info->tcpi_busy_time = total;
4051 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4052 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4053 }
4054
4055 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4056 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4057 {
4058 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4059 const struct inet_connection_sock *icsk = inet_csk(sk);
4060 unsigned long rate;
4061 u32 now;
4062 u64 rate64;
4063 bool slow;
4064
4065 memset(info, 0, sizeof(*info));
4066 if (sk->sk_type != SOCK_STREAM)
4067 return;
4068
4069 info->tcpi_state = inet_sk_state_load(sk);
4070
4071 /* Report meaningful fields for all TCP states, including listeners */
4072 rate = READ_ONCE(sk->sk_pacing_rate);
4073 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4074 info->tcpi_pacing_rate = rate64;
4075
4076 rate = READ_ONCE(sk->sk_max_pacing_rate);
4077 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4078 info->tcpi_max_pacing_rate = rate64;
4079
4080 info->tcpi_reordering = tp->reordering;
4081 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4082
4083 if (info->tcpi_state == TCP_LISTEN) {
4084 /* listeners aliased fields :
4085 * tcpi_unacked -> Number of children ready for accept()
4086 * tcpi_sacked -> max backlog
4087 */
4088 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4089 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4090 return;
4091 }
4092
4093 slow = lock_sock_fast(sk);
4094
4095 info->tcpi_ca_state = icsk->icsk_ca_state;
4096 info->tcpi_retransmits = icsk->icsk_retransmits;
4097 info->tcpi_probes = icsk->icsk_probes_out;
4098 info->tcpi_backoff = icsk->icsk_backoff;
4099
4100 if (tp->rx_opt.tstamp_ok)
4101 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4102 if (tcp_is_sack(tp))
4103 info->tcpi_options |= TCPI_OPT_SACK;
4104 if (tp->rx_opt.wscale_ok) {
4105 info->tcpi_options |= TCPI_OPT_WSCALE;
4106 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4107 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4108 }
4109
4110 if (tp->ecn_flags & TCP_ECN_OK)
4111 info->tcpi_options |= TCPI_OPT_ECN;
4112 if (tp->ecn_flags & TCP_ECN_SEEN)
4113 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4114 if (tp->syn_data_acked)
4115 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4116 if (tp->tcp_usec_ts)
4117 info->tcpi_options |= TCPI_OPT_USEC_TS;
4118
4119 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4120 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4121 tcp_delack_max(sk)));
4122 info->tcpi_snd_mss = tp->mss_cache;
4123 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4124
4125 info->tcpi_unacked = tp->packets_out;
4126 info->tcpi_sacked = tp->sacked_out;
4127
4128 info->tcpi_lost = tp->lost_out;
4129 info->tcpi_retrans = tp->retrans_out;
4130
4131 now = tcp_jiffies32;
4132 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4133 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4134 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4135
4136 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4137 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4138 info->tcpi_rtt = tp->srtt_us >> 3;
4139 info->tcpi_rttvar = tp->mdev_us >> 2;
4140 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4141 info->tcpi_advmss = tp->advmss;
4142
4143 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4144 info->tcpi_rcv_space = tp->rcvq_space.space;
4145
4146 info->tcpi_total_retrans = tp->total_retrans;
4147
4148 info->tcpi_bytes_acked = tp->bytes_acked;
4149 info->tcpi_bytes_received = tp->bytes_received;
4150 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4151 tcp_get_info_chrono_stats(tp, info);
4152
4153 info->tcpi_segs_out = tp->segs_out;
4154
4155 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4156 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4157 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4158
4159 info->tcpi_min_rtt = tcp_min_rtt(tp);
4160 info->tcpi_data_segs_out = tp->data_segs_out;
4161
4162 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4163 rate64 = tcp_compute_delivery_rate(tp);
4164 if (rate64)
4165 info->tcpi_delivery_rate = rate64;
4166 info->tcpi_delivered = tp->delivered;
4167 info->tcpi_delivered_ce = tp->delivered_ce;
4168 info->tcpi_bytes_sent = tp->bytes_sent;
4169 info->tcpi_bytes_retrans = tp->bytes_retrans;
4170 info->tcpi_dsack_dups = tp->dsack_dups;
4171 info->tcpi_reord_seen = tp->reord_seen;
4172 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4173 info->tcpi_snd_wnd = tp->snd_wnd;
4174 info->tcpi_rcv_wnd = tp->rcv_wnd;
4175 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4176 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4177
4178 info->tcpi_total_rto = tp->total_rto;
4179 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4180 info->tcpi_total_rto_time = tp->total_rto_time;
4181 if (tp->rto_stamp)
4182 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4183
4184 unlock_sock_fast(sk, slow);
4185 }
4186 EXPORT_SYMBOL_GPL(tcp_get_info);
4187
tcp_opt_stats_get_size(void)4188 static size_t tcp_opt_stats_get_size(void)
4189 {
4190 return
4191 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4192 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4193 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4194 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4195 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4196 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4197 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4198 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4199 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4200 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4201 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4202 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4203 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4204 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4205 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4206 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4207 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4208 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4209 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4210 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4211 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4212 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4213 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4214 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4215 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4216 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4217 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4218 0;
4219 }
4220
4221 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4222 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4223 {
4224 if (skb->protocol == htons(ETH_P_IP))
4225 return ip_hdr(skb)->ttl;
4226 else if (skb->protocol == htons(ETH_P_IPV6))
4227 return ipv6_hdr(skb)->hop_limit;
4228 else
4229 return 0;
4230 }
4231
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4232 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4233 const struct sk_buff *orig_skb,
4234 const struct sk_buff *ack_skb)
4235 {
4236 const struct tcp_sock *tp = tcp_sk(sk);
4237 struct sk_buff *stats;
4238 struct tcp_info info;
4239 unsigned long rate;
4240 u64 rate64;
4241
4242 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4243 if (!stats)
4244 return NULL;
4245
4246 tcp_get_info_chrono_stats(tp, &info);
4247 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4248 info.tcpi_busy_time, TCP_NLA_PAD);
4249 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4250 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4251 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4252 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4253 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4254 tp->data_segs_out, TCP_NLA_PAD);
4255 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4256 tp->total_retrans, TCP_NLA_PAD);
4257
4258 rate = READ_ONCE(sk->sk_pacing_rate);
4259 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4260 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4261
4262 rate64 = tcp_compute_delivery_rate(tp);
4263 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4264
4265 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4266 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4267 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4268
4269 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4270 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4271 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4272 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4273 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4274
4275 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4276 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4277
4278 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4279 TCP_NLA_PAD);
4280 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4281 TCP_NLA_PAD);
4282 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4283 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4284 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4285 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4286 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4287 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4288 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4289 TCP_NLA_PAD);
4290 if (ack_skb)
4291 nla_put_u8(stats, TCP_NLA_TTL,
4292 tcp_skb_ttl_or_hop_limit(ack_skb));
4293
4294 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4295 return stats;
4296 }
4297
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4298 int do_tcp_getsockopt(struct sock *sk, int level,
4299 int optname, sockptr_t optval, sockptr_t optlen)
4300 {
4301 struct inet_connection_sock *icsk = inet_csk(sk);
4302 struct tcp_sock *tp = tcp_sk(sk);
4303 struct net *net = sock_net(sk);
4304 int val, len;
4305
4306 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4307 return -EFAULT;
4308
4309 if (len < 0)
4310 return -EINVAL;
4311
4312 len = min_t(unsigned int, len, sizeof(int));
4313
4314 switch (optname) {
4315 case TCP_MAXSEG:
4316 val = tp->mss_cache;
4317 if (tp->rx_opt.user_mss &&
4318 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4319 val = tp->rx_opt.user_mss;
4320 if (tp->repair)
4321 val = tp->rx_opt.mss_clamp;
4322 break;
4323 case TCP_NODELAY:
4324 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4325 break;
4326 case TCP_CORK:
4327 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4328 break;
4329 case TCP_KEEPIDLE:
4330 val = keepalive_time_when(tp) / HZ;
4331 break;
4332 case TCP_KEEPINTVL:
4333 val = keepalive_intvl_when(tp) / HZ;
4334 break;
4335 case TCP_KEEPCNT:
4336 val = keepalive_probes(tp);
4337 break;
4338 case TCP_SYNCNT:
4339 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4340 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4341 break;
4342 case TCP_LINGER2:
4343 val = READ_ONCE(tp->linger2);
4344 if (val >= 0)
4345 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4346 break;
4347 case TCP_DEFER_ACCEPT:
4348 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4349 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4350 TCP_RTO_MAX / HZ);
4351 break;
4352 case TCP_WINDOW_CLAMP:
4353 val = READ_ONCE(tp->window_clamp);
4354 break;
4355 case TCP_INFO: {
4356 struct tcp_info info;
4357
4358 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4359 return -EFAULT;
4360
4361 tcp_get_info(sk, &info);
4362
4363 len = min_t(unsigned int, len, sizeof(info));
4364 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4365 return -EFAULT;
4366 if (copy_to_sockptr(optval, &info, len))
4367 return -EFAULT;
4368 return 0;
4369 }
4370 case TCP_CC_INFO: {
4371 const struct tcp_congestion_ops *ca_ops;
4372 union tcp_cc_info info;
4373 size_t sz = 0;
4374 int attr;
4375
4376 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4377 return -EFAULT;
4378
4379 ca_ops = icsk->icsk_ca_ops;
4380 if (ca_ops && ca_ops->get_info)
4381 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4382
4383 len = min_t(unsigned int, len, sz);
4384 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4385 return -EFAULT;
4386 if (copy_to_sockptr(optval, &info, len))
4387 return -EFAULT;
4388 return 0;
4389 }
4390 case TCP_QUICKACK:
4391 val = !inet_csk_in_pingpong_mode(sk);
4392 break;
4393
4394 case TCP_CONGESTION:
4395 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4396 return -EFAULT;
4397 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4398 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4399 return -EFAULT;
4400 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4401 return -EFAULT;
4402 return 0;
4403
4404 case TCP_ULP:
4405 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4406 return -EFAULT;
4407 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4408 if (!icsk->icsk_ulp_ops) {
4409 len = 0;
4410 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4411 return -EFAULT;
4412 return 0;
4413 }
4414 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4415 return -EFAULT;
4416 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4417 return -EFAULT;
4418 return 0;
4419
4420 case TCP_FASTOPEN_KEY: {
4421 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4422 unsigned int key_len;
4423
4424 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4425 return -EFAULT;
4426
4427 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4428 TCP_FASTOPEN_KEY_LENGTH;
4429 len = min_t(unsigned int, len, key_len);
4430 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4431 return -EFAULT;
4432 if (copy_to_sockptr(optval, key, len))
4433 return -EFAULT;
4434 return 0;
4435 }
4436 case TCP_THIN_LINEAR_TIMEOUTS:
4437 val = tp->thin_lto;
4438 break;
4439
4440 case TCP_THIN_DUPACK:
4441 val = 0;
4442 break;
4443
4444 case TCP_REPAIR:
4445 val = tp->repair;
4446 break;
4447
4448 case TCP_REPAIR_QUEUE:
4449 if (tp->repair)
4450 val = tp->repair_queue;
4451 else
4452 return -EINVAL;
4453 break;
4454
4455 case TCP_REPAIR_WINDOW: {
4456 struct tcp_repair_window opt;
4457
4458 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4459 return -EFAULT;
4460
4461 if (len != sizeof(opt))
4462 return -EINVAL;
4463
4464 if (!tp->repair)
4465 return -EPERM;
4466
4467 opt.snd_wl1 = tp->snd_wl1;
4468 opt.snd_wnd = tp->snd_wnd;
4469 opt.max_window = tp->max_window;
4470 opt.rcv_wnd = tp->rcv_wnd;
4471 opt.rcv_wup = tp->rcv_wup;
4472
4473 if (copy_to_sockptr(optval, &opt, len))
4474 return -EFAULT;
4475 return 0;
4476 }
4477 case TCP_QUEUE_SEQ:
4478 if (tp->repair_queue == TCP_SEND_QUEUE)
4479 val = tp->write_seq;
4480 else if (tp->repair_queue == TCP_RECV_QUEUE)
4481 val = tp->rcv_nxt;
4482 else
4483 return -EINVAL;
4484 break;
4485
4486 case TCP_USER_TIMEOUT:
4487 val = READ_ONCE(icsk->icsk_user_timeout);
4488 break;
4489
4490 case TCP_FASTOPEN:
4491 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4492 break;
4493
4494 case TCP_FASTOPEN_CONNECT:
4495 val = tp->fastopen_connect;
4496 break;
4497
4498 case TCP_FASTOPEN_NO_COOKIE:
4499 val = tp->fastopen_no_cookie;
4500 break;
4501
4502 case TCP_TX_DELAY:
4503 val = READ_ONCE(tp->tcp_tx_delay);
4504 break;
4505
4506 case TCP_TIMESTAMP:
4507 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4508 if (tp->tcp_usec_ts)
4509 val |= 1;
4510 else
4511 val &= ~1;
4512 break;
4513 case TCP_NOTSENT_LOWAT:
4514 val = READ_ONCE(tp->notsent_lowat);
4515 break;
4516 case TCP_INQ:
4517 val = tp->recvmsg_inq;
4518 break;
4519 case TCP_SAVE_SYN:
4520 val = tp->save_syn;
4521 break;
4522 case TCP_SAVED_SYN: {
4523 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4524 return -EFAULT;
4525
4526 sockopt_lock_sock(sk);
4527 if (tp->saved_syn) {
4528 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4529 len = tcp_saved_syn_len(tp->saved_syn);
4530 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4531 sockopt_release_sock(sk);
4532 return -EFAULT;
4533 }
4534 sockopt_release_sock(sk);
4535 return -EINVAL;
4536 }
4537 len = tcp_saved_syn_len(tp->saved_syn);
4538 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4539 sockopt_release_sock(sk);
4540 return -EFAULT;
4541 }
4542 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4543 sockopt_release_sock(sk);
4544 return -EFAULT;
4545 }
4546 tcp_saved_syn_free(tp);
4547 sockopt_release_sock(sk);
4548 } else {
4549 sockopt_release_sock(sk);
4550 len = 0;
4551 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4552 return -EFAULT;
4553 }
4554 return 0;
4555 }
4556 #ifdef CONFIG_MMU
4557 case TCP_ZEROCOPY_RECEIVE: {
4558 struct scm_timestamping_internal tss;
4559 struct tcp_zerocopy_receive zc = {};
4560 int err;
4561
4562 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4563 return -EFAULT;
4564 if (len < 0 ||
4565 len < offsetofend(struct tcp_zerocopy_receive, length))
4566 return -EINVAL;
4567 if (unlikely(len > sizeof(zc))) {
4568 err = check_zeroed_sockptr(optval, sizeof(zc),
4569 len - sizeof(zc));
4570 if (err < 1)
4571 return err == 0 ? -EINVAL : err;
4572 len = sizeof(zc);
4573 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4574 return -EFAULT;
4575 }
4576 if (copy_from_sockptr(&zc, optval, len))
4577 return -EFAULT;
4578 if (zc.reserved)
4579 return -EINVAL;
4580 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4581 return -EINVAL;
4582 sockopt_lock_sock(sk);
4583 err = tcp_zerocopy_receive(sk, &zc, &tss);
4584 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4585 &zc, &len, err);
4586 sockopt_release_sock(sk);
4587 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4588 goto zerocopy_rcv_cmsg;
4589 switch (len) {
4590 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4591 goto zerocopy_rcv_cmsg;
4592 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4593 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4594 case offsetofend(struct tcp_zerocopy_receive, flags):
4595 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4596 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4597 case offsetofend(struct tcp_zerocopy_receive, err):
4598 goto zerocopy_rcv_sk_err;
4599 case offsetofend(struct tcp_zerocopy_receive, inq):
4600 goto zerocopy_rcv_inq;
4601 case offsetofend(struct tcp_zerocopy_receive, length):
4602 default:
4603 goto zerocopy_rcv_out;
4604 }
4605 zerocopy_rcv_cmsg:
4606 if (zc.msg_flags & TCP_CMSG_TS)
4607 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4608 else
4609 zc.msg_flags = 0;
4610 zerocopy_rcv_sk_err:
4611 if (!err)
4612 zc.err = sock_error(sk);
4613 zerocopy_rcv_inq:
4614 zc.inq = tcp_inq_hint(sk);
4615 zerocopy_rcv_out:
4616 if (!err && copy_to_sockptr(optval, &zc, len))
4617 err = -EFAULT;
4618 return err;
4619 }
4620 #endif
4621 case TCP_AO_REPAIR:
4622 if (!tcp_can_repair_sock(sk))
4623 return -EPERM;
4624 return tcp_ao_get_repair(sk, optval, optlen);
4625 case TCP_AO_GET_KEYS:
4626 case TCP_AO_INFO: {
4627 int err;
4628
4629 sockopt_lock_sock(sk);
4630 if (optname == TCP_AO_GET_KEYS)
4631 err = tcp_ao_get_mkts(sk, optval, optlen);
4632 else
4633 err = tcp_ao_get_sock_info(sk, optval, optlen);
4634 sockopt_release_sock(sk);
4635
4636 return err;
4637 }
4638 case TCP_IS_MPTCP:
4639 val = 0;
4640 break;
4641 default:
4642 return -ENOPROTOOPT;
4643 }
4644
4645 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4646 return -EFAULT;
4647 if (copy_to_sockptr(optval, &val, len))
4648 return -EFAULT;
4649 return 0;
4650 }
4651
tcp_bpf_bypass_getsockopt(int level,int optname)4652 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4653 {
4654 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4655 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4656 */
4657 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4658 return true;
4659
4660 return false;
4661 }
4662 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4663
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4664 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4665 int __user *optlen)
4666 {
4667 struct inet_connection_sock *icsk = inet_csk(sk);
4668
4669 if (level != SOL_TCP)
4670 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4671 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4672 optval, optlen);
4673 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4674 USER_SOCKPTR(optlen));
4675 }
4676 EXPORT_SYMBOL(tcp_getsockopt);
4677
4678 #ifdef CONFIG_TCP_MD5SIG
4679 int tcp_md5_sigpool_id = -1;
4680 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4681
tcp_md5_alloc_sigpool(void)4682 int tcp_md5_alloc_sigpool(void)
4683 {
4684 size_t scratch_size;
4685 int ret;
4686
4687 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4688 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4689 if (ret >= 0) {
4690 /* As long as any md5 sigpool was allocated, the return
4691 * id would stay the same. Re-write the id only for the case
4692 * when previously all MD5 keys were deleted and this call
4693 * allocates the first MD5 key, which may return a different
4694 * sigpool id than was used previously.
4695 */
4696 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4697 return 0;
4698 }
4699 return ret;
4700 }
4701
tcp_md5_release_sigpool(void)4702 void tcp_md5_release_sigpool(void)
4703 {
4704 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4705 }
4706
tcp_md5_add_sigpool(void)4707 void tcp_md5_add_sigpool(void)
4708 {
4709 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4710 }
4711
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4712 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4713 const struct tcp_md5sig_key *key)
4714 {
4715 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4716 struct scatterlist sg;
4717
4718 sg_init_one(&sg, key->key, keylen);
4719 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4720
4721 /* We use data_race() because tcp_md5_do_add() might change
4722 * key->key under us
4723 */
4724 return data_race(crypto_ahash_update(hp->req));
4725 }
4726 EXPORT_SYMBOL(tcp_md5_hash_key);
4727
4728 /* Called with rcu_read_lock() */
4729 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4730 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4731 const void *saddr, const void *daddr,
4732 int family, int l3index, const __u8 *hash_location)
4733 {
4734 /* This gets called for each TCP segment that has TCP-MD5 option.
4735 * We have 3 drop cases:
4736 * o No MD5 hash and one expected.
4737 * o MD5 hash and we're not expecting one.
4738 * o MD5 hash and its wrong.
4739 */
4740 const struct tcp_sock *tp = tcp_sk(sk);
4741 struct tcp_md5sig_key *key;
4742 u8 newhash[16];
4743 int genhash;
4744
4745 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4746
4747 if (!key && hash_location) {
4748 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4749 trace_tcp_hash_md5_unexpected(sk, skb);
4750 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4751 }
4752
4753 /* Check the signature.
4754 * To support dual stack listeners, we need to handle
4755 * IPv4-mapped case.
4756 */
4757 if (family == AF_INET)
4758 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4759 else
4760 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4761 NULL, skb);
4762 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4764 trace_tcp_hash_md5_mismatch(sk, skb);
4765 return SKB_DROP_REASON_TCP_MD5FAILURE;
4766 }
4767 return SKB_NOT_DROPPED_YET;
4768 }
4769 #else
4770 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4771 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4772 const void *saddr, const void *daddr,
4773 int family, int l3index, const __u8 *hash_location)
4774 {
4775 return SKB_NOT_DROPPED_YET;
4776 }
4777
4778 #endif
4779
4780 /* Called with rcu_read_lock() */
4781 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4782 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4783 const struct sk_buff *skb,
4784 const void *saddr, const void *daddr,
4785 int family, int dif, int sdif)
4786 {
4787 const struct tcphdr *th = tcp_hdr(skb);
4788 const struct tcp_ao_hdr *aoh;
4789 const __u8 *md5_location;
4790 int l3index;
4791
4792 /* Invalid option or two times meet any of auth options */
4793 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4794 trace_tcp_hash_bad_header(sk, skb);
4795 return SKB_DROP_REASON_TCP_AUTH_HDR;
4796 }
4797
4798 if (req) {
4799 if (tcp_rsk_used_ao(req) != !!aoh) {
4800 u8 keyid, rnext, maclen;
4801
4802 if (aoh) {
4803 keyid = aoh->keyid;
4804 rnext = aoh->rnext_keyid;
4805 maclen = tcp_ao_hdr_maclen(aoh);
4806 } else {
4807 keyid = rnext = maclen = 0;
4808 }
4809
4810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4811 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4812 return SKB_DROP_REASON_TCP_AOFAILURE;
4813 }
4814 }
4815
4816 /* sdif set, means packet ingressed via a device
4817 * in an L3 domain and dif is set to the l3mdev
4818 */
4819 l3index = sdif ? dif : 0;
4820
4821 /* Fast path: unsigned segments */
4822 if (likely(!md5_location && !aoh)) {
4823 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4824 * for the remote peer. On TCP-AO established connection
4825 * the last key is impossible to remove, so there's
4826 * always at least one current_key.
4827 */
4828 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4829 trace_tcp_hash_ao_required(sk, skb);
4830 return SKB_DROP_REASON_TCP_AONOTFOUND;
4831 }
4832 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4834 trace_tcp_hash_md5_required(sk, skb);
4835 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4836 }
4837 return SKB_NOT_DROPPED_YET;
4838 }
4839
4840 if (aoh)
4841 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4842
4843 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4844 l3index, md5_location);
4845 }
4846 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4847
tcp_done(struct sock * sk)4848 void tcp_done(struct sock *sk)
4849 {
4850 struct request_sock *req;
4851
4852 /* We might be called with a new socket, after
4853 * inet_csk_prepare_forced_close() has been called
4854 * so we can not use lockdep_sock_is_held(sk)
4855 */
4856 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4857
4858 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4859 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4860
4861 tcp_set_state(sk, TCP_CLOSE);
4862 tcp_clear_xmit_timers(sk);
4863 if (req)
4864 reqsk_fastopen_remove(sk, req, false);
4865
4866 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4867
4868 if (!sock_flag(sk, SOCK_DEAD))
4869 sk->sk_state_change(sk);
4870 else
4871 inet_csk_destroy_sock(sk);
4872 }
4873 EXPORT_SYMBOL_GPL(tcp_done);
4874
tcp_abort(struct sock * sk,int err)4875 int tcp_abort(struct sock *sk, int err)
4876 {
4877 int state = inet_sk_state_load(sk);
4878
4879 if (state == TCP_NEW_SYN_RECV) {
4880 struct request_sock *req = inet_reqsk(sk);
4881
4882 local_bh_disable();
4883 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4884 local_bh_enable();
4885 return 0;
4886 }
4887 if (state == TCP_TIME_WAIT) {
4888 struct inet_timewait_sock *tw = inet_twsk(sk);
4889
4890 refcount_inc(&tw->tw_refcnt);
4891 local_bh_disable();
4892 inet_twsk_deschedule_put(tw);
4893 local_bh_enable();
4894 return 0;
4895 }
4896
4897 /* BPF context ensures sock locking. */
4898 if (!has_current_bpf_ctx())
4899 /* Don't race with userspace socket closes such as tcp_close. */
4900 lock_sock(sk);
4901
4902 /* Avoid closing the same socket twice. */
4903 if (sk->sk_state == TCP_CLOSE) {
4904 if (!has_current_bpf_ctx())
4905 release_sock(sk);
4906 return -ENOENT;
4907 }
4908
4909 if (sk->sk_state == TCP_LISTEN) {
4910 tcp_set_state(sk, TCP_CLOSE);
4911 inet_csk_listen_stop(sk);
4912 }
4913
4914 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4915 local_bh_disable();
4916 bh_lock_sock(sk);
4917
4918 if (tcp_need_reset(sk->sk_state))
4919 tcp_send_active_reset(sk, GFP_ATOMIC,
4920 SK_RST_REASON_TCP_STATE);
4921 tcp_done_with_error(sk, err);
4922
4923 bh_unlock_sock(sk);
4924 local_bh_enable();
4925 if (!has_current_bpf_ctx())
4926 release_sock(sk);
4927 return 0;
4928 }
4929 EXPORT_SYMBOL_GPL(tcp_abort);
4930
4931 extern struct tcp_congestion_ops tcp_reno;
4932
4933 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4934 static int __init set_thash_entries(char *str)
4935 {
4936 ssize_t ret;
4937
4938 if (!str)
4939 return 0;
4940
4941 ret = kstrtoul(str, 0, &thash_entries);
4942 if (ret)
4943 return 0;
4944
4945 return 1;
4946 }
4947 __setup("thash_entries=", set_thash_entries);
4948
tcp_init_mem(void)4949 static void __init tcp_init_mem(void)
4950 {
4951 unsigned long limit = nr_free_buffer_pages() / 16;
4952
4953 limit = max(limit, 128UL);
4954 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4955 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4956 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4957 }
4958
tcp_struct_check(void)4959 static void __init tcp_struct_check(void)
4960 {
4961 /* TX read-mostly hotpath cache lines */
4962 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4963 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4964 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4965 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4966 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4967 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4968 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4969 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4970
4971 /* TXRX read-mostly hotpath cache lines */
4972 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4973 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4974 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4975 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4976 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4977 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4978 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4979 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4980 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4981
4982 /* RX read-mostly hotpath cache lines */
4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4986 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4987 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4988 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4994 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4995 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4996
4997 /* TX read-write hotpath cache lines */
4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4999 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5012 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5013 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5014
5015 /* TXRX read-write hotpath cache lines */
5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5031
5032 /* 32bit arches with 8byte alignment on u64 fields might need padding
5033 * before tcp_clock_cache.
5034 */
5035 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5036
5037 /* RX read-write hotpath cache lines */
5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5052 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5053 }
5054
tcp_init(void)5055 void __init tcp_init(void)
5056 {
5057 int max_rshare, max_wshare, cnt;
5058 unsigned long limit;
5059 unsigned int i;
5060
5061 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5062 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5063 sizeof_field(struct sk_buff, cb));
5064
5065 tcp_struct_check();
5066
5067 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5068
5069 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5070 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5071
5072 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5073 thash_entries, 21, /* one slot per 2 MB*/
5074 0, 64 * 1024);
5075 tcp_hashinfo.bind_bucket_cachep =
5076 kmem_cache_create("tcp_bind_bucket",
5077 sizeof(struct inet_bind_bucket), 0,
5078 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5079 SLAB_ACCOUNT,
5080 NULL);
5081 tcp_hashinfo.bind2_bucket_cachep =
5082 kmem_cache_create("tcp_bind2_bucket",
5083 sizeof(struct inet_bind2_bucket), 0,
5084 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5085 SLAB_ACCOUNT,
5086 NULL);
5087
5088 /* Size and allocate the main established and bind bucket
5089 * hash tables.
5090 *
5091 * The methodology is similar to that of the buffer cache.
5092 */
5093 tcp_hashinfo.ehash =
5094 alloc_large_system_hash("TCP established",
5095 sizeof(struct inet_ehash_bucket),
5096 thash_entries,
5097 17, /* one slot per 128 KB of memory */
5098 0,
5099 NULL,
5100 &tcp_hashinfo.ehash_mask,
5101 0,
5102 thash_entries ? 0 : 512 * 1024);
5103 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5104 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5105
5106 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5107 panic("TCP: failed to alloc ehash_locks");
5108 tcp_hashinfo.bhash =
5109 alloc_large_system_hash("TCP bind",
5110 2 * sizeof(struct inet_bind_hashbucket),
5111 tcp_hashinfo.ehash_mask + 1,
5112 17, /* one slot per 128 KB of memory */
5113 0,
5114 &tcp_hashinfo.bhash_size,
5115 NULL,
5116 0,
5117 64 * 1024);
5118 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5119 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5120 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5121 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5122 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5123 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5124 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5125 }
5126
5127 tcp_hashinfo.pernet = false;
5128
5129 cnt = tcp_hashinfo.ehash_mask + 1;
5130 sysctl_tcp_max_orphans = cnt / 2;
5131
5132 tcp_init_mem();
5133 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5134 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5135 max_wshare = min(4UL*1024*1024, limit);
5136 max_rshare = min(6UL*1024*1024, limit);
5137
5138 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5139 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5140 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5141
5142 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5143 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5144 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5145
5146 pr_info("Hash tables configured (established %u bind %u)\n",
5147 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5148
5149 tcp_v4_init();
5150 tcp_metrics_init();
5151 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5152 tcp_tasklet_init();
5153 mptcp_init();
5154 }
5155