1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 #include <linux/types.h>
23
24 #include <asm/mmu.h>
25
26 #ifndef AT_VECTOR_SIZE_ARCH
27 #define AT_VECTOR_SIZE_ARCH 0
28 #endif
29 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
30
31 #define INIT_PASID 0
32
33 struct address_space;
34 struct mem_cgroup;
35
36 /*
37 * Each physical page in the system has a struct page associated with
38 * it to keep track of whatever it is we are using the page for at the
39 * moment. Note that we have no way to track which tasks are using
40 * a page, though if it is a pagecache page, rmap structures can tell us
41 * who is mapping it.
42 *
43 * If you allocate the page using alloc_pages(), you can use some of the
44 * space in struct page for your own purposes. The five words in the main
45 * union are available, except for bit 0 of the first word which must be
46 * kept clear. Many users use this word to store a pointer to an object
47 * which is guaranteed to be aligned. If you use the same storage as
48 * page->mapping, you must restore it to NULL before freeing the page.
49 *
50 * The mapcount field must not be used for own purposes.
51 *
52 * If you want to use the refcount field, it must be used in such a way
53 * that other CPUs temporarily incrementing and then decrementing the
54 * refcount does not cause problems. On receiving the page from
55 * alloc_pages(), the refcount will be positive.
56 *
57 * If you allocate pages of order > 0, you can use some of the fields
58 * in each subpage, but you may need to restore some of their values
59 * afterwards.
60 *
61 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
62 * That requires that freelist & counters in struct slab be adjacent and
63 * double-word aligned. Because struct slab currently just reinterprets the
64 * bits of struct page, we align all struct pages to double-word boundaries,
65 * and ensure that 'freelist' is aligned within struct slab.
66 */
67 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
68 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
69 #else
70 #define _struct_page_alignment __aligned(sizeof(unsigned long))
71 #endif
72
73 struct page {
74 unsigned long flags; /* Atomic flags, some possibly
75 * updated asynchronously */
76 /*
77 * Five words (20/40 bytes) are available in this union.
78 * WARNING: bit 0 of the first word is used for PageTail(). That
79 * means the other users of this union MUST NOT use the bit to
80 * avoid collision and false-positive PageTail().
81 */
82 union {
83 struct { /* Page cache and anonymous pages */
84 /**
85 * @lru: Pageout list, eg. active_list protected by
86 * lruvec->lru_lock. Sometimes used as a generic list
87 * by the page owner.
88 */
89 union {
90 struct list_head lru;
91
92 /* Or, for the Unevictable "LRU list" slot */
93 struct {
94 /* Always even, to negate PageTail */
95 void *__filler;
96 /* Count page's or folio's mlocks */
97 unsigned int mlock_count;
98 };
99
100 /* Or, free page */
101 struct list_head buddy_list;
102 struct list_head pcp_list;
103 struct {
104 struct llist_node pcp_llist;
105 unsigned int order;
106 };
107 };
108 /* See page-flags.h for PAGE_MAPPING_FLAGS */
109 struct address_space *mapping;
110 union {
111 pgoff_t index; /* Our offset within mapping. */
112 unsigned long share; /* share count for fsdax */
113 };
114 /**
115 * @private: Mapping-private opaque data.
116 * Usually used for buffer_heads if PagePrivate.
117 * Used for swp_entry_t if swapcache flag set.
118 * Indicates order in the buddy system if PageBuddy.
119 */
120 unsigned long private;
121 };
122 struct { /* page_pool used by netstack */
123 /**
124 * @pp_magic: magic value to avoid recycling non
125 * page_pool allocated pages.
126 */
127 unsigned long pp_magic;
128 struct page_pool *pp;
129 unsigned long _pp_mapping_pad;
130 unsigned long dma_addr;
131 atomic_long_t pp_ref_count;
132 };
133 struct { /* Tail pages of compound page */
134 unsigned long compound_head; /* Bit zero is set */
135 };
136 struct { /* ZONE_DEVICE pages */
137 /*
138 * The first word is used for compound_head or folio
139 * pgmap
140 */
141 void *_unused_pgmap_compound_head;
142 void *zone_device_data;
143 /*
144 * ZONE_DEVICE private pages are counted as being
145 * mapped so the next 3 words hold the mapping, index,
146 * and private fields from the source anonymous or
147 * page cache page while the page is migrated to device
148 * private memory.
149 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
150 * use the mapping, index, and private fields when
151 * pmem backed DAX files are mapped.
152 */
153 };
154
155 /** @rcu_head: You can use this to free a page by RCU. */
156 struct rcu_head rcu_head;
157 };
158
159 union { /* This union is 4 bytes in size. */
160 /*
161 * For head pages of typed folios, the value stored here
162 * allows for determining what this page is used for. The
163 * tail pages of typed folios will not store a type
164 * (page_type == _mapcount == -1).
165 *
166 * See page-flags.h for a list of page types which are currently
167 * stored here.
168 *
169 * Owners of typed folios may reuse the lower 16 bit of the
170 * head page page_type field after setting the page type,
171 * but must reset these 16 bit to -1 before clearing the
172 * page type.
173 */
174 unsigned int page_type;
175
176 /*
177 * For pages that are part of non-typed folios for which mappings
178 * are tracked via the RMAP, encodes the number of times this page
179 * is directly referenced by a page table.
180 *
181 * Note that the mapcount is always initialized to -1, so that
182 * transitions both from it and to it can be tracked, using
183 * atomic_inc_and_test() and atomic_add_negative(-1).
184 */
185 atomic_t _mapcount;
186 };
187
188 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
189 atomic_t _refcount;
190
191 #ifdef CONFIG_MEMCG
192 unsigned long memcg_data;
193 #elif defined(CONFIG_SLAB_OBJ_EXT)
194 unsigned long _unused_slab_obj_exts;
195 #endif
196
197 /*
198 * On machines where all RAM is mapped into kernel address space,
199 * we can simply calculate the virtual address. On machines with
200 * highmem some memory is mapped into kernel virtual memory
201 * dynamically, so we need a place to store that address.
202 * Note that this field could be 16 bits on x86 ... ;)
203 *
204 * Architectures with slow multiplication can define
205 * WANT_PAGE_VIRTUAL in asm/page.h
206 */
207 #if defined(WANT_PAGE_VIRTUAL)
208 void *virtual; /* Kernel virtual address (NULL if
209 not kmapped, ie. highmem) */
210 #endif /* WANT_PAGE_VIRTUAL */
211
212 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
213 int _last_cpupid;
214 #endif
215
216 #ifdef CONFIG_KMSAN
217 /*
218 * KMSAN metadata for this page:
219 * - shadow page: every bit indicates whether the corresponding
220 * bit of the original page is initialized (0) or not (1);
221 * - origin page: every 4 bytes contain an id of the stack trace
222 * where the uninitialized value was created.
223 */
224 struct page *kmsan_shadow;
225 struct page *kmsan_origin;
226 #endif
227 } _struct_page_alignment;
228
229 /*
230 * struct encoded_page - a nonexistent type marking this pointer
231 *
232 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
233 * with the low bits of the pointer indicating extra context-dependent
234 * information. Only used in mmu_gather handling, and this acts as a type
235 * system check on that use.
236 *
237 * We only really have two guaranteed bits in general, although you could
238 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
239 * for more.
240 *
241 * Use the supplied helper functions to endcode/decode the pointer and bits.
242 */
243 struct encoded_page;
244
245 #define ENCODED_PAGE_BITS 3ul
246
247 /* Perform rmap removal after we have flushed the TLB. */
248 #define ENCODED_PAGE_BIT_DELAY_RMAP 1ul
249
250 /*
251 * The next item in an encoded_page array is the "nr_pages" argument, specifying
252 * the number of consecutive pages starting from this page, that all belong to
253 * the same folio. For example, "nr_pages" corresponds to the number of folio
254 * references that must be dropped. If this bit is not set, "nr_pages" is
255 * implicitly 1.
256 */
257 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT 2ul
258
encode_page(struct page * page,unsigned long flags)259 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
260 {
261 BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
262 return (struct encoded_page *)(flags | (unsigned long)page);
263 }
264
encoded_page_flags(struct encoded_page * page)265 static inline unsigned long encoded_page_flags(struct encoded_page *page)
266 {
267 return ENCODED_PAGE_BITS & (unsigned long)page;
268 }
269
encoded_page_ptr(struct encoded_page * page)270 static inline struct page *encoded_page_ptr(struct encoded_page *page)
271 {
272 return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
273 }
274
encode_nr_pages(unsigned long nr)275 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
276 {
277 VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
278 return (struct encoded_page *)(nr << 2);
279 }
280
encoded_nr_pages(struct encoded_page * page)281 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
282 {
283 return ((unsigned long)page) >> 2;
284 }
285
286 /*
287 * A swap entry has to fit into a "unsigned long", as the entry is hidden
288 * in the "index" field of the swapper address space.
289 */
290 typedef struct {
291 unsigned long val;
292 } swp_entry_t;
293
294 #if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT)
295 /* We have some extra room after the refcount in tail pages. */
296 #define NR_PAGES_IN_LARGE_FOLIO
297 #endif
298
299 /*
300 * On 32bit, we can cut the required metadata in half, because:
301 * (a) PID_MAX_LIMIT implicitly limits the number of MMs we could ever have,
302 * so we can limit MM IDs to 15 bit (32767).
303 * (b) We don't expect folios where even a single complete PTE mapping by
304 * one MM would exceed 15 bits (order-15).
305 */
306 #ifdef CONFIG_64BIT
307 typedef int mm_id_mapcount_t;
308 #define MM_ID_MAPCOUNT_MAX INT_MAX
309 typedef unsigned int mm_id_t;
310 #else /* !CONFIG_64BIT */
311 typedef short mm_id_mapcount_t;
312 #define MM_ID_MAPCOUNT_MAX SHRT_MAX
313 typedef unsigned short mm_id_t;
314 #endif /* CONFIG_64BIT */
315
316 /* We implicitly use the dummy ID for init-mm etc. where we never rmap pages. */
317 #define MM_ID_DUMMY 0
318 #define MM_ID_MIN (MM_ID_DUMMY + 1)
319
320 /*
321 * We leave the highest bit of each MM id unused, so we can store a flag
322 * in the highest bit of each folio->_mm_id[].
323 */
324 #define MM_ID_BITS ((sizeof(mm_id_t) * BITS_PER_BYTE) - 1)
325 #define MM_ID_MASK ((1U << MM_ID_BITS) - 1)
326 #define MM_ID_MAX MM_ID_MASK
327
328 /*
329 * In order to use bit_spin_lock(), which requires an unsigned long, we
330 * operate on folio->_mm_ids when working on flags.
331 */
332 #define FOLIO_MM_IDS_LOCK_BITNUM MM_ID_BITS
333 #define FOLIO_MM_IDS_LOCK_BIT BIT(FOLIO_MM_IDS_LOCK_BITNUM)
334 #define FOLIO_MM_IDS_SHARED_BITNUM (2 * MM_ID_BITS + 1)
335 #define FOLIO_MM_IDS_SHARED_BIT BIT(FOLIO_MM_IDS_SHARED_BITNUM)
336
337 /**
338 * struct folio - Represents a contiguous set of bytes.
339 * @flags: Identical to the page flags.
340 * @lru: Least Recently Used list; tracks how recently this folio was used.
341 * @mlock_count: Number of times this folio has been pinned by mlock().
342 * @mapping: The file this page belongs to, or refers to the anon_vma for
343 * anonymous memory.
344 * @index: Offset within the file, in units of pages. For anonymous memory,
345 * this is the index from the beginning of the mmap.
346 * @share: number of DAX mappings that reference this folio. See
347 * dax_associate_entry.
348 * @private: Filesystem per-folio data (see folio_attach_private()).
349 * @swap: Used for swp_entry_t if folio_test_swapcache().
350 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
351 * find out how many times this folio is mapped by userspace.
352 * @_refcount: Do not access this member directly. Use folio_ref_count()
353 * to find how many references there are to this folio.
354 * @memcg_data: Memory Control Group data.
355 * @pgmap: Metadata for ZONE_DEVICE mappings
356 * @virtual: Virtual address in the kernel direct map.
357 * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
358 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
359 * @_large_mapcount: Do not use directly, call folio_mapcount().
360 * @_nr_pages_mapped: Do not use outside of rmap and debug code.
361 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
362 * @_nr_pages: Do not use directly, call folio_nr_pages().
363 * @_mm_id: Do not use outside of rmap code.
364 * @_mm_ids: Do not use outside of rmap code.
365 * @_mm_id_mapcount: Do not use outside of rmap code.
366 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
367 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
368 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
369 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
370 * @_deferred_list: Folios to be split under memory pressure.
371 * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
372 *
373 * A folio is a physically, virtually and logically contiguous set
374 * of bytes. It is a power-of-two in size, and it is aligned to that
375 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
376 * in the page cache, it is at a file offset which is a multiple of that
377 * power-of-two. It may be mapped into userspace at an address which is
378 * at an arbitrary page offset, but its kernel virtual address is aligned
379 * to its size.
380 */
381 struct folio {
382 /* private: don't document the anon union */
383 union {
384 struct {
385 /* public: */
386 unsigned long flags;
387 union {
388 struct list_head lru;
389 /* private: avoid cluttering the output */
390 struct {
391 void *__filler;
392 /* public: */
393 unsigned int mlock_count;
394 /* private: */
395 };
396 /* public: */
397 struct dev_pagemap *pgmap;
398 };
399 struct address_space *mapping;
400 union {
401 pgoff_t index;
402 unsigned long share;
403 };
404 union {
405 void *private;
406 swp_entry_t swap;
407 };
408 atomic_t _mapcount;
409 atomic_t _refcount;
410 #ifdef CONFIG_MEMCG
411 unsigned long memcg_data;
412 #elif defined(CONFIG_SLAB_OBJ_EXT)
413 unsigned long _unused_slab_obj_exts;
414 #endif
415 #if defined(WANT_PAGE_VIRTUAL)
416 void *virtual;
417 #endif
418 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
419 int _last_cpupid;
420 #endif
421 /* private: the union with struct page is transitional */
422 };
423 struct page page;
424 };
425 union {
426 struct {
427 unsigned long _flags_1;
428 unsigned long _head_1;
429 union {
430 struct {
431 /* public: */
432 atomic_t _large_mapcount;
433 atomic_t _nr_pages_mapped;
434 #ifdef CONFIG_64BIT
435 atomic_t _entire_mapcount;
436 atomic_t _pincount;
437 #endif /* CONFIG_64BIT */
438 mm_id_mapcount_t _mm_id_mapcount[2];
439 union {
440 mm_id_t _mm_id[2];
441 unsigned long _mm_ids;
442 };
443 /* private: the union with struct page is transitional */
444 };
445 unsigned long _usable_1[4];
446 };
447 atomic_t _mapcount_1;
448 atomic_t _refcount_1;
449 /* public: */
450 #ifdef NR_PAGES_IN_LARGE_FOLIO
451 unsigned int _nr_pages;
452 #endif /* NR_PAGES_IN_LARGE_FOLIO */
453 /* private: the union with struct page is transitional */
454 };
455 struct page __page_1;
456 };
457 union {
458 struct {
459 unsigned long _flags_2;
460 unsigned long _head_2;
461 /* public: */
462 struct list_head _deferred_list;
463 #ifndef CONFIG_64BIT
464 atomic_t _entire_mapcount;
465 atomic_t _pincount;
466 #endif /* !CONFIG_64BIT */
467 /* private: the union with struct page is transitional */
468 };
469 struct page __page_2;
470 };
471 union {
472 struct {
473 unsigned long _flags_3;
474 unsigned long _head_3;
475 /* public: */
476 void *_hugetlb_subpool;
477 void *_hugetlb_cgroup;
478 void *_hugetlb_cgroup_rsvd;
479 void *_hugetlb_hwpoison;
480 /* private: the union with struct page is transitional */
481 };
482 struct page __page_3;
483 };
484 };
485
486 #define FOLIO_MATCH(pg, fl) \
487 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
488 FOLIO_MATCH(flags, flags);
489 FOLIO_MATCH(lru, lru);
490 FOLIO_MATCH(mapping, mapping);
491 FOLIO_MATCH(compound_head, lru);
492 FOLIO_MATCH(index, index);
493 FOLIO_MATCH(private, private);
494 FOLIO_MATCH(_mapcount, _mapcount);
495 FOLIO_MATCH(_refcount, _refcount);
496 #ifdef CONFIG_MEMCG
497 FOLIO_MATCH(memcg_data, memcg_data);
498 #endif
499 #if defined(WANT_PAGE_VIRTUAL)
500 FOLIO_MATCH(virtual, virtual);
501 #endif
502 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
503 FOLIO_MATCH(_last_cpupid, _last_cpupid);
504 #endif
505 #undef FOLIO_MATCH
506 #define FOLIO_MATCH(pg, fl) \
507 static_assert(offsetof(struct folio, fl) == \
508 offsetof(struct page, pg) + sizeof(struct page))
509 FOLIO_MATCH(flags, _flags_1);
510 FOLIO_MATCH(compound_head, _head_1);
511 FOLIO_MATCH(_mapcount, _mapcount_1);
512 FOLIO_MATCH(_refcount, _refcount_1);
513 #undef FOLIO_MATCH
514 #define FOLIO_MATCH(pg, fl) \
515 static_assert(offsetof(struct folio, fl) == \
516 offsetof(struct page, pg) + 2 * sizeof(struct page))
517 FOLIO_MATCH(flags, _flags_2);
518 FOLIO_MATCH(compound_head, _head_2);
519 #undef FOLIO_MATCH
520 #define FOLIO_MATCH(pg, fl) \
521 static_assert(offsetof(struct folio, fl) == \
522 offsetof(struct page, pg) + 3 * sizeof(struct page))
523 FOLIO_MATCH(flags, _flags_3);
524 FOLIO_MATCH(compound_head, _head_3);
525 #undef FOLIO_MATCH
526
527 /**
528 * struct ptdesc - Memory descriptor for page tables.
529 * @__page_flags: Same as page flags. Powerpc only.
530 * @pt_rcu_head: For freeing page table pages.
531 * @pt_list: List of used page tables. Used for s390 gmap shadow pages
532 * (which are not linked into the user page tables) and x86
533 * pgds.
534 * @_pt_pad_1: Padding that aliases with page's compound head.
535 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs.
536 * @__page_mapping: Aliases with page->mapping. Unused for page tables.
537 * @pt_index: Used for s390 gmap.
538 * @pt_mm: Used for x86 pgds.
539 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
540 * @pt_share_count: Used for HugeTLB PMD page table share count.
541 * @_pt_pad_2: Padding to ensure proper alignment.
542 * @ptl: Lock for the page table.
543 * @__page_type: Same as page->page_type. Unused for page tables.
544 * @__page_refcount: Same as page refcount.
545 * @pt_memcg_data: Memcg data. Tracked for page tables here.
546 *
547 * This struct overlays struct page for now. Do not modify without a good
548 * understanding of the issues.
549 */
550 struct ptdesc {
551 unsigned long __page_flags;
552
553 union {
554 struct rcu_head pt_rcu_head;
555 struct list_head pt_list;
556 struct {
557 unsigned long _pt_pad_1;
558 pgtable_t pmd_huge_pte;
559 };
560 };
561 unsigned long __page_mapping;
562
563 union {
564 pgoff_t pt_index;
565 struct mm_struct *pt_mm;
566 atomic_t pt_frag_refcount;
567 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
568 atomic_t pt_share_count;
569 #endif
570 };
571
572 union {
573 unsigned long _pt_pad_2;
574 #if ALLOC_SPLIT_PTLOCKS
575 spinlock_t *ptl;
576 #else
577 spinlock_t ptl;
578 #endif
579 };
580 unsigned int __page_type;
581 atomic_t __page_refcount;
582 #ifdef CONFIG_MEMCG
583 unsigned long pt_memcg_data;
584 #endif
585 };
586
587 #define TABLE_MATCH(pg, pt) \
588 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
589 TABLE_MATCH(flags, __page_flags);
590 TABLE_MATCH(compound_head, pt_list);
591 TABLE_MATCH(compound_head, _pt_pad_1);
592 TABLE_MATCH(mapping, __page_mapping);
593 TABLE_MATCH(index, pt_index);
594 TABLE_MATCH(rcu_head, pt_rcu_head);
595 TABLE_MATCH(page_type, __page_type);
596 TABLE_MATCH(_refcount, __page_refcount);
597 #ifdef CONFIG_MEMCG
598 TABLE_MATCH(memcg_data, pt_memcg_data);
599 #endif
600 #undef TABLE_MATCH
601 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
602
603 #define ptdesc_page(pt) (_Generic((pt), \
604 const struct ptdesc *: (const struct page *)(pt), \
605 struct ptdesc *: (struct page *)(pt)))
606
607 #define ptdesc_folio(pt) (_Generic((pt), \
608 const struct ptdesc *: (const struct folio *)(pt), \
609 struct ptdesc *: (struct folio *)(pt)))
610
611 #define page_ptdesc(p) (_Generic((p), \
612 const struct page *: (const struct ptdesc *)(p), \
613 struct page *: (struct ptdesc *)(p)))
614
615 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)616 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
617 {
618 atomic_set(&ptdesc->pt_share_count, 0);
619 }
620
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)621 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
622 {
623 atomic_inc(&ptdesc->pt_share_count);
624 }
625
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)626 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
627 {
628 atomic_dec(&ptdesc->pt_share_count);
629 }
630
ptdesc_pmd_pts_count(struct ptdesc * ptdesc)631 static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
632 {
633 return atomic_read(&ptdesc->pt_share_count);
634 }
635 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)636 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
637 {
638 }
639 #endif
640
641 /*
642 * Used for sizing the vmemmap region on some architectures
643 */
644 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
645
646 /*
647 * page_private can be used on tail pages. However, PagePrivate is only
648 * checked by the VM on the head page. So page_private on the tail pages
649 * should be used for data that's ancillary to the head page (eg attaching
650 * buffer heads to tail pages after attaching buffer heads to the head page)
651 */
652 #define page_private(page) ((page)->private)
653
set_page_private(struct page * page,unsigned long private)654 static inline void set_page_private(struct page *page, unsigned long private)
655 {
656 page->private = private;
657 }
658
folio_get_private(struct folio * folio)659 static inline void *folio_get_private(struct folio *folio)
660 {
661 return folio->private;
662 }
663
664 typedef unsigned long vm_flags_t;
665
666 /*
667 * freeptr_t represents a SLUB freelist pointer, which might be encoded
668 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
669 */
670 typedef struct { unsigned long v; } freeptr_t;
671
672 /*
673 * A region containing a mapping of a non-memory backed file under NOMMU
674 * conditions. These are held in a global tree and are pinned by the VMAs that
675 * map parts of them.
676 */
677 struct vm_region {
678 struct rb_node vm_rb; /* link in global region tree */
679 vm_flags_t vm_flags; /* VMA vm_flags */
680 unsigned long vm_start; /* start address of region */
681 unsigned long vm_end; /* region initialised to here */
682 unsigned long vm_top; /* region allocated to here */
683 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
684 struct file *vm_file; /* the backing file or NULL */
685
686 int vm_usage; /* region usage count (access under nommu_region_sem) */
687 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
688 * this region */
689 };
690
691 #ifdef CONFIG_USERFAULTFD
692 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
693 struct vm_userfaultfd_ctx {
694 struct userfaultfd_ctx *ctx;
695 };
696 #else /* CONFIG_USERFAULTFD */
697 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
698 struct vm_userfaultfd_ctx {};
699 #endif /* CONFIG_USERFAULTFD */
700
701 struct anon_vma_name {
702 struct kref kref;
703 /* The name needs to be at the end because it is dynamically sized. */
704 char name[];
705 };
706
707 #ifdef CONFIG_ANON_VMA_NAME
708 /*
709 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
710 * either keep holding the lock while using the returned pointer or it should
711 * raise anon_vma_name refcount before releasing the lock.
712 */
713 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
714 struct anon_vma_name *anon_vma_name_alloc(const char *name);
715 void anon_vma_name_free(struct kref *kref);
716 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)717 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
718 {
719 return NULL;
720 }
721
anon_vma_name_alloc(const char * name)722 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
723 {
724 return NULL;
725 }
726 #endif
727
728 #define VMA_LOCK_OFFSET 0x40000000
729 #define VMA_REF_LIMIT (VMA_LOCK_OFFSET - 1)
730
731 struct vma_numab_state {
732 /*
733 * Initialised as time in 'jiffies' after which VMA
734 * should be scanned. Delays first scan of new VMA by at
735 * least sysctl_numa_balancing_scan_delay:
736 */
737 unsigned long next_scan;
738
739 /*
740 * Time in jiffies when pids_active[] is reset to
741 * detect phase change behaviour:
742 */
743 unsigned long pids_active_reset;
744
745 /*
746 * Approximate tracking of PIDs that trapped a NUMA hinting
747 * fault. May produce false positives due to hash collisions.
748 *
749 * [0] Previous PID tracking
750 * [1] Current PID tracking
751 *
752 * Window moves after next_pid_reset has expired approximately
753 * every VMA_PID_RESET_PERIOD jiffies:
754 */
755 unsigned long pids_active[2];
756
757 /* MM scan sequence ID when scan first started after VMA creation */
758 int start_scan_seq;
759
760 /*
761 * MM scan sequence ID when the VMA was last completely scanned.
762 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
763 */
764 int prev_scan_seq;
765 };
766
767 /*
768 * This struct describes a virtual memory area. There is one of these
769 * per VM-area/task. A VM area is any part of the process virtual memory
770 * space that has a special rule for the page-fault handlers (ie a shared
771 * library, the executable area etc).
772 *
773 * Only explicitly marked struct members may be accessed by RCU readers before
774 * getting a stable reference.
775 *
776 * WARNING: when adding new members, please update vm_area_init_from() to copy
777 * them during vm_area_struct content duplication.
778 */
779 struct vm_area_struct {
780 /* The first cache line has the info for VMA tree walking. */
781
782 union {
783 struct {
784 /* VMA covers [vm_start; vm_end) addresses within mm */
785 unsigned long vm_start;
786 unsigned long vm_end;
787 };
788 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
789 };
790
791 /*
792 * The address space we belong to.
793 * Unstable RCU readers are allowed to read this.
794 */
795 struct mm_struct *vm_mm;
796 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
797
798 /*
799 * Flags, see mm.h.
800 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
801 */
802 union {
803 const vm_flags_t vm_flags;
804 vm_flags_t __private __vm_flags;
805 };
806
807 #ifdef CONFIG_PER_VMA_LOCK
808 /*
809 * Can only be written (using WRITE_ONCE()) while holding both:
810 * - mmap_lock (in write mode)
811 * - vm_refcnt bit at VMA_LOCK_OFFSET is set
812 * Can be read reliably while holding one of:
813 * - mmap_lock (in read or write mode)
814 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
815 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
816 * while holding nothing (except RCU to keep the VMA struct allocated).
817 *
818 * This sequence counter is explicitly allowed to overflow; sequence
819 * counter reuse can only lead to occasional unnecessary use of the
820 * slowpath.
821 */
822 unsigned int vm_lock_seq;
823 #endif
824 /*
825 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
826 * list, after a COW of one of the file pages. A MAP_SHARED vma
827 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
828 * or brk vma (with NULL file) can only be in an anon_vma list.
829 */
830 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
831 * page_table_lock */
832 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
833
834 /* Function pointers to deal with this struct. */
835 const struct vm_operations_struct *vm_ops;
836
837 /* Information about our backing store: */
838 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
839 units */
840 struct file * vm_file; /* File we map to (can be NULL). */
841 void * vm_private_data; /* was vm_pte (shared mem) */
842
843 #ifdef CONFIG_SWAP
844 atomic_long_t swap_readahead_info;
845 #endif
846 #ifndef CONFIG_MMU
847 struct vm_region *vm_region; /* NOMMU mapping region */
848 #endif
849 #ifdef CONFIG_NUMA
850 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
851 #endif
852 #ifdef CONFIG_NUMA_BALANCING
853 struct vma_numab_state *numab_state; /* NUMA Balancing state */
854 #endif
855 #ifdef CONFIG_PER_VMA_LOCK
856 /* Unstable RCU readers are allowed to read this. */
857 refcount_t vm_refcnt ____cacheline_aligned_in_smp;
858 #ifdef CONFIG_DEBUG_LOCK_ALLOC
859 struct lockdep_map vmlock_dep_map;
860 #endif
861 #endif
862 /*
863 * For areas with an address space and backing store,
864 * linkage into the address_space->i_mmap interval tree.
865 *
866 */
867 struct {
868 struct rb_node rb;
869 unsigned long rb_subtree_last;
870 } shared;
871 #ifdef CONFIG_ANON_VMA_NAME
872 /*
873 * For private and shared anonymous mappings, a pointer to a null
874 * terminated string containing the name given to the vma, or NULL if
875 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
876 */
877 struct anon_vma_name *anon_name;
878 #endif
879 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
880 } __randomize_layout;
881
882 #ifdef CONFIG_NUMA
883 #define vma_policy(vma) ((vma)->vm_policy)
884 #else
885 #define vma_policy(vma) NULL
886 #endif
887
888 #ifdef CONFIG_SCHED_MM_CID
889 struct mm_cid {
890 u64 time;
891 int cid;
892 int recent_cid;
893 };
894 #endif
895
896 struct kioctx_table;
897 struct iommu_mm_data;
898 struct mm_struct {
899 struct {
900 /*
901 * Fields which are often written to are placed in a separate
902 * cache line.
903 */
904 struct {
905 /**
906 * @mm_count: The number of references to &struct
907 * mm_struct (@mm_users count as 1).
908 *
909 * Use mmgrab()/mmdrop() to modify. When this drops to
910 * 0, the &struct mm_struct is freed.
911 */
912 atomic_t mm_count;
913 } ____cacheline_aligned_in_smp;
914
915 struct maple_tree mm_mt;
916
917 unsigned long mmap_base; /* base of mmap area */
918 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
919 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
920 /* Base addresses for compatible mmap() */
921 unsigned long mmap_compat_base;
922 unsigned long mmap_compat_legacy_base;
923 #endif
924 unsigned long task_size; /* size of task vm space */
925 pgd_t * pgd;
926
927 #ifdef CONFIG_MEMBARRIER
928 /**
929 * @membarrier_state: Flags controlling membarrier behavior.
930 *
931 * This field is close to @pgd to hopefully fit in the same
932 * cache-line, which needs to be touched by switch_mm().
933 */
934 atomic_t membarrier_state;
935 #endif
936
937 /**
938 * @mm_users: The number of users including userspace.
939 *
940 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
941 * drops to 0 (i.e. when the task exits and there are no other
942 * temporary reference holders), we also release a reference on
943 * @mm_count (which may then free the &struct mm_struct if
944 * @mm_count also drops to 0).
945 */
946 atomic_t mm_users;
947
948 #ifdef CONFIG_SCHED_MM_CID
949 /**
950 * @pcpu_cid: Per-cpu current cid.
951 *
952 * Keep track of the currently allocated mm_cid for each cpu.
953 * The per-cpu mm_cid values are serialized by their respective
954 * runqueue locks.
955 */
956 struct mm_cid __percpu *pcpu_cid;
957 /*
958 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
959 *
960 * When the next mm_cid scan is due (in jiffies).
961 */
962 unsigned long mm_cid_next_scan;
963 /**
964 * @nr_cpus_allowed: Number of CPUs allowed for mm.
965 *
966 * Number of CPUs allowed in the union of all mm's
967 * threads allowed CPUs.
968 */
969 unsigned int nr_cpus_allowed;
970 /**
971 * @max_nr_cid: Maximum number of allowed concurrency
972 * IDs allocated.
973 *
974 * Track the highest number of allowed concurrency IDs
975 * allocated for the mm.
976 */
977 atomic_t max_nr_cid;
978 /**
979 * @cpus_allowed_lock: Lock protecting mm cpus_allowed.
980 *
981 * Provide mutual exclusion for mm cpus_allowed and
982 * mm nr_cpus_allowed updates.
983 */
984 raw_spinlock_t cpus_allowed_lock;
985 #endif
986 #ifdef CONFIG_MMU
987 atomic_long_t pgtables_bytes; /* size of all page tables */
988 #endif
989 int map_count; /* number of VMAs */
990
991 spinlock_t page_table_lock; /* Protects page tables and some
992 * counters
993 */
994 /*
995 * With some kernel config, the current mmap_lock's offset
996 * inside 'mm_struct' is at 0x120, which is very optimal, as
997 * its two hot fields 'count' and 'owner' sit in 2 different
998 * cachelines, and when mmap_lock is highly contended, both
999 * of the 2 fields will be accessed frequently, current layout
1000 * will help to reduce cache bouncing.
1001 *
1002 * So please be careful with adding new fields before
1003 * mmap_lock, which can easily push the 2 fields into one
1004 * cacheline.
1005 */
1006 struct rw_semaphore mmap_lock;
1007
1008 struct list_head mmlist; /* List of maybe swapped mm's. These
1009 * are globally strung together off
1010 * init_mm.mmlist, and are protected
1011 * by mmlist_lock
1012 */
1013 #ifdef CONFIG_PER_VMA_LOCK
1014 struct rcuwait vma_writer_wait;
1015 /*
1016 * This field has lock-like semantics, meaning it is sometimes
1017 * accessed with ACQUIRE/RELEASE semantics.
1018 * Roughly speaking, incrementing the sequence number is
1019 * equivalent to releasing locks on VMAs; reading the sequence
1020 * number can be part of taking a read lock on a VMA.
1021 * Incremented every time mmap_lock is write-locked/unlocked.
1022 * Initialized to 0, therefore odd values indicate mmap_lock
1023 * is write-locked and even values that it's released.
1024 *
1025 * Can be modified under write mmap_lock using RELEASE
1026 * semantics.
1027 * Can be read with no other protection when holding write
1028 * mmap_lock.
1029 * Can be read with ACQUIRE semantics if not holding write
1030 * mmap_lock.
1031 */
1032 seqcount_t mm_lock_seq;
1033 #endif
1034
1035
1036 unsigned long hiwater_rss; /* High-watermark of RSS usage */
1037 unsigned long hiwater_vm; /* High-water virtual memory usage */
1038
1039 unsigned long total_vm; /* Total pages mapped */
1040 unsigned long locked_vm; /* Pages that have PG_mlocked set */
1041 atomic64_t pinned_vm; /* Refcount permanently increased */
1042 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
1043 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
1044 unsigned long stack_vm; /* VM_STACK */
1045 unsigned long def_flags;
1046
1047 /**
1048 * @write_protect_seq: Locked when any thread is write
1049 * protecting pages mapped by this mm to enforce a later COW,
1050 * for instance during page table copying for fork().
1051 */
1052 seqcount_t write_protect_seq;
1053
1054 spinlock_t arg_lock; /* protect the below fields */
1055
1056 unsigned long start_code, end_code, start_data, end_data;
1057 unsigned long start_brk, brk, start_stack;
1058 unsigned long arg_start, arg_end, env_start, env_end;
1059
1060 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
1061
1062 struct percpu_counter rss_stat[NR_MM_COUNTERS];
1063
1064 struct linux_binfmt *binfmt;
1065
1066 /* Architecture-specific MM context */
1067 mm_context_t context;
1068
1069 unsigned long flags; /* Must use atomic bitops to access */
1070
1071 #ifdef CONFIG_AIO
1072 spinlock_t ioctx_lock;
1073 struct kioctx_table __rcu *ioctx_table;
1074 #endif
1075 #ifdef CONFIG_MEMCG
1076 /*
1077 * "owner" points to a task that is regarded as the canonical
1078 * user/owner of this mm. All of the following must be true in
1079 * order for it to be changed:
1080 *
1081 * current == mm->owner
1082 * current->mm != mm
1083 * new_owner->mm == mm
1084 * new_owner->alloc_lock is held
1085 */
1086 struct task_struct __rcu *owner;
1087 #endif
1088 struct user_namespace *user_ns;
1089
1090 /* store ref to file /proc/<pid>/exe symlink points to */
1091 struct file __rcu *exe_file;
1092 #ifdef CONFIG_MMU_NOTIFIER
1093 struct mmu_notifier_subscriptions *notifier_subscriptions;
1094 #endif
1095 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1096 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
1097 #endif
1098 #ifdef CONFIG_NUMA_BALANCING
1099 /*
1100 * numa_next_scan is the next time that PTEs will be remapped
1101 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1102 * statistics and migrate pages to new nodes if necessary.
1103 */
1104 unsigned long numa_next_scan;
1105
1106 /* Restart point for scanning and remapping PTEs. */
1107 unsigned long numa_scan_offset;
1108
1109 /* numa_scan_seq prevents two threads remapping PTEs. */
1110 int numa_scan_seq;
1111 #endif
1112 /*
1113 * An operation with batched TLB flushing is going on. Anything
1114 * that can move process memory needs to flush the TLB when
1115 * moving a PROT_NONE mapped page.
1116 */
1117 atomic_t tlb_flush_pending;
1118 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1119 /* See flush_tlb_batched_pending() */
1120 atomic_t tlb_flush_batched;
1121 #endif
1122 struct uprobes_state uprobes_state;
1123 #ifdef CONFIG_PREEMPT_RT
1124 struct rcu_head delayed_drop;
1125 #endif
1126 #ifdef CONFIG_HUGETLB_PAGE
1127 atomic_long_t hugetlb_usage;
1128 #endif
1129 struct work_struct async_put_work;
1130
1131 #ifdef CONFIG_IOMMU_MM_DATA
1132 struct iommu_mm_data *iommu_mm;
1133 #endif
1134 #ifdef CONFIG_KSM
1135 /*
1136 * Represent how many pages of this process are involved in KSM
1137 * merging (not including ksm_zero_pages).
1138 */
1139 unsigned long ksm_merging_pages;
1140 /*
1141 * Represent how many pages are checked for ksm merging
1142 * including merged and not merged.
1143 */
1144 unsigned long ksm_rmap_items;
1145 /*
1146 * Represent how many empty pages are merged with kernel zero
1147 * pages when enabling KSM use_zero_pages.
1148 */
1149 atomic_long_t ksm_zero_pages;
1150 #endif /* CONFIG_KSM */
1151 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1152 struct {
1153 /* this mm_struct is on lru_gen_mm_list */
1154 struct list_head list;
1155 /*
1156 * Set when switching to this mm_struct, as a hint of
1157 * whether it has been used since the last time per-node
1158 * page table walkers cleared the corresponding bits.
1159 */
1160 unsigned long bitmap;
1161 #ifdef CONFIG_MEMCG
1162 /* points to the memcg of "owner" above */
1163 struct mem_cgroup *memcg;
1164 #endif
1165 } lru_gen;
1166 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1167 #ifdef CONFIG_MM_ID
1168 mm_id_t mm_id;
1169 #endif /* CONFIG_MM_ID */
1170 } __randomize_layout;
1171
1172 /*
1173 * The mm_cpumask needs to be at the end of mm_struct, because it
1174 * is dynamically sized based on nr_cpu_ids.
1175 */
1176 unsigned long cpu_bitmap[];
1177 };
1178
1179 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1180 MT_FLAGS_USE_RCU)
1181 extern struct mm_struct init_mm;
1182
1183 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1184 static inline void mm_init_cpumask(struct mm_struct *mm)
1185 {
1186 unsigned long cpu_bitmap = (unsigned long)mm;
1187
1188 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1189 cpumask_clear((struct cpumask *)cpu_bitmap);
1190 }
1191
1192 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1193 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1194 {
1195 return (struct cpumask *)&mm->cpu_bitmap;
1196 }
1197
1198 #ifdef CONFIG_LRU_GEN
1199
1200 struct lru_gen_mm_list {
1201 /* mm_struct list for page table walkers */
1202 struct list_head fifo;
1203 /* protects the list above */
1204 spinlock_t lock;
1205 };
1206
1207 #endif /* CONFIG_LRU_GEN */
1208
1209 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1210
1211 void lru_gen_add_mm(struct mm_struct *mm);
1212 void lru_gen_del_mm(struct mm_struct *mm);
1213 void lru_gen_migrate_mm(struct mm_struct *mm);
1214
lru_gen_init_mm(struct mm_struct * mm)1215 static inline void lru_gen_init_mm(struct mm_struct *mm)
1216 {
1217 INIT_LIST_HEAD(&mm->lru_gen.list);
1218 mm->lru_gen.bitmap = 0;
1219 #ifdef CONFIG_MEMCG
1220 mm->lru_gen.memcg = NULL;
1221 #endif
1222 }
1223
lru_gen_use_mm(struct mm_struct * mm)1224 static inline void lru_gen_use_mm(struct mm_struct *mm)
1225 {
1226 /*
1227 * When the bitmap is set, page reclaim knows this mm_struct has been
1228 * used since the last time it cleared the bitmap. So it might be worth
1229 * walking the page tables of this mm_struct to clear the accessed bit.
1230 */
1231 WRITE_ONCE(mm->lru_gen.bitmap, -1);
1232 }
1233
1234 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1235
lru_gen_add_mm(struct mm_struct * mm)1236 static inline void lru_gen_add_mm(struct mm_struct *mm)
1237 {
1238 }
1239
lru_gen_del_mm(struct mm_struct * mm)1240 static inline void lru_gen_del_mm(struct mm_struct *mm)
1241 {
1242 }
1243
lru_gen_migrate_mm(struct mm_struct * mm)1244 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1245 {
1246 }
1247
lru_gen_init_mm(struct mm_struct * mm)1248 static inline void lru_gen_init_mm(struct mm_struct *mm)
1249 {
1250 }
1251
lru_gen_use_mm(struct mm_struct * mm)1252 static inline void lru_gen_use_mm(struct mm_struct *mm)
1253 {
1254 }
1255
1256 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1257
1258 struct vma_iterator {
1259 struct ma_state mas;
1260 };
1261
1262 #define VMA_ITERATOR(name, __mm, __addr) \
1263 struct vma_iterator name = { \
1264 .mas = { \
1265 .tree = &(__mm)->mm_mt, \
1266 .index = __addr, \
1267 .node = NULL, \
1268 .status = ma_start, \
1269 }, \
1270 }
1271
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1272 static inline void vma_iter_init(struct vma_iterator *vmi,
1273 struct mm_struct *mm, unsigned long addr)
1274 {
1275 mas_init(&vmi->mas, &mm->mm_mt, addr);
1276 }
1277
1278 #ifdef CONFIG_SCHED_MM_CID
1279
1280 enum mm_cid_state {
1281 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */
1282 MM_CID_LAZY_PUT = (1U << 31),
1283 };
1284
mm_cid_is_unset(int cid)1285 static inline bool mm_cid_is_unset(int cid)
1286 {
1287 return cid == MM_CID_UNSET;
1288 }
1289
mm_cid_is_lazy_put(int cid)1290 static inline bool mm_cid_is_lazy_put(int cid)
1291 {
1292 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1293 }
1294
mm_cid_is_valid(int cid)1295 static inline bool mm_cid_is_valid(int cid)
1296 {
1297 return !(cid & MM_CID_LAZY_PUT);
1298 }
1299
mm_cid_set_lazy_put(int cid)1300 static inline int mm_cid_set_lazy_put(int cid)
1301 {
1302 return cid | MM_CID_LAZY_PUT;
1303 }
1304
mm_cid_clear_lazy_put(int cid)1305 static inline int mm_cid_clear_lazy_put(int cid)
1306 {
1307 return cid & ~MM_CID_LAZY_PUT;
1308 }
1309
1310 /*
1311 * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1312 */
mm_cpus_allowed(struct mm_struct * mm)1313 static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1314 {
1315 unsigned long bitmap = (unsigned long)mm;
1316
1317 bitmap += offsetof(struct mm_struct, cpu_bitmap);
1318 /* Skip cpu_bitmap */
1319 bitmap += cpumask_size();
1320 return (struct cpumask *)bitmap;
1321 }
1322
1323 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1324 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1325 {
1326 unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1327
1328 /* Skip mm_cpus_allowed */
1329 cid_bitmap += cpumask_size();
1330 return (struct cpumask *)cid_bitmap;
1331 }
1332
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1333 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
1334 {
1335 int i;
1336
1337 for_each_possible_cpu(i) {
1338 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1339
1340 pcpu_cid->cid = MM_CID_UNSET;
1341 pcpu_cid->recent_cid = MM_CID_UNSET;
1342 pcpu_cid->time = 0;
1343 }
1344 mm->nr_cpus_allowed = p->nr_cpus_allowed;
1345 atomic_set(&mm->max_nr_cid, 0);
1346 raw_spin_lock_init(&mm->cpus_allowed_lock);
1347 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
1348 cpumask_clear(mm_cidmask(mm));
1349 }
1350
mm_alloc_cid_noprof(struct mm_struct * mm,struct task_struct * p)1351 static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1352 {
1353 mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1354 if (!mm->pcpu_cid)
1355 return -ENOMEM;
1356 mm_init_cid(mm, p);
1357 return 0;
1358 }
1359 #define mm_alloc_cid(...) alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1360
mm_destroy_cid(struct mm_struct * mm)1361 static inline void mm_destroy_cid(struct mm_struct *mm)
1362 {
1363 free_percpu(mm->pcpu_cid);
1364 mm->pcpu_cid = NULL;
1365 }
1366
mm_cid_size(void)1367 static inline unsigned int mm_cid_size(void)
1368 {
1369 return 2 * cpumask_size(); /* mm_cpus_allowed(), mm_cidmask(). */
1370 }
1371
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1372 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask)
1373 {
1374 struct cpumask *mm_allowed = mm_cpus_allowed(mm);
1375
1376 if (!mm)
1377 return;
1378 /* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */
1379 raw_spin_lock(&mm->cpus_allowed_lock);
1380 cpumask_or(mm_allowed, mm_allowed, cpumask);
1381 WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed));
1382 raw_spin_unlock(&mm->cpus_allowed_lock);
1383 }
1384 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm,struct task_struct * p)1385 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
mm_alloc_cid(struct mm_struct * mm,struct task_struct * p)1386 static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1387 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1388
mm_cid_size(void)1389 static inline unsigned int mm_cid_size(void)
1390 {
1391 return 0;
1392 }
mm_set_cpus_allowed(struct mm_struct * mm,const struct cpumask * cpumask)1393 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { }
1394 #endif /* CONFIG_SCHED_MM_CID */
1395
1396 struct mmu_gather;
1397 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1398 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1399 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1400
1401 struct vm_fault;
1402
1403 /**
1404 * typedef vm_fault_t - Return type for page fault handlers.
1405 *
1406 * Page fault handlers return a bitmask of %VM_FAULT values.
1407 */
1408 typedef __bitwise unsigned int vm_fault_t;
1409
1410 /**
1411 * enum vm_fault_reason - Page fault handlers return a bitmask of
1412 * these values to tell the core VM what happened when handling the
1413 * fault. Used to decide whether a process gets delivered SIGBUS or
1414 * just gets major/minor fault counters bumped up.
1415 *
1416 * @VM_FAULT_OOM: Out Of Memory
1417 * @VM_FAULT_SIGBUS: Bad access
1418 * @VM_FAULT_MAJOR: Page read from storage
1419 * @VM_FAULT_HWPOISON: Hit poisoned small page
1420 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1421 * in upper bits
1422 * @VM_FAULT_SIGSEGV: segmentation fault
1423 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1424 * @VM_FAULT_LOCKED: ->fault locked the returned page
1425 * @VM_FAULT_RETRY: ->fault blocked, must retry
1426 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1427 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1428 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1429 * fsync() to complete (for synchronous page faults
1430 * in DAX)
1431 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1432 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1433 *
1434 */
1435 enum vm_fault_reason {
1436 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1437 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1438 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1439 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1440 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1441 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1442 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1443 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1444 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1445 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1446 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1447 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1448 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1449 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1450 };
1451
1452 /* Encode hstate index for a hwpoisoned large page */
1453 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1454 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1455
1456 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1457 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1458 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1459
1460 #define VM_FAULT_RESULT_TRACE \
1461 { VM_FAULT_OOM, "OOM" }, \
1462 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1463 { VM_FAULT_MAJOR, "MAJOR" }, \
1464 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1465 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1466 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1467 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1468 { VM_FAULT_LOCKED, "LOCKED" }, \
1469 { VM_FAULT_RETRY, "RETRY" }, \
1470 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1471 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1472 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \
1473 { VM_FAULT_COMPLETED, "COMPLETED" }
1474
1475 struct vm_special_mapping {
1476 const char *name; /* The name, e.g. "[vdso]". */
1477
1478 /*
1479 * If .fault is not provided, this points to a
1480 * NULL-terminated array of pages that back the special mapping.
1481 *
1482 * This must not be NULL unless .fault is provided.
1483 */
1484 struct page **pages;
1485
1486 /*
1487 * If non-NULL, then this is called to resolve page faults
1488 * on the special mapping. If used, .pages is not checked.
1489 */
1490 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1491 struct vm_area_struct *vma,
1492 struct vm_fault *vmf);
1493
1494 int (*mremap)(const struct vm_special_mapping *sm,
1495 struct vm_area_struct *new_vma);
1496
1497 void (*close)(const struct vm_special_mapping *sm,
1498 struct vm_area_struct *vma);
1499 };
1500
1501 enum tlb_flush_reason {
1502 TLB_FLUSH_ON_TASK_SWITCH,
1503 TLB_REMOTE_SHOOTDOWN,
1504 TLB_LOCAL_SHOOTDOWN,
1505 TLB_LOCAL_MM_SHOOTDOWN,
1506 TLB_REMOTE_SEND_IPI,
1507 TLB_REMOTE_WRONG_CPU,
1508 NR_TLB_FLUSH_REASONS,
1509 };
1510
1511 /**
1512 * enum fault_flag - Fault flag definitions.
1513 * @FAULT_FLAG_WRITE: Fault was a write fault.
1514 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1515 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1516 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1517 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1518 * @FAULT_FLAG_TRIED: The fault has been tried once.
1519 * @FAULT_FLAG_USER: The fault originated in userspace.
1520 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1521 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1522 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1523 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1524 * COW mapping, making sure that an exclusive anon page is
1525 * mapped after the fault.
1526 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1527 * We should only access orig_pte if this flag set.
1528 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1529 *
1530 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1531 * whether we would allow page faults to retry by specifying these two
1532 * fault flags correctly. Currently there can be three legal combinations:
1533 *
1534 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1535 * this is the first try
1536 *
1537 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1538 * we've already tried at least once
1539 *
1540 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1541 *
1542 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1543 * be used. Note that page faults can be allowed to retry for multiple times,
1544 * in which case we'll have an initial fault with flags (a) then later on
1545 * continuous faults with flags (b). We should always try to detect pending
1546 * signals before a retry to make sure the continuous page faults can still be
1547 * interrupted if necessary.
1548 *
1549 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1550 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1551 * applied to mappings that are not COW mappings.
1552 */
1553 enum fault_flag {
1554 FAULT_FLAG_WRITE = 1 << 0,
1555 FAULT_FLAG_MKWRITE = 1 << 1,
1556 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1557 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1558 FAULT_FLAG_KILLABLE = 1 << 4,
1559 FAULT_FLAG_TRIED = 1 << 5,
1560 FAULT_FLAG_USER = 1 << 6,
1561 FAULT_FLAG_REMOTE = 1 << 7,
1562 FAULT_FLAG_INSTRUCTION = 1 << 8,
1563 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1564 FAULT_FLAG_UNSHARE = 1 << 10,
1565 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1566 FAULT_FLAG_VMA_LOCK = 1 << 12,
1567 };
1568
1569 typedef unsigned int __bitwise zap_flags_t;
1570
1571 /* Flags for clear_young_dirty_ptes(). */
1572 typedef int __bitwise cydp_t;
1573
1574 /* Clear the access bit */
1575 #define CYDP_CLEAR_YOUNG ((__force cydp_t)BIT(0))
1576
1577 /* Clear the dirty bit */
1578 #define CYDP_CLEAR_DIRTY ((__force cydp_t)BIT(1))
1579
1580 /*
1581 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1582 * other. Here is what they mean, and how to use them:
1583 *
1584 *
1585 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1586 * lifetime enforced by the filesystem and we need guarantees that longterm
1587 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1588 * the filesystem. Ideas for this coordination include revoking the longterm
1589 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1590 * added after the problem with filesystems was found FS DAX VMAs are
1591 * specifically failed. Filesystem pages are still subject to bugs and use of
1592 * FOLL_LONGTERM should be avoided on those pages.
1593 *
1594 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1595 * that region. And so, CMA attempts to migrate the page before pinning, when
1596 * FOLL_LONGTERM is specified.
1597 *
1598 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1599 * but an additional pin counting system) will be invoked. This is intended for
1600 * anything that gets a page reference and then touches page data (for example,
1601 * Direct IO). This lets the filesystem know that some non-file-system entity is
1602 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1603 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1604 * a call to unpin_user_page().
1605 *
1606 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1607 * and separate refcounting mechanisms, however, and that means that each has
1608 * its own acquire and release mechanisms:
1609 *
1610 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1611 *
1612 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1613 *
1614 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1615 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1616 * calls applied to them, and that's perfectly OK. This is a constraint on the
1617 * callers, not on the pages.)
1618 *
1619 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1620 * directly by the caller. That's in order to help avoid mismatches when
1621 * releasing pages: get_user_pages*() pages must be released via put_page(),
1622 * while pin_user_pages*() pages must be released via unpin_user_page().
1623 *
1624 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1625 */
1626
1627 enum {
1628 /* check pte is writable */
1629 FOLL_WRITE = 1 << 0,
1630 /* do get_page on page */
1631 FOLL_GET = 1 << 1,
1632 /* give error on hole if it would be zero */
1633 FOLL_DUMP = 1 << 2,
1634 /* get_user_pages read/write w/o permission */
1635 FOLL_FORCE = 1 << 3,
1636 /*
1637 * if a disk transfer is needed, start the IO and return without waiting
1638 * upon it
1639 */
1640 FOLL_NOWAIT = 1 << 4,
1641 /* do not fault in pages */
1642 FOLL_NOFAULT = 1 << 5,
1643 /* check page is hwpoisoned */
1644 FOLL_HWPOISON = 1 << 6,
1645 /* don't do file mappings */
1646 FOLL_ANON = 1 << 7,
1647 /*
1648 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1649 * time period _often_ under userspace control. This is in contrast to
1650 * iov_iter_get_pages(), whose usages are transient.
1651 */
1652 FOLL_LONGTERM = 1 << 8,
1653 /* split huge pmd before returning */
1654 FOLL_SPLIT_PMD = 1 << 9,
1655 /* allow returning PCI P2PDMA pages */
1656 FOLL_PCI_P2PDMA = 1 << 10,
1657 /* allow interrupts from generic signals */
1658 FOLL_INTERRUPTIBLE = 1 << 11,
1659 /*
1660 * Always honor (trigger) NUMA hinting faults.
1661 *
1662 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1663 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1664 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1665 * hinting faults.
1666 */
1667 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1668
1669 /* See also internal only FOLL flags in mm/internal.h */
1670 };
1671
1672 /* mm flags */
1673
1674 /*
1675 * The first two bits represent core dump modes for set-user-ID,
1676 * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1677 */
1678 #define MMF_DUMPABLE_BITS 2
1679 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
1680 /* coredump filter bits */
1681 #define MMF_DUMP_ANON_PRIVATE 2
1682 #define MMF_DUMP_ANON_SHARED 3
1683 #define MMF_DUMP_MAPPED_PRIVATE 4
1684 #define MMF_DUMP_MAPPED_SHARED 5
1685 #define MMF_DUMP_ELF_HEADERS 6
1686 #define MMF_DUMP_HUGETLB_PRIVATE 7
1687 #define MMF_DUMP_HUGETLB_SHARED 8
1688 #define MMF_DUMP_DAX_PRIVATE 9
1689 #define MMF_DUMP_DAX_SHARED 10
1690
1691 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
1692 #define MMF_DUMP_FILTER_BITS 9
1693 #define MMF_DUMP_FILTER_MASK \
1694 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1695 #define MMF_DUMP_FILTER_DEFAULT \
1696 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
1697 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1698
1699 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1700 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
1701 #else
1702 # define MMF_DUMP_MASK_DEFAULT_ELF 0
1703 #endif
1704 /* leave room for more dump flags */
1705 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
1706 #define MMF_VM_HUGEPAGE 17 /* set when mm is available for khugepaged */
1707
1708 /*
1709 * This one-shot flag is dropped due to necessity of changing exe once again
1710 * on NFS restore
1711 */
1712 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
1713
1714 #define MMF_HAS_UPROBES 19 /* has uprobes */
1715 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
1716 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
1717 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
1718 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
1719 #define MMF_DISABLE_THP 24 /* disable THP for all VMAs */
1720 #define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP)
1721 #define MMF_OOM_REAP_QUEUED 25 /* mm was queued for oom_reaper */
1722 #define MMF_MULTIPROCESS 26 /* mm is shared between processes */
1723 /*
1724 * MMF_HAS_PINNED: Whether this mm has pinned any pages. This can be either
1725 * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1726 * a counter on its own. We're aggresive on this bit for now: even if the
1727 * pinned pages were unpinned later on, we'll still keep this bit set for the
1728 * lifecycle of this mm, just for simplicity.
1729 */
1730 #define MMF_HAS_PINNED 27 /* FOLL_PIN has run, never cleared */
1731
1732 #define MMF_HAS_MDWE 28
1733 #define MMF_HAS_MDWE_MASK (1 << MMF_HAS_MDWE)
1734
1735
1736 #define MMF_HAS_MDWE_NO_INHERIT 29
1737
1738 #define MMF_VM_MERGE_ANY 30
1739 #define MMF_VM_MERGE_ANY_MASK (1 << MMF_VM_MERGE_ANY)
1740
1741 #define MMF_TOPDOWN 31 /* mm searches top down by default */
1742 #define MMF_TOPDOWN_MASK (1 << MMF_TOPDOWN)
1743
1744 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1745 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1746 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1747
mmf_init_flags(unsigned long flags)1748 static inline unsigned long mmf_init_flags(unsigned long flags)
1749 {
1750 if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1751 flags &= ~((1UL << MMF_HAS_MDWE) |
1752 (1UL << MMF_HAS_MDWE_NO_INHERIT));
1753 return flags & MMF_INIT_MASK;
1754 }
1755
1756 #endif /* _LINUX_MM_TYPES_H */
1757