xref: /linux/include/linux/memcontrol.h (revision fd1f8473503e5bf897bd3e8efe3545c0352954e6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 
117 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
118 	/* slab stats for nmi context */
119 	atomic_t		slab_reclaimable;
120 	atomic_t		slab_unreclaimable;
121 #endif
122 };
123 
124 struct mem_cgroup_threshold {
125 	struct eventfd_ctx *eventfd;
126 	unsigned long threshold;
127 };
128 
129 /* For threshold */
130 struct mem_cgroup_threshold_ary {
131 	/* An array index points to threshold just below or equal to usage. */
132 	int current_threshold;
133 	/* Size of entries[] */
134 	unsigned int size;
135 	/* Array of thresholds */
136 	struct mem_cgroup_threshold entries[] __counted_by(size);
137 };
138 
139 struct mem_cgroup_thresholds {
140 	/* Primary thresholds array */
141 	struct mem_cgroup_threshold_ary *primary;
142 	/*
143 	 * Spare threshold array.
144 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
145 	 * It must be able to store at least primary->size - 1 entries.
146 	 */
147 	struct mem_cgroup_threshold_ary *spare;
148 };
149 
150 /*
151  * Remember four most recent foreign writebacks with dirty pages in this
152  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
153  * one in a given round, we're likely to catch it later if it keeps
154  * foreign-dirtying, so a fairly low count should be enough.
155  *
156  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
157  */
158 #define MEMCG_CGWB_FRN_CNT	4
159 
160 struct memcg_cgwb_frn {
161 	u64 bdi_id;			/* bdi->id of the foreign inode */
162 	int memcg_id;			/* memcg->css.id of foreign inode */
163 	u64 at;				/* jiffies_64 at the time of dirtying */
164 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
165 };
166 
167 /*
168  * Bucket for arbitrarily byte-sized objects charged to a memory
169  * cgroup. The bucket can be reparented in one piece when the cgroup
170  * is destroyed, without having to round up the individual references
171  * of all live memory objects in the wild.
172  */
173 struct obj_cgroup {
174 	struct percpu_ref refcnt;
175 	struct mem_cgroup *memcg;
176 	atomic_t nr_charged_bytes;
177 	union {
178 		struct list_head list; /* protected by objcg_lock */
179 		struct rcu_head rcu;
180 	};
181 };
182 
183 /*
184  * The memory controller data structure. The memory controller controls both
185  * page cache and RSS per cgroup. We would eventually like to provide
186  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
187  * to help the administrator determine what knobs to tune.
188  */
189 struct mem_cgroup {
190 	struct cgroup_subsys_state css;
191 
192 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
193 	struct mem_cgroup_id id;
194 
195 	/* Accounted resources */
196 	struct page_counter memory;		/* Both v1 & v2 */
197 
198 	union {
199 		struct page_counter swap;	/* v2 only */
200 		struct page_counter memsw;	/* v1 only */
201 	};
202 
203 	/* registered local peak watchers */
204 	struct list_head memory_peaks;
205 	struct list_head swap_peaks;
206 	spinlock_t	 peaks_lock;
207 
208 	/* Range enforcement for interrupt charges */
209 	struct work_struct high_work;
210 
211 #ifdef CONFIG_ZSWAP
212 	unsigned long zswap_max;
213 
214 	/*
215 	 * Prevent pages from this memcg from being written back from zswap to
216 	 * swap, and from being swapped out on zswap store failures.
217 	 */
218 	bool zswap_writeback;
219 #endif
220 
221 	/* vmpressure notifications */
222 	struct vmpressure vmpressure;
223 
224 	/*
225 	 * Should the OOM killer kill all belonging tasks, had it kill one?
226 	 */
227 	bool oom_group;
228 
229 	int swappiness;
230 
231 	/* memory.events and memory.events.local */
232 	struct cgroup_file events_file;
233 	struct cgroup_file events_local_file;
234 
235 	/* handle for "memory.swap.events" */
236 	struct cgroup_file swap_events_file;
237 
238 	/* memory.stat */
239 	struct memcg_vmstats	*vmstats;
240 
241 	/* memory.events */
242 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
243 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
244 
245 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
246 	/* MEMCG_KMEM for nmi context */
247 	atomic_t		kmem_stat;
248 #endif
249 	/*
250 	 * Hint of reclaim pressure for socket memroy management. Note
251 	 * that this indicator should NOT be used in legacy cgroup mode
252 	 * where socket memory is accounted/charged separately.
253 	 */
254 	unsigned long		socket_pressure;
255 
256 	int kmemcg_id;
257 	/*
258 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
259 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
260 	 * to the original objcg until the end of live of memcg.
261 	 */
262 	struct obj_cgroup __rcu	*objcg;
263 	struct obj_cgroup	*orig_objcg;
264 	/* list of inherited objcgs, protected by objcg_lock */
265 	struct list_head objcg_list;
266 
267 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
268 
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 	struct list_head cgwb_list;
271 	struct wb_domain cgwb_domain;
272 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
273 #endif
274 
275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
276 	struct deferred_split deferred_split_queue;
277 #endif
278 
279 #ifdef CONFIG_LRU_GEN_WALKS_MMU
280 	/* per-memcg mm_struct list */
281 	struct lru_gen_mm_list mm_list;
282 #endif
283 
284 #ifdef CONFIG_MEMCG_V1
285 	/* Legacy consumer-oriented counters */
286 	struct page_counter kmem;		/* v1 only */
287 	struct page_counter tcpmem;		/* v1 only */
288 
289 	struct memcg1_events_percpu __percpu *events_percpu;
290 
291 	unsigned long soft_limit;
292 
293 	/* protected by memcg_oom_lock */
294 	bool oom_lock;
295 	int under_oom;
296 
297 	/* OOM-Killer disable */
298 	int oom_kill_disable;
299 
300 	/* protect arrays of thresholds */
301 	struct mutex thresholds_lock;
302 
303 	/* thresholds for memory usage. RCU-protected */
304 	struct mem_cgroup_thresholds thresholds;
305 
306 	/* thresholds for mem+swap usage. RCU-protected */
307 	struct mem_cgroup_thresholds memsw_thresholds;
308 
309 	/* For oom notifier event fd */
310 	struct list_head oom_notify;
311 
312 	/* Legacy tcp memory accounting */
313 	bool tcpmem_active;
314 	int tcpmem_pressure;
315 
316 	/* List of events which userspace want to receive */
317 	struct list_head event_list;
318 	spinlock_t event_list_lock;
319 #endif /* CONFIG_MEMCG_V1 */
320 
321 	struct mem_cgroup_per_node *nodeinfo[];
322 };
323 
324 /*
325  * size of first charge trial.
326  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
327  * workload.
328  */
329 #define MEMCG_CHARGE_BATCH 64U
330 
331 extern struct mem_cgroup *root_mem_cgroup;
332 
333 enum page_memcg_data_flags {
334 	/* page->memcg_data is a pointer to an slabobj_ext vector */
335 	MEMCG_DATA_OBJEXTS = (1UL << 0),
336 	/* page has been accounted as a non-slab kernel page */
337 	MEMCG_DATA_KMEM = (1UL << 1),
338 	/* the next bit after the last actual flag */
339 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
340 };
341 
342 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
343 
344 #else /* CONFIG_MEMCG */
345 
346 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
347 
348 #endif /* CONFIG_MEMCG */
349 
350 enum objext_flags {
351 	/* slabobj_ext vector failed to allocate */
352 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
353 	/* the next bit after the last actual flag */
354 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
355 };
356 
357 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
358 
359 #ifdef CONFIG_MEMCG
360 
361 static inline bool folio_memcg_kmem(struct folio *folio);
362 
363 /*
364  * After the initialization objcg->memcg is always pointing at
365  * a valid memcg, but can be atomically swapped to the parent memcg.
366  *
367  * The caller must ensure that the returned memcg won't be released.
368  */
369 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
370 {
371 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
372 	return READ_ONCE(objcg->memcg);
373 }
374 
375 /*
376  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
377  * @folio: Pointer to the folio.
378  *
379  * Returns a pointer to the memory cgroup associated with the folio,
380  * or NULL. This function assumes that the folio is known to have a
381  * proper memory cgroup pointer. It's not safe to call this function
382  * against some type of folios, e.g. slab folios or ex-slab folios or
383  * kmem folios.
384  */
385 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
386 {
387 	unsigned long memcg_data = folio->memcg_data;
388 
389 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
390 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
391 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
392 
393 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
394 }
395 
396 /*
397  * __folio_objcg - get the object cgroup associated with a kmem folio.
398  * @folio: Pointer to the folio.
399  *
400  * Returns a pointer to the object cgroup associated with the folio,
401  * or NULL. This function assumes that the folio is known to have a
402  * proper object cgroup pointer. It's not safe to call this function
403  * against some type of folios, e.g. slab folios or ex-slab folios or
404  * LRU folios.
405  */
406 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
407 {
408 	unsigned long memcg_data = folio->memcg_data;
409 
410 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
411 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
412 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
413 
414 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
415 }
416 
417 /*
418  * folio_memcg - Get the memory cgroup associated with a folio.
419  * @folio: Pointer to the folio.
420  *
421  * Returns a pointer to the memory cgroup associated with the folio,
422  * or NULL. This function assumes that the folio is known to have a
423  * proper memory cgroup pointer. It's not safe to call this function
424  * against some type of folios, e.g. slab folios or ex-slab folios.
425  *
426  * For a non-kmem folio any of the following ensures folio and memcg binding
427  * stability:
428  *
429  * - the folio lock
430  * - LRU isolation
431  * - exclusive reference
432  *
433  * For a kmem folio a caller should hold an rcu read lock to protect memcg
434  * associated with a kmem folio from being released.
435  */
436 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
437 {
438 	if (folio_memcg_kmem(folio))
439 		return obj_cgroup_memcg(__folio_objcg(folio));
440 	return __folio_memcg(folio);
441 }
442 
443 /*
444  * folio_memcg_charged - If a folio is charged to a memory cgroup.
445  * @folio: Pointer to the folio.
446  *
447  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
448  */
449 static inline bool folio_memcg_charged(struct folio *folio)
450 {
451 	return folio->memcg_data != 0;
452 }
453 
454 /*
455  * folio_memcg_check - Get the memory cgroup associated with a folio.
456  * @folio: Pointer to the folio.
457  *
458  * Returns a pointer to the memory cgroup associated with the folio,
459  * or NULL. This function unlike folio_memcg() can take any folio
460  * as an argument. It has to be used in cases when it's not known if a folio
461  * has an associated memory cgroup pointer or an object cgroups vector or
462  * an object cgroup.
463  *
464  * For a non-kmem folio any of the following ensures folio and memcg binding
465  * stability:
466  *
467  * - the folio lock
468  * - LRU isolation
469  * - exclusive reference
470  *
471  * For a kmem folio a caller should hold an rcu read lock to protect memcg
472  * associated with a kmem folio from being released.
473  */
474 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
475 {
476 	/*
477 	 * Because folio->memcg_data might be changed asynchronously
478 	 * for slabs, READ_ONCE() should be used here.
479 	 */
480 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
481 
482 	if (memcg_data & MEMCG_DATA_OBJEXTS)
483 		return NULL;
484 
485 	if (memcg_data & MEMCG_DATA_KMEM) {
486 		struct obj_cgroup *objcg;
487 
488 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
489 		return obj_cgroup_memcg(objcg);
490 	}
491 
492 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
493 }
494 
495 static inline struct mem_cgroup *page_memcg_check(struct page *page)
496 {
497 	if (PageTail(page))
498 		return NULL;
499 	return folio_memcg_check((struct folio *)page);
500 }
501 
502 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
503 {
504 	struct mem_cgroup *memcg;
505 
506 	rcu_read_lock();
507 retry:
508 	memcg = obj_cgroup_memcg(objcg);
509 	if (unlikely(!css_tryget(&memcg->css)))
510 		goto retry;
511 	rcu_read_unlock();
512 
513 	return memcg;
514 }
515 
516 /*
517  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
518  * @folio: Pointer to the folio.
519  *
520  * Checks if the folio has MemcgKmem flag set. The caller must ensure
521  * that the folio has an associated memory cgroup. It's not safe to call
522  * this function against some types of folios, e.g. slab folios.
523  */
524 static inline bool folio_memcg_kmem(struct folio *folio)
525 {
526 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
527 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
528 	return folio->memcg_data & MEMCG_DATA_KMEM;
529 }
530 
531 static inline bool PageMemcgKmem(struct page *page)
532 {
533 	return folio_memcg_kmem(page_folio(page));
534 }
535 
536 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
537 {
538 	return (memcg == root_mem_cgroup);
539 }
540 
541 static inline bool mem_cgroup_disabled(void)
542 {
543 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
544 }
545 
546 static inline void mem_cgroup_protection(struct mem_cgroup *root,
547 					 struct mem_cgroup *memcg,
548 					 unsigned long *min,
549 					 unsigned long *low)
550 {
551 	*min = *low = 0;
552 
553 	if (mem_cgroup_disabled())
554 		return;
555 
556 	/*
557 	 * There is no reclaim protection applied to a targeted reclaim.
558 	 * We are special casing this specific case here because
559 	 * mem_cgroup_calculate_protection is not robust enough to keep
560 	 * the protection invariant for calculated effective values for
561 	 * parallel reclaimers with different reclaim target. This is
562 	 * especially a problem for tail memcgs (as they have pages on LRU)
563 	 * which would want to have effective values 0 for targeted reclaim
564 	 * but a different value for external reclaim.
565 	 *
566 	 * Example
567 	 * Let's have global and A's reclaim in parallel:
568 	 *  |
569 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
570 	 *  |\
571 	 *  | C (low = 1G, usage = 2.5G)
572 	 *  B (low = 1G, usage = 0.5G)
573 	 *
574 	 * For the global reclaim
575 	 * A.elow = A.low
576 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
577 	 * C.elow = min(C.usage, C.low)
578 	 *
579 	 * With the effective values resetting we have A reclaim
580 	 * A.elow = 0
581 	 * B.elow = B.low
582 	 * C.elow = C.low
583 	 *
584 	 * If the global reclaim races with A's reclaim then
585 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
586 	 * is possible and reclaiming B would be violating the protection.
587 	 *
588 	 */
589 	if (root == memcg)
590 		return;
591 
592 	*min = READ_ONCE(memcg->memory.emin);
593 	*low = READ_ONCE(memcg->memory.elow);
594 }
595 
596 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
597 				     struct mem_cgroup *memcg);
598 
599 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
600 					  struct mem_cgroup *memcg)
601 {
602 	/*
603 	 * The root memcg doesn't account charges, and doesn't support
604 	 * protection. The target memcg's protection is ignored, see
605 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
606 	 */
607 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
608 		memcg == target;
609 }
610 
611 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
612 					struct mem_cgroup *memcg)
613 {
614 	if (mem_cgroup_unprotected(target, memcg))
615 		return false;
616 
617 	return READ_ONCE(memcg->memory.elow) >=
618 		page_counter_read(&memcg->memory);
619 }
620 
621 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
622 					struct mem_cgroup *memcg)
623 {
624 	if (mem_cgroup_unprotected(target, memcg))
625 		return false;
626 
627 	return READ_ONCE(memcg->memory.emin) >=
628 		page_counter_read(&memcg->memory);
629 }
630 
631 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
632 
633 /**
634  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
635  * @folio: Folio to charge.
636  * @mm: mm context of the allocating task.
637  * @gfp: Reclaim mode.
638  *
639  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
640  * pages according to @gfp if necessary.  If @mm is NULL, try to
641  * charge to the active memcg.
642  *
643  * Do not use this for folios allocated for swapin.
644  *
645  * Return: 0 on success. Otherwise, an error code is returned.
646  */
647 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
648 				    gfp_t gfp)
649 {
650 	if (mem_cgroup_disabled())
651 		return 0;
652 	return __mem_cgroup_charge(folio, mm, gfp);
653 }
654 
655 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
656 
657 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
658 				  gfp_t gfp, swp_entry_t entry);
659 
660 void __mem_cgroup_uncharge(struct folio *folio);
661 
662 /**
663  * mem_cgroup_uncharge - Uncharge a folio.
664  * @folio: Folio to uncharge.
665  *
666  * Uncharge a folio previously charged with mem_cgroup_charge().
667  */
668 static inline void mem_cgroup_uncharge(struct folio *folio)
669 {
670 	if (mem_cgroup_disabled())
671 		return;
672 	__mem_cgroup_uncharge(folio);
673 }
674 
675 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
676 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
677 {
678 	if (mem_cgroup_disabled())
679 		return;
680 	__mem_cgroup_uncharge_folios(folios);
681 }
682 
683 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
684 void mem_cgroup_migrate(struct folio *old, struct folio *new);
685 
686 /**
687  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
688  * @memcg: memcg of the wanted lruvec
689  * @pgdat: pglist_data
690  *
691  * Returns the lru list vector holding pages for a given @memcg &
692  * @pgdat combination. This can be the node lruvec, if the memory
693  * controller is disabled.
694  */
695 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
696 					       struct pglist_data *pgdat)
697 {
698 	struct mem_cgroup_per_node *mz;
699 	struct lruvec *lruvec;
700 
701 	if (mem_cgroup_disabled()) {
702 		lruvec = &pgdat->__lruvec;
703 		goto out;
704 	}
705 
706 	if (!memcg)
707 		memcg = root_mem_cgroup;
708 
709 	mz = memcg->nodeinfo[pgdat->node_id];
710 	lruvec = &mz->lruvec;
711 out:
712 	/*
713 	 * Since a node can be onlined after the mem_cgroup was created,
714 	 * we have to be prepared to initialize lruvec->pgdat here;
715 	 * and if offlined then reonlined, we need to reinitialize it.
716 	 */
717 	if (unlikely(lruvec->pgdat != pgdat))
718 		lruvec->pgdat = pgdat;
719 	return lruvec;
720 }
721 
722 /**
723  * folio_lruvec - return lruvec for isolating/putting an LRU folio
724  * @folio: Pointer to the folio.
725  *
726  * This function relies on folio->mem_cgroup being stable.
727  */
728 static inline struct lruvec *folio_lruvec(struct folio *folio)
729 {
730 	struct mem_cgroup *memcg = folio_memcg(folio);
731 
732 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
733 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
734 }
735 
736 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
737 
738 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
739 
740 struct mem_cgroup *get_mem_cgroup_from_current(void);
741 
742 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
743 
744 struct lruvec *folio_lruvec_lock(struct folio *folio);
745 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
746 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
747 						unsigned long *flags);
748 
749 #ifdef CONFIG_DEBUG_VM
750 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
751 #else
752 static inline
753 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
754 {
755 }
756 #endif
757 
758 static inline
759 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
760 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
761 }
762 
763 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
764 {
765 	return percpu_ref_tryget(&objcg->refcnt);
766 }
767 
768 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
769 {
770 	percpu_ref_get(&objcg->refcnt);
771 }
772 
773 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
774 				       unsigned long nr)
775 {
776 	percpu_ref_get_many(&objcg->refcnt, nr);
777 }
778 
779 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
780 {
781 	if (objcg)
782 		percpu_ref_put(&objcg->refcnt);
783 }
784 
785 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
786 {
787 	return !memcg || css_tryget(&memcg->css);
788 }
789 
790 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
791 {
792 	return !memcg || css_tryget_online(&memcg->css);
793 }
794 
795 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
796 {
797 	if (memcg)
798 		css_put(&memcg->css);
799 }
800 
801 #define mem_cgroup_from_counter(counter, member)	\
802 	container_of(counter, struct mem_cgroup, member)
803 
804 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
805 				   struct mem_cgroup *,
806 				   struct mem_cgroup_reclaim_cookie *);
807 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
808 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
809 			   int (*)(struct task_struct *, void *), void *arg);
810 
811 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
812 {
813 	if (mem_cgroup_disabled())
814 		return 0;
815 
816 	return memcg->id.id;
817 }
818 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
819 
820 #ifdef CONFIG_SHRINKER_DEBUG
821 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
822 {
823 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
824 }
825 
826 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
827 #endif
828 
829 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
830 {
831 	return mem_cgroup_from_css(seq_css(m));
832 }
833 
834 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
835 {
836 	struct mem_cgroup_per_node *mz;
837 
838 	if (mem_cgroup_disabled())
839 		return NULL;
840 
841 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
842 	return mz->memcg;
843 }
844 
845 /**
846  * parent_mem_cgroup - find the accounting parent of a memcg
847  * @memcg: memcg whose parent to find
848  *
849  * Returns the parent memcg, or NULL if this is the root.
850  */
851 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
852 {
853 	return mem_cgroup_from_css(memcg->css.parent);
854 }
855 
856 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
857 			      struct mem_cgroup *root)
858 {
859 	if (root == memcg)
860 		return true;
861 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
862 }
863 
864 static inline bool mm_match_cgroup(struct mm_struct *mm,
865 				   struct mem_cgroup *memcg)
866 {
867 	struct mem_cgroup *task_memcg;
868 	bool match = false;
869 
870 	rcu_read_lock();
871 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
872 	if (task_memcg)
873 		match = mem_cgroup_is_descendant(task_memcg, memcg);
874 	rcu_read_unlock();
875 	return match;
876 }
877 
878 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
879 ino_t page_cgroup_ino(struct page *page);
880 
881 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
882 {
883 	if (mem_cgroup_disabled())
884 		return true;
885 	return !!(memcg->css.flags & CSS_ONLINE);
886 }
887 
888 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
889 		int zid, int nr_pages);
890 
891 static inline
892 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
893 		enum lru_list lru, int zone_idx)
894 {
895 	struct mem_cgroup_per_node *mz;
896 
897 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
898 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
899 }
900 
901 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
902 
903 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
904 
905 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
906 
907 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
908 				struct task_struct *p);
909 
910 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
911 
912 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
913 					    struct mem_cgroup *oom_domain);
914 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
915 
916 /* idx can be of type enum memcg_stat_item or node_stat_item */
917 void mod_memcg_state(struct mem_cgroup *memcg,
918 		     enum memcg_stat_item idx, int val);
919 
920 static inline void mod_memcg_page_state(struct page *page,
921 					enum memcg_stat_item idx, int val)
922 {
923 	struct mem_cgroup *memcg;
924 
925 	if (mem_cgroup_disabled())
926 		return;
927 
928 	rcu_read_lock();
929 	memcg = folio_memcg(page_folio(page));
930 	if (memcg)
931 		mod_memcg_state(memcg, idx, val);
932 	rcu_read_unlock();
933 }
934 
935 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
936 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
937 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
938 				      enum node_stat_item idx);
939 
940 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
941 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
942 
943 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
944 
945 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
946 					 int val)
947 {
948 	unsigned long flags;
949 
950 	local_irq_save(flags);
951 	__mod_lruvec_kmem_state(p, idx, val);
952 	local_irq_restore(flags);
953 }
954 
955 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
956 			unsigned long count);
957 
958 static inline void count_memcg_folio_events(struct folio *folio,
959 		enum vm_event_item idx, unsigned long nr)
960 {
961 	struct mem_cgroup *memcg = folio_memcg(folio);
962 
963 	if (memcg)
964 		count_memcg_events(memcg, idx, nr);
965 }
966 
967 static inline void count_memcg_events_mm(struct mm_struct *mm,
968 					enum vm_event_item idx, unsigned long count)
969 {
970 	struct mem_cgroup *memcg;
971 
972 	if (mem_cgroup_disabled())
973 		return;
974 
975 	rcu_read_lock();
976 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
977 	if (likely(memcg))
978 		count_memcg_events(memcg, idx, count);
979 	rcu_read_unlock();
980 }
981 
982 static inline void count_memcg_event_mm(struct mm_struct *mm,
983 					enum vm_event_item idx)
984 {
985 	count_memcg_events_mm(mm, idx, 1);
986 }
987 
988 static inline void memcg_memory_event(struct mem_cgroup *memcg,
989 				      enum memcg_memory_event event)
990 {
991 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
992 			  event == MEMCG_SWAP_FAIL;
993 
994 	atomic_long_inc(&memcg->memory_events_local[event]);
995 	if (!swap_event)
996 		cgroup_file_notify(&memcg->events_local_file);
997 
998 	do {
999 		atomic_long_inc(&memcg->memory_events[event]);
1000 		if (swap_event)
1001 			cgroup_file_notify(&memcg->swap_events_file);
1002 		else
1003 			cgroup_file_notify(&memcg->events_file);
1004 
1005 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1006 			break;
1007 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1008 			break;
1009 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1010 		 !mem_cgroup_is_root(memcg));
1011 }
1012 
1013 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1014 					 enum memcg_memory_event event)
1015 {
1016 	struct mem_cgroup *memcg;
1017 
1018 	if (mem_cgroup_disabled())
1019 		return;
1020 
1021 	rcu_read_lock();
1022 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1023 	if (likely(memcg))
1024 		memcg_memory_event(memcg, event);
1025 	rcu_read_unlock();
1026 }
1027 
1028 void split_page_memcg(struct page *first, unsigned order);
1029 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1030 		unsigned new_order);
1031 
1032 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1033 {
1034 	struct mem_cgroup *memcg;
1035 	u64 id;
1036 
1037 	if (mem_cgroup_disabled())
1038 		return 0;
1039 
1040 	rcu_read_lock();
1041 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042 	if (!memcg)
1043 		memcg = root_mem_cgroup;
1044 	id = cgroup_id(memcg->css.cgroup);
1045 	rcu_read_unlock();
1046 	return id;
1047 }
1048 
1049 extern int mem_cgroup_init(void);
1050 #else /* CONFIG_MEMCG */
1051 
1052 #define MEM_CGROUP_ID_SHIFT	0
1053 
1054 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1055 {
1056 	return NULL;
1057 }
1058 
1059 static inline bool folio_memcg_charged(struct folio *folio)
1060 {
1061 	return false;
1062 }
1063 
1064 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1065 {
1066 	return NULL;
1067 }
1068 
1069 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1070 {
1071 	return NULL;
1072 }
1073 
1074 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1075 {
1076 	return NULL;
1077 }
1078 
1079 static inline bool folio_memcg_kmem(struct folio *folio)
1080 {
1081 	return false;
1082 }
1083 
1084 static inline bool PageMemcgKmem(struct page *page)
1085 {
1086 	return false;
1087 }
1088 
1089 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1090 {
1091 	return true;
1092 }
1093 
1094 static inline bool mem_cgroup_disabled(void)
1095 {
1096 	return true;
1097 }
1098 
1099 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1100 				      enum memcg_memory_event event)
1101 {
1102 }
1103 
1104 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1105 					 enum memcg_memory_event event)
1106 {
1107 }
1108 
1109 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1110 					 struct mem_cgroup *memcg,
1111 					 unsigned long *min,
1112 					 unsigned long *low)
1113 {
1114 	*min = *low = 0;
1115 }
1116 
1117 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1118 						   struct mem_cgroup *memcg)
1119 {
1120 }
1121 
1122 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1123 					  struct mem_cgroup *memcg)
1124 {
1125 	return true;
1126 }
1127 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1128 					struct mem_cgroup *memcg)
1129 {
1130 	return false;
1131 }
1132 
1133 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1134 					struct mem_cgroup *memcg)
1135 {
1136 	return false;
1137 }
1138 
1139 static inline int mem_cgroup_charge(struct folio *folio,
1140 		struct mm_struct *mm, gfp_t gfp)
1141 {
1142 	return 0;
1143 }
1144 
1145 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1146 {
1147         return 0;
1148 }
1149 
1150 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1151 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline void mem_cgroup_uncharge(struct folio *folio)
1157 {
1158 }
1159 
1160 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1161 {
1162 }
1163 
1164 static inline void mem_cgroup_replace_folio(struct folio *old,
1165 		struct folio *new)
1166 {
1167 }
1168 
1169 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1170 {
1171 }
1172 
1173 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1174 					       struct pglist_data *pgdat)
1175 {
1176 	return &pgdat->__lruvec;
1177 }
1178 
1179 static inline struct lruvec *folio_lruvec(struct folio *folio)
1180 {
1181 	struct pglist_data *pgdat = folio_pgdat(folio);
1182 	return &pgdat->__lruvec;
1183 }
1184 
1185 static inline
1186 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1187 {
1188 }
1189 
1190 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1191 {
1192 	return NULL;
1193 }
1194 
1195 static inline bool mm_match_cgroup(struct mm_struct *mm,
1196 		struct mem_cgroup *memcg)
1197 {
1198 	return true;
1199 }
1200 
1201 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1202 {
1203 	return NULL;
1204 }
1205 
1206 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1207 {
1208 	return NULL;
1209 }
1210 
1211 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1212 {
1213 	return NULL;
1214 }
1215 
1216 static inline
1217 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1218 {
1219 	return NULL;
1220 }
1221 
1222 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1223 {
1224 }
1225 
1226 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1227 {
1228 }
1229 
1230 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1231 {
1232 	return true;
1233 }
1234 
1235 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1236 {
1237 	return true;
1238 }
1239 
1240 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1241 {
1242 }
1243 
1244 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1245 {
1246 	struct pglist_data *pgdat = folio_pgdat(folio);
1247 
1248 	spin_lock(&pgdat->__lruvec.lru_lock);
1249 	return &pgdat->__lruvec;
1250 }
1251 
1252 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1253 {
1254 	struct pglist_data *pgdat = folio_pgdat(folio);
1255 
1256 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1257 	return &pgdat->__lruvec;
1258 }
1259 
1260 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 		unsigned long *flagsp)
1262 {
1263 	struct pglist_data *pgdat = folio_pgdat(folio);
1264 
1265 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1266 	return &pgdat->__lruvec;
1267 }
1268 
1269 static inline struct mem_cgroup *
1270 mem_cgroup_iter(struct mem_cgroup *root,
1271 		struct mem_cgroup *prev,
1272 		struct mem_cgroup_reclaim_cookie *reclaim)
1273 {
1274 	return NULL;
1275 }
1276 
1277 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1278 					 struct mem_cgroup *prev)
1279 {
1280 }
1281 
1282 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1283 		int (*fn)(struct task_struct *, void *), void *arg)
1284 {
1285 }
1286 
1287 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1288 {
1289 	return 0;
1290 }
1291 
1292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1293 {
1294 	WARN_ON_ONCE(id);
1295 	/* XXX: This should always return root_mem_cgroup */
1296 	return NULL;
1297 }
1298 
1299 #ifdef CONFIG_SHRINKER_DEBUG
1300 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1301 {
1302 	return 0;
1303 }
1304 
1305 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1306 {
1307 	return NULL;
1308 }
1309 #endif
1310 
1311 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1312 {
1313 	return NULL;
1314 }
1315 
1316 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1317 {
1318 	return NULL;
1319 }
1320 
1321 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1322 {
1323 	return true;
1324 }
1325 
1326 static inline
1327 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1328 		enum lru_list lru, int zone_idx)
1329 {
1330 	return 0;
1331 }
1332 
1333 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1334 {
1335 	return 0;
1336 }
1337 
1338 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline void
1344 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1345 {
1346 }
1347 
1348 static inline void
1349 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1350 {
1351 }
1352 
1353 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1354 {
1355 }
1356 
1357 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1358 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1359 {
1360 	return NULL;
1361 }
1362 
1363 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1364 {
1365 }
1366 
1367 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1368 				   enum memcg_stat_item idx,
1369 				   int nr)
1370 {
1371 }
1372 
1373 static inline void mod_memcg_page_state(struct page *page,
1374 					enum memcg_stat_item idx, int val)
1375 {
1376 }
1377 
1378 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1379 {
1380 	return 0;
1381 }
1382 
1383 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1384 					      enum node_stat_item idx)
1385 {
1386 	return node_page_state(lruvec_pgdat(lruvec), idx);
1387 }
1388 
1389 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1390 						    enum node_stat_item idx)
1391 {
1392 	return node_page_state(lruvec_pgdat(lruvec), idx);
1393 }
1394 
1395 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1396 {
1397 }
1398 
1399 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1400 {
1401 }
1402 
1403 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1404 					   int val)
1405 {
1406 	struct page *page = virt_to_head_page(p);
1407 
1408 	__mod_node_page_state(page_pgdat(page), idx, val);
1409 }
1410 
1411 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1412 					 int val)
1413 {
1414 	struct page *page = virt_to_head_page(p);
1415 
1416 	mod_node_page_state(page_pgdat(page), idx, val);
1417 }
1418 
1419 static inline void count_memcg_events(struct mem_cgroup *memcg,
1420 					enum vm_event_item idx,
1421 					unsigned long count)
1422 {
1423 }
1424 
1425 static inline void count_memcg_folio_events(struct folio *folio,
1426 		enum vm_event_item idx, unsigned long nr)
1427 {
1428 }
1429 
1430 static inline void count_memcg_events_mm(struct mm_struct *mm,
1431 					enum vm_event_item idx, unsigned long count)
1432 {
1433 }
1434 
1435 static inline
1436 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1437 {
1438 }
1439 
1440 static inline void split_page_memcg(struct page *first, unsigned order)
1441 {
1442 }
1443 
1444 static inline void folio_split_memcg_refs(struct folio *folio,
1445 		unsigned old_order, unsigned new_order)
1446 {
1447 }
1448 
1449 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1450 {
1451 	return 0;
1452 }
1453 
1454 static inline int mem_cgroup_init(void) { return 0; }
1455 #endif /* CONFIG_MEMCG */
1456 
1457 /*
1458  * Extended information for slab objects stored as an array in page->memcg_data
1459  * if MEMCG_DATA_OBJEXTS is set.
1460  */
1461 struct slabobj_ext {
1462 #ifdef CONFIG_MEMCG
1463 	struct obj_cgroup *objcg;
1464 #endif
1465 #ifdef CONFIG_MEM_ALLOC_PROFILING
1466 	union codetag_ref ref;
1467 #endif
1468 } __aligned(8);
1469 
1470 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1471 {
1472 	__mod_lruvec_kmem_state(p, idx, 1);
1473 }
1474 
1475 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1476 {
1477 	__mod_lruvec_kmem_state(p, idx, -1);
1478 }
1479 
1480 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1481 {
1482 	struct mem_cgroup *memcg;
1483 
1484 	memcg = lruvec_memcg(lruvec);
1485 	if (!memcg)
1486 		return NULL;
1487 	memcg = parent_mem_cgroup(memcg);
1488 	if (!memcg)
1489 		return NULL;
1490 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1491 }
1492 
1493 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1494 {
1495 	spin_unlock(&lruvec->lru_lock);
1496 }
1497 
1498 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1499 {
1500 	spin_unlock_irq(&lruvec->lru_lock);
1501 }
1502 
1503 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1504 		unsigned long flags)
1505 {
1506 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1507 }
1508 
1509 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1510 static inline bool folio_matches_lruvec(struct folio *folio,
1511 		struct lruvec *lruvec)
1512 {
1513 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1514 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1515 }
1516 
1517 /* Don't lock again iff page's lruvec locked */
1518 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1519 		struct lruvec *locked_lruvec)
1520 {
1521 	if (locked_lruvec) {
1522 		if (folio_matches_lruvec(folio, locked_lruvec))
1523 			return locked_lruvec;
1524 
1525 		unlock_page_lruvec_irq(locked_lruvec);
1526 	}
1527 
1528 	return folio_lruvec_lock_irq(folio);
1529 }
1530 
1531 /* Don't lock again iff folio's lruvec locked */
1532 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1533 		struct lruvec **lruvecp, unsigned long *flags)
1534 {
1535 	if (*lruvecp) {
1536 		if (folio_matches_lruvec(folio, *lruvecp))
1537 			return;
1538 
1539 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1540 	}
1541 
1542 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1543 }
1544 
1545 #ifdef CONFIG_CGROUP_WRITEBACK
1546 
1547 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1548 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1549 			 unsigned long *pheadroom, unsigned long *pdirty,
1550 			 unsigned long *pwriteback);
1551 
1552 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1553 					     struct bdi_writeback *wb);
1554 
1555 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1556 						  struct bdi_writeback *wb)
1557 {
1558 	struct mem_cgroup *memcg;
1559 
1560 	if (mem_cgroup_disabled())
1561 		return;
1562 
1563 	memcg = folio_memcg(folio);
1564 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1565 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1566 }
1567 
1568 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1569 
1570 #else	/* CONFIG_CGROUP_WRITEBACK */
1571 
1572 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1573 {
1574 	return NULL;
1575 }
1576 
1577 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1578 				       unsigned long *pfilepages,
1579 				       unsigned long *pheadroom,
1580 				       unsigned long *pdirty,
1581 				       unsigned long *pwriteback)
1582 {
1583 }
1584 
1585 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1586 						  struct bdi_writeback *wb)
1587 {
1588 }
1589 
1590 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1591 {
1592 }
1593 
1594 #endif	/* CONFIG_CGROUP_WRITEBACK */
1595 
1596 struct sock;
1597 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1598 			     gfp_t gfp_mask);
1599 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1600 #ifdef CONFIG_MEMCG
1601 extern struct static_key_false memcg_sockets_enabled_key;
1602 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1603 void mem_cgroup_sk_alloc(struct sock *sk);
1604 void mem_cgroup_sk_free(struct sock *sk);
1605 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1606 {
1607 #ifdef CONFIG_MEMCG_V1
1608 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1609 		return !!memcg->tcpmem_pressure;
1610 #endif /* CONFIG_MEMCG_V1 */
1611 	do {
1612 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1613 			return true;
1614 	} while ((memcg = parent_mem_cgroup(memcg)));
1615 	return false;
1616 }
1617 
1618 int alloc_shrinker_info(struct mem_cgroup *memcg);
1619 void free_shrinker_info(struct mem_cgroup *memcg);
1620 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1621 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1622 #else
1623 #define mem_cgroup_sockets_enabled 0
1624 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1625 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1626 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1627 {
1628 	return false;
1629 }
1630 
1631 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1632 				    int nid, int shrinker_id)
1633 {
1634 }
1635 #endif
1636 
1637 #ifdef CONFIG_MEMCG
1638 bool mem_cgroup_kmem_disabled(void);
1639 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1640 void __memcg_kmem_uncharge_page(struct page *page, int order);
1641 
1642 /*
1643  * The returned objcg pointer is safe to use without additional
1644  * protection within a scope. The scope is defined either by
1645  * the current task (similar to the "current" global variable)
1646  * or by set_active_memcg() pair.
1647  * Please, use obj_cgroup_get() to get a reference if the pointer
1648  * needs to be used outside of the local scope.
1649  */
1650 struct obj_cgroup *current_obj_cgroup(void);
1651 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1652 
1653 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1654 {
1655 	struct obj_cgroup *objcg = current_obj_cgroup();
1656 
1657 	if (objcg)
1658 		obj_cgroup_get(objcg);
1659 
1660 	return objcg;
1661 }
1662 
1663 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1664 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1665 
1666 extern struct static_key_false memcg_bpf_enabled_key;
1667 static inline bool memcg_bpf_enabled(void)
1668 {
1669 	return static_branch_likely(&memcg_bpf_enabled_key);
1670 }
1671 
1672 extern struct static_key_false memcg_kmem_online_key;
1673 
1674 static inline bool memcg_kmem_online(void)
1675 {
1676 	return static_branch_likely(&memcg_kmem_online_key);
1677 }
1678 
1679 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1680 					 int order)
1681 {
1682 	if (memcg_kmem_online())
1683 		return __memcg_kmem_charge_page(page, gfp, order);
1684 	return 0;
1685 }
1686 
1687 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1688 {
1689 	if (memcg_kmem_online())
1690 		__memcg_kmem_uncharge_page(page, order);
1691 }
1692 
1693 /*
1694  * A helper for accessing memcg's kmem_id, used for getting
1695  * corresponding LRU lists.
1696  */
1697 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1698 {
1699 	return memcg ? memcg->kmemcg_id : -1;
1700 }
1701 
1702 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1703 
1704 static inline void count_objcg_events(struct obj_cgroup *objcg,
1705 				      enum vm_event_item idx,
1706 				      unsigned long count)
1707 {
1708 	struct mem_cgroup *memcg;
1709 
1710 	if (!memcg_kmem_online())
1711 		return;
1712 
1713 	rcu_read_lock();
1714 	memcg = obj_cgroup_memcg(objcg);
1715 	count_memcg_events(memcg, idx, count);
1716 	rcu_read_unlock();
1717 }
1718 
1719 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1720 
1721 #else
1722 static inline bool mem_cgroup_kmem_disabled(void)
1723 {
1724 	return true;
1725 }
1726 
1727 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1728 					 int order)
1729 {
1730 	return 0;
1731 }
1732 
1733 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1734 {
1735 }
1736 
1737 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1738 					   int order)
1739 {
1740 	return 0;
1741 }
1742 
1743 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1744 {
1745 }
1746 
1747 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1748 {
1749 	return NULL;
1750 }
1751 
1752 static inline bool memcg_bpf_enabled(void)
1753 {
1754 	return false;
1755 }
1756 
1757 static inline bool memcg_kmem_online(void)
1758 {
1759 	return false;
1760 }
1761 
1762 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1763 {
1764 	return -1;
1765 }
1766 
1767 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1768 {
1769 	return NULL;
1770 }
1771 
1772 static inline void count_objcg_events(struct obj_cgroup *objcg,
1773 				      enum vm_event_item idx,
1774 				      unsigned long count)
1775 {
1776 }
1777 
1778 static inline ino_t page_cgroup_ino(struct page *page)
1779 {
1780 	return 0;
1781 }
1782 
1783 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1784 {
1785 	return true;
1786 }
1787 #endif /* CONFIG_MEMCG */
1788 
1789 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1790 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1791 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1792 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1793 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1794 #else
1795 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1796 {
1797 	return true;
1798 }
1799 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1800 					   size_t size)
1801 {
1802 }
1803 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1804 					     size_t size)
1805 {
1806 }
1807 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1808 {
1809 	/* if zswap is disabled, do not block pages going to the swapping device */
1810 	return true;
1811 }
1812 #endif
1813 
1814 
1815 /* Cgroup v1-related declarations */
1816 
1817 #ifdef CONFIG_MEMCG_V1
1818 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1819 					gfp_t gfp_mask,
1820 					unsigned long *total_scanned);
1821 
1822 bool mem_cgroup_oom_synchronize(bool wait);
1823 
1824 static inline bool task_in_memcg_oom(struct task_struct *p)
1825 {
1826 	return p->memcg_in_oom;
1827 }
1828 
1829 static inline void mem_cgroup_enter_user_fault(void)
1830 {
1831 	WARN_ON(current->in_user_fault);
1832 	current->in_user_fault = 1;
1833 }
1834 
1835 static inline void mem_cgroup_exit_user_fault(void)
1836 {
1837 	WARN_ON(!current->in_user_fault);
1838 	current->in_user_fault = 0;
1839 }
1840 
1841 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1842 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1843 
1844 #else /* CONFIG_MEMCG_V1 */
1845 static inline
1846 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1847 					gfp_t gfp_mask,
1848 					unsigned long *total_scanned)
1849 {
1850 	return 0;
1851 }
1852 
1853 static inline bool task_in_memcg_oom(struct task_struct *p)
1854 {
1855 	return false;
1856 }
1857 
1858 static inline bool mem_cgroup_oom_synchronize(bool wait)
1859 {
1860 	return false;
1861 }
1862 
1863 static inline void mem_cgroup_enter_user_fault(void)
1864 {
1865 }
1866 
1867 static inline void mem_cgroup_exit_user_fault(void)
1868 {
1869 }
1870 
1871 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1872 {
1873 }
1874 
1875 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1876 {
1877 }
1878 
1879 #endif /* CONFIG_MEMCG_V1 */
1880 
1881 #endif /* _LINUX_MEMCONTROL_H */
1882